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Abstract 

Background 

The anti-tumor activity of anti-PD-1/PD-L1 therapies correlates with T cell infiltration in tumors. 

Thus, a major goal in oncology is to find strategies that enhance T cell infiltration and efficacy 

of anti-PD-1/PD-L1 therapy. TGF-β has been shown to contribute to T cell exclusion and anti-

TGF-β improves anti-PD-L1 efficacy in vivo. However, TGF-β inhibition has frequently been 

shown to induce toxicity in the clinic, and the clinical efficacy of combination PD-L1 and TGF-β 

blockade has not yet been proven. To identify strategies to overcome resistance to PD-L1 

blockade, the transcriptional programs associated with PD-L1 and/or TGF-β blockade in the 

tumor microenvironment should be further elucidated.  

 

Results 

For the first time, we used single-cell RNA sequencing to characterize the transcriptomic 

effects of PD-L1 and/or TGF-β blockade on nearly 30,000 single cells in the tumor and 

surrounding microenvironment. Combination treatment led to upregulation of immune 

response genes, including multiple chemokine genes such as CCL5, in CD45+ cells, and 

down-regulation of extracellular matrix genes in CD45- cells. Analysis of publicly available 

tumor transcriptome profiles showed that the chemokine CCL5 was strongly associated with 

immune cell infiltration in various human cancers. Further investigation with in vivo models 

showed that intratumorally administered CCL5 enhanced cytotoxic lymphocytes and the anti-

tumor activity of anti-PD-L1. 
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Conclusions 

Taken together, our data could be leveraged translationally to improve anti-PD-L1 plus anti-

TGF-β combination therapy, for example through companion biomarkers, and/or to identify 

novel targets that could be modulated to overcome resistance. 
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Background 

 Antibodies blocking the PD-1/PD-L1 immune checkpoint pathway have been approved 

in the first-line setting for a range of cancer types including non-small-cell lung carcinoma 

(NSCLC), urothelial cancer, triple negative breast cancer, colorectal cancer, head and neck 

squamous cell carcinoma (HNSCC), microsatellite instability-high cancer, and melanoma. A 

major goal in oncology is to improve the response rate of these agents to benefit more 

patients. T cell excluded tumors are less likely to respond to immune checkpoint blockade 

targeting the PD-1/PD-L1 pathway [1-3]. Furthermore, in metastatic urothelial cancer and 

some murine tumor models, T cell exclusion correlates with TGF-β signaling, which is thought 

to induce expression of collagen and other factors leading to a physical barrier that prevents 

immune infiltration [3-5]. Consistently, in pre-clinical models, combination therapy with anti-PD-

L1 plus anti-TGF-β has been shown to induce T cell infiltration and synergistic anti-tumor 

efficacy [3,5-10]. However, TGF-β blockade can lead to significant toxicity, which has led to 

termination of several clinical trials testing TGF-β/TGF-βRII inhibitors [11,12], and clinical 

efficacy has not yet been demonstrated conclusively. Deeper understanding of the 

transcriptional programs involved in anti-PD-L1 plus anti-TGF-β combination therapy could 

lead to improved approaches that address these shortcomings.  

 The transcriptional programs induced by PD-L1 plus TGF-β signaling blockade remain 

poorly understood. Single-cell RNA sequencing (scRNA-seq) is a powerful tool that provides 

transcriptional profiles of tens of thousands of cells, enabling comprehensive analysis of the 

tumor microenvironment. Thus, for the first time, we used scRNA-seq to profile the 

transcriptional changes induced at the single cell level in the tumor microenvironment after 

combination anti-PD-L1 plus anti-TGF-β treatment. In particular, we wanted to identify genes 

that are altered during a productive anti-tumor immune response that may enhance T cell 
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infiltration and efficacy of PD-1/PD-L1 blockade, with the ultimate goal of discovering novel 

therapeutic strategies to overcome resistance to PD-1/PD-L1 blockade. 

 We found that anti-TGF-β led to reduced expression of collagen and other matrix 

remodeling genes by cancer-associated fibroblasts and that combination treatment with anti-

PD-L1 (atezolizumab) plus anti-TGF-β further enhanced this downregulation. Anti-PD-L1 

induced the expression of several chemokines that are associated with the recruitment of 

cytotoxic T cells, with a further increase in expression after combination therapy. Analysis of 

The Cancer Genome Atlas (TCGA) transcriptome data confirmed that multiple chemokines are 

associated with immune cell infiltration in human tumors, and revealed C-C Motif Chemokine 

Ligand 5 (CCL5) as the chemokine most highly correlated with immune infiltration across 

several tumor types. Finally, intratumoral administration of CCL5 increased the frequency of 

CCR5+ CD8+ T cells and mature CD11b+ NK cells within the tumor, and administration of 

CCL5 plus anti-PD-L1 (atezolizumab) induced tumor growth inhibition over anti-PD-L1 alone in 

the murine colon tumor model MC38. Taken together, our data could be leveraged 

translationally to improve anti-PD-L1 plus anti-TGF-β combination therapy, for example 

through companion biomarkers, and/or to identify novel targets that could be modulated to 

overcome resistance. 
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Results 

PD-L1 plus TGF-β blockade reduces tumor growth and enhances immune cell infiltration.  

 Anti-TGF-β has been shown to enhance the efficacy of PD-L1 blockade in several 

murine models [3,5,6,8,13,14]. To confirm these results, and to investigate whether anti-TGF-β 

enhances the anti-tumor efficacy of the FDA-approved anti-PD-L1 antibody atezolizumab, 

human PD-L1 knock-in mice bearing subcutaneous colon carcinoma MC38 tumors expressing 

Hu-PD-L1 (Hu-PD-L1-MC38) were treated with vehicle, anti-PD-L1, or a combination of anti-

PD-L1 plus anti-TGF-β. As expected, anti-PD-L1 significantly limited tumor growth (p = 0.0087; 

Figure 1a, b), while anti-TGF-β alone was not efficacious (Additional file 1, Figure S1a, b). 

Combination treatment of anti-PD-L1 plus anti-TGF-β was significantly more efficacious than 

anti-PD-L1 alone (p = 0.038) and led to tumor regression in four of six (66.67%) animals by 

day 28 (Figure 1a, b). Both anti-PD-L1 and anti-PD-L1 plus anti-TGF-β also improved survival 

relative to control (Figure 1c). One of six (16.67%) mice from the anti-PD-L1 group and three of 

six (50%) mice from the anti-PD-L1 plus anti-TGF-β group had a complete response and were 

re-challenged with Hu-PD-L1 MC38 cells, implanted subcutaneously (s.c.) on the opposite 

flank from the original tumor. Tumor-naïve, wild-type C57BL/6 mice were used as controls. All 

previously cured mice, but not the naïve mice, were protected from tumor re-challenge, 

indicating the presence of anti-tumor immune memory (p = 0.026; Additional file 1, Figure 

S1c). To investigate if PD-L1 plus TGF-β blockade had an effect on T cell infiltration, CD3 

immunohistochemistry (IHC) was performed on tumors from the treated mice. Anti-PD-L1 plus 

anti-TGF-β significantly increased T cell infiltration while anti-PD-L1 alone did not (Figure 1d). 

In a different mouse colon carcinoma tumor model, CT26, significant tumor growth inhibition 

was also observed upon anti-PD-L1 (atezolizumab, which cross reacts with murine PD-L1) 
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plus anti-TGF-β treatment, whether anti-TGF-β was given intraperitoneally (I.P.) or 

intratumorally (I.T.) (Additional file 1, Figure S2). 

 To study this therapeutic regimen in an orthotopic tumor type, we treated mice 

harboring EMT6 breast tumors orthotopically grown in the mammary fat pad with PBS, anti-

PD-L1 (atezolizumab), anti-TGF-β, or anti-PD-L1 (atezolizumab) plus anti-TGF-β. While we did 

not observe efficacy from either single agent, anti-PD-L1 plus anti-TGF-β significantly reduced 

tumor size relative to PBS or anti-TGF-β alone (p<0.03; Figure 1e, f). Further, the combination 

treatment improved the survival relative to all individual arms (p<0.01; Figure 1g). Anti-PD-L1 

plus anti-TGF-β in combination, but neither monotherapy alone, enhanced CD3 immune cell 

infiltration relative to all individual arms (p<0.03; Figure 1h). 

 Together, these results established that dual blockade of PD-L1 and TGF-β effectively 

controlled tumor growth and improved T cell infiltration into the tumor in multiple mouse 

models. We thus reasoned that in vivo inhibition of PD-L1 plus TGF-β could be used as an 

experimental model to identify genes important for immune cell infiltration and anti-tumor 

response, and this information could be used to uncover strategies to overcome resistance to 

anti-PD-L1 therapy. The EMT6 orthotopic tumor model provided us with an opportunity to 

characterize the single cell molecular responses to anti-PD-L1 ± anti-TGF-β treatment in a 

setting where anti-TGF-β addition overcomes resistance to anti-PD-L1 therapy. Eight days 

after the first dose, three representative tumors per group were harvested (Figure 1f, in red), 

dissociated, flow sorted for CD45+ immune cells and CD45- non-immune cells, and subjected 

to single-cell RNA sequencing (scRNA-seq). 

 

Single-cell RNA sequencing of tumors from anti-PD-L1 ± anti-TGF-β treated mice.  
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 Single-cell transcriptomic profiles for 27,797 high-quality cells were generated, including 

18,002 CD45+ and 9,795 CD45- cells. Uniform Manifold Approximation and Projection (UMAP) 

dimensionality reduction of the transcriptomes revealed distinct clusters of cells present in all 

treatment groups (Figure 2a, b). We assigned cell type labels using SingleR, which annotated 

cell type based on reference transcriptomes of pure cell types in the ImmGen database [15]. 

To discern tumor cells from host stromal cells, we further performed fine UMAP clustering on 

the CD45- cells, generating 15 distinct clusters (Additional file 1, Figure S3a). Cells in cluster 7 

had high expression of the fibroblast marker Fap and were thus annotated as fibroblasts 

(Additional file 1, Figure S3b). The remaining cells were annotated as tumor cells or assigned 

their original SingleR labels as endothelial or epithelial cells. Copy number analysis confirmed 

that the annotated tumor cells exhibited aberrant copy number while the fibroblasts did not 

(Additional file 1, Figure S3c). When comparing the treatment groups, we observed differences 

in cell type composition. For example, the anti-PD-L1, anti-TGF-β, and anti-PD-L1 plus anti-

TGF-β samples had lower numbers of macrophages (9.2 – 20.3% of CD45+ cells) compared 

to the PBS control (31% of CD45+ cells; Figure 2c). Conversely, relative to the PBS sample 

where B cells represented 8.9% of the CD45+ cells, the three treatment groups had higher 

numbers of B cells (23.7% – 31.9%). 

 Next, we performed differential gene expression analysis between each drug treatment 

group and the control sample, within each annotated cell type. Anti-PD-L1, anti-TGF-β, and 

anti-PD-L1 plus anti-TGF-β treatments resulted in 598, 132, and 386 differentially expressed 

genes across different cell types, respectively (Additional file 2, Table S1). To assess the 

overall impact of the drug treatments on the non-immune and immune compartments, we 

performed functional enrichment analysis of the differentially expressed genes within the 

CD45- and CD45+ cells, respectively. While single agent inhibition of PD-L1 did not result in 

downregulation of specific functional categories for the CD45- cells, TGF-β blockade led to 
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downregulation of WNT-signaling related pathways including Wnt-protein binding and frizzled 

binding (Figure 2d; Additional file 2, Table S2). Interestingly, WNT/β-catenin pathway was 

previously shown to contribute to T cell exclusion [16]. More strikingly, dual blockade of PD-L1 

plus TGF-β led to significant downregulation of matrix remodeling associated functional 

categories including extracellular matrix, contractile fiber, and collagen-containing extracellular 

matrix (Figure 2d). For example, collagen and metalloproteinase genes such as Col1a1, 

Col1a2, Cthrc1, P3h4, and Mmp23 were downregulated in fibroblasts following combination 

blockade (Figure 2e, f). This is consistent with previous observations suggesting that TGF-β 

blockade synergizes with anti-PD-L1 to reprogram the peritumoral stromal fibroblasts [3].  

 To elucidate the interactions between various cell types involved in TGF-β signaling, we 

generated a cell-cell communication network involving all TGF-β ligands and receptors using 

CellPhoneDB [17]. CellPhoneDB analysis implicated multiple cell types as the source of TGF-β 

ligands, including B cells, dendritic cells, macrophages, NK cells, and intriguingly, tumor cells 

(Additional file 1, Figure S4a). Tumor cell-expressed TGF-β molecules were predicted to 

interact with TGF-β receptors on fibroblast cells, macrophages, and tumor cells themselves. 

Interestingly, these interactions were largely abolished following anti-TGF-β treatment, alone or 

in combination with anti-PD-L1. This suggests that tumor cell produced TGF-β can induce 

fibroblasts to express collagen and other extracellular matrix genes resulting in a physical 

barrier to T cell exclusion, and that TGF-β blockade counteracts this immune suppression. 

 Functional enrichment analysis of the upregulated genes within the CD45+ cells showed 

enhanced immune responses following anti-PD-L1 and anti-TGF-β treatments, administered 

alone or in combination. For example, anti-PD-L1 plus anti-TGF-β induced upregulation of 

genes involved in response to bacterium (eg. H2-K1, B2m, Cd274, Il1b), response to 

interferon-gamma (eg. H2-Aa, Stat1, Irf1) and positive regulation of cytokine production (eg. 
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Cd74, Cd83, Ccl4) (Figure 2g, h; Additional file 2, Table S2). Notably, multiple chemokines 

were upregulated in the macrophages of the anti-PD-L1 sample (Ccl5, Cxcl9, Ccl4, Cxcl14), 

the anti-TGF-β sample (Ccl12, Ccl4), and the anti-PD-L1 plus anti-TGF-β sample (Ccl5, 

Cxcl10, Cxcl9, Ccl4, Ccl3, Ccl2, Ccl7) (Figure 2i). This is consistent with previous in vivo 

studies showing anti-PD-1/PD-L1 treatment favors polarization of macrophages towards a 

more immunostimulatory state [18,19]. 

 Further analysis revealed that chemokines were upregulated in fibroblasts, neutrophils, 

and T cells in anti-PD-L1 and anti-PD-L1 plus anti-TGF-β treated tumors (Additional file 1, 

Figure S4b). Additionally, anti-PD-L1 plus anti-TGF-β combination treatment led to 

upregulation of additional chemokines such as Cxcl1 and Cxcl2 in tumor cells above and 

beyond those induced by either single treatment alone (Additional file 2, Table S1). 

Chemokines lay a critical role in recruiting various immune cells to create an inflamed tumor 

microenvironment [20,21]. The enhanced chemokine expression in samples after anti-PD-L1 

plus anti-TGF-β combination treatment suggests that chemokines may facilitate the success of 

checkpoint blockade treatments. Indeed, both pre- and post-treatment CXCL9 and CXCL10 

expression levels correlate with response to anti-PD-1 treatment in melanoma patients and 

anti-PD-L1 treatment in urothelial cancer patients [22-24]. 

 A major goal in immunotherapy is to find strategies to enhance immune cell infiltration. 

While TGF-β monoclonal antibodies in combination with anti-PD-L1s have been shown to 

enhance immune infiltration and efficacy in preclinical models, TGF-β targeting molecules have 

been plagued by toxicity, leading to the halting of several clinical trials with these agents. As an 

alternative, our data suggest the possibility that a chemokine administered therapeutically may 

improve immune cell infiltration and efficacy in combination with anti-PD-L1 antibodies. 
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CCL5 expression is associated with immune cell infiltration across human cancer types.  

 The scRNA-seq data suggested that the enhanced expression of chemokines in tumors 

treated with anti-PD-L1 plus anti-TGF-β may contribute to the ability of anti-TGF-β to enhance 

the anti-tumor efficacy of anti-PD-L1. To further investigate the chemokines that may be most 

important for enhancing efficacy of anti-PD-L1 therapy, we took a computational approach to 

identify chemokines associated with immune cell infiltration in different human cancer types 

using The Cancer Genome Atlas (TCGA). For this we utilized tumor-infiltrating lymphocyte 

(TIL) scores for TCGA tumor samples, which have been previously quantified using two 

distinct methods. For one method, Saltz et al. used a deep learning image recognition 

algorithm to quantify TILs from hematoxylin and eosin (H&E)-stained pathology images for 13 

TCGA cancer types [25,26]. Independently, Aran et al. developed a gene signature-based 

method termed xCell to infer immune cell abundance based on tumor gene expression profiles 

[27]. Specifically, we focused on the immune cell abundance scores for three cytotoxicity 

relevant cell types: CD8+ T cells, dendritic cells, and NK cells. Using linear regression models, 

we tested for association between gene expression levels for a panel of chemokine genes (i.e. 

genes starting with CXC, CCL, CX3C, or XC) with both the image-based and gene signature-

based immune infiltration scoring methods (Figure 3a). Chemokines significantly associated 

with immune infiltration scores were further ranked based on their association strengths (i.e. 

regression coefficients) across cancer types (multiple testing adjusted p-values <0.05).  

 The expression levels of six chemokine genes (CCL5, CXCL9, CXCL13, CXCL10, 

CXCL11, and CCL19) were significantly associated with the image-based immune scores 

across all 13 tested cancer types (Figure 3b). For example, correlation of CCL5 expression in 

breast cancer (BRCA) with the image-based infiltration scores is shown in Figure S5 

(Additional file 1). CCL5, CXCL9, CXCL13, CXCL10, and CXCL11 were also among the top 
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chemokine genes associated with the gene expression-based immune scores across multiple 

cancer types (Figure 3c). Notably, CCL5 was consistently the top chemokine associated with 

immune infiltration scores, as determined by both the image-based and the gene signature-

based methods. CCL5 expression levels was significantly associated with inferred CD8+ T cell, 

dendritic cell, and NK cell abundance across multiple cancer types (Figure 3c). These findings 

are consistent with the chemotactic roles of CCL5 in regulating immune cell trafficking in 

tumors via interactions with its receptor CCR5 [28]. 

 

Combination therapy of anti-PD-L1 plus intratumorally administered CCL5 leads to tumor 

growth inhibition.  

Given its chemotactic properties, we hypothesized that intratumoral delivery of 

recombinant CCL5 protein may enhance immune cell recruitment and control tumor growth. 

While multiple intratumoral cell subsets express CCR5 (Figure 4a; Additional file 1, Figure S6) 

[29,30], intratumorally administering recombinant CCL5 to s.c. MC38 tumors resulted in an 

increased frequency of CD8+ T cells in the tumor that were CCR5 positive twelve days after 

starting dosing (p = 0.03; Figure 4a, b; Additional file 1, Figure S6). There was also a trend 

towards an increase in the frequency of NK cells expressing CCR5 (p = 0.09; Figure 4a, b; 

Additional file 1, Figure S6). Furthermore, we found that intratumoral CCL5 resulted in an 

increased frequency of NK cells expressing CD11b+ (p = 0.04; Figure 4c, d; Additional file 1, 

Figure S6). CD11b expression by NK cells has been reported to mark mature NK cells with 

enhanced effector function [31]. Together these data suggest that intratumorally administered 

CCL5 altered the tumor microenvironment, including by recruiting cytotoxic lymphocytes. 

Lastly, we determined if intratumorally administered CCL5 was able to enhance the 

efficacy of anti-PD-L1 therapy using the same tumor model. While neither intratumoral CCL5 
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nor anti-PD-L1 (atezolizumab) alone inhibited tumor growth, CCL5 in combination with anti-

PD-L1 significantly reduced tumor growth relative to all individual arms (p<0.05; Figure 4e, f). 

Mice that received CCL5 plus anti-PD-L1 combination therapy also had significantly prolonged 

survival compared to all individual arms (p<0.02; Figure 4g). Thus, intratumorally administered 

CCL5 is able to overcome resistance to anti-PD-L1 therapy. 
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Discussion 

 For the first time, we used scRNA-seq to investigate gene expression changes in tens 

of thousands of single cells associated with anti-PD-L1 and/or anti-TGF-β therapy. Anti-PD-L1 

treatment alone or in combination with anti-TGF-β induced immune response related genes in 

both fibroblasts and immune cells, including multiple chemokines associated with the 

recruitment of cytotoxic cells. The combination of anti-PD-L1 plus anti-TGF-β enhanced the 

expression of many of these genes over anti-PD-L1 alone, and thus the combination appears 

to work together to alter the expression of fibroblasts in a way that may enhance immune 

infiltration into tumors. 

 Our scRNA-seq data set comprises almost 30,000 single cell transcriptomes across four 

treatment groups. This is a significant community resource for discovery of novel biomarkers 

and therapeutic targets. Though patient response to PD-1/PD-L1 checkpoint inhibition remains 

difficult to predict, biomarkers for positive outcomes in anti-PD-L1 therapy include IHC for 

tumor PD-L1 and tumor mutational burden [32], while biomarkers for anti-TGF-β are unknown. 

Our data suggest that extracellular matrix or chemokine receptor genes could be used to 

identify patients more likely to achieve immune cell infiltration for anti-PD-L1 and/or anti-TGF-β 

therapy. Our work also identified dozens of genes that could be further investigated as targets 

for cancer therapy. For example, collagen and metalloproteinase genes such as Col1a1, 

Col1a2, Cthrc1, P3h4, and Mmp23, which were downregulated in fibroblasts, could be targeted 

therapeutically to encourage immune cell infiltration. Our work also suggested that 

chemokines, cytokines, and their receptors (e.g., Ccl5, Cxcl10, Cxcl9, Ccl4, Ccl3, Ccl2, Ccl7) 

were involved in immune cell infiltration, and therefore represent attractive therapeutic targets. 

Such molecules could be blocked or activated by monoclonal antibodies, or attached to tumor-

directed antibodies as bi-functional molecules [33]. Though there is extensive research on the 
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involvement of chemokines, cytokines, and their receptors in tumor models [20,21], our work 

uniquely identifies molecules specific to anti-PD-L1 and/or anti-TGF-β therapy, suggesting 

possibilities for combination therapies. However, all such targets require significant further 

research. For example, not all chemokines enhance immune responses, and instead some 

may actually inhibit anti-tumor immunity [34,35]. 

 The particular case of CCL5 highlights the challenges of understanding and modulating 

the complex pathways underlying the tumor microenvironment. Specifically, conflicting data 

exist as to whether the CCL5 pathway should be viewed as a target for activation or a target 

for inhibition. For example, CCL5 expression has been associated with better survival in 

patients treated with immunotherapy, and CCL5 and its receptor CCR5 are required for 

productive anti-tumor responses following immunotherapy [30,36-40]. More specifically, 

blockade of CCL5 after tumor establishment limited the anti-tumor effect of CD40 agonism plus 

immune checkpoint blockade [30]. In contrast, CCL5 enhances homing of Tregs in some tumor 

models, and the transplantable pancreatic tumor model KPC has been shown to grow less 

aggressively in mice lacking CCL5 [41-44]. Thus, CCL5 may have a different role in controlling 

the makeup of the tumor microenvironment in developing versus established tumors, 

especially in the context of immunotherapy. Our data showed that intratumoral injection of 

CCL5 into MC38 tumors might enhance the fraction of CD8+ T cells positive for the CCL5 

receptor CCR5, could increase intratumoral levels of mature CD11b+ NK cells, and, in 

combination with an otherwise ineffective dose of anti-PD-L1, limited tumor progression. Taken 

together, data from our group and others suggest that CCL5 may have an important role in 

modulating immune cells in the tumor microenvironment, but specific mechanisms and 

potential therapeutic approaches remain elusive. 
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Methods 

Murine models 

Murine experiments were approved by the Institutional Animal Care and Use 

Committees of Explora BioLabs, Crown Bioscience, or Champions Oncology.  

Experiments using Hu-PD-L1 KI mice were performed at Crown Bioscience (Taicang 

Jiangsu Province, China), and mice were obtained from Shanghai Model Organisms Center, 

Inc. Crown Bioscience acquired MC38 cells from FDCC (The Institutes of Biomedical Sciences 

(IBS), Fudan University) and authenticated cell identity by SNP analysis. MC38 cells 

expressing human PD-L1 (Hu-PD-L1 MC38) were created by knocking out murine B7h1 

(expressing PD-L1) and transgenically expressing human B7H1 driven by the CMV promoter. 

MC38 and Hu-PD-L1 MC38 cells were tested for mycoplasma after cell banking. Two 

independent in vivo Hu-PD-L1 MC38 tumor experiments were performed. In the first study, 

1x106 Hu-PD-L1 MC38 were implanted s.c. into the flank of HuPD-L1 knock-in C57BL/6 mice 

(female, 9-11 weeks old). The mice were randomized into treatment groups (n = 6 per group) 

when average tumor volume reached 90.48 mm3. Dosing was initiated on the same day (day 

0). The mice were dosed I.P. biweekly for 3 weeks with PBS, anti-PD-L1 (atezolizumab, 

Roche, 2 mg/kg), or a combination of anti-PD-L1 (2 mg/kg) and anti-TGF-β (mouse IgG1 clone 

1D11 from BioXCell, 10 mg/kg). Tumor volumes and body weight were measured in a blinded 

fashion twice a week. Tumor volumes were calculated using the formula: V = (L x W x W)/2, 

where V is tumor volume, L is tumor length (the longest tumor dimension), and W is tumor 

width (the longest tumor dimension perpendicular to L). Individual animals were removed from 

the study as their tumor volumes measured greater than 3000 mm3. All mice that did not have 

a complete response within the initial 28-day observation period were euthanized, and tumors 

were collected as formalin-fixed paraffin-embedded (FFPE) blocks. Mice with full tumor 
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regression (tumor volume of 0.00 mm3) after 4 weeks were re-challenged on study day 49. Six 

wildtype C57BL/6 mice (16-18 weeks of age) from Shanghai Lingchang Biotechnology Co., Ltd 

were used as a naïve control for the re-challenge experiment. Mice for the re-challenge 

experiment were inoculated s.c. at the opposite flank (left lower flank) with 1x106 HuPD-L1-

MC38 cells. Following tumor implantation, tumor volume and body weight were measured 

twice a week in a blinded manner for an additional 4 weeks.  

In the second Hu-PD-L1 MC38 study, 1x106 Hu-PD-L1 MC38 were implanted s.c. into 

the flank of HuPD-L1 knock-in C57BL/6 mice (female, 9-11 weeks old). The mice were 

randomized into treatment groups (n = 6 per group) when average tumor volume reached 99.3 

mm3. Dosing was initiated on the same day (day 0). The mice were dosed I.P. biweekly for 3 

weeks with PBS, anti-PD-L1 (atezolizumab, Roche, 2 mg/kg), anti-TGF-β (mouse IgG1 clone 

1D11 from BioXCell, 10 mg/kg), or a combination of anti-PD-L1 (2 mg/kg) and anti-TGF-β (10 

mg/kg). Tumor volumes and body weight were measured in the same manner as in the first 

study, and individual mice were removed from the study as their tumor volumes measured 

>3000 mm3. In both studies, two-sided Wilcoxon rank sum test was used to determine if the 

differences in average tumor volume are statistically significant. Survival analysis was 

performed using the R package survminer (version 0.4.5) and p-values were determined using 

log-rank test. 

 The EMT6 tumor study was performed at Champions Oncology, Inc. Champions 

Oncology acquired EMT6 cells from ATCC and routinely have STR analysis and pathogen 

testing, including for mycoplasma, of these cells completed by IDEXX BioAnalytics. For the in 

vivo EMT6 tumor experiment, 2.5x105 EMT6 cells suspended in 0.1 mL 1x PBS were 

implanted orthotopically in the 4th right mammary fat pad of BALB/C mice (female, 7.5-12 

weeks old; Taconic). When tumors reached an average tumor volume of 176.56 mm3 with a 
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range of 15 – 400 mm3, animals were matched by tumor volume into four blinded groups (n = 

12 mice per group) on day 0. The four treatment groups were PBS, anti-PD-L1 (10 mg/kg for 

the first dose with each subsequent dose at 5 mg/kg; atezolizumab, Roche), anti-TGF-β (10 

mg/kg; mouse IgG1 clone 1D11, BioXCell), or a combination of anti-PD-L1 plus anti-TGF-β. 

For all treatments, the first dose was administered intravenously (I.V.) on day 0 and the eight 

subsequent doses were administered I.P. using a dose volume of 5 mL/kg three times per a 

week. Tumor volumes were measured three times weekly by a person blinded to treatment 

group. Mice were observed for 28 days post initiation of dosing, with individual animals being 

removed from the study as their tumor volumes measured >2000 mm3 and collected for FFPE. 

On day 8, three mice per group (chosen based on day 6 tumor volumes that were 

representative of the entire group) were sacrificed. Whole tumors from the selected mice were 

sterilely harvested, removing adjacent skin but leaving the exterior surface of the tumor intact 

to preserve the tumor microenvironment. If there was a large amount of mammary fat attached 

to the tumor or if the tumor had invaded the adjacent tissue, the tumor was cut away from the 

tissue and approximately 1-2 mm of the tissues was kept attached to the tumor, so that the 

boundary between the tumor and non-tumor tissues was not disturbed. Tumors were placed 

into MACS tissue storage solution buffer (Miltenyi Biotec) on ice packs and shipped overnight 

for scRNA-seq processing.  

The CT26 tumor study was performed at Explora BioLabs by GigaGen staff. CT26 cells 

were obtained from ATCC and expanded to generate a research cell bank which was used for 

murine experiments after a representative vial was found to be mycoplasma negative. 5x105 

CT26 cells suspended in 0.1 mL 1x PBS were implanted s.c. into the right hind flank of BALB/c 

mice (female, 8-10 weeks old; Taconic). On day 10 post implantation when tumors were an 

average tumor volume of 40.01 mm3 (range 25.5 – 63.89 mm3), animals were randomized into 

seven blinded groups based on tumor volume. Group 1 received PBS I.P. (n = 10). Group 2 
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received anti-PD-L1 I.P. (2 mg/kg; atezolizumab, Roche; n = 12). Group 3 received anti-TGF-β 

I.P. (10 mg/kg; clone 1D11, BioXcell; n = 10). Group 4 received anti-PD-L1 I.P. + anti-TGF-β 

I.P. (n = 12). Group 5 received anti-PD-L1 I.P. (2 mg/kg) + PBS I.T. (n = 12). Group 6 received 

anti-TGF-β I.T. (40 µg/dose; n = 6). Group 7 received anti-PD-L1 I.P. (2 mg/kg) + anti-TGF-β 

I.T. (40 ug/dose) (n = 12). Starting on day 11, mice were treated two times a week for three 

weeks. Tumors were measured three times weekly. Mice were observed for 35 days post 

implantation, with individual animals being removed from the study as their tumor volumes 

measured greater than 2000 mm3. 

 The MC38 tumors study was performed at Champions Oncology, Inc. 5x105 MC38 cells 

suspended in 100 ul of PBS were injected s.c. into the left flank of C57BL/6 mice (female, 7.5-

12 weeks old; Taconic). When tumors reached an average tumor volume of 71.1 mm3 with a 

range of 32 – 113 mm3, animals were randomized into four blinded groups (n = 12 mice per 

group) on day 0. The treatment groups were PBS, recombinant human CCL5 (R&D systems, 

278-RN-050/CF), PBS plus anti-PD-L1 (atezolizumab, Roche), and CCL5 plus anti-PD-L1. 

PBS and CCL5 (1 μg/animal) were administered I.T., three times a week for three weeks. Anti-

PD-L1 (1 mg/kg) was administered I.P., twice a week for three weeks. Dosing started on day 1. 

Tumor volumes were measured three times weekly. Mice were observed for 28 days, with 

individual animals being removed from the study as their tumor volumes measured >2000 

mm3, and the tumors were collected as FFPE. Two-sided Wilcoxon rank sum test was used to 

determine statistical significance in difference in average tumor volume. 

 

Immunohistochemistry 

 All immunohistochemistry (IHC) was performed by Allele Biotechnology. 4 μm sections 

were cut and placed on glass slides for CD3 antibody staining (clone SP7, Abcam). An IHC 
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score was blindly assigned to each stained tumor section based on the observed density of 

CD3 cells across the entire slide (1 to 5, where 1 = very low density of CD3+ staining and 5 = 

very high density of CD3+ cells). Statistical significance in the difference in CD3+ cell score 

was determined using Wilcoxon rank sum test. 

 

Single cell RNA sequencing 

 EMT6 mammary fat pad tumors and the neighboring tissue were collected from mice 

such that the entire tumor and the interface between tumor and normal tissue was preserved, 

and the tissue was stored overnight at 4°C in MACS Tissue Storage Solution (Miltenyi Biotec). 

Tumor tissue was minced and dissociated using the mouse Tumor Dissociation Kit (Miltenyi 

Biotec) and gentleMACS Octo Dissociator with Heaters (Miltenyi Biotec). The “37C_m_TDK_2” 

and “m_imptumor_01” programs were used for the primary and secondary gentle MACS 

dissociation programs. Tumor suspensions were filtered through a 70 µm MACS Smart 

Strainers (Miltenyi Biotec) and washed with PBS containing 0.5% BSA and 2 mM EDTA. Cells 

were pelleted by centrifugation at 500xg for 7 min. A red blood cell lysis step was performed by 

incubating cells for 2 minutes with 1x Red Blood Cell Lysis Solution (Miltenyi Biotec). Cells 

were washed again and then cell viability was measured using the Nexcelom Cellometer K2 

Fluorescent Viability Cell Counter and the ViaStain AOPI Staining Solution (Nexcelom). Single 

cell suspensions were then cryopreserved using CryoStor CS10 solution (STEMCELL 

Technologies) and stored in liquid nitrogen. 

 Cells were thawed and FACS sorted for DAPI- CD45+ (live, hematopoietic cells) and 

DAPI- CD45- (live, non-hematopoietic cells) populations. Briefly, cells were thawed in a 37°C 

water bath, resuspended in 10 mL of RPMI (Gibco) with 10% FBS (Gibco), centrifuged at 

500xg for 5 minutes, washed in PBS containing 0.5% BSA and 2 mM EDTA, and counted 
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using the Nexcelom Cellometer. Approximately 10x106 cells were transferred to a new tube, 

washed in PBS with 0.5% BSA and 2 mM EDTA, and centrifuged at 500xg for 5 minutes. The 

liquid was poured off from the cells (leaving approximately 100 µl in each tube) and 5 µl of 

mouse Fc Blocking Reagent (rat anti-Mouse CD16/CD32 BD) was added to samples and 

incubated for 5 minutes at 4°C. 162.5 µl of Brilliant Stain Buffer (BD) containing 12.5 µl of 

mouse CD45-PE clone 30-F11 (BioLegend) was added to cells and incubated on ice for 30 

minutes protected from light. Cells were washed, resuspended in 1x DAPI solution (in PBS 

plus 0.5% BSA and 2 mM EDTA; BioLegend) at 5x106 cells/ml, and filtered into 5 mL FACS 

tubes with cell-strainer caps (Falcon). Cells were sorted using the BD FACSMelody using the 

100 µm nozzle. Mouse splenocytes were used as a positive control to determine the voltage 

needed to identify CD45+ immune cells in the initial side scatter area and forward scatter area 

gate that would be used for tumor cell suspensions. Singlet and DAPI- (live cell) gates were 

then applied. Stained single cell suspensions from EMT6 tumors were then sorted and 

approximately 1x105 live CD45+ and 1x105 live CD45- cells were collected at 4°C. Cells were 

washed in RPMI with 10% FBS, centrifuged at 500xg for 5 minutes, and counted as described 

above. Cells were resuspended in RPMI with 10% FBS at 7x105 cells/ml and were placed on 

ice. CD45+ and CD45- sorted cells from each of the four treatment groups were run on the 

10X Genomics Chromium device using the Single Cell 3ʹ Reagent Kit v3 (work performed at 

SeqMatic). Libraries were sequenced at SeqMatic with an Illumina NovaSeq SP 100 cycle kit 

(28 bp for read 1, 91 bp for read 2). 

 

Single cell RNA-seq data analysis 

 Raw sequencing FASTQ files were processed using the Cell Ranger (version 3.1.0) 

analysis pipeline. Briefly, alignment and filtering of sequencing reads, barcode counting, and 
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UMI counting were performed using the cellranger count command. The reads were aligned to 

the Mus musculus reference genome assembly GRCm38 (mm10). The outputs of cellranger 

count for all samples were aggregated using the command cellranger aggr, normalizing the 

runs to the same sequencing depth. Secondary analyses were performed using the Seurat 

package (version 3.1.2) in R (version 3.6.0) [45]. First, we performed quality control by 

removing cells with fewer than 200 or more than 5,000 expressed genes, as low and high 

number of gene counts may indicate low quality cells and cell multiplets, respectively. We also 

removed cells with more than 10% mitochondrial gene expression. This resulted in 27,797 

cells, including 18,002 CD45+ and 9,795 CD45- cells. We used sctransform to normalize the 

expression data and to regress out mitochondrial mapping percentage as a confounding 

source of variation [46]. We performed principal component analysis using the RunPCA 

function in Seurat. Principal components 1 to 30 were provided as an input for non-linear 

dimensionality reduction via Uniform Manifold Approximation and Projection (UMAP) using the 

RunUMAP function.  

 For cell type annotation, we used the R package SingleR, which leveraged reference 

transcriptomic datasets of pure cell types to infer the cell of origin of each of the single cells 

independently [47]. The ImmGen (www.immgen.org) reference dataset was used. The cells 

were first annotated using the main cell type labels generated by SingleR. Since the ImmGen 

reference did not include tumor cell as a cell type, we needed to manually discern tumor cells 

from host non-immune cells within the CD45- cells. We therefore reanalyzed the CD45- cells 

using RunUMAP, followed by clustering using the FindNeighbors and FindClusters functions in 

Seurat. These functions applied shared nearest neighbor (SNN) based clustering on the 

scRNA-seq data, identifying 15 clusters of cells. Cells in cluster 7 were annotated as 

fibroblasts based on expression of fibroblast marker gene Fap. Cells previously annotated by 

SingleR as endothelial cells or epithelial cells were assigned their original SingleR labels. All 
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other CD45- cells were annotated as tumor cells. To validate the annotations, we analyzed 

copy number alterations for the CD45- cells using InferCNV [48], using epithelial and 

endothelial cells as reference cells.  

 

Differential gene expression and functional enrichment analysis 

 We performed differential gene expression analysis within each cell type using the 

FindMarkers function in Seurat. We compared each treatment group to the PBS control, using 

Wilcoxon rank sum test to identify differentially expressed (DE) genes (log fold change >0.25, 

adjusted p-value <0.05) between the two groups of cells. We also compared the anti-PD-L1 

plus anti-TGF-β treatment group to the single treatment groups. We used ClusterProfiler 

(version 3.12.0) [49] to perform functional enrichment analysis. For each treatment group, we 

generated foreground gene lists containing genes upregulated or downregulated in any CD45+ 

and CD45- cell types, respectively. These gene lists were tested against background gene lists 

containing all expressed genes (expressed in at least 5 cells) in CD45+ and CD45- cells, 

respectively. The enrichment analysis was performed using the enrichGO function in 

ClusterProfiler using the org.Mm.eg.db database and the gene ontology (GO) categories 

biological process (BP), molecular function (MF), and cellular component (CC). Multiple testing 

correction was performed using the Benjamini and Hochberg method. The enriched pathways 

were visualized as gene concept networks using the cnetplot function of the enrichplot 

package (version 1.4.0) [50].  

 

Cell-cell communication using CellphoneDB 
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 Cell-cell communication analysis was performed using CellphoneDB [17], a repository 

of curated receptors, ligands, and their interactions. First, all mouse genes from this study 

were mapped to their human orthologs using biomaRt [51]. scRNA-seq count tables and cell 

type annotations for each treatment group were used as inputs for running CellphoneDB, using 

the method “statistical analysis” and default parameters. Receptor-ligand interactions were 

visualized as dot plots using ggplot2 (version 3.2.1) [52]. 

 

Association of chemokine expression and immune cell abundance in TCGA 

 We inferred intratumoral immune cell abundance using either an image-based approach 

or a gene signature-based approach. For the image-based approach, we downloaded 4,612 

published TIL scores estimated from TCGA H&E images [25,26]. Briefly, Saltz et al. developed 

deep learning-based image recognition to classify and quantify lymphocytes on H&E 

diagnostic images from 13 TCGA cancer types (LUAD, BRCA, PAAD, COAD, LUSC, PRAD, 

UCEC, READ, BLCA, STAD, CESC, SKCM and UVM). The deep learning model training 

process was repeated until pathologists judged that the lymphocyte classification was 

adequate. The TIL scores were reported as “TIL Regional Fraction” in Table S1 by Thorsson et 

al. [26]. For the gene signature-based approach, we downloaded pre-calculated xCell immune 

cell scores for 9,358 TCGA samples (https://xcell.ucsf.edu/) [27] and filtered for immune cell 

types of interest: CD8+ T cells, dendritic cells (aDC), and NK cells. 

 For TCGA tumor gene expression data, we downloaded RNA-seq quantifications (in 

Fragments Per Kilobase of transcript per Million mapped reads, FPKM) from the TCGA portal 

(https://portal.gdc.cancer.gov/) for 32 cancer types (ACC, BLCA, BRCA, CESC, CHOL, COAD, 

DLBC, ESCA, GBM, HNSC, KICH, KIRC, KIRP, LGG, LIHC, LUAD, LUSC, MESO, OV, PAAD, 

PCPG, PRAD, READ, SARC, SKCM, STAD, TGCT, THCA, THYM, UCEC, UCS, UVM). We 
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filtered for chemokine genes by retaining only expression data for genes whose names started 

with CXC, CCL, CX3C, or XC. Within each cancer type, genes that were not or lowly 

expressed (median expression across all samples <0.01 FPKM) were excluded from further 

analysis.  

 For each TCGA cancer type, the chemokine gene expression data frame was combined 

with either the image-based or the gene signature-based immune score data frame. Only 

samples with data present in both data frames were analyzed. A pseudo count of 0.01 was 

added to the expression and immune scores, followed by log2 and z-score transformation, in 

preparation for linear regression analysis. We performed linear regression analysis for each 

chemokine gene using immune score as the dependent variable and chemokine gene 

expression as the independent variable. P-values were adjusted for multiple testing using the 

Benjamini and Hochberg method. Chemokines significantly associated with immune scores 

were further ranked by the sum of their regression coefficients across different cancer types. 

The results were visualized as heatmaps using ggplot2 (version 3.2.1) [52]. All data 

manipulations and analyses were performed in R 3.6.0. 

 

Flow cytometry analysis 

 An additional cohort of C57BL/6 mice bearing MC38 tumors were treated with 5 doses 

I.T. PBS or CCL5 (1 μg/animal) on days 1, 3, 5, 8, 10 as indicated in the murine models 

section above. Tumors were harvested on day 12, cut into small pieces approximately of 2-4 

mm, and dissociated using the Miltenyi Biotec MACS Tumor Dissociation Kit according to 

manufacturer instructions (all performed by Champions Oncology). Dissociated cell 

suspensions were filtered through a 70 µm strainer with 10 mL RPMI 1640 (Thermo Fisher 

Scientific) and centrifuged at 300xg for 7 minutes. Cells were resuspended in MACS Quant 
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running buffer (Miltenyi Biotec) and red blood cells were lysed using RBC Pharm Lyse (BD). 

Cells were pelleted, washed, and resuspended with MACs buffer. Cells were then put into 96 

well plates and stained with fluorescently labelled antibodies and FVS780 viability stain. Cells 

were analyzed using BD FACSymphony. FlowJo 10 was used to generate tSNE plots of cells 

pre-gated based on live, single cells and taking into account data from side scatter, CD11b 

(BUV395, clone M1/70, BD Biosciences), CD4 (BUV496, clone RM4-5, BD Biosciences), CD8 

(9BUV661, clone 53-6.7, BD Biosciences), CD3 (BUV805, clone 17A2, BD Biosciences), 

CD11c (BV421, clone N418, BD Biosciences), Ly6G (BV605, clone 1A8, BD Biosciences), 

CD44 (BV786, clone IM7, BD Biosciences), Ly6C (AF488, clone HK1.4, BioLegend), PD-1 

(BB700, clone j43, BD Biosciences), FOXP3 (PE, clone FJK-16S, Fisher Scientific), NK1.1 

(PECy7, clone PK136, BioLegend), and CCR5 (CD195; APC, Clone 2D7, BD Biosciences) 

staining. Populations were named based on expression of the indicated marker(s). 

 

Availability of data and materials 

Single cell RNA-seq fastq sequence files are deposited at the Sequence Read Archive 

(https://www.ncbi.nlm.nih.gov/sra/), under BioProject ID PRJNA615238. 
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Figure legends 

Figure 1. Anti-PD-L1 plus anti-TGF-β leads to tumor regression in mice. (a-d) HuPD-L1 KI 

mice bearing s.c. HuPD-L1-MC38 tumors (n = 6 per group) were dosed I.P. biweekly for three 

weeks with PBS, aPD-L1 (2 mg/kg; atezolizumab), or aPD-L1 plus aTGF-β (10 mg/kg; 1D11). 

(a) Average MC38 tumor volume ± SEM is shown. P-values were determined using Wilcoxon 

rank sum test, comparing tumor sizes on day 18. (b) Spider plots showing MC38 tumor volume 

for individual mice over time. (c) Survival plot for the MC38 study. P-values were determined 

using log-rank test. (d) CD3 IHC score in MC38 tumors by immunohistochemistry (IHC). Each 

point is the IHC score representing the density of CD3+ cells from an individual mouse. The 

horizontal black bars of the box plots indicate median score, while the lower and upper hinges 

correspond to the first and third quartiles, respectively. P-values were determined using 

Wilcoxon rank sum test. (e-h) Mice bearing orthotopic EMT6 tumors were treated with PBS, 

aPD-L1 (10 mg/kg for the first dose with each subsequent dose at 5 mg/kg; atezolizumab), 

aTGF-β (10 mg/kg; 1D11), or aPD-L1 plus aTGF-β. For all treatments, the first dose was 

administered I.V. on day 0 and the eight subsequent doses were administered I.P. three times 

per week. n = 12 mice per group, including 3 mice per group taken down early on day 8 for 

scRNA-seq analysis. (e) Average EMT6 tumor volume ± SEM is shown. P-values were 

determined using Wilcoxon rank sum test. Mice removed early for scRNA-seq analysis were 

not included in the average. (f) Spider plots showing EMT6 tumor volume for individual mice 

over time. Mice sacrificed for scRNA-seq (n = 3 per group) are shown in red. (g) Survival plot 

for the EMT6 study. P-values were determined using log-rank test. (h) CD3 IHC score in EMT6 

tumors. Each point is the IHC score representing the density of CD3+ cells from an individual 

mouse. The horizontal black bars of the box plots indicate median score, while the lower and 

upper hinges correspond to the first and third quartiles, respectively. P-values were determined 

using Wilcoxon rank sum test. Non-significant p-values are not shown for all panels. 
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Figure 2. scRNA-seq of EMT6 tumors from mice treated with anti-PD-L1 ± anti-TGF-β. (a) 

Single cell transcriptomes for all cells visualized on a Uniform Manifold Approximation and 

Projection (UMAP) plot. Cells are colored based on cell type annotations, as indicated in the 

legend. (b) UMAP plots for cells from individual treatment groups. Cell types are annotated 

with the same color scheme as a. (c) Percent composition of cells types within the CD45- cells 

(left) and the CD45+ (right) cells. The different treatment groups are shown in different colors, 

as indicated in the legend. (d) Functional enrichment analysis of genes downregulated in 

CD45- cells, for each of the treatment group when compared to the PBS group. The size and 

color of the circles indicate the number of downregulated genes and the -log10 adjusted p-

value, respectively, for the enriched terms indicated on the y-axis. (e) Gene concept network 

showing representative enriched terms for the genes downregulated in CD45- cells in the aPD-

L1 plus aTGF-β group. The downregulated genes associated with the pathway are shown, with 

the color of the nodes representing log2 fold change in gene expression relative to the PBS 

group. (f) Heatmap showing relative (z-scored per row) gene expression levels for 

representative differentially expressed genes in fibroblasts. (g) Functional enrichment analysis 

of genes upregulated in CD45+ cells, for each of the treatment group when compared to the 

PBS group. The size and color of the circles indicate the number of upregulated genes and the 

-log10 adjusted p-value, respectively, for the enriched terms indicated on the y-axis. (h) Gene 

concept network showing representative enriched terms for the genes upregulated in CD45+ 

cells in the aPD-L1 plus aTGF-β group. The upregulated genes associated with the pathway 

are shown, with the color of the nodes representing log2 fold change in gene expression 

relative to the PBS group. (i) Heatmap showing relative (z-scored per row) gene expression 

levels for differentially expressed chemokine genes in macrophages. 
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Figure 3. Association of chemokine gene expression with inferred immune cell 

infiltration in TCGA. (a) Analysis workflow to identify chemokine genes associated with 

immune cell abundance in TCGA tumor samples. Two parallel methods were used to infer 

immune cell abundance: image-based estimation from pathology slides (left) and gene 

signature-based estimation from RNA-seq (right). Linear regression models were used to find 

chemokine genes whose expression levels are associated with inferred immune infiltration. (b) 

Heatmap showing chemokines (rows) significantly associated with the pathology image-based 

TIL scores across different TCGA cancer types (columns). The color indicates regression 

coefficients from the linear models (red/orange = positive association between chemokine 

expression and immune infiltration). (c) Heatmap showing chemokines (rows) significantly 

associated with the gene signature-based immune scores across different TCGA cancer types 

(columns). The panels represent associations with CD8+ T cells, dendritic cells, and NK cells 

scores. The chemokines (rows) are ordered descendingly by the sum of the regression 

coefficients across all cancer types and all 3 immune cell types (i.e. all columns). 

 

Figure 4. Combination therapy of anti-PD-L1 plus intratumorally administered CCL5 

leads to tumor growth inhibition. (a-d) Mice bearing s.c. MC38 tumors were administered 

PBS or CCL5 (1 µg/dose) I.T. three times per a week for 5 doses, and on day 12 tumors were 

harvested and analyzed by flow cytometry. (a) tSNE plots of flow data showing the expression 

of CCR5 within PBS control (left) or CCL5 treated tumors (middle), or where populations are 

colored according to expression of marker genes as indicated in the key (right). Heat maps 

showing expression of each flow marker are in Additional file 1, Figure S6. (b) Left: percent of 

CCR5+ cells within the CD8+ T cell population (live cells, CD4-, CD8+). Right: percent of 
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CCR5+ cells within the NK cell population (live cells, NK1.1+, CD3-). Black cross bars 

represent median values. P-values were determined using Wilcoxon rank sum test. (c) Density 

plots (with outlier cells indicated as dots) of populations from the tSNE analysis in a within 

control or CCL5 treated samples. Red arrows indicate CD11b+ NK cells (population 23 from 

a). (d) Frequency of NK cells (live, single cells, NK1.1+ CD3-) that express CD11b as 

determined by flow cytometry. Black cross bars represent median values. P-value was 

determined using Wilcoxon rank sum test. (e-g) Mice bearing s.c. MC38 tumors (n = 12 per 

group) were administered PBS (I.T., 3 times a week for 3 weeks), CCL5 (I.T., 1 µg/animal, 3 

times a week for 3 weeks), aPD-L1 (atezolizumab; I.P., 1 mg/kg, twice a week for 3 weeks), or 

a combination of CCL5 and aPD-L1. (e) Average tumor volume ± SEM for each treatment 

group is shown. P-values were determined using Wilcoxon rank sum test, comparing tumor 

sizes on day 16. (f) Spider plots showing tumor volume for individual mice over time. (g) 

Survival plot for the same study. P-values were determined using log-rank test. Non-significant 

p-values are not shown for all panels. 
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