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Significance Statement

Reversal learning depends on cognitive flexibility. Many reversal learning studies assess cognitive 
flexibility based on the number of reversals that occur over a test session. Reversals occur when an option is 
repeatedly chosen, e.g. eight times in a row. This design feature encourages win-stay behavior and thus 
makes it difficult to understand how win-stay decisions influence reversal performance. We used an alternative 
design, reversals over blocks of trials independent of performance, to study how perturbations of the medial 
orbital cortex and the noradrenergic system influence reversal learning. We found that choice accuracy varies 
independently of win-stay behavior and the noradrenergic system, including noradrenergic receptors in the 
medial orbital cortex, controls sensitivity to positive feedback during reversal learning.
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Abstract

Recent studies have established that one-trial-back decision policies (Win-Stay/Lose-Shift) and 
measures of reinforcement learning (RL), e.g. learning rate, can explain how animals perform two-armed 
bandit tasks. In many published studies, outcomes reverse after one option is selected repeatedly (e.g. 8 
selections in a row), and the primary measure of performance is the number of reversals completed. 
Performance and Win-Stay likelihood are confounded by using recent performance to drive reversals. An 
alternative design reverses outcomes across options over fixed blocks of trials. We used this blocked design 
and tested rats in a spatial two-armed bandit task. We analyzed performance using Win-Stay/Lose-Shift 
(WSLS) metrics and a RL algorithm. We found that WSLS policies remain stable with increasing reward 
uncertainty, while choice accuracy decreases. Within test sessions, learning rates increased as rats adapted 
their strategies over the first few reversals but inverse temperature remains stable. We found that muscimol 
inactivation of medial orbital cortex (mOFC) mediates task performance and negative feedback sensitivity. 
Finally, we examined the role of the adrenergic system in bandit performance, and found yohimbine (2 mg/kg) 
dramatically decreased sensitivity to positive feedback, leading to decreases in accuracy and inverse 
temperature. These effects are partially dependent on a2 adrenergic receptors in OFC. Our findings 
demonstrate a correspondence between reward schedule, WSLS policies and RL metrics in a task design that 
is free of the confound between Wins and reversals, and that the noradrenergic influence of mOFC on WSLS 
policy is dissociable from the regions general role in cognitive flexibility.
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Reversal learning tasks are one of three types of behavioral tasks used to study behavioral flexibility, 
along with attentional shifting and rule switching (Tait et al., 2014). Reversal learning requires participants to 
remap associations between either stimuli or actions and their outcomes. A number of disorders have been 
reported to negatively influence reversal learning (Peterson et al., 2009; Reddy et al., 2016; Remijnse et al., 
2006; Waltz & Gold, 2007), and the task has been suggested as a core method for preclinical evaluations of 
drugs used for treating psychiatric disorders (Powell & Ragozzino, 2017).

Some researchers have described each decision in a reversal learning task in terms of Win-Stay/Lose-
Shift (WSLS) policies (Bari et al., 2010; Dalton et al., 2014, 2016; Jang et al., 2015). The Win-Stay (WS) 
strategy exploits a previously-rewarded choice, while the Lose-Shift (LS) strategy involves exploration of a 
different option after reward omission (Estes, 1950). Probabilistic outcomes that force animals to integrate 
multiple previous trials to guide choice increase the difficulty of the task. Other studies have thus referred to 
probabilistic reversal learning as a “bandit” task--a reinforcement learning paradigm (Groman et al., 2016; 
Metha et al., 2019; Sutton & Barto, 2018). These two approaches are rarely combined to understand 
behavioral mechanisms or neuronal measures of reversal learning (Worthy & Maddox, 2014). Furthermore, 
many previous bandit studies depended on the animal repeating a response some number of times 
consecutively before implementing a reversal. This confounds the independent measure of WS behavior with 
the dependent measure of behavioral flexibility, i.e. reversals per session. 

Several neurotransmitter systems (Robbins & Roberts, 2007) and selective regions of frontal cortex 
(Izquierdo et al., 2017) have been implicated in behavioral flexibility, and bandit performance in particular. 
Among these systems, the role of the norepinephrine system and its actions in the orbitofrontal cortex are 
unclear. Neural recording studies have established that the orbitofrontal cortex (OFC) is important for 
maintaining predictive stimulus-outcome associations (e.g. Schoenbaum et al., 1999). Furthermore, OFC 
lesions or reversible inactivations have consistently impaired stimulus-outcome remapping in reversal learning 
tasks (e.g. Chudasama & Robbins, 2003). This part of the frontal cortex is therefore an important target for 
understanding how norepinephrine modulates neural processing during two-armed bandit performance.

Tonic norepinephrine (NE) activity in the orbitofrontal cortex has been proposed to modulate cognitive 
flexibility by allowing the formation of novel contexts and associations (Sadacca et al., 2017; Wilson et al., 
2014). The selective α2 antagonist yohimbine reduces availability of NE receptors throughout the brain and 
may lead to reduced persistent activity in the frontal cortex (Kovács & Hernádi, 2003; Zhang et al., 2013).. 
Yohimbine may therefore impair the ability to form new spatial/action-outcome contingencies (Sadacca et al., 
2017; Wilson et al., 2014), and could alter how animals learn from feedback (Jepma et al., 2016). No published
study has examined the impact of yohimbine on performance in a two-armed bandit task or how NE-selective 
drugs alter WSLS policies or models of reinforcement learning.

In the present study, we evaluated how rats perform a version of the two-armed bandit task that has 
blocked option-outcome reversals (Costa et al., 2015). This allowed us to investigate the relationships between
WSLS policy, reinforcement learning, and flexibility, and also to examine within-session changes under a range
of outcome probabilities. We found that rats maintained their WSLS policy across different reward probabilities,
but adapted their strategy with experience in a single session, an effect that was reflected in an increase in 
learning rate. We also determined that task performance depends on medial orbital cortex by infusing 
muscimol bilaterally into OFC prior to testing. In addition to a decrease in accuracy, OFC inactivation caused a 
decrease in sensitivity to negative feedback. Finally, we found that yohimbine administered systemically and 
intracranially to mOFC dramatically decreased sensitivity to positive feedback, an effect that was dissociable 
from the effects of mOFC inactivation. Yohimbine also decreased accuracy and the inverse temperature 
parameter of reinforcement learning.
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Methods

Procedures were approved by the Animal Use and Care Committee at American University and 
conformed to the standards of the National Institutes of Health.

Subjects
Twenty four male Long-Evans rats (300-350g) were obtained from the NIH animal colony, Charles 

River, or Envigo. Animals were housed individually and kept on a 12/12 h light/dark cycle. Animals had 
regulated access to food to maintain their body weights at approximately 90% of their free-access weights. 
Seven of these animals were unable to reach the initial accuracy criterion in the spatially-guided deterministic 
blocked bandit design (described below) and were removed from the study. Seventeen rats in total were tested
in the uncertainty experiment. From this group, 11 rats were tested with 2mg/kg systemic yohimbine. Five of 
those 11 were surgically implanted with cannulae for intra-cerebral infusions of muscimol. An additional 4 
Long-Evans rats (Charles River) were trained and tested with yohimbine and muscimol but did not participate 
in the uncertainty experiment. 

Behavioral Apparatus
All animals were trained in sound-attenuating behavioral boxes (ENV-018MD-EMS: Med Associates). A

light-pipe lickometer was located on one side of the box, and contained a 5/16” sipper tube recessed behind a 
photobeam (ENV-251M: Med Associates). The tip of the sipper tube was 6.5 cm from the floor of the box. A 
green LED light (4 cm) was placed above the spout. The opposite wall had two nosepoke ports aligned 
horizontally 4.5 cm from the floor, 12.5 cm apart, with IR beam break sensors on the external side of the wall. 
Behavioral devices were controlled and data was collected using custom-written code for the MedPC system, 
version IV (Med Associates). Visual stimuli were presented to the first cohort using a white 10-LED array and 
to the remaining animals using a green 8x8 LED matrix. Visual stimulus devices were placed above each 
nosepoke port, outside the box, to signal active trials. Positive reward feedback was presented through either a
1-sec 4.5 kHz SonAlert tone (Mallory SC628HPR) or a mechanical relay which clicked three times in quick 
succession. Negative omission feedback was presented through with a 1-sec 2.9 kHz SonAlert tone (Mallory 
SC105R). The devices were placed in opposite corners of the box behind the spout. 

Training Procedure
Rats were first given access to 25 ml of 16% sucrose in their home cage once a day over a two day 

period. They were then acclimated to the operant chamber with unrestricted access to liquid sucrose from the 
lickometer in 30 minutes behavioral sessions. Fluid presentation was indicated by activation of the fluid pump, 
the relay auditory stimulus, and illumination of a 5 mm green LED located above the lickometer. Once the rats 
licked more than 1000 times in each of two consecutive behavioral sessions, the rats were trained to nosepoke
at either the left or right ports in a counterbalanced manner. The visual stimulus above the nosepoke was fully 
illuminated at the start of each trial. The opposite nosepoke was inaccessible. After 2-5 sessions of nosepoke 
training, alternating the open nosepoke each day, the opposite nosepoke was opened.  The rats had to 
respond at the visually-cued nosepoke for 2-4 days. If the unilluminated port was chosen, the animals would be
presented with the 4.5 kHz tone and would have to lick at the spout to begin a new trial. 

Blocking was introduced after rats responded selectively to illumination of the ports. The procedure was
similar to the last step. After every 30 trials the cued and rewarded port would alternate sides. On the very first 
trial in the session, both ports were illuminated, and the option chosen on this trial became the “correct”, 
illuminated side for the remainder of the block. Finally, the task transitioned from visually and spatially guided 
to purely spatially guided behavior. The difference in the number of illuminated pixels between the correct and 
incorrect side was slowly decreased over several sessions, starting from 10 or 8 versus 0 LEDs, until both 

5

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.11.13.382069doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.382069
http://creativecommons.org/licenses/by-nc-nd/4.0/


cues had a median number of LEDs (4 or 5) illuminated for each trial. 
Once rats were able to perform the spatially-guided deterministic blocked bandit at an accuracy of 

approximately 80%, the rats were further tested for 3 days, and then tested for three days each on 90/10, 
80/20, and 70/30 reward schedules in order. We did not test them on a 60/40 reward schedule because their 
accuracy for the 70/30 test sessions was at or below the 65%, and thus near chance. 

Systemic Drug Injections
Following initial testing under different reward schedules, rats were either returned to a deterministic 

schedule for 1-2 days before being challenged with yohimbine or implanted with infusion cannulas (as 
described below). Rats that received drug cannulas were tested first with central infusions and then with 
systemic injections of yohimbine. For systemic drug testing, rats were first injected with a physiological saline 
volume control, and the next day were tested with 2 mg/kg yohimbine (Yobine: Akorn Pharmaceuticals). Both 
treatments were administered intraperitoneally under isoflurane 20 minutes before testing. There was no 
difference in behavior between a gas-only pretest and the saline session.   

Surgery
Nine rats were surgically implanted with bilateral cannulae. Anesthesia was induced by an injection of 

diazepam (5 mg/kg, IP) and maintained with isoflurane (4.0%; flow rate 4.5 cc/min). Standard stereotaxic 
methods were used to implant 26-gauge guide cannulae (PlasticsOne) bilaterally, targeting the medial orbital 
cortex (as in Swanson et al., 2019). Depth was calculated from the brain surface using a posterior angle of 12° 
and a lateral angle of 30° (AP: 3.6mm ML: 1.2mm DV: 2.0mm). Infusions were made using 33 gauge cannula 
(PlasticsOne), which extended 0.5 mm past the end of the guide cannulae.

Rats were allowed 7 days of recovery before returning to behavioral testing. Intracerebral drug 
infusions were done under isoflurane anesthesia as in previously reported (Swanson et al., 2019). To 
acclimate the rats to testing after gas anesthesia, they were anesthetized for 10 minutes one hour prior to 
testing for 1-2 sessions. For muscimol testing, rats were infused with 0.5 μL of muscimol (Tocris) or 
physiological saline with a flow rate of 0.25 μL/min. Seven of the animals were tested with 0.05 μg/μL 
muscimol. Two did not perform the task at this dosage, so instead we report their behavior under 0.01 μg/μL. 
Four of the rats were also infused with 2 μL of either physiological saline or 5 μg/μL yohimbine (Tocris) with a 
flow rate of 0.5 μL/min as previously reported (Caetano et al., 2012). Animals were tested 15 minutes after 
infusion. For both muscimol and yohimbine tests, infusion cannula were left in place for 2 minutes after the 
infusions to allow for diffusion. 

Confirmation of Cannula Placement
After completion of the experiment, the four animals with cannulae were anesthetized with isoflurane 

gas and injected intraperitoneally with Euthasol (100 mg/kg). Animals were transcardially perfused with 200 ml 
of chilled (4°C) physiological saline solution followed by 200 ml of chilled (4°C) 4% paraformaldehyde. Brains 
were removed and cryoprotected using a solution containing 20% sucrose, and 20% glycerol. Brains were then
cut into 50 μm-thick coronal slices using a freezing microtome (Hacker). Brain sections were mounted onto 
gelatin-coated slides and Nissl stained via treatment with 0.05% thionin. Thionin-treated slices were 
dehydrated through a series of alcohol steps, then covered with Clearium and coverslipped. Sections were 
imaged using a Tritech Research scope (BX-51-F), Moticam Pro 282B camera, and Motic Images Plus 2.0 
software. The most ventral point of the injection tract was compared against (Paxinos & Watson, 2007) to 
estimate brain atlas coordinates.

Data Analysis
Behavioral data were saved in standard MedPC data files and were analyzed using custom-written 
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code in the Python (Python Software Foundation, https://www.python.org/) and R (The R Project, 
https://www.r-project.org/) languages, maintained using Anaconda (https://www.anaconda.com). Analyses 
were conducted using Jupyter notebooks (https://jupyter.org/). The relationships between WSLS policy, 
accuracy, and reward uncertainty were evaluated using analysis of variance (ANOVA) and linear regression. 
Within-session effects were evaluated using ANOVA, and block analysis was done using repeated-measures 
ANOVA. Statistical testing and post hoc analysis were done using the default functions in R.

Win-Stay values were determined by calculating the proportion of stay trials following every win. The 
inverse of this proportion is the likelihood of demonstrating Win-Shift behavior.  Likewise, Lose-Shift values 
were determined by calculating the proportion of shift trials following every omitted reward. The inverse of this 
proportions is the likelihood of demonstrating Lose-Stay behavior. For ease of computation, the first trial in 
every session was considered a “Stay” trial in reference to a hypothetical 0th trial.  

Perseverative errors were defined as responses to the previously high-value option immediately after a 
reversal, before the first response to the new high-value option (Caetano et al., 2012). Please note that this 
measure includes rewarded errors given the probabilistic nature of the task.

Changepoint for each block was calculated using the cpt.mean function in the changepoint package for 
R. The model was fit on the choice data over the 60 trials that comprised the blocks immediately preceding and
following each action-outcome probability reversal, with the reversal centered at 0. Therefore, negative 
changepoint values indicated that the rat shifted behaviourally before the action-outcome contingencies 
reversed, while positive values indicated that they shifted their response after the reversal. 

Choice latency was defined as the time between the first contact with the reward spout from the 
previous trial (or from the session start for the first trial), and the time of entry into the nosepoke. This time 
included the 0.5-second reward delivery on rewarded trials. However, rats typically remained near the spout to 
lick after the pump turned off, and stayed there for some time even on unrewarded trials. Collection latencies 
were defined as the time between the cue above the reward port and the first lick at the spout. Rats had to 
respond to the reward spout to begin a new trial regardless of reward delivery. 

Reinforcement Learning
We originally fit four Q-learning models to the choice behavior of the rats to estimate learning rates and 

inverse temperature. Two models were fit to Left/Right choice behavior while another two were fit to Stay/Shift 
choice behavior. For each type of choice behavior, we fit one model with a single learning rate and one with a 
separate learning rate for each option. Each model updated the value, Q, of a chosen option i based on reward
feedback r as:

At each trial t, the updated value of an option i was given by its old value, Qi(t−1) plus a change based on the 
reward prediction error (r(t)−Qi(t−1)), multiplied by the learning rate parameter for that option, αi. In single-alpha
models, αi referred to the same value for both options. Choice probability for each option i was calculated as 
di(t) using:

We then calculated the log-likelihood as:

Where ci(t) = 1 if the subject chooses option i in trial t and ci(t) = 0 otherwise. T is the total number of trials in 
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the session or block. Parameters were fit by maximizing the log-likelihood using standard optimization 
techniques via the scipy package for python. Initial values for learning rate parameters were drawn from a 
normal distribution with a mean of 0.5 and a standard deviation of 0.5. Learning rate values were bounded 
within (0,1]. Initial values for the inverse temperature parameter were drawn from a normal distribution with a 
mean of 1 and a standard deviation of 5 and were bounded between 0 and 20. Initial values of actions were 
always set to 0.5 to minimize the impact of starting value on the other parameters by animal. Model fits were 
repeated 100 times to avoid local minima and the model with the minimum negative log-likelihood was selected
as the best fit. The Akaike Information Criterion (AIC) was then calculated for each best-fit model and was 
used to compare the goodness of fit between models. Because the number of free parameters differed by 
model, we also calculated the Bayesian Information Criterion (BIC), which more strongly penalizes a larger 
number of free parameters. While the best fit model according to both criteria had individual learning rates for 
each location, as previously found (Noworyta-Sokolowska et al., 2019), the learning rates were not statistically 
different from each other. Therefore, a simpler model with a single alpha parameter that updated both options 
was sufficient to model the behavioral data here. 

Results

Effects of reward schedule on performance
We trained 17 rats on a spatial, blocked two-armed bandit task. The rats were first trained 

deterministically (100%/0%), and then tested on 90%/10%, 80%/20% and 70%/30% probabilistic reward 
schedules. Each schedule was repeated one session per day for three days. The rats had to nosepoke one of 
two options on one side of the box. They immediately received tonal feedback as to whether that choice was 
rewarded. Regardless of the outcome, the rat had to lick at a spout on the opposite side of the box. The spout 
delivered a reward on reinforced trials or immediately started the next trial on non-rewarded trials. Reward 
probabilities reversed every 30 trials (Figure 1A). We trained the rats in two groups. The second cohort of rats 
(n=11) was trained to a minimum accuracy criterion as set by the first cohort (n=6). For each session, we 
calculated the proportion of Win trials in which the animals stayed with the same port (Win-Stay) and the 
proportion of Loss trials in which the animals shifted to the other port (Lose-Shift) (Figure 1B), but this measure
was not used as a criterion for training. 

Accuracy, defined as the percentage of trials targeted toward the higher-value option, varied 
significantly with reward schedule (F(3,46) = 92.162, p = 0, ANOVA, Figure 1C). In the deterministic version of 
the task, when feedback was most informative, subjects performed well (mean accuracy = 77.83%). Subjects 
performed more poorly when the reward feedback was less revealing of the higher-value target. For example, 
at the 70/30 reward schedule, rats were only able to obtain a mean accuracy of 63.09% over a session. 

We also note that the number of blocks completed varied by rat (3-24 blocks, mean = 11), and the 
second cohort completed significantly more blocks than the first, 15 blocks on average versus 6 blocks (t(16) =
-17.141, p = 4.07e-41, independent t-test). Accuracy was lower in the second cohort in general (t(16) = 2.7546,
p = 0.00642, independent t-test), but there was no effect of the number of blocks completed on accuracy (t(16) 
= -1.379, p = 0.169, linear regression). There was no effect of cohort for any other measure. There was also no
effect of day over the 3-day test for each reward schedule (F(2,30) = 2.548, p = 0.0951, ANOVA), though there
was a slight interaction between schedule and day (F(6,94) = 2.646, p = 0.0205, ANOVA). 

To determine whether the decrease in accuracy was due to a change in sensitivity to positive and 
negative feedback, we analyzed their Win-Stay/Lose-Shift (WSLS) decision policy for each schedule. Their 
overall sensitivity to positive and negative feedback was approximated by determining the proportion of WS 
and LS trials in a session. There was no difference by reward schedule in Win-Stay likelihood (F(3,46) = 0.971,
p = 0.415, ANOVA, Figure 1D) and no effect of day within schedule (F(1,46) = 0.054, p = 0.818, ANOVA). 
There was a trend toward a difference in Lose-Shift likelihood by schedule (F(3,46) = 2.492 , p = 0.0719, 
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ANOVA, Figure 1E), and this effect was driven by a difference in response for deterministic versus probabilistic
schedules (p = 0.0104, post-hoc Tukey test). These results indicate that the rats did not adjust their strategy to 
compensate for reward uncertainty beyond this level. 

Effects of block on performance
Since the task required many spatial reversals within the session, it is possible that the rats’ strategy, 

and therefore performance, changed over time. To investigate within-session trends, we independently 
analyzed each block. A repeated-measures ANOVA confirmed the effect of block on accuracy (F-stat(5,74) = 
3.34, p = 0.00895, ANOVA, Figure 2A). Subjects demonstrated a drop in accuracy in the second block 
(following the first reversal) in all reward schedules (p = 0.0000304, post-hoc Tukey test). There was no 
interaction between block and schedule (F(5,74) = 0.754 , p = 0.586, ANOVA).

Within the shortened view of the first six blocks, there was still no difference in WS likelihood by reward 
schedule (F(1,74) = 1.646, p = 0.204, ANOVA), but there was a difference across blocks (F(5,74) = 23.562, p =
0, ANOVA, Figure 2B). Post-hoc testing revealed that the first and second block were significantly lower than 
the other four blocks (p < 0.0249, post-hoc Tukey test), and also that they were different from each other (p = 
0.000152, post-hoc Tukey test). Repeated-measures ANOVA also reported a block-dependent change in LS 
likelihood(F(5,74) = 3.056, p = 0.0146, ANOVA, Figure 2C), but post-hoc testing did not indicate a difference 
between any two specific blocks. There was also no interaction between block and schedule (F(5,74) = 0.929, 
p = 0.467, ANOVA). Together, these results indicate that the policy for positive feedback changes with 
experience and eventually collapses to some value across all reward schedules, while the policy for negative 
feedback depends on whether the task is probabilistic but does not change with experience. 

We expected that increased uncertainty might also cause perseveration around reversals, since the 
animals would have more difficulty distinguishing between probabilistic negative feedback and a true reversal, 
and because their Lose-Shift rates were lower in probabilistic schedules. However, there was no statistical 
difference in the number of perseverative errors by reward schedule (F(3,48) = 1.444, p = 0.242, ANOVA). 
Interestingly, their WS likelihood was lowest in the first block, while their accuracy was lowest in the second. 
Additionally, the mean likelihood of selecting the correct side by trial appeared to reach asymptote in the 
second block more slowly than for the other blocks (Figure 2D). To investigate the decrease in accuracy in the 
second block, we attempted to quantify how quickly rats adapted to each reversal. However, rats made the 
same number of perseverative errors following each of the first five reversals (F(4,64) = 0.593, p = 0.669, 
ANOVA , Figure 2E). The mean number of perseverative errors was 1.78 trials.

It is possible that while they always chose the target option within a few trials after a reversal, it took 
longer for the rats to reliably choose the target option within the block. To estimate this behavioral reversal for 
each block, we applied a changepoint algorithm to the rats’ choice data (see Methods). Reward schedule had 
no impact on behavioral changepoint (F(1,33) = 2.383, p = 0.132, ANOVA). There was also no within-session 
effect of block (F(4,33) = 2.037, p = 0.112, ANOVA, Figure 2F), however the algorithm was only able to detect 
a statistically valid changepoint after 57% of the first 5 reversals in each session. Out of those, the rats 
demonstrated a behavioral reversal 3.32 trials after the environmental reversal on average. This finding 
suggests that the rats shifted their behavior abruptly soon after the reversal in action-outcome contingencies 
for half of the blocks, but for the other half of blocks gradually learned the new contingencies or did not 
demonstrate a behavioral reversal at all.   

Reinforcement Learning Analysis
WSLS policies describe individual choices, but may not describe behavior over longer time periods 

adequately. We built a model that used the rats’ WSLS policy to predict their choice on each trial and found 
that the policy was predictive of their behavior on each trial (Mean Square Error: 0.284607). We fit several 
reinforcement learning models to the data to determine if such a model that incorporates outcome history 
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would better account for their behavior. We fit the model using either left-right or stay-shift dichotomies as the 
options to learn, and tried models with either a single learning rate or with separate learning rates for each 
option. The model that had the lowest Akaike Information Criterion (AIC) used individual learning rates to 
update the values of left and right actions. However, since there was no statistical difference between the 
alpha values for this model (t(201) = 0.2659, p = 0.7906, paired t-test), there was no real difference in the 
learning rate for each option and a better fit is likely due to the freedom given by the extra parameter. 
Therefore, we elected to use the single-alpha model instead.

 Uncertainty affected learning rate (alpha) in the single-alpha model (F(3, 46) = 3.591, p = 0.0205, 
ANOVA, Figure 3A). Post-hoc testing showed that the 70/30 schedule specifically produced slower learning, 
driving the effect (p < 0.09, post-hoc Tukey test). There was no corresponding effect on inverse temperature 
(beta) (F(3,46) = 0.77, p = 0.517, ANOVA). Log transforms of the values also found no effect (F(3,46) = 1.022, 
p = 0.392. However, there were differences in variance in the fits of beta between all pairs of reward schedules
with the exception of 100/0 - 80/20 (F(1,49), p < 0.000148, variance test), which violated the assumptions of 
the ANOVA. Nonparametric testing revealed dramatic differences in the medians of the fits (χ2(3) = 71.976, p =
1.611e-15, Kruskal-Wallis rank sum test, Figure 3B), such that beta decreased with uncertainty.

One of the reasons we used a blocked design was that we could apply reinforcement learning to each 
block individually. When we fit the model to each of the first six 30-trial blocks, reward schedule impacted both 
learning rate (F(3,65) = 4.152, p = 0.00938, ANOVA) but not inverse temperature (F(3,65) = 2.064, p = 0.114, 
ANOVA). The effect of learning rate was dominated by model parameters for the deterministic 100/0 schedule 
(p < 0.0024, post-hoc Tukey test). Learning rate also varied by block regardless of schedule, (F(5,65) = 9.321, 
p = 9.92e-07, ANOVA, Figure 3C). Within the probabilistic schedules, learning rate increased over the first 
three blocks. In the deterministic session, learning rate drops in the second block and recovers in the third 
block, but this was not found to be significant in a post-hoc test. In contrast, there was no such effect of block 
on inverse temperature (beta parameter) (F(5,65) = 1.543, p = 0.174, ANOVA, Figure 3D) and no interaction 
with reward schedule (F(12,65) = 1.442, p = 0.170, ANOVA). When fit to each block individually, we found 
homoscedasticity (equal variance) across reward schedules. Nevertheless, to confirm these results using a 
non-parametric method, we found no difference in median beta by block (χ2(5) = 9.38, p = 0.0948, Kruskal-
Wallis rank sum test).

In an effort to quantify the relationship between WSLS policy and RL parameters, we performed a linear
regression on the WSLS values to predict learning rate and inverse temperature. Both alpha (t(3,198) = 2.461, 
p = 0.0147, linear regression) and beta (t(3,198) = -2.847, p = 0.00488, linear regression) were best predicted 
by the interaction between Win-Stay and Lose-Shift likelihoods. Individually however, LS (sensitivity to 
negative feedback) was a better predictor of learning rate (WS: t(3,198) = -1.890, p =0.0602; LS: t(3,198) = -
2.246, p =  0.0258), while WS (sensitivity to positive feedback) was a better predictor of choice stochasticity 
(WS: t(3,198) = 2.777, p = 0.00602; LS: t(3,198) =  2.714, p = 0.00724). 

Inactivation of Medial Orbitofrontal Cortex
To determine the role of mOFC in the blocked TAB design, a subset of rats (n=9) were implanted with 

cannula bilaterally in mOFC and received infusions of muscimol one hour prior to testing (Figure 4A). All rats 
were tested in the deterministic reward schedule only to increase the likelihood of detecting an effect. 
Inactivation of mOFC resulted in a decrease in accuracy (F(1,8) = 7.979, p = 0.0223, ANOVA, Figure 4B). 
While inactivation did not affect Win-Stay likelihood (F(1,8) = 0.085, p = 0.778, ANOVA, Figure 4C), it caused a
decrease in Lose-Shift likelihood (F(1,8) = 12.53, p = 0.00763, ANOVA, FIgure 4D). This decrease in LS 
likelihood corresponded to an increase in changepoint (F(1,14) = 9.695, p = 0.00762, ANOVA, Figure 4E) and 
perseverative errors (F(1,32) = 5.513, p = 0.0252, ANOVA, Figure 4F). 

Inactivation of mOFC did not affect either the learning rate (F(1,8) = 2.709, p = 0.138) or inverse 
temperature (χ2(1) = 0.43905, p = 0.5076) in a session-wide analysis of reinforcement learning. There was no 
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interaction with learning rate when analyzed by block (F(5,32) = 0.868, p = 0.513). However, there was a 
difference in inverse temperature when the RL model was fit by block (F(1,5) = 13.461, p = 0.0145, ANOVA), 
with muscimol increasing the beta parameter. There was no interaction between treatment and block (F(1,5) = 
0.336, p = 0.587, ANOVA). 

Effects of Systemic Yohimbine
To investigate the role of norepinephrine in two-armed bandit performance, we first challenged a subset

(n=11) of the rats with a 2 mg/kg systemic injection of yohimbine. They were tested on both deterministic and 
80/20 probabilistic reward schedules. If norepinephrine moderates the balance between exploration and 
exploitation, we would expect to see a change in their policy. Indeed, there was a decrease in WS likelihood in 
both reward schedules under yohimbine (F(1,10) = 21.43, p = 0.000936, ANOVA, Figure 5C). There was no 
change in LS likelihood (F(1,10) = 2.078, p = 0.18, ANOVA, Figure 5D), but as before, there was a significant 
difference in LS strategy between the 100/0 and 80/20 in the saline session (F(1,10) = 7.722, p = 0.0195, 
ANOVA). There was a marginal interaction between schedule and treatment for LS likelihood in the initial 
ANOVA (F(1,10) = 4.291, p = 0.0651), but this effect was not present in post-hoc analysis. Therefore, 
yohimbine selectively decreased sensitivity to positive feedback.

This effect led to a significant decrease in accuracy under yohimbine compared to saline control 
(F(1,10) = 29.03, p = 0.000306, ANOVA, Figure 5A). As with the uncertainty testing, animals were more 
accurate in the deterministic reward schedule (F(1,10) = 54.9, p = 2.29e-05, ANOVA). However, there was no 
interaction between treatment and schedule (F(1,10) = 3.416, p = 0.0943, ANOVA), meaning that yohimbine 
caused a similar decrease in accuracy in both tests. This decrease in accuracy was not associated with 
perseveration, as treatment with yohimbine did not impact the number of perseverative errors the animals 
made following each reversal (F(1,10) = 0.925, p = 0.359, ANOVA). However, yohimbine did increase the 
behavioral changepoint (F(1,10) = 9.497, p = 0.0116, ANOVA, Figure 5B). 

We then focused on the first 6 blocks to investigate yohimbine’s effect on the first few reversals. While 
treatment decreased the likelihood of choosing the correct option, there was no interaction between treatment 
and block on accuracy (F(5,50) = 1.468, p = 0.217, ANOVA), on Win-Stay likelihood (F(5,50) = 1.808, p = 
0.128, ANOVA), or Lose-Shift likelihood (F(5,50) = 0.766, p = 0.579, ANOVA), at least in the context of the 
order of the blocks. There was however a difference in accuracy between even and odd blocks for the 
deterministic session, (t(10) = 4.275, p = 6.394e-05, dependent t-test, Figure 6A) with lower accuracy on the 
odd blocks. This suggests that the rats become biased toward the initial high-value option. This effect was 
present in Win-Stay likelihood (t(10) = 3.141, p = 0.0025, dependent t-test, Figure 6B), but there was no such 
pattern in LS likelihood (t(10) = 0.260, p = 0.795, dependent t-test, Figure 6C). However, there was no 
significant effect on accuracy for the 80/20 probabilistic schedule (t(10) = 0.256, p = 0.799, dependent t-test), 
suggesting that the effects of yohimbine on bias depend on reward uncertainty.

There was also a double dissociation of the effect by reward schedule and block under yohimbine 
(F(5,120) = 3.405, p = 0.00652, ANOVA). Under the deterministic schedule yohimbine increased the number of
trials the rats needed to behaviorally reverse for each of the first six reversals. Under the probabilistic schedule
however, they reversed their behavior before the first two environmental reversals in the session, and then 
took longer to adapt after the next three reversals than in the saline session.

We predicted that norepinephrine controls the determinism of choice via control over the inverse 
temperature in reinforcement learning. When we fit the single-alpha reinforcement learning model discussed 
above to their behavior to the whole session, there was no change in learning rate under yohimbine (F(1,10) = 
2.162, p = 0.172, ANOVA, Figure 7A). In contrast, we found that yohimbine decreased inverse temperature as 
predicted (F(1,10) = 6.31, p = 0.0308, ANOVA, Figure 7B). There was also no interaction with schedule for 
either parameter (Alpha: F(1,10) = 0.295, p = 0.599; Beta: F(1,30) = 0.83, p = 0.384, ANOVA). These fits had 
equal variance and did not require non-parametric analysis.
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When fit to each block individually, we found that yohimbine treatment decreased learning rate (F(1,10) 
= 10.06, p = 0.00995, ANOVA, Figure 7C) but not inverse temperature (F(1,10) = 3.067, p = 0.11, ANOVA, 
Figure 7D). While there was an effect of block for both parameters(Alpha: F(5,50) = 2.583, p = 0.0373; Beta: 
F(5,50) = 2.942, p = 0.021, ANOVA), there was no interaction between treatment and block (Alpha: F(5,50) = 
0.226, p = 0.949; Beta: F(5,50) = 0.469, p = 0.797, ANOVA). Because there was no interaction with schedule 
(Alpha: F(5,50) = 1.275, p = 0.289; Beta: F(5,50) = 1.421, p = 0.233, ANOVA), we combined the results of the 
fits in Figure 7C-D. 

Intracerebral Infusions of Yohimbine
A subset of rats (n=4) were also bilaterally infused with yohimbine in medial OFC under the 

deterministic schedule (see Figure 4A for this schedule).  Blockade of α2 adrenergic receptors in this brain 
region caused a similar reduction in accuracy (F(1,3) = 12.74, p = 0.0376, ANOVA), and Win-Stay Likelihood 
(F(1,3) = 16.68, p = 0.0265, ANOVA) across the session, and did not affect Lose-Shift likelihood (F(1,3) = 
0.079, p = 0.796, ANOVA). Again, as with the systemic injections, yohimbine did not affect the number of 
perseverative errors (F(1,3) = 0.247, p = 0.653, ANOVA), but did cause a marginal increase in changepoint 
(F(1,3) = 7.321, p = 0.0734, ANOVA) in these rats. When analyzed by block, we found a similar decrease in 
accuracy (t(3) = 1.958, p = 0.057, independent t-test, Figure 6D) and WS likelihood (t(3)= 1.789 , p = 0.081, 
independent t-test, Figure 6E) on even blocks. However, the effect was marginal due to the small sample size. 
There was again no such effect on LS likelihood (t(3) = -0.765, p = 0.45, independent t-test, Figure 6F). These 
results are in line with those following systemic injections of yohimbine in the same rats. The effects of 
reinforcement learning did not reach the threshold for statistical significance, due to the small group size and 
high variability of model fits between rats. 

Effects of Yohimbine on Choice and Reward Collection Latencies
We hypothesized that rats might take longer to make decisions when feedback is less informative. 

However, there was no difference in median choice latency (F(3,30) = 1.13, p = 0.353, ANOVA) or collection 
latency (F(3,30) = 1.584, p = 0.214, ANOVA) by schedule. There was however a significant effect of block on 
both median choice latency (F(5,44) = 9.512, p = 3.34e-06, ANOVA, Figure 8A) and collection latency (F(5,44) 
= 8.269, p = 1.42e-05, ANOVA, Figure 8B). Specifically, rats had longer latencies in the initial block relative to 
all other blocks (Choice: t(10) = 3.4489, p = 0.0013; Collect: t(10) = 3.1982, p =0.0026, paired t-test). There 
was no interaction between block and schedule for either measure.  

Systemic injections of yohimbine has been shown previously to increase impulsivity in rats (Sun et al., 
2010), so we investigated whether the decrease in accuracy in the drug session was due to an increase in 
impulsivity. We found that systemic yohimbine decreased both choice latency (F(1,10) = 12.14, p = 0.00588, 
ANOVA, Figure 8C) and collection latency (F(1,10) = 5.983, p = 0.0345, ANOVA, Figure 8D) in the first six 
blocks. Block number affected choice latency in both sessions (F(5,50) = 5.375, p = 0.000496, ANOVA, Figure 
8E) with a marginal interaction with drug treatment (F(5,50) = 2.326, p = 0.0881, ANOVA). The effect of block 
was even more pronounced for collection latency (F(5,50) = 7.999, p = 1.34e-05, ANOVA, Figure 8F), as was 
the interaction with yohimbine (F(5,50) = 3.596, p = 0.00743, ANOVA). In particular, rats were slower in the 
first block as compared to the second (Choice: p= 0.0251, Collect: p=0.00163, post-hoc Tukey test). There was
also an overall increase in the mean number of blocks completed: 14.6 under systemic yohimbine vs 12.1 
under the saline control, (t(43) = -4.4476, p = 0.0002, paired t-test), indicating that the increase in pace 
enabled them to complete more trials in the 1-hour session. 

However, we regressed median choice latency, treatment, and correctness onto accuracy to determine 
whether the decrease in latencies were associated with increased impulsivity. While drug treatment was a 
predictive factor as expected (β = -2.756, p = 0.0075, linear regression), choice latency had no relationship 
with accuracy (β = -0.348, p = 0.7290, linear regression) nor was the interaction between choice latency and 

12

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.11.13.382069doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.382069
http://creativecommons.org/licenses/by-nc-nd/4.0/


systemic yohimbine (β = 0.590, p = 0.5569, linear regression). This indicates that while systemic yohimbine 
decreased both accuracy and choice latencies, those measures are unrelated and not evidence of increased 
impulsivity.

In the four rats with guide cannula, intra-cerebral yohimbine affected neither choice (F(1,3) =  0.287, p =
0.629) nor collection latencies (F(1,3) = 0.516, p = 0.524). However, it is unclear if this finding was due to the 
small sample size (n=4) or if these individual rats were unaffected, since systemic yohimbine also did not alter 
latencies in these animals (Choice: F(1,3) = 1.748, p = 0.278; Collect: F(1,3) = 0.199, p = 0.686).

Discussion

Win-Stay Lose-Shift policy has been shown to be consistent in rats across sessions in an 80/20 
probabilistic bandit (Noworyta-Sokolowska et al., 2019), though further evidence shows that WS and LS 
likelihoods change in the learning and reversal phases of a single probabilistic reversal (Amodeo et al., 2017). 
In contrast, human choices may be best fit by a WSLS model that changes with experience (Worthy & Maddox,
2014). However, these studies confound WS likelihood with the reversal trigger. The current study uses a 
blocked bandit and corroborates both findings to some extent. We found no change in LS likelihood by block, 
but likelihood of Lose-Shifting was higher in deterministic schedules as compared to probabilistic schedules. 
This is unsurprising as negative feedback is perfectly informative of a reversal in the deterministic schedule. In 
contrast, WS likelihood increased over the first three blocks but was stable across schedules. This finding is in 
contrast to a recent study that found increased Win-Shift behavior at the beginning of each block and in the 
higher uncertainty schedule within a 3-armed bandit (Cinotti et al., 2019). However, this study averaged values 
across blocks which may have obscured block-by-block effects.

Interestingly, rats showed reduced accuracy following the first reversal under all reward schedules. 
Furthermore, while rats performed less accurately in sessions with more uncertainty, behavioral changepoint 
and the number of perseverative errors following reversal did not vary with reward uncertainty or block. 
Experience with reversals is known to affect strategy and expectation of reversals (Costa et al., 2015; 
Mackintosh et al., 1968; Murray & Gaffan, 2006; Rudebeck et al., 2013; Yu & Dayan, 2005). We found that 
learning rate increases with experience over the first three blocks in the probabilistic schedules, indicating that 
the rats learned faster with repeated reversals. Conversely, inverse temperature, or choice determinism, 
decreased dramatically with increasing uncertainty but did not change in response to reversal experience. 
Inverse temperature affects stochasticity or the ratio of exploitation to exploration (Doya, 2002; Katahira, 2015),
and the decrease in beta with uncertainty could be due to probability devaluation (Daw et al., 2006) or to 
increased exploration (Knox et al., 2012; Speekenbrink & Konstantinidis, 2015)

We also found that Win-Stay likelihood (sensitivity to positive feedback) was more strongly correlated 
with inverse temperature (Cinotti et al., 2019), while LS likelihood (sensitivity to negative feedback) was more 
strongly correlated with learning rate. However, both the WS likelihood and learning rate increased over 
repeated reversals, while inverse temperature and LS remained stable. It is unclear what is responsible for this
mismatch, and this result comes in contradiction to Noworyta-Sokolowska and colleagues, who found that 
sensitivity to positive feedback is associated with faster learning (Noworyta-Sokolowska et al., 2019). 

The second aim of this study was to determine whether the mOFC was critical for success in a blocked 
two-armed bandit task. The mOFC region that we targeted was also investigated by our lab in a study of 
prorgressive ratio responding (Swanson et al., 2019) and may be homologos to the pregenual anterior 
cingulate cortex in primates (Laubach et al., 2018). We infused muscimol into mOFC to transiently inactivate 
the region. Inactivation led to a decrease in accuracy and a dramatic decrease in LS likelihood, as well as an 
increase in changepoint and perseveration. These results demonstrate that the orbitofrontal cortex plays an 
important role in TAB performance. Previous studies showed similar reductions in negative feedback sensitivity
following mOFC inactivation in a 80/20 performance-based two-armed bandit (Dalton et al., 2016; Verharen et 
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al., 2020), though Dalton and colleagues also found a decrease in positive feedback sensitivity following 
mOFC inactivation. However, our results run contrary to a previous finding that mOFC inactivation decreases 
perseveration and increases Lose-Shift likelihood in a visual deterministic TAB task which used a 24/30 correct
sliding window to trigger reversals (Hervig et al., 2020). This could be due to the difference in modality, as 
there is evidence to suggest that mOFC is more important in retrieving action-outcome associations than 
stimulus-outcome associations as compared to lateral OFC (Bradfield et al., 2015), and the animals in this 
experiment could be using a left-right strategy to solve the spatial bandit. 

The final aim of this study was to explore the role of the noradrenaline system in a two-armed bandit 
task via the α2-noradrenoreceptor antagonist yohimbine. At lower doses than used in this study, systemic 
delivery of yohimbine has been shown to deactivate presynaptic α2-noradrenoreceptors, enhancing central NA
release (Abercrombie et al., 1988; Szemeredi et al., 1991). For this reason, we also delivered yohimbine 
intracranially to determine the role of α2-adrenoreceptors in mOFC specifically (Agster et al., 2013; U’Prichard 
et al., 1979). We found similar effects of 2 mg/kg systemic yohimbine and 5 µg/µL intraorbital yohimbine. 
Specifically, both accuracy and Win-Stay choice behavior were reduced while changepoint increased under 
yohimbine in deterministic and 80%/20% probabilistic sessions.

Critically, these results demonstrate a dissociation between the effects of yohimbine NA blockade and 
broad inactivation of the mOFC. While both manipulations led to a decrease in accuracy, muscimol inactivation
of mOFC led to a decrease in sensitivity to negative feedback via a selective decrease in LS likelihood and α2-
noradrenoreceptor blockade in mOFC led to a decrease in positive feedback sensitivity. In a recent review, 
Wilson and colleagues proposed that the overarching role of orbitofrontal cortex is to represent task states 
(Wilson et al., 2014), leading to the common finding that lesion or inactivation leads to deficits in reversal 
learning but not initial discrimination learning (Schoenbaum et al., 2002 ; Rudebeck & Murray, 2008), as we 
found here.

The noradrenergic system is one of many neuromodulators of flexibility (Robbins et al., 2010; Robbins 
& Roberts, 2007) and is thought to play a role in mediating the explore/exploit tradeoff (Aston-Jones & Cohen, 
2005; Daw & Doya, 2006; Doya, 2002; Yu & Dayan, 2005). Specifically, endogenous tonic NA rises following 
reversal (Aston-Jones et al., 1997), which is thought to facilitate exploration (Aston-Jones et al., 1999; Jepma 
& Nieuwenhuis, 2011; Shea-Brown et al., 2008) and signal to the OFC to update task state or context (Bouret 
& Sara, 2005; Dayan & Yu, 2006; Sadacca et al., 2017). In the present study, we found that rats performed 
better on blocks where the high-value option matched their initial choice (Figure 6). We also found a decrease 
in inverse temperature, a measure of the exploration/exploitation tradeoff. Yohimbine antagonism may lead to 
a decrease in tonic NA in mOFC which would block updating of context and therefore decrease responding to 
the non-preferred side.

Finally, the increased noradrenergic tone caused by systemic yohimbine can lead to increased 
measures of impulsivity in a variety of tasks (Mahoney et al., 2016; Sun et al., 2010; Swann et al., 2005). While
we found an increase in speed and decrease in accuracy under yohimbine, we did not find evidence of a 
correlation between decision time and accuracy, indicating that yohimbine did not necessarily cause an 
increase in impulsivity.

We acknowledge several limitations and alternative interpretations for this study. First, correlated 
reward schedules were presented in order of certainty and each schedule was presented one session per day 
for three days in a row. While we found no difference in policy by day for each schedule, as reported by 
Noworyta-Sokolowska et al. (2019), it is possible that the order of presentation had some effect on WSLS 
policy. Also, we only report the first 6 blocks in all block-based analyses although some rats completed up to 
15 blocks per session. Focusing on the initial part of the test session avoided potential effects of satiety (Colwill
& Rescorla, 1985; Rudebeck & Murray, 2011). We note that performance remained relatively stable until the 
rats approached the end of the one-hour session and reached satiety. We further note that we removed any 
incomplete blocks in the whole-session analysis.
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Secondly, rats were tested only in the deterministic reward schedule to increase the likelihood of 
detecting an effect. We were therefore unable to determine if the effects muscimol inactivation of OFC 
depended on reward uncertainty. Previous studies that implemented a performance-based bandit used an 
80/20 probabilistic schedule (Dalton et al., 2016; Verharen et al., 2020) and we found that baseline LS 
likelihood in the blocked bandit depends on the presence of uncertainty. There is also some evidence that the 
result depends on species, since lesion of OFC in monkeys does not impair deterministic reversal learning 
(Rudebeck et al., 2013). 

We also found a contradiction by scope of the RL model. When looking at each block individually, 
systemic yohimbine decreased learning rate but had no effect on inverse temperature. Inverse temperature 
controls the influence of reward history (Katahira, 2015), so the difference in evidence available for a single 
block and for the whole session likely contributed to the difference in fits for alpha and beta. Within such a 
short window, a decrease in likelihood of selecting the higher-value option could just as well be attributed to 
slow updating of the value as to the reduced influence of the value

Finally, the side-biased Win-Stay likelihood and accuracy under yohimbine in the deterministic session 
could be due to a failure in spatial encoding. As discussed above, yohimbine can increase central NA release 
(Abercrombie et al., 1988; Szemeredi et al., 1991), so the dose used in this study may increase activation of β-
noradrenoreceptors, which control synaptic plasticity in hippocampus (Hagena et al., 2016; Kemp & Manahan-
Vaughan, 2008). In addition to reduced activity in the frontal cortex (Kovács & Hernádi, 2003; Zhang et al., 
2013) systemic yohimbine may lead to altered spatial representations in the hippocampal formation (Grella et 
al., 2019; Wagatsuma et al., 2018). Yohimbine may therefore impair the ability to form new spatial/action-
outcome contingencies. However, the intracortical infusions also resulted in this pattern of reduced 
performance in alternate blocks. Since the infusion would not have affected LC somatic autoreceptors, this 
would not lead to an increase in central NA as could be caused by systemic yohimbine (Huang et al., 2012). 
However, this pattern did not appear in the 80/20 session and since the cannulated animals weren’t tested 
under this schedule, it is difficult to confirm how uncertainty relates to the role of noradrenaline in context 
updating.
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Figure 1. Decision, strategies, and performance of the two-armed bandit task. A) Task design: 
Rats were presented with two nosepokes on one side of the chamber. Each nosepoke was 
associated with a different probability of reward delivery. The reward spout was located on the 
opposite side of the chamber. The contingency between nosepoke and reward probability reversed 
every 30 trials throughout the session. B) Win-Stay/Lose-Shift strategies: Each trial can be described 
as a reaction to the feedback from the previous trial. Win-Stay decisions occur when the same option 
is repeated following positive feedback. Lose-Shift trials occur when the alternative option is selected 
following negative feedback. C) Reward schedule impacted accuracy across three days of testing per
schedule (F(3,46) = 92.162, p = 0, ANOVA). D) Reward schedule had no influence on mean Win-Stay
likelihood (F(3,46) = 0.971, p = 0.415, ANOVA). E) Reward schedule was shown to influence mean 
Lose-Shift likelihood (F(3,46) = 2.492, p = 0.0719, ANOVA), and this effect was driven by a higher LS 
likelihood under the deterministic versus probabilistic schedules (p = 0.0104, post-hoc Tukey test).
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Figure 2. Behavior by block in the two-armed bandit task. A) Block number had an effect on 
mean accuracy early in the session (F-stat(5,74) = 3.34, p = 0.00895, ANOVA). Specifically, there 
was a difference between the initial block and the second block (following the first reversal) in all 
reward schedules (p = 0.0000304, post-hoc Tukey test). B) Average WS likelihood increased across 
blocks early in the session. F(5,74) = 23.562, p < 0, ANOVA). The first and second block were 
significantly lower than the subsequent four blocks (p < 0.0249, post-hoc Tukey test), and were 
different from each other (p = 0.000152, post-hoc Tukey test). C) Although an ANOVA reported a 
block-dependent change in mean LS likelihood (F(5,74) = 3.056, p = 0.0146, ANOVA), post-hoc 
testing did not indicate a difference between any two specific blocks. D) The average probability of 
selecting the high-value “correct” option increases across trials within the block. In the second block, 
this probability increases comparatively slowly. E) There was no difference in the mean number of 
perseverative errors following each reversal (F(4,64) = 0.593, p = 0.669, ANOVA). F) Reward 
schedule had no impact on mean changepoint (F(1,33) = 2.383, p = 0.132, ANOVA) and there was 
no within-session effect of block (F(4,33) = 2.037, p = 0.112, ANOVA). Significance: * p < 0.05, ** p < 
0.01, *** p < 0.001. Error bars denote standard error. 
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Figure 3. Modelling of behavior with reinforcement learning. A) Learning rate was affected by 
reward schedule (F(3, 46) = 3.591, p = 0.0205, ANOVA), and the effect was specifically caused by 
slower learning under the most difficult 70/30 schedule (p < 0.09, post-hoc Tukey test). B) The 
median inverse temperature across rats decreased with increasing uncertainty (χ2(3) = 71.976, p = 
1.611e-15, Kruskal-Wallis rank sum test). C) An additional RL model was fit to each of the first six 
blocks individually and found evidence that learning rate varied by block (F(5,65) = 9.321, p = 9.92e-
07, ANOVA). D) There was no effect of block on mean inverse temperature (F(5,65) = 1.543, p = 
0.174, ANOVA). Significance: * p < 0.05, ** p < 0.01, *** p < 0.001. Error bars denote standard error. 
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Figure 4.  Inactivation of mOFC decreased sensitivity to negative feedback. A) Bilateral guide 
cannulae were implanted in mOFC and all animals were tested under muscimol (reversible 
inactvation). Infusion locations highlighted in blue were also tested with intracranial yohimbine. B) 
Inactivation of mOFC resulted in a decrease in accuracy (F(1,8) = 7.979, p = 0.0223, ANOVA, Figure 
4B). C) Inactivation did not affect Win-Stay likelihood (F(1,8) = 0.085, p = 0.778, ANOVA, Figure 4C). 
D) Lose-Shift likelihood decreased following mOFC inactivation (F(1,8) = 12353, p= 0.00763, 
ANOVA). E) Inactivation increased changepoint (F(1,14) = 9.695, p = 0.00762, ANOVA). F) There 
was a slight increase in perseveration following mOFC inactivation (F(1,32) = 5.513, p = 0.0252, 
ANOVA). G) Inactivation of mOFC did not impact learning rate (F(1,16) = 0.553, p = 0.468). There 
was also no effect of block (F(5,32) = 0.868, p = 0.513). H) Inactivation of mOFC did not inverse 
temperature (χ2(1) = 0.43905, p-value = 0.5076). However, there was a difference in inverse 
temperature when the RL model was fit by block (F(1,5) = 13.461, p = 0.0145, ANOVA), with 
muscimol increasing the beta parameter. This effect did not interact with block (F(1,5) = 0.134, p = 
0.587, ANOVA). Significance: * p < 0.05, ** p < 0.01, *** p < 0.001. Error bars denote standard error. 
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Figure 5. Systemic yohimbine reduced sensitivity to positive feedback. Rats were challenged 
with a 2 mg/kg systemic injection of yohimbine or saline control and tested under deterministic (dark 
blue line) and 80/20 probabilistic (light blue line) reward schedules. A) Yohimbine decreased 
accuracy compared to saline controls (F(1,10) = 29.03, p = 0.000306, ANOVA). B) Yohimbine 
increased changepoint compared to saline controls (F(1,124) = 4.664, p = 0.03273, ANOVA). C) 
Average WS likelihood decreased in both reward schedules under yohimbine as compared to control 
sessions (F(1,10) = 21.43, p = 0.000936, ANOVA). D) There was no change in mean LS likelihood 
under yohimbine (F(1,10) = 2.078, p = 0.18, ANOVA). Significance: * p < 0.05, ** p < 0.01, *** p < 
0.001. Error bars denote standard error. 
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Figure 6. Yohimbine altered choice behavior under a deterministic reward schedule. A) Rats 
were more accurate in odd blocks, compared to even blocks in sessions with systemic yohimbine 
(t(10) = 4.275, p = 6.394-05, dependent t-test). B) Rats were more likely to Win-Stay on odd blocks 
compared to even blocks (t(10) = 3.141, p = 0.0025, dependent t-test). C) There was no difference in 
LS likelihood between even and odd blocks (t(10) = 0.260, p = 0.795, dependent t-test).D) Intra-
cortical yohimbine led to a marginal decrease in mean accuracy compared to saline control on even 
blocks (t(3) = 1.958, p = 0.057, independent t-test). E) Intra-cortical yohimbine marginally decreased 
WS likelihood on even blocks (t(3)= 1.789 , p = 0.081, independent t-test). F) Intra-cortical yohimbine 
did not affect LS likelihood (t(3) = -0.765, p = 0.45, independent t-test). Significance: * p < 0.05, ** p < 
0.01, *** p < 0.001. Error bars denote standard error. 
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Figure 7. Yohimbine altered learning rate and inverse temperature. A) Systemic yohimbine did 
not affect learning rate, measured over the entire session (F(1,10) = 2.162, p = 0.172, ANOVA). B) 
Yohimbine decreased inverse temperature, measured over the entire session (F(1,10) = 6.31, p = 
0.0308, ANOVA). C) When the model was fit by block, yohimbine decreased learning rate (F(1,10) = 
10.06, p = 0.00995, ANOVA). There was an effect of block on learning rate (Alpha: F(5,50) = 2.583, p
= 0.0373, ANOVA), but no interaction with treatment (F(5,50) = 1.275, p = 0.289, ANOVA). D) When 
the model was fit by block, yohimbine did not affect inverse temperature (F(1,10) = 3.067, p = 0.11, 
ANOVA). There was an effect of block (F(5,50) = 2.942, p = 0.021, ANOVA), but no interaction 
between treatment and block (F(5,50) = 1.421, p = 0.233, ANOVA). Significance: * p < 0.05, ** p < 
0.01, *** p < 0.001. Error bars denote standard error. 
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Figure 8. Effects of yohimbine on choice and reward collection latencies. A) There was an effect
of block on median choice across all reward schedules (F(5,44) = 9.512, p = 3.34e-06, ANOVA), 
which was driven by longer latencies in the initial block relative to all other blocks (t(263) = 3.4489, p 
= 0.0013, paired t-test). B) There was an effect of block on median collection latencies across all 
reward schedules (F(5,44) = 8.269, p = 1.42e-05, ANOVA). Rats took longer to collect reward in the 
initial block only (t(263) = 3.1982, p = 0.0026, paired t-test). C) Systemic yohimbine decreased 
median choice latency (F(1,10) = 12.14, p = 0.00588, ANOVA). D) Yohimbine decreased median 
collection latency (F(1,10) = 5.983, p = 0.0345, ANOVA). E) Block number affected median choice 
latency under both yohimbine and saline control (F(5,50) = 5.375, p = 0.000496, ANOVA), and rats 
were slower in the first block as compared to the second in particular (p= 0.0251, post-hoc Tukey 
test). Block number marginally interacted with drug treatment (F(5,50) = 2.326, p = 0.0881, ANOVA). 
F) Block number affected median collection latency in both sessions (F(5,50) = 7.99, p = 0.1.34e-05, 
ANOVA), and there was an interaction between block and treatment (F(5,50) = 3.596, p = 0.00743, 
ANOVA). Rats were slower in the first block compared to the second (p=0.00163, post-hoc Tukey 
test). Significance: * p < 0.05, ** p < 0.01, *** p < 0.001. Error bars denote standard error. 
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