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Abstract 11 

CRISPR systems enable targeted genome editing in a wide variety of organisms by introducing single- or 12 

double-strand DNA breaks, which are repaired using endogenous molecular pathways. Characterization 13 

of on- and off-target editing events from CRISPR proteins can be evaluated using targeted genome 14 

resequencing. We characterized DNA repair footprints that result from non-homologous end joining 15 

(NHEJ) after double stranded breaks (DSBs) were introduced by Cas9 or Cas12a for >500 paired 16 

treatment/control experiments. We found that building our understanding into a novel analysis tool 17 

(CRISPAltRations) improved results’ quality. We validated our software using simulated rhAmpSeq™ 18 

amplicon sequencing data (11 gRNAs and 603 on- and off-target locations) and demonstrate that 19 

CRISPAltRations outperforms other publicly available software tools in accurately annotating CRISPR-20 

associated indels and homology directed repair (HDR) events. We enable non-bioinformaticians to use 21 

CRISPAltRations by developing a web-accessible, cloud-hosted deployment, which allows rapid batch 22 

processing of samples in a graphical user-interface (GUI) and complies with HIPAA security standards. 23 

By ensuring that our software is thoroughly tested, version controlled, and supported with a UI we enable 24 
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resequencing analysis of CRISPR genome editing experiments to researchers no matter their skill in 25 

bioinformatics. 26 

Introduction 27 

The use of programmable, targeted endonucleases has revolutionized the field of therapeutic genetic 28 

engineering1. CRISPR enzymes form a ribonucleoprotein (RNP) when hybridized with either a 2-part 29 

(crRNA + tracrRNA) or a single guide RNA (sgRNA), enabling flexible targeting to genomic loci. With 30 

either approach, a short, ~20 nucleotide spacer sequence, which is part of the guide RNA (gRNA), targets 31 

DNA with complementarity to the gRNA sequence and introduces a double-strand break (DSB), which 32 

can be repaired by non-homologous end-joining (NHEJ) or homology directed repair (HDR)2. The NHEJ 33 

pathway ligates broken DNA ends and may modify broken ends to find a biochemically favorable ligation 34 

product, generating insertions, deletions, and substitutions3. The accurate detection and quantification of 35 

these editing events at both on- and off-target locations is paramount to ensuring safety for therapeutic 36 

applications of CRISPR. 37 

Producing safety information for genome editing therapeutics first involves nomination and interrogation 38 

of a set of putative affected off-target genomic loci utilizing in-vivo4,5, in-vitro6,7, and/or in-silico8 methods. 39 

After off-target nomination has been performed, alterations in gRNA structure, delivery mechanism, and 40 

endonuclease properties can decrease off-target editing effects9. Importantly, the use of high-activity and 41 

-specificity nucleases10–13 in combination with delivery mechanisms that limit nuclease exposure time (e.g. 42 

RNP delivery) can reduce off-target editing down to levels that are below the standard Illumina Next-43 

Generation Sequencing (NGS) noise rates13. During therapeutic optimization, simultaneous quantification 44 

of editing at on- and off-target loci can then be used to expediently determine when sufficient efficacy and 45 

specificity has been achieved. 46 

A number of methods have been developed to quantify the population of alleles after editing, including 47 

heteroduplex cleavage assays14–16, capillary electrophoresis17, sanger deconvolution (TIDE/ICE)18,19 and 48 

next generation sequencing (NGS)20–23. Limitations have been described for non-NGS based detection 49 

methods, including: limited effective editing range24, low sensitivity25,26, indel size and type limitations14,18, 50 

low allelic frequency resolution26, and reliance on high quality sanger traces19,26.  Thus, NGS has become 51 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2020. ; https://doi.org/10.1101/2020.11.13.382283doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.382283
http://creativecommons.org/licenses/by/4.0/


3 
 

the gold standard for high-throughput accurate genome editing detection27, and it is the only method 52 

capable of simultaneously quantifying editing at both on- and off-target locations in highly multiplexed 53 

samples.  54 

Specialized software tools have been developed to characterize and quantify allelic diversity after a 55 

CRISPR experiment from NGS data, but these tools have not yet been comprehensively validated using 56 

a genomic scale ground truth20–22. These tools generally align NGS reads to a reference sequence by 57 

scoring matches, mismatches and missing (gap) aligned nucleotides, selecting the highest scoring of the 58 

possible alignments, and annotating allelic variants within a certain distance from the predicted enzyme 59 

cut site20–23. These tools are challenged by the occurrence of repetitive components in the reference or 60 

edited sequences, requiring the algorithm to arbitrarily choose between multiple highly and equally scored 61 

alignment options (i.e. secondary alignments), which affect the accuracy of the results21. Recently 62 

developed tools partially overcome this challenge by prioritizing selection of indel events at the predicted 63 

cut site21,22, but this approach has not yet been comprehensively validated by examining alleles resulting 64 

from Cas9 (blunt cut 3bp from 3’ gRNA end) or Cas12a (two variable nick positions, staggered 4-5bp from 65 

3’ gRNA end) DSB repair events28–31.   66 

In this work, we develop a software tool, CRISPAltRations, for the analysis of NGS data generated from 67 

amplicon resequencing of CRISPR edited DNA. We characterized the editing profiles of 516 unique on-68 

target guides for two CRISPR-Cas systems: Cas9 and Cas12a. We demonstrate a novel CRISPR-Cas 69 

enzyme-specific aligner and optimized application parameters to characterize indel profiles, which 70 

together improve the results’ quality. We validate this software tool by benchmarking our software tool 71 

against other popular NGS analysis software tools using synthetic NGS data generated to represent 11 72 

gRNAs with a total of 603 GUIDE-Seq4 nominated on- and off-target pairs that span a wide variety of 73 

genomic sequence features with experimentally modeled indels. Finally, we develop a web-accessible 74 

graphical user-interface (GUI) to run CRISPAltRations with cloud resources to empower scientists to 75 

securely analyze data and visualize results 76 

 77 

 78 
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Results 79 

Iterative characterization and refinement of Cas9/Cas12a editing profiles  80 

Software tool iteration 1 81 

To begin, we created a pipeline with no preferential indel realignment, prior to characterization of the 82 

positional prevalence and type of edits (i.e., population alleles resulting from DSB repair) induced by IDT 83 

Alt-R S.p. Cas9 V3 (Cas9) or IDT Alt-R A.s. Cas12a Ultra V3 (Cas12a) in Jurkat cells (Figure S1, Figure 84 

S2). For Cas9 (n=273; average read depth=17,518), indel mutations generally intersected the canonical 85 

cut site (median 66% of insertions and 80% of deletions). For Cas12a (n=243; average read 86 

depth=7,416), insertions were mostly bounded (median frequency >2%) within a -9 to +2bp window from 87 

the PAM-distal nick site (median 3-9% per position) (Figure S2). A median of 84% of deletions overlapped 88 

with either the PAM-proximal or distal nick site for Cas12a (Figure S2).  89 

Software tool iteration 2 90 

Upon observing that reads containing indels often had equally scored secondary alignments, we 91 

performed a round of iterative optimization using our novel position-specific Needleman-Wunsch (psnw) 92 

alignment algorithm. We use psnw to re-align the NGS reads described above to the reference sequence 93 

using a modified position-specific gap-open/extension vector (scoring vector), which positively scores 94 

alignments at or overlapping the cut site or PAM-distal nick site (for Cas12a), similar to previous work21 95 

(Figure S3). For Cas9, this increased the prevalence of insertions intersecting the cut site (median 95%), 96 

but indels remained bounded at non-canonical cut site positions (Figure S3). For example, a median of 97 

1.8% of total insertion events were bounded -1bp 5’ of the canonical Cas9 cut position. For Cas12a, this 98 

increased the prevalence of insertions intersecting the PAM-distal nick site from a median of 7% to 24%. 99 

Indels were bounded by positions other than cut sites for both Cas9 and Cas12a, and variability of 100 

insertion start positions was higher for Cas12a compared to Cas9 (Figure S3, Figure S4). Cas12a indels 101 

were bounded between the two nick sites, and as far as -5bp 5’ of the PAM-proximal cut to +4bp 3’ of the 102 

PAM-distal cut. Deletion position profiles for the two enzymes mostly remained the same after this 103 

iteration (Figure S3, Figure S4).  104 

Software tool iteration 3 105 
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With these characterized indel profiles, we further optimized the scoring vector to take a new position-106 

based gap open/extension scoring vector that spanned the entire variant detection window (+/- 20 107 

nucleotides around the cut sites) to select secondary alignments with indels closer to the cut/nick site(s) 108 

and indels boundaries enriched in experimental data (Figure 2). This increased indels that were bounded 109 

at the -1bp cut position of Cas9 to a median of 2.6% of events (Figure 2A). For Cas9, the majority of 110 

insertion events remained at the canonical cut site (median 95%) and -1bp position (median 2.6%), with 111 

rare events of insertions at the -2bp (median 0.7%) or +1bp (median 0.4%) positions (Figure 2A,B). For 112 

Cas12a, a median of 18% of insertion events occurred at the PAM-proximal nick site. We observed a 113 

median of 57% of insertion events did not occur at either the PAM-distal or proximal nick site (Figure 2D). 114 

This optimization brought indels closer to the cut site(s), even if the indel may not have been introduced 115 

at a canonical cut position. 116 

Optimization of the variant detection window limits noise 117 

The variant detection window is a common configurable parameter for CRISPR genome editing 118 

quantification software that limits variant calling to a set distance from a predicted DSB, which limits the 119 

number of collected false-positive events. To provide a recommended window for quantifying CRISPR 120 

editing events in CRISPAltRations, we compared the difference in indel editing events observed in 121 

previously used paired treatment and control samples for Cas9/Cas12a in Jurkat cells across a +/- 20bp 122 

window from the cut site (or PAM-distal cut site for Cas12a). We determined the optimal window size to 123 

be the size at which the median difference of calculated indel editing between treatment and control 124 

samples was less than 0.1%. Using this rationale, we find that an optimal window can be defined as +/- 125 

8bp for Cas9 (Figure 3A) and +/- 12bp for Cas12a (Figure S5). However, we found that if the center of the 126 

Cas12a window is shifted -3bp from the PAM distal cut site, the optimal variant window can be decreased 127 

to +/- 9bp (Figure 3B). Application of this optimal window results in a median decrease in total false-128 

positive indel signal from control samples by 60% as compared to a window size of 20 for both Cas9 and 129 

Cas12a while retaining >98% total indel results from treated cells (Figure 3C, Figure 3D). We set these 130 

window sizes as the recommended defaults for variant detection in CRISPAltRations. 131 

Benchmarking of pipeline on- and off-target specificity performance using synthetic datasets 132 
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We created a multiplex, synthetic specificity dataset, containing 603 targets, representing performance of 133 

11 gRNAs with indels modeled on observed Cas9 or Cas12a repair events (Figure S6). We created 4,000 134 

synthetic reads per target (50% edited), and we modeled 100 insertion (1-15bp) and 100 deletion (1-135 

25bp) events for a total 120,600 unique indel events (Figure S6). We then validated the performance of 136 

CRISPAltRations, and we compared performance with Amplican, CRISPResso, and CRISPresso2. 137 

CRISPAltRations calculated the indel percentage within 0.1% of the expected editing level for 99.5% 138 

(600/603) of synthetic Cas9 and Cas12a targets (Figure 4). The three erroneous targets were the result of 139 

poor paired-end read merging in regions containing long stretches of homopolymers or repetitive 140 

sequence. Observed editing at affected targets deviated from the expected indel percentage by <2% 141 

using CRISPAltRations.   142 

We examined the same targets using comparable software tools. The percentage of targets that exceed 143 

2% deviation from the expected Cas9/Cas12a indel percentage for alternative software tools were 144 

72.4%/73.5% (Amplican), 94.5%/99.2% (CRISPResso), 22.4%/100.0% (CRISPResso2), and 1.7%/1.7% 145 

(CRISPResso2 with the optimized window parameter derived from Figure 3 and Figure S5) (Figure 4).  146 

Benchmarking of pipeline on-target HDR accuracy 147 

We created a second synthetic Cas9 on-target dataset (a subset of 91 targets from the previous dataset 148 

with equivalent performance between tools) to simulate the performance of the two best performing 149 

pipelines, CRISPResso2 and CRISPAltRations, at quantifying HDR rates with a ground truth. This 150 

dataset contained each target with a heterogeneous set of events including non-edited events (15%), 151 

NHEJ indel events (25%), non-HDR donor integration (15%), imperfect HDR events (15%), and a perfect 152 

HDR event (30%). HDR donors were designed to either generate deletions (3, 10, 20, 40bp) or insertions 153 

(3, 25, 50, 100bp) within 8bp of the cut site (Methods). The CRISPResso2 software tool was not able to 154 

complete data processing on 4 target sites (4.3% total sites) due to an unhandled exception that was not 155 

previously present when using the “CRISPRessoPooled” analysis mode on the same sites in the 156 

synthetic specificity dataset (Data not shown). These data points were excluded from represented 157 

analysis results for CRISPResso2 (Figure 5).  158 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2020. ; https://doi.org/10.1101/2020.11.13.382283doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.382283
http://creativecommons.org/licenses/by/4.0/


7 
 

CRISPAltRations correctly characterized the percent perfect HDR repair at 100% of sites with <2% 159 

deviation from truth. CRISPResso2 overestimates the percent perfect HDR repair events by >2% at 43% 160 

of sites (Figure 5A). Synthetic HDR-mediated insertions of 50 and 100bp cause the percent perfect HDR 161 

of CRISPAltRations to deviate 1-2% below expectation due to the increased probability of SNPs from 162 

sequencing errors to occur in these regions (Figure 5B). In contrast, CRISPResso2 does not account for 163 

any unexpected SNPs in or near the HDR event in its annotation of percent perfect HDR, which means 164 

that any sequencing or polymerase error, naturally occurring mutations, or incomplete HDR events (e.g. 3 165 

out of 4 SNPs successfully incorporated) are not accounted for in its quantification. Both software tools 166 

correctly characterize the proportion of CRISPR edited cells at 100% of targets, demonstrating that these 167 

differences are not previously identified issues in annotating editing efficiency (Figure 5C). 168 

CRISPAltRations also outperforms CRISPResso2 in its ability to characterize an event as derived from 169 

the HDR (imperfect) vs NHEJ pathway at 27 targets (30% of sites) (Figure 5). Overall, CRISPAltRations 170 

better characterized HDR editing events in the dataset.  171 

Using CRISPAltRations to describe mutation profiles of Cas9/Cas12a 172 

We characterized enzyme-dependent (Jurkat/Cas9 vs Jurkat/Cas12a) and cell-line dependent 173 

(Jurkat/Cas9 vs HAP1/Cas9) effects on mutation profiles (i.e. indel sizes/types and putative repair 174 

pathway) resulting from gene-editing using the improved mutation dissemination present in 175 

CRISPAltRations.  176 

Across the 273 targets, Cas9 indel profiles were cell-line dependent. Editing efficiency was >50% in 177 

>92% of Cas9 targets for HAP1 and Jurkat cell-lines (Figure S7). The most prevalent mutations in Jurkat 178 

cells edited with Cas9 were insertions (median 81%), and a 2bp insertion (median 16%) was the most 179 

prominent indel event overall (Figure 6). In contrast, deletions were most prevalent in HAP1 cells (median 180 

75%), and a 1bp insertion (median 18%) was the most prominent indel event overall (Figure 6). 181 

Templated insertions (duplication of 1+ nucleotides adjacent to the DSB site) are thought to be a primary 182 

mechanism by which insertions are introduced into the genome from repair of DSB events32. Insertions in 183 

HAP1 cells are predominantly introduced by templated repair events (median 74%). In contrast, insertions 184 

in Jurkat cells are introduced by templated repair less frequently (median 8%; Figure 6A). A fraction of 185 

insertion events (median 16%) were derived from a non-templated insertion of a repeat of guanine and 186 
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cytosine nucleotides (GC insertions) of >1bp, an event that did not appear as often in HAP1 cells (median 187 

<1%) (Figure 6A). Both cell types derive a fraction of the total deletions from microhomology mediated 188 

end-joining (MMEJ) events (deletions with >1bp of exact microhomology; Methods). Deletions mediated 189 

by MMEJ were higher in HAP1 (median 43%) compared to Jurkat cells (median 21%; Figure 6A).  190 

Comparison of Cas9 targets to the 243 Cas12a targets demonstrated that indel profiles in Jurkat are 191 

enzyme dependent (Figure 6, Figure S8). The most prevalent mutation in Jurkat cells edited with Cas12a 192 

were deletions (median 90%) and a 1bp deletion was the most prevalent event (median 8%; Figure 6). 193 

Insertions mediated by Cas12a editing in Jurkat cells had low frequencies of templated insertions (median 194 

12%). GC insertions were also observed to occur (median 18%) with Cas12a editing (Figure 6A). The 195 

normalized abundance of GC insertions was not significantly different (p > 0.05) in Jurkat cells whether 196 

Cas9 or Cas12a was used for editing (Figure 6A). DSB repairs mediated by MMEJ were higher with 197 

Cas12a (median 31%) compared to Cas9 (median 21%; Figure 6A). Deletion mutations resulting from 198 

Cas12a editing were also 6-fold larger than that of Cas9 in Jurkat cells (Figure 6B). 199 

To better understand if mutation profiles could be predicted a priori, we compared the spectrum of indels 200 

observed to predictions made by in-silico repair profile prediction tools, inDelphi33 and FORECasT34, for 201 

all previous targets in Jurkat and HAP1 cells. Both tools perform best when compared to DSB repair 202 

events in HAP1 cells with Cas9. In general, FORECasT more accurately predicted the most prevalent 203 

mutation, while inDelphi more accurately predicted the spectrum of which indels were observed (Figure 204 

S9). For HAP1 cells, FORECasT and inDelphi correctly predict the top mutation event 47% and 41% of 205 

the time, respectively (Figure S9B). Both FORECasT and inDelphi predict the outcomes of Jurkat cells 206 

edited with Cas9 less accurately, and only predicted the most prevalent mutation type 14% and 10% of 207 

the time, respectively (Figure S9B). Both tools predict the repair profiles for Jurkat cells treated with 208 

Cas12a (median KL = 0.9) better than Cas9 (median KL = 2.0-2.5; Figure S9A). All predictions made at 209 

the canonical cut site of these enzymes are better than those made away from the cut site (-3bp 5’ of cut 210 

site) in the same sequence (Figure S9). Predicted frameshift frequencies of both tools correlate with 211 

observed results (R2 > 0.6), although FORECasT outperforms inDelphi for all cell-line/enzyme 212 

combinations (Figure S9). 213 
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Recommendations for experimental read depth requirements and tool limits 214 

We analyzed and subsampled CRISPR NGS data from a series of on- and off-target rhAmpSeq panels (2 215 

panels; 91 and 50 targets) with a wide range of editing frequencies to determine the relationship between 216 

read depth and precision. There is an inverse relationship between editing efficiency and number of reads 217 

needed to accurately quantify editing (Figure 7). We find that with target coverage >1,000 paired reads 218 

per site, >0.5 % indels can be calculated with deviation less than +/- 0.2% indels (Figure 7).  219 

We evaluated detection limitations using serially diluted DNA standards with rhAmpSeq™ library 220 

preparation (IDT, USA) sequenced using Illumina paired-end sequencing. Without any type of 221 

background subtraction, the fraction of indels deviated by ~0.2% from the expected standard 222 

concentration as indel editing efficiencies approach <1% (Figure S10). After accounting for the indel error 223 

rate in a wildtype template using background subtraction, indel editing correlates with expectation (<0.1% 224 

deviation) down to 0.1% indel editing (Figure S10).  225 

To better understand the background indel frequencies at diverse genomic loci, we evaluated the indel 226 

percentages in unedited control samples at all 273 unique gRNA sites for Cas9 in both HAP1 and Jurkat 227 

cell lines. Background indel mutation rates ranged between 0.0-1.0%, depending on genomic locus. Indel 228 

mutation frequencies in control samples were found to exceed 0.1% indels ~20% and ~60% of the time 229 

for HAP1 and Jurkat cells, respectively. Additionally, for the same set of loci, the limit of blank (LoB) that 230 

could be expected in an unedited sample was 2-fold higher in Jurkat cells compared to HAP1 cells 231 

(Figure S11). This demonstrates that background indel frequencies can exceed 0.5%, which is above the 232 

reported noise rate of Illumina MiSeq instruments35 (Figure S11).  233 

Integration of CRISPAltRations into a cloud platform with a versatile web user-interface 234 

Running computational pipelines can be time-consuming on personal machines and non-intuitive for 235 

those unfamiliar with programming interfaces. Thus, we created a web site utilizing cloud-hosted 236 

computational resources to run the CRISPAltRations software tool. The web site enables either single or 237 

batch file upload of demultiplexed sequencing data files (FASTQ) directly into a cloud-based storage 238 

system from a drag-and-drop interface or streamed directly from a sequencer, hard drive, or cloud backup 239 

location into the web site. In addition, batch sample analysis is enabled by providing a configuration file 240 
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(i.e, CSV), and results are summarized in a single report. The web site enables interactive visualization of 241 

run metrics including percent editing/frameshift/repair pathway information, percent SNPs for base editing 242 

experiments and a heatmap pileup of all allelic frequencies aligned to the reference sequence for 243 

visualizing the variant population (Figure 8). In addition to gene editing event summarization, we provide 244 

information regarding the performance of the sequencing library and library prep technique used including 245 

percentage reads passing QC filters, primer-dimers, uniformity (for multiplex amplification panels) and 246 

troubleshooting documents to enable end-users to identify and troubleshoot problematic samples or 247 

sequencing runs. 248 

We compared runtime performance metrics between CRISPAltRations and publicly available tools 249 

processing two synthetic multiplex samples from our on- and off-target benchmarking dataset at various 250 

read depth (Figure S12). On common, local hardware, our software runtime is comparable to 251 

CRISPResso2 (<40% difference) or outperforms CRISPResso1/Amplican by ~200-750%. Amplican failed 252 

time benchmarking on highly multiplexed samples due to a potential unhandled parallelization error 253 

(Figure S12). Using the CRISPAltRations web site implementation, runtime is slower (17m to completion) 254 

than the local instance on a run with 14 targets (12,000 reads / target), but it remains ~10-fold faster than 255 

the CRISPResso2 web site implementation (~4h to completion) (Figure S12). The CRISPResso2 web 256 

solution also failed to complete analysis on highly multiplexed (196 targets) or large datasets (>100MB file 257 

size) representing an additional limitation (Figure S12). In addition, our web site implementation enables 258 

batch runs of thousands of samples simultaneously; while the current CRISPResso2 web site 259 

implementation has a maximum of only 4 samples in “batch mode”.  260 

Discussion 261 

In this work, we develop a software tool, CRISPAltRations, for the analysis of NGS data generated from 262 

CRISPR editing experiments. We incorporated knowledge of characterized indel profiles of Cas9/Cas12a 263 

into the algorithm, which enhances CRISPR indel detection accuracy.  We furthermore show that 264 

optimization of the variant detection window reduces false-positive rate, and increases true positive 265 

variant calling in Cas9 and Cas12a editing experiments. We benchmark this pipeline against other 266 

publicly available, NGS-compatible software solutions using a large synthetic dataset modeled after real 267 

Cas9 and Cas12a editing profiles. We demonstrate that our software tool outperforms other available 268 
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tools. We further demonstrate the utility in CRISPAltRations’ ability to characterize repair profile 269 

information, by showing that DSB repair profiles are both enzyme and cell-line specific. Lastly, we provide 270 

general experimental recommendations grounded in data for performing CRISPR NGS experiments and 271 

access to our tool via a distributed cloud-based web solution with an easy-to-use web site. 272 

Insertions through the NHEJ pathway are primarily introduced at a DSB site. These insertions can be 273 

derived from a number of molecular mechanisms including misalignment of microhomologies in cleaved 274 

DNA products, staggered overhangs from the cleavage event followed by gap-filling, and/or template-275 

independent polymerase extension36. Our quantification of positional insertion prevalence provides 276 

unambiguous evidence that insertion events are observed at non-canonical cut site positions, suggesting 277 

additional positions that may be subjected to rare endonucleolytic cleavage. It was recently found that 278 

Cas9 endonucleolytic cleavage of the non-targeted DNA by the RuvC domain can vary in position relative 279 

to the HNH domain cut site to generate a staggered DSB37. This in combination with variable degrees of 280 

5’ to 3’ end-processing may explain the positional occurrence of insertions during repair of DSBs 281 

introduced by Cas9. For Cas12a we observe a diverse spectrum of positions between +3 bases 3’ of the 282 

PAM distal cut site and -5 bases 5’ of the PAM proximal cut site where insertions occur, suggesting a 283 

wide range of locations involved in endonucleolytic cleavage and repair. This provides an increased level 284 

of resolution on previous work, which has shown that Cas12a cleavage products are diverse and both 285 

enzyme and sequence specific28–30. This leads us to the conclusion that Cas9 and Cas12a genome 286 

editing lead to DSB repair events that cannot be found if only narrow windows (i.e. 1-2 bp) around cut 287 

sites are interrogated for variants, a challenge which CRISPAltRations solves with optimized parameter 288 

defaults. To the best of our knowledge, this is the first report of the positional prevalence of repair 289 

products of Cas9/Cas12a across a wide variety of target sites.  290 

We also demonstrate that indel repair profiles vary with cell- and enzyme-type. Our results support other 291 

findings that Cas12a is prone to larger deletions on average when compared to Cas938. Larger deletions 292 

have also been shown to be indicative of MMEJ-related repair events39. In agreement with this, we find 293 

that putative MMEJ events are more predominant in Cas12a deletions compared to Cas9, within the 294 

same cell line, suggesting that DSB mechanism contributes to repair pathway preference. Additionally, 295 
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deletions derived from Cas9 editing in HAP1 cells appear to be more prone to MMEJ than Jurkat cells, 296 

suggesting MMEJ prevalence is cell-line dependent due to differences in repair pathway 297 

expression/activity. Other mutations such as templated insertions have been reported after Cas9 editing, 298 

and they are thought to be the main mechanism by which insertions are introduced during DSB repair32. 299 

Here we provide evidence that templated insertion prevalence after DSB repair is largely dependent on 300 

cell-type, too. The Jurkat cell line has a relatively low frequency of templated insertions, but Jurkat cells 301 

had a higher frequency of >1bp insertions containing primarily GC motifs. Future work should address if 302 

this type of mutation pattern is widespread in clinically relevant cell-types and identify if it is sourced from 303 

a nucleotide bias in a template-independent polymerase. These and other less characterized repair 304 

events are poorly predicted in the current generation of in-silico indel prediction tools as well, leading to 305 

poor performance on Jurkat cells where template-independent mutations are most prevalent. This is likely 306 

due to limited repair profile diversity in cell-types used for training these models. In the future, these or 307 

new tools could be improved by identifying biomarkers predictive of differential repair outcomes to ensure 308 

sufficiently diverse modeling data is generated.  309 

Validation and stability of software has traditionally been an overlooked aspect in bioinformatics program 310 

development40. Two of the publicly available software tools we evaluated generated uncaught exceptions 311 

or run failures at the command-line and web interface on runs that would be reasonably generated for an 312 

individual experiment. Additionally, all evaluated software tools were found to inaccurately annotate 313 

variants in our benchmarking datasets. Issues resulting in software tool inaccuracies include, but are not 314 

limited to, 1) improper target:read assignment, 2) suboptimal read merging strategies, 3) suboptimal 315 

alignment strategies, 4) problematic filters/defaults, and 5) general programming errors. Amplican’s 316 

performance on this dataset was particularly surprising, and it is primarily caused by the chosen 317 

read:target assignment strategy using a string match of the primer binding site based on exact read 318 

content. Although we enabled an extra 1bp of ambiguous content (primer_mismatch=1) in an attempt to 319 

account for modeled sequencing errors, a fraction of reads were still lost, resulting in inaccurate 320 

annotation. Enabling higher amounts of ambiguity in matches leads to increases in memory requirements 321 

which can cause the program to crash (Data not shown). CRISPResso1 and CRISPResso2 without an 322 

optimized window parameter is mainly affected by the prevalence of CRISPR-associated indel events 323 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2020. ; https://doi.org/10.1101/2020.11.13.382283doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.382283
http://creativecommons.org/licenses/by/4.0/


13 
 

occurring outside of the default annotation window. Once the annotation window is extended, suboptimal 324 

read merging, alignment, and program annotation of variants seem to be primary causes of 325 

misannotation. 326 

Previously developed CRISPR NGS software tools have relied on limited synthetic data or focused on 327 

experimentally-derived datasets with limited resolution on “truth”, leading to large discrepancies in 328 

accuracy of different software solutions. More established applications of variant calling software tools 329 

have experienced similar shortcomings, such as for somatic variant calling in cancer genomics41, and 330 

consortiums/researchers have developed a series of best practices, nomenclature standardizations, and 331 

gold-standard datasets for benchmarking software tools42–44. With this work we provide a more 332 

comprehensive simulated CRISPR NGS benchmarking dataset to identify limitations in analysis software 333 

tools and provide evidence that similar best-practices and standards should be established for the 334 

genome editing community. In addition, the sensitivity of many of these CRISPR NGS tools have been 335 

stated in previous work ranging from 0.01 – 0.1% editing20,21. Although we show that detection to ~0.1% 336 

indel editing is possible under ideal scenarios, this is a misleading “sensitivity” measurement as it does 337 

not account for processes that may introduce variable levels of false-positive editing signals, which may 338 

impact reliability in calling variants. This includes variability in methods used for DNA extraction, library 339 

preparation, sequencing/technical artifacts, sequence context, and even differences in intracellular milieu, 340 

which we demonstrate may be responsible for differences in background editing signal for identical loci in 341 

HAP1 and Jurkat cell lines. In other fields, such as cancer genomics, detecting variants even below 5% 342 

allelic frequency with high precision/recall is considered challenging45. Sophisticated methods 343 

incorporating unique molecular identifiers (UMIs), paired treatment/control background subtraction, and 344 

more have all been applied within the cancer genomics field to enable high specificity detection of 345 

variants at sub-1% allelic frequencies46,47. We highlight here for CRISPR NGS analysis that even 346 

background editing signal can vary dramatically based on experimental conditions, further emphasizing 347 

the need for statistical tests, replicates and other advanced methods for confident detection of low editing 348 

levels. Future work will need to incorporate error-correction sequencing strategies (e.g. UMIs) and more 349 

sophisticated background subtraction methods to increase accuracy of editing annotation. 350 
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As genome editing therapies enter clinical trials, it becomes a necessity that software and sequencing 351 

methods are thoroughly vetted to prevent incorrect conclusions or exclusion of variant information. This 352 

has become clear with accumulating evidence that dsDNA donor (e.g. plasmids, AAV) integrations48,49, 353 

translocations50, and large indels/rearrangements51 all take place from DSB mediated genome editing. 354 

We show that for small dsDNA donors, CRISPAltRations more accurately discriminates and quantifies 355 

NHEJ, imperfect HDR and perfect HDR than existing pipelines using simulated data. However, detection 356 

of many larger events requires advances in the use of long read sequencing and targeted 357 

hybridization/capture-based sequencing, enrichment protocols, and analysis tools. By testing, versioning, 358 

and deploying CRISPRAltRations within a cloud-hosted user-interface with reproducible code production 359 

environments and security certifications, we aim to provide a plug-and-play hardware-independent 360 

solution to generate high quality genome editing specificity data.  361 

Methods 362 

Ribonucleoprotein complex formation 363 

Cas9 gRNAs were prepared by mixing equimolar amounts of Alt-R™ crRNA and Alt-R tracrRNA 364 

(Integrated DNA Technologies, Coralville, IA, USA) in IDT Duplex Buffer (30 mM HEPES, pH 7.5, 100 365 

mM potassium acetate; Integrated DNA Technologies), heating to 95°C and slowly cooling to room 366 

temperature or using Alt-R sgRNA (Integrated DNA Technologies) hydrated in IDTE pH 7.5 (10 mM Tris, 367 

pH 7.5, 0.1 mM EDTA; Integrated DNA Technologies). Cas12a gRNAs consisted of Alt-R™ Cas12a 368 

crRNAs (Integrated DNA Technologies) hydrated in IDTE pH 7.5. RNP complexes were assembled by 369 

combining the CRISPR-Cas nuclease (Alt-R S.p. Cas9 Nuclease V3 or Alt-R A.s. Cas12a Ultra V3; 370 

Integrated DNA Technologies) and the Alt-R gRNA at a 1.2:1 molar ratio of gRNA:protein and incubating 371 

at room temperature for 10 minutes. The target specific sequences of the gRNAs used in this study are 372 

listed in Table S1 for Cas9 and Table S2 for Cas12a. The guides chosen were either within the same 373 

general genetic context (same amplicon sequencing space; enzyme-dependent) or identical between the 374 

two cell lines (cell-line dependent) used in this study.  375 

Cell culture 376 

HAP1 cells were purchased from Horizon Discovery (Cambridge, UK). Jurkat E6-1 cells were purchased 377 

from ATCC® (Manassas, VA, USA). Cells were maintained in RPMI-1640 (Jurkat) or IMDM (HAP1) 378 
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(ATCC), each supplemented with 10% fetal bovine serum and 1% penicillin-streptomycin (Thermo Fisher 379 

Scientific, Carlsbad, CA, USA). Cells were incubated in a 37°C incubator with 5% CO2. HAP1 cells were 380 

used for transfection at 50-70% confluency. Jurkat cells were used for transfection at 5-8 x 105 cells/mL 381 

density. After transfection, cells were allowed to grow for 48-72 hours in total, after which genomic DNA 382 

was isolated using QuickExtractTM DNA Extraction Solution (Epicentre, Madison, WI, USA). We chose 383 

HAP1 and Jurkat since they are derived from human chronic myelogenous leukemia and T lymphocyte 384 

cell lines, which are derived from cell types that are similar to those that have been best studied in the 385 

context of predicting Cas9 repair profiles33,34,52.  386 

Delivery of genome editing reagents by nucleofection 387 

Electroporation was performed using the Lonza™ Nucleofector™ 96-well Shuttle™ System (Lonza, 388 

Basel, Switzerland). For each nucleofection, cells were washed with 1X PBS and resuspended in 20 µL of 389 

solution SF or SE (Lonza). Then, cell suspensions were combined with an RNP complex. For Cas9, the 390 

RNP concentration was 4 µM with 4 µM Alt-R Cas9 Electroporation Enhancer. For Cas12a, the RNP 391 

concentration was a suboptimal dose of 0.2 µM with 3 µM Alt-R Cas12 Electroporation Enhancer 392 

(Integrated DNA Technologies) to provide a more diverse range of editing frequencies. This mixture was 393 

transferred into one well of a Nucleocuvette™ Plate (Lonza) and electroporated using manufacturer’s 394 

recommended protocols. After nucleofection, 75 µL pre-warmed culture media was added to the cell 395 

mixture in the cuvette, mixed by pipetting, and 25 µL was transferred to a 96-well culture plate with 175 396 

µL pre-warmed culture media. Transfection plates were incubated at 37°C and 5% CO2. 397 

Quantification of editing by next-generation sequencing (NGS) 398 

On-target editing efficiency for Cas9/Cas12a nucleofected cells was measured by NGS. Libraries were 399 

prepared using a previously described rhAmpSeq amplification-based method53. Briefly, the first round of 400 

PCR was performed using target specific primers. A second round of PCR was used to incorporate P5 401 

and P7 Illumina adapters to the ends of the amplicons for universal amplification. Libraries were purified 402 

using Agencourt® AMPure® XP system (Beckman Coulter, Brea, CA, USA), and quantified with qPCR 403 

before loading onto the Illumina® MiSeq platform (Illumina, San Diego, CA, USA). Paired end, 150 bp 404 

reads were sequenced using V2 chemistry.  Data were demultiplexed using Picard tools v2.9 405 

(https://github.com/broadinstitute/picard). 406 
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CRISPAltRations algorithm 407 

We developed the CRISPRAltRations software tool in python, and it plus other software tools are together 408 

managed by a snakemake or CWL workflow manager (Figure 1) 54,55. The software is hosted with a front-409 

end graphical user interface (UI) at (https://idtcrispr.bluebee.com/idtcrispr/#!login). The UI enables the 410 

end-user to specify run information, which is used to partition computational resources hosted in the cloud 411 

to perform all data processing using the CRISPAltRations software tool. Results can be visualized and 412 

downloaded from the UI. Sequencing data stored in the cloud (AWS, BaseSpace, Google) or on local 413 

data stores can be automatically synced with the platform using or uploaded through a “drag-and-drop” 414 

mechanism within the UI. Data are processed in region specific data centers, duplicated, and protected in 415 

a manner that is GDPR, HIPAA, DSPT, PHIPA, PIPEDA, and CSL compliant. 416 

The CRISPAltRations software tool workflow starts from demultiplexed FASTQ files as input along with 417 

guide and amplicon information in the form of strings or six-column BED-formatted genomic coordinates. 418 

The pipeline assumes that the end-user has generated Illumina sequencing data (single or paired-end) in 419 

FASTQ format and that the reads completely span the cut site in both directions after merging of R1/R2 420 

pairs. If genomic coordinates are provided in BED file format, amplicon and guide sequences are 421 

extracted from the selected genome and paired using bedtools56. Next, low quality reads and Illumina 422 

sequencing adapters are removed using FASTP57 (--423 

adapter_sequence=AGATCGGAAGAGCACACGTCTGAACTCCAGTCA; --424 

adapter_sequence_r2=AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT; -L; -n=10; -q=15; -u=30). If 425 

paired-end data were used, read pairs are merged into a single fragment using FLASH58 (-O flag used). 426 

Putative primer dimers are identified based on a size limit (<60bp reads), annotated by homology to 427 

known amplicon sequences, and removed from downstream analysis. The remaining reads are then 428 

mapped to all potential amplicon targets using minimap259 (default parameters). The mapped reads are 429 

separated into amplicon target-specific BAM files using bamtools60 to enable parallel processing of all 430 

targets. If an HDR donor was supplied, the theoretically perfect HDR event is recreated by iterating 431 

through a Needleman-Wunsch alignment with a high gap-open penalty implemented in biopython61,62 432 

(match=2; mismatch=1; gap open=-30; gap extension=0) at all potential amplicons, choosing the optimal 433 

query:target assignment, reconstructing the hypothetical sequence based on the alignment and adding 434 
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the hypothetical sequence to the mappable amplicons reference file. Reads are collapsed based on exact 435 

sequence identities and re-mapped to the mappable amplicons reference file using minimap259 (A=2; 436 

B=4; O=8; E=5; --secondary=no; --no-end-flt; --max-chain-iter 100000) to bin reads appropriately between 437 

events derived from HDR vs NHEJ repair pathways. Mapped reads containing indels are re-aligned using 438 

a modified Needleman-Wunsch algorithm we call psnw (https://github.com/lh3/psnw) that attributes an 439 

alignment score bonus to placement of gap-open or extension in specific locations in the alignment. Psnw 440 

extends the features of Needleman-Wunsch to include an elevated match/mismatch/gap open/gap 441 

extension scoring matrix (multiplied by a scalar) and a customizable position specific gap-open/extension 442 

vector giving a configurable bonus to alignments that place these features in specific positions. The 443 

scoring matrix enables the algorithm to select alignments that have gap open/extensions at desired 444 

positions.  All reads with a mutation that begins within a set distance from the predicted canonical cut 445 

site(s) are annotated and summarized in the results, with a number of other visualizations and reports. 446 

Variant annotation 447 

Annotation of variants is performed in a step-wise process with custom python code. First, variants are 448 

further collapsed based on their annotated nucleotide changes within range of the cut site window. Then, 449 

if an HDR donor is supplied, a variant is determined to be derived from the HDR vs NHEJ repair pathway 450 

based on the reference amplicon that the read mapped to (wildtype vs theoretical HDR event). Next, a 451 

variant is annotated as an imperfect HDR event if any SNP or indel is found within the pre-defined 452 

window from the cut site or from the location of the first mutation incorporated from the HDR event to the 453 

last, whichever is larger. Next, insertions, deletions, and insertion+deletion frequencies are quantified 454 

relative to the reference sequence.  455 

Insertions are then further characterized by inspecting the sequence of the insertion and surrounding 456 

genomic context. If the sequence of an insertion is found to be an exact repeat of DNA adjacent to its 457 

insertion, it is described as a templated insertion63. If the sequence of an insertion is not found to be a 458 

templated insertion, and it is found to be composed of >1 nucleotide and contain only guanine/cytosine 459 

nucleotides, it is described as a GC insertion. These events are represented as percentages of the total 460 

number of insertions to enable easy comparison between targets.  461 
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Deletions are further characterized by inspecting surrounding genomic context of the deletion. If a 462 

deletion is >1 nucleotide in length and found to contain >1 nucleotide of exact microhomology from the 463 

start of the deletion to the 3’ end of the remaining genomic sequence or from the end of a deletion to the 464 

5’ end of the remaining genomic sequence (accounting for secondary alignments), it is annotated as a 465 

MMEJ event. MMEJ events are represented as a percentage of the total number of deletions to enable 466 

easy comparison between targets. Any events with both insertions+deletions are excluded from this 467 

analysis.  468 

Indel mutations that are not multiples of 3bp are annotated as frameshifting events, independent of 469 

whether they intersect known coding sequences. For identification of the position of mutations, an 470 

insertion position is described as the 5’ reference base position adjacent to the insertion. For deletions, 471 

the position is considered to be the position closest to the cut site at which a reference base is missing. 472 

Additionally, a deletion was considered to intersect the cut site if the base directly 5’ of the cut/nick site 473 

was missing in the variant. Since the cut site(s) of A.s. Cas12a Ultra V3 with a 21bp spacer have not 474 

been explicitly defined, we annotated the PAM-proximal and PAM-distal nick sites to be the position 475 

between the sites where the most insertion events were observed prior to algorithm optimization. 476 

Synthetic read generation for on- and off-target editing validation 477 

To create a synthetic benchmarking dataset reminiscent of CRIPSR editing, we used VarSim64 for 478 

generating the defined variants in a paired-end amplicon sequencing read format with an Illumina MiSeq 479 

v3 error profile and ART65 to generate unmodified reads with MiSeq v3 error profiles to enable addition of 480 

“wildtype” reads with desired error-profiles. We used this to generate a synthetic dataset using sequence 481 

space from 11 real rhAmpSeq panels (Table S3) representing GUIDE-seq nominated Cas9 on- and off-482 

target sites (n = 603 on- and off-target sites) with indels modeled based on our real Cas9/Cas12a editing 483 

events in Jurkat cells. To do this, median mutation size, position, and frequency of event types across 484 

these two datasets were used to create a series of mutation probability vectors that describe the 485 

probability of observing different editing events relative to the canonical cut site in a random guide. To 486 

create indels, mutation probability vectors were sampled to create 100 unique insertion and deletion 487 

events for each guide, each unique event with a read depth of 10 (4,000 reads per target; 50% indels; 488 

2x150 reads).  It should be noted that the Cas12a sites are not true experimentally determined Cas12a 489 
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off-targets or binding sites, but were merely created at the same genomic positions as the Cas9 dataset 490 

to recapitulate the challenge to bin reads between on- and off-target sites with similar genomic context. 491 

Synthetic read generation for on-target HDR quantification validation 492 

To create a synthetic benchmarking dataset representing the ability to perform on-target HDR 493 

quantification, we took all of on- and off-targets from the RAG1 Cas9 GUIDE-Seq panel and separated 494 

these out as single targets (91 total)25. The RAG1 panel was chosen because 1) no target processing 495 

problems were found when using CRISPResso2 and 2) the genomic sequence around the targets 496 

included homopolymers and other events that represent challenging genomic regions to annotate. We 497 

then created dsDNA donors in-silico (as sequence strings) with 40bp homology arms using the same 498 

synthetic generator previously described. Donors were designed to synthetically introduce a mutation at 499 

each of these sites as a deletion (3, 10, 20, 40bp) or insertion (3, 25, 50, 100bp) within 8bp from the 500 

expected cut site. We modeled the dataset with simulated dsDNA donors since this introduces an 501 

additional potential complication of the actual donor sequence being directly ligated into the cleavage site 502 

which is an important event to discriminate between4,48. We made all sites have a heterogeneous set of 503 

events including non-edited events (15%), 10 unique NHEJ indel events (25%), 5 unique non-HDR donor 504 

integration (15%), 5 unique imperfect HDR events (15%), and 1 perfect HDR event (30%). NHEJ indel 505 

events were modeled using the mutation probability from Jurkat with Cas9 (see above). Integration of the 506 

donor (non-HDR donor integration) was modeled with one perfect integration of the complete dsDNA 507 

donor at the cut site and 4 imperfect integrations. Imperfect integration events were modeled with random 508 

sizes of truncations of the integration event (not to exceed 40% the full dsDNA donor size) or SNPs within 509 

the integrated donor. Imperfect HDR events were similarly modeled with either truncated events (deletion 510 

or insertion HDR events) or SNPs (insertion HDR events) within the portion of DNA that was intended to 511 

be altered by the HDR donor. Reads were simulated with MiSeq v3 noise profiles (4,000 reads per target, 512 

2x250 reads). 513 

Determination of required read depth levels 514 

To provide recommendations for target sequencing read depth requirements, we re-analyzed previously 515 

published CRISPR NGS data from a series of rhAmpSeq panels designed for on/off target sites of guides 516 

targeting the RAG1/RAG2 loci with a wide range of editing frequencies, obtainable at the Sequence Read 517 
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Archive (SRA) under: PRJNA62810025. Reads from these samples were subsampled, without 518 

replacement, in triplicate with random seeds to a range between 5-3,000 reads pairs per site and 519 

quantified using CRISPAltRations with optimized parameters. Indel frequencies and standard deviation 520 

between all three read depth replicates were then compared to the frequency obtained using all reads for 521 

the corresponding on- and off-target site to determine deviation from expectation. 522 

DNA standard titration for evaluating rhAmpSeq accuracy 523 

Synthetic dsDNA templates were generated as gBlocks (Integrated DNA Technologies, USA) using 524 

simulated events at an HPRT Cas9 genomic locus (Table S4). Templates were quantified using qPCR 525 

before being pooled at equimolar concentrations. These synthetic events consisted of 10 deletions, 10 526 

insertions, and 3 SNPs spiked in to create a known mixture (43.5:43.5:13). Serial dilution was performed 527 

with varying levels of wildtype sequence ranging from 0-100% (Table S4) and subjected to the previously 528 

stated library preparation procedure followed by NGS.  529 

Statistical and Data Analysis 530 

Data collected from experiments were analyzed and statistics generated using Graph PadPrism 8. Editing 531 

data for Cas9/Cas12a experiments were only used if a sample had >100 merged reads obtained, and the 532 

treated sample had >5% editing. Significance was evaluated using a 2-way ANOVA with a post hoc 533 

Tukey multiple comparisons test (*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001) for indel profile 534 

differences between Cas9 (Jurkat), Cas9(HAP1) and Cas12a(Jurkat) treatments. Limit of blank (LOB) 535 

was calculated using methods previously described66. 536 

Software versions and parameters utilized 537 

For benchmarking analyses the following softwares and versions were used: CRISPResso (1.0.13), 538 

CRISPResso2 (2.0.40), Amplican (1.6.2). When using Amplican, the following non-default parameters 539 

were used: average_quality=15, min_quality=1, primer_mismatch=1, min_freq=0.000001. For comparison 540 

of in-silico repair profile prediction tools the following software versions were used: inDelphi (commit tag: 541 

9ab67ca53ebb91e49aeb4530ec1e999ee9827ca1) and FORECasT (commit tag: 542 

019a2f52ba8437528298523c79c224c205146f00). For both models, the “K562” model was used for 543 

comparing performance. 544 
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Availability 545 

The CRISPAltRations pipeline is available via a cloud-hosted web UI at https://idtcrispr.bluebee.com/. 546 

We provide subscription models to cover regular cloud computing usage costs, or provide the interface 547 

free-of-charge to customers utilizing rhAmpSeq products for generating their sequencing libraries. Credits 548 

to enable a trial of the service can also be obtained by contacting crispr@idtdna.com. The psnw aligner is 549 

available at https://github.com/lh3/psnw. All Cas-specific gap-open/extension scoring vectors (for psnw) 550 

and parameters for publicly available tools are disclosed in Methods for reproducibility. 551 

Acknowledgements 552 

We would like to thank the Molecular Genetics group at IDT for many helpful discussions. We would also 553 

like to thank all of the individuals who participated in testing phases of the CRISPAltRations web platform 554 

and their helpful feedback that led to an ultimately better user-interface. 555 

G.K, A.J., M.M., R.T., G.R., N.R., H.L., L.T., Y.W. and M.B. are employees or paid contractors of 556 

Integrated DNA Technologies (IDT), which sells reagents used or similar to those used in this manuscript. 557 

M.M, K.F., and R.N. are both employees of Illumina Inc. which provides a productized cloud-computing 558 

platform for doing NGS analysis. All other authors declare no conflicts of interest. 559 

Author Contributions 560 

G.K. and M.M. performed all back-end bioinformatics pipeline creation. H.L. created the psnw alignment 561 

algorithm. M.M. designed all Cas9 and Cas12a guides. R.T and G.R. planned and performed all cell 562 

culture, nucleofection and library preparation. G.K performed optimization of different algorithm 563 

components and performed data analysis. N.R. performed gBlock template dilution experiments. L.T. and 564 

G.K developed code testing framework. R.N and K.F. created front-end web UI. G.K. wrote an initial draft.  565 

References 566 

1. Porteus, M. H. A new class of medicines through DNA editing. N. Engl. J. Med. (2019). 567 

 doi:10.1056/NEJMra1800729 568 

2. Carroll, D. Genome Engineering with Targetable Nucleases. Annu. Rev. Biochem. (2014). 569 

doi:10.1146/annurev-biochem-060713-035418 570 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2020. ; https://doi.org/10.1101/2020.11.13.382283doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.382283
http://creativecommons.org/licenses/by/4.0/


22 
 

3. Stinson, B. M., Moreno, A. T., Walter, J. C. & Loparo, J. J. A Mechanism to Minimize Errors during 571 

Non-homologous End Joining. Mol. Cell (2020). doi:10.1016/j.molcel.2019.11.018 572 

4. Tsai, S. Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas 573 

nucleases. Nat. Biotechnol. (2015). doi:10.1038/nbt.3117 574 

5. Wienert, B. et al. Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq. 575 

Science (80-. ). 364, (2019). 576 

6. Tsai, S. Q. et al. CIRCLE-seq: A highly sensitive in vitro screen for genome-wide CRISPR-Cas9 577 

nuclease off-targets. Nat. Methods (2017). doi:10.1038/nmeth.4278 578 

7. Lazzarotto, C. R. et al. CHANGE-seq reveals genetic and epigenetic effects on CRISPR–Cas9 579 

genome-wide activity. Nat. Biotechnol. (2020). doi:10.1038/s41587-020-0555-7 580 

8. Cradick, T. J., Qiu, P., Lee, C. M., Fine, E. J. & Bao, G. COSMID: A web-based tool for identifying 581 

and validating CRISPR/Cas off-target sites. Mol. Ther. - Nucleic Acids (2014). 582 

doi:10.1038/mtna.2014.64 583 

9. Vakulskas, C. A. & Behlke, M. A. Evaluation and reduction of crispr off-target cleavage events. 584 

Nucleic Acid Ther. 29, (2019). 585 

10. Kim, D. et al. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. 586 

Nat. Biotechnol. (2016). doi:10.1038/nbt.3609 587 

11. Schmid-Burgk, J. L. et al. Highly Parallel Profiling of Cas9 Variant Specificity. Mol. Cell 78, (2020). 588 

12. Kleinstiver, B. P. et al. Engineered CRISPR–Cas12a variants with increased activities and 589 

improved targeting ranges for gene, epigenetic and base editing. Nat. Biotechnol. (2019). 590 

doi:10.1038/s41587-018-0011-0 591 

13. Vakulskas, C. A. et al. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex 592 

enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat. Med. 593 

(2018). doi:10.1038/s41591-018-0137-0 594 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2020. ; https://doi.org/10.1101/2020.11.13.382283doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.382283
http://creativecommons.org/licenses/by/4.0/


23 
 

14. Mashal, R. D., Koontz, J. & Sklar, J. Detection of mutations by cleavage of DNA heteroduplexes 595 

with bacteriophage resolvases. Nat. Genet. (1995). doi:10.1038/ng0295-177 596 

15. Ota, S. et al. Efficient identification of TALEN-mediated genome modifications using heteroduplex 597 

mobility assays. Genes to Cells (2013). doi:10.1111/gtc.12050 598 

16. Bhattacharya, D. & Van Meir, E. G. A simple genotyping method to detect small CRISPR-Cas9 599 

induced indels by agarose gel electrophoresis. Sci. Rep. (2019). doi:10.1038/s41598-019-39950-4 600 

17. Ramlee, M. K., Yan, T., Cheung, A. M. S., Chuah, C. T. H. & Li, S. High-throughput genotyping of 601 

CRISPR/Cas9-mediated mutants using fluorescent PCR-capillary gel electrophoresis. Sci. Rep. 602 

(2015). doi:10.1038/srep15587 603 

18. Hsiau, T. et al. Inference of CRISPR Edits from Sanger Trace Data. bioRxiv (2018). 604 

doi:10.1101/251082 605 

19. Brinkman, E. K. & van Steensel, B. Rapid Quantitative Evaluation of CRISPR Genome Editing by 606 

TIDE and TIDER. in Methods in Molecular Biology (2019). doi:10.1007/978-1-4939-9170-9_3 607 

20. Pinello, L. et al. Analyzing CRISPR genome-editing experiments with CRISPResso. Nature 608 

Biotechnology (2016). doi:10.1038/nbt.3583 609 

21. Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. 610 

Nature Biotechnology (2019). doi:10.1038/s41587-019-0032-3 611 

22. Labun, K. et al. Accurate analysis of genuine CRISPR editing events with ampliCan. Genome Res. 612 

(2019). doi:10.1101/gr.244293.118 613 

23. Lindsay, H. et al. CrispRVariants charts the mutation spectrum of genome engineering 614 

experiments. Nature Biotechnology (2016). doi:10.1038/nbt.3628 615 

24. Vouillot, L., Thélie, A. & Pollet, N. Comparison of T7E1 and surveyor mismatch cleavage assays to 616 

detect mutations triggered by engineered nucleases. G3 Genes, Genomes, Genet. (2015). 617 

doi:10.1534/g3.114.015834 618 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2020. ; https://doi.org/10.1101/2020.11.13.382283doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.382283
http://creativecommons.org/licenses/by/4.0/


24 
 

25. Shapiro, J. et al. Increasing CRISPR Efficiency and Measuring Its Specificity in HSPCs Using a 619 

Clinically Relevant System. Mol. Ther. - Methods Clin. Dev. (2020). 620 

doi:10.1016/j.omtm.2020.04.027 621 

26. Sentmanat, M. F., Peters, S. T., Florian, C. P., Connelly, J. P. & Pruett-Miller, S. M. A Survey of 622 

Validation Strategies for CRISPR-Cas9 Editing. Sci. Rep. (2018). doi:10.1038/s41598-018-19441-623 

8 624 

27. Miller, J. C. et al. Enhancing gene editing specificity by attenuating DNA cleavage kinetics. Nat. 625 

Biotechnol. 37, (2019). 626 

28. Zetsche, B. et al. Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. 627 

Cell (2015). doi:10.1016/j.cell.2015.09.038 628 

29. Li, S. Y., Zhao, G. P. & Wang, J. C-Brick: A New Standard for Assembly of Biological Parts Using 629 

Cpf1. ACS Synth. Biol. (2016). doi:10.1021/acssynbio.6b00114 630 

30. Strohkendl, I., Saifuddin, F. A., Rybarski, J. R., Finkelstein, I. J. & Russell, R. Kinetic Basis for 631 

DNA Target Specificity of CRISPR-Cas12a. Mol. Cell (2018). doi:10.1016/j.molcel.2018.06.043 632 

31. Lei, C. et al. The CCTL (Cpf1-assisted Cutting and Taq DNA ligase-assisted Ligation) method for 633 

efficient editing of large DNA constructs in vitro. Nucleic Acids Res. (2017). 634 

doi:10.1093/nar/gkx018 635 

32. Lemos, B. R. et al. CRISPR/Cas9 cleavages in budding yeast reveal templated insertions and 636 

strand-specific insertion/deletion profiles. Proc. Natl. Acad. Sci. U. S. A. (2018). 637 

doi:10.1073/pnas.1716855115 638 

33. Shen, M. W. et al. Predictable and precise template-free CRISPR editing of pathogenic variants. 639 

Nature 563, (2018). 640 

34. Allen, F. et al. Predicting the mutations generated by repair of Cas9-induced double-strand breaks. 641 

Nat. Biotechnol. (2019). doi:10.1038/nbt.4317 642 

35. Glenn, T. C. Field guide to next-generation DNA sequencers. Mol. Ecol. Resour. (2011). 643 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2020. ; https://doi.org/10.1101/2020.11.13.382283doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.382283
http://creativecommons.org/licenses/by/4.0/


25 
 

doi:10.1111/j.1755-0998.2011.03024.x 644 

36. Lieber, M. R. The mechanism of double-strand DNA break repair by the nonhomologous DNA 645 

end-joining pathway. Annual Review of Biochemistry (2010). 646 

doi:10.1146/annurev.biochem.052308.093131 647 

37. Stephenson, A. A., Raper, A. T. & Suo, Z. Bidirectional Degradation of DNA Cleavage Products 648 

Catalyzed by CRISPR/Cas9. J. Am. Chem. Soc. (2018). doi:10.1021/jacs.7b13050 649 

38. Gao, Z., Fan, M., Das, A. T., Herrera-Carrillo, E. & Berkhout, B. Extinction of all infectious HIV in 650 

cell culture by the CRISPR-Cas12a system with only a single crRNA. Nucleic Acids Res. (2020). 651 

doi:10.1093/nar/gkaa226 652 

39. Owens, D. D. G. et al. Microhomologies are prevalent at Cas9-induced larger deletions. Nucleic 653 

Acids Res. (2019). doi:10.1093/nar/gkz459 654 

40. Mangul, S. et al. Challenges and recommendations to improve the installability and archival 655 

stability of omics computational tools. PLoS Biol. (2019). doi:10.1371/journal.pbio.3000333 656 

41. Lai, Z. et al. VarDict: A novel and versatile variant caller for next-generation sequencing in cancer 657 

research. Nucleic Acids Res. (2016). doi:10.1093/nar/gkw227 658 

42. Li, M. M. et al. Standards and Guidelines for the Interpretation and Reporting of Sequence 659 

Variants in Cancer. J. Mol. Diagnostics (2017). doi:10.1016/j.jmoldx.2016.10.002 660 

43. Krusche, P. et al. Best practices for benchmarking germline small-variant calls in human genomes. 661 

Nat. Biotechnol. (2019). doi:10.1038/s41587-019-0054-x 662 

44. Craig, D. W. et al. A somatic reference standard for cancer genome sequencing. Sci. Rep. (2016). 663 

doi:10.1038/srep24607 664 

45. Marx, V. Cancer: Hunting rare somatic mutations. Nat. Methods (2016). doi:10.1038/nmeth.3803 665 

46. Wang, T. T. et al. High efficiency error suppression for accurate detection of low-frequency 666 

variants. Nucleic Acids Res. (2019). doi:10.1093/nar/gkz474 667 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2020. ; https://doi.org/10.1101/2020.11.13.382283doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.382283
http://creativecommons.org/licenses/by/4.0/


26 
 

47. Kamps-Hughes, N. et al. ERASE-Seq: Leveraging replicate measurements to enhance ultralow 668 

frequency variant detection in NGS data. PLoS One (2018). doi:10.1371/journal.pone.0195272 669 

48. Hanlon, K. S. et al. High levels of AAV vector integration into CRISPR-induced DNA breaks. Nat. 670 

Commun. (2019). doi:10.1038/s41467-019-12449-2 671 

49. Norris, A. L. et al. Template plasmid integration in germline genome-edited cattle. Nat. Biotechnol. 672 

(2020). doi:10.1038/s41587-019-0394-6 673 

50. Stadtmauer, E. A. et al. CRISPR-engineered T cells in patients with refractory cancer. Science 674 

(80-. ). (2020). doi:10.1126/science.aba7365 675 

51. Kosicki, M., Tomberg, K. & Bradley, A. Repair of double-strand breaks induced by CRISPR–Cas9 676 

leads to large deletions and complex rearrangements. Nat. Biotechnol. (2018). 677 

doi:10.1038/nbt.4192 678 

52. Leenay, R. T. et al. Large dataset enables prediction of repair after CRISPR–Cas9 editing in 679 

primary T cells. Nat. Biotechnol. 37, (2019). 680 

53. Jacobi, A. M. et al. Simplified CRISPR tools for efficient genome editing and streamlined protocols 681 

for their delivery into mammalian cells and mouse zygotes. Methods (2017). 682 

doi:10.1016/j.ymeth.2017.03.021 683 

54. Köster, J. & Rahmann, S. Snakemake-a scalable bioinformatics workflow engine. Bioinformatics 684 

(2012). doi:10.1093/bioinformatics/bts480 685 

55. Amstutz, P. et al. Common Workflow Language Specifications, v1.0. Figshare (2016). 686 

doi:10.6084/m9.figshare.3115156.v2 687 

56. Quinlan, A. R. & Hall, I. M. BEDTools: A flexible suite of utilities for comparing genomic features. 688 

Bioinformatics (2010). doi:10.1093/bioinformatics/btq033 689 

57. Chen, S., Zhou, Y., Chen, Y. & Gu, J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. in 690 

Bioinformatics (2018). doi:10.1093/bioinformatics/bty560 691 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2020. ; https://doi.org/10.1101/2020.11.13.382283doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.382283
http://creativecommons.org/licenses/by/4.0/


27 
 

58. Magoč, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome 692 

assemblies. Bioinformatics (2011). doi:10.1093/bioinformatics/btr507 693 

59. Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics (2018). 694 

doi:10.1093/bioinformatics/bty191 695 

60. Barnett, D. W., Garrison, E. K., Quinlan, A. R., Str̈mberg, M. P. & Marth, G. T. Bamtools: A C++ 696 

API and toolkit for analyzing and managing BAM files. Bioinformatics (2011). 697 

doi:10.1093/bioinformatics/btr174 698 

61. Needleman, S. B. & Wunsch, C. D. A general method applicable to the search for similarities in 699 

the amino acid sequence of two proteins. J. Mol. Biol. (1970). doi:10.1016/0022-2836(70)90057-4 700 

62. Cock, P. J. A. et al. Biopython: Freely available Python tools for computational molecular biology 701 

and bioinformatics. Bioinformatics (2009). doi:10.1093/bioinformatics/btp163 702 

63. Schimmel, J., van Schendel, R., den Dunnen, J. T. & Tijsterman, M. Templated Insertions: A 703 

Smoking Gun for Polymerase Theta-Mediated End Joining. Trends in Genetics (2019). 704 

doi:10.1016/j.tig.2019.06.001 705 

64. Mu, J. C. et al. VarSim: A high-fidelity simulation and validation framework for high-throughput 706 

genome sequencing with cancer applications. Bioinformatics (2015). 707 

doi:10.1093/bioinformatics/btu828 708 

65. Huang, W., Li, L., Myers, J. R. & Marth, G. T. ART: A next-generation sequencing read simulator. 709 

Bioinformatics (2012). doi:10.1093/bioinformatics/btr708 710 

66. Armbruster, D. A. & Pry, T. Limit of blank, limit of detection and limit of quantitation. Clin. Biochem. 711 

Rev. (2008). 712 

 713 

 714 

 715 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2020. ; https://doi.org/10.1101/2020.11.13.382283doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.382283
http://creativecommons.org/licenses/by/4.0/


28 
 

 

 

 

 

 

 

 

 

Figure 1. Development framework for CRISPAltRations. CRISPAltRations was architected such that 
each step of the pipeline (grey box) is containerized and deployed within the cloud to enable highly scalable 
batch processing (tan box). Briefly, the pipeline goes through a number of processing steps (blue boxes) to 
transform demultiplexed reads to results that quantify editing events after CRISPR genome editing (purple 
box) which can be viewed and stored in the cloud or downloaded locally. To improve CRISPAltRations, we 
used iterative improvement (orange boxes) to iterate through a process in which we manually inspected and 
interrogated experimental results to build tests (green box) which ensure stability, coverage of different 
experimental use-cases, and allowed us to optimize the software tool.      
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Figure 2. Characterization of Cas9 and Cas12a-specific indel profiles for aligner creation (Software iteration #3). 
Tukey box and whisker plot of A/D) insertion position and B/E) deletion position relative to the cut/nick site(s) (orange 
dashed line) derived using C/F) an integrated scoring vector to apply a position-specific bonus to gap open and gap 
extension events to preferentially select secondary alignments representing the most likely event to occur biologically for 
Alt-R S.p. Cas9 V3 (n=273 guides) and Alt-R A.s. Cas12a Ultra V3 (n=243 guides) editing events delivered via 
ribonucleoprotein electroporation into Jurkat cells analyzed using software iteration #3. 
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Figure 3. Selection of an optimal variant detection window size. An optimal limit 
for the variant detection window size (green dashed line) for annotating variants was 
selected for A) Alt-R S.p. Cas9 V3 (n=273) and B) Alt-R A.s. Cas12a Ultra V3 (n=243; 
Cas12a window center shifted -3 bp 5’ from PAM-distal nick site) at which median indel 
signal differences between treatment and control samples was < 0.1%. C/D) The 
effects of window size on total indels annotated (relative to a window size of 20) was 
calculated for unedited (red), edited samples with software iteration #2 (green) and 
edited samples with software iteration #3 (blue).  
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Figure 4. Benchmarking current pipelines supporting multiplex on/off-target analysis. 
Publicly available tools that easily support multiplex analysis were compared to CRISPAltRations 
using synthetic data (Figure S6; n=603 sites) generated for A) Cas9 and B) Cas12a for the ability 
to accurately determine % editing at each site (open circles) with a ground truth of 50% editing 
(black dashed line). w, window size. 
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Figure 5. Benchmarking on-target HDR annotation accuracy. 
CRISPResso2 and CRISPAltRations were compared using a synthetic 
dataset (n=91 sites) for the ability to accurately determine the percentage 
of events derived from A) perfect HDR B) imperfect HDR (HDR event with 
any unintended mutations) C) wildtype and D) NHEJ at all edited sites. w, 
window size. 
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Figure 6. Characterization of cell-line/enzyme specific repair pathways. A) Normalized occurrence of different 
characterized indel repair events and B) median indel size +/- interquartile range for Alt-R S.p. Cas9 V3 or Alt-R A.s. 
Cas12a Ultra V3 delivered to Jurkat or HAP1 cells. MMEJ, Microhomology-mediated end-joining. 
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Figure 7. Read depth requirements for variable levels of precision. Subsampling of 284 CRISPR editing 
experiments with varying editing efficiencies (>0.5% editing) to variable read depths in triplicate with comparison 
of A) subsampled % indels and B) standard deviation to unsubsampled (i.e., full depth) results. 
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Figure 8. Example of cloud-hosted UI with interactive graphics. As an example, a single on-target HDR 
experiment is displayed. After completing data processing in the cloud, graphics are automatically created to 
display high-level metrics like A) Editing frequency B) Repair pathway utilization and C) Frameshift frequency. 
Additionally, graphics are generated to display positional occurrence of D) insertion E) deletions and F) an IGV 
visualization of the collapsed variants and their allelic frequencies, and more. Some graphics are artificially 
condensed to fit in this figure. 
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Figure S1. Characterization of Cas9-specific indel profiles for using the standard Needleman-Wunsch 
alignment algorithm (Software iteration #1). Tukey box and whisker plot of A) insertion position, and B) 
deletion position profiles relative to the cut site (orange dashed line) of Alt-R S.p. Cas9 V3 (n=273 guides) 
editing events delivered via ribonucleoprotein nucleofection into Jurkat cells analyzed using software iteration 
#1. 
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Figure S2. Characterization of Cas12a-specific indel profiles using the standard Needleman-Wunsch 
alignment algorithm (Software iteration #1). Tukey box and whisker plot of A) insertion position, and B) 
deletion position profiles relative to the putative nick sites (orange dashed line) of Alt-R A.s. Cas12a Ultra V3 
(n=243 guides) editing events delivered via ribonucleoprotein electroporation into Jurkat cells analyzed using 
software iteration #1. 
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Figure S3. Characterization of Cas9-specific indel profiles for using psnw alignment algorithm with a 
single cut site bonus (Software iteration #2). Tukey box and whisker plot of A) insertion position, B) deletion 
position profiles relative to the cut site (orange dashed line) of Alt-R S.p. Cas9 V3 (n=273 guides) editing 
events delivered via ribonucleoprotein electroporation into Jurkat cells analyzed using software iteration #2. 
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Figure S4. Characterization of Cas12a-specific indel profiles using psnw with a single PAM distal cut 
site bonus (Software iteration #2). Tukey box and whisker plot of A) insertion position, and B) deletion 
position profiles relative to the putative nick sites (orange dashed line) of Alt-R A.s. Cas12a Ultra V3 (n=243 
guides) editing events delivered via ribonucleoprotein electroporation into Jurkat cells analyzed using 
software iteration #2. 
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Figure S5. Window optimization AsCas12a 
centered at the PAM-distal nick site. An optimal 
window size (green dashed line) for annotating 
variants was selected for Alt-R A.s. Cas12a Ultra 
V3 editing in Jurkat cells at which median indel 
signal differences between treatment and control 
samples < 0.1%, with the window centered at the 
PAM-distal nick site. 
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Figure S6. Synthetic on/off-target dataset used for pipeline validation. Characterization 
of synthetic CRISPR NGS on/off-target benchmarking data A-B) indel sizes, C-D) insertion 
positions, and E-F) deletion positions, all modeled based on experimental Alt-R S.p. Cas9 
V3 or Alt-R A.s. Cas12a Ultra V3 editing data in Jurkat cells. 
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Figure S7. HiFi Cas9 editing in HAP1 and Jurkat 
Cells. Quantification and comparison of indel editing by 
CRISPAltRations in HAP1 and Jurkat cell lines with Alt-R 
S.p. Cas9 V3 delivered via ribonucleoprotein (n=273 
unique gRNAs). 
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Figure S8. AsCas12a editing efficiency in Jurkat. 
Quantification of editing by CRISPAltRations in Jurkat 
delivered Alt-R A.s. Cas12a Ultra V3 via ribonucleoprotein 
electroporation at a suboptimal concentration (n=243 unique 
gRNAs) 
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Figure S9. Performance of in-silico mutation profile prediction tools. FORECast and 
inDelphi were evaluated for the ability to predict mutation size distributions similar to what was 
observed Jurkat/HAP1 cells treated with Alt-R S.p. Cas9 V3 Cas9 or Alt-R A.s. Cas12a Ultra V3 
by measuring A) symmetrized KL divergence between observed and predicted profiles (median 
+/- IQR) and B) the mean accuracy predicting the most prevalent mutation. Linear regression 
was performed using predicted vs observed frameshift frequencies for C) Jurkat + Cas12a D) 
Jurkat + Cas9 and E) HAP1 + Cas9 treated cells with a line of identity (solid black line) displayed 
at y = x.  
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Figure S10. Pipeline indel detection sensitivity. Pipeline indel detection concordance (black line) 
with a titrated mixture of gBlocks with known concentrations of indels for an HPRT target (>40,000 
reads per sample) sequenced with MiSeq v3 chemistry A) before and B) after a simple background 
subtraction, performed by subtracting the percent indels observed in an unmodified gBlock control 
from all samples. 
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Figure S11. Evaluation of indel background noise in two 
experiments. Relative frequency of unedited control samples with 
variable indel editing signal (binned in 0.1% intervals) for the same 
genomic targets from Jurkat (n=260) and HAP1 (n=158) cell lines in two 
separate experiments with high read depth (> 10,000 read pairs). Limit 
of Blank; LOB 
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Figure S12. Pipeline runtime requirements. All multiplex compatible pipelines were ran against synthetic 
multiplex on/off-target datasets with 14 or 196 targets at varying read depth. Runtime in seconds was recorded for 
A) Command line interface and B) Web UI runs. Runs that failed submission or analysis are indicated (*). 
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