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Abstract

The ability to determine the identity of specific proteins is a critical challenge in many
areas of cellular and molecular biology, and in medical diagnostics. Here, we present
a microfluidic protein characterisation strategy that within a few minutes generates a
three-dimensional fingerprint of a protein sample indicative of its amino acid composition
and size and, thereby, creates a unique signature for the protein. By acquiring such
multidimensional fingerprints for a set of ten proteins and using machine learning
approaches to classify the fingerprints, we demonstrate that this strategy allows proteins
to be classified at a high accuracy, even though classification using a single dimension
is not possible. Moreover, we show that the acquired fingerprints correlate with the
amino acid content of the samples, which makes it is possible to identify proteins directly
from their sequence without requiring any prior knowledge about the fingerprints.
These findings suggest that such a multidimensional profiling strategy can lead to the
development of novel method for protein identification in a microfluidic format.

Introduction 1

The diverse nature of proteins and their central role in a multitude of biological processes 2

[1–3] necessitates a requirement for highly specific and sensitive approaches for protein 3

detection and analysis. Indeed, protein detection and characterisation approaches have 4

been of fundamental importance for a range of biological and medical research fields and 5

have provided valuable information for better understanding the onset of a multitude of 6

diseases, including various forms of cancer and neurodegenerative disorders. [4–10] In 7

particular, at the centre of the discovery of novel protein-based disease biomarkers lies 8

the ability to identify proteins. [11–16] In this context, protein microarrays are currently 9

one of the most widely used techniques. By providing a high spatial density array of 10
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Figure 1. Microfluidic top down identification of proteins. (a) The proteins and (b) the
microfluidic device used in this study. The device allows obtaining multi-dimensional
fingerprints of protein samples that include information about their tryptophan, tyrosine
and lysine content as well as the hydrodynamic radius, Rh.

solid-phase supported affinity reagents, such as antibodies, protein microarrays allow 11

proteins of interest to be selectively captured and subsequently detected through the 12

introduction of a second, frequently fluorescently labelled affinity reagent. [17,18] As such, 13

protein microarray based approaches usually require access to two distinct antibodies 14

each targeting a different epitope of a single protein and, similarly to any other affinity 15

reagent mediated system, their performance is sensitive to potential undesired cross- 16

reactivity events. On a fundamental level, such an affinity-reagent mediated strategy is 17

inherently limited to detecting known targets for which a suitable affinity reagent was 18

consciously included in the library and does not allow for the detection and the discovery 19

of hitherto unknown markers. 20

The possibility to detect the presence of hitherto unknown targets and perform 21

explorative screening arises when affinity-reagent free protein analysis approaches are 22

used. In this context, various forms of mass-spectrometry have been widely used for 23

protein identification for many decades due to their high sensitivity, resolution, accuracy 24

and dynamic range. [19,20] In a typical experiment, fragments of proteins are formed 25

and separated through approaches, such as liquid chromatography before their injection 26

to a mass-spectrometer. [21–24] While top-down identification has allowed characterising 27

a number of different protein species, its application becomes challenging in the limit 28

of high molecular weight and low solubility species. Due to these limitations, less than 29

10% of mammalian proteome can be accessed through these techniques. [25] For the 30

analysis of higher molecular weight species, bottom-up sequencing approaches have been 31

developed, which usually involve proteolysis of a complex mixture of proteins followed by 32

a chromatographic separation of the peptides prior to their sequencing through tandem 33

mass spectrometry (MS/MS). Whether the analysis is performed in a top-down or 34

bottom-up manner, mass-spectrometry generally requires extensive sample preparation 35

steps, often resulting in significant losses, and long experimental analysis time. Moreover, 36

the presence of less abundant species is usually masked by more abundant ones, which 37

prevents it effective use for detecting targets that are present at low concentrations, as is 38

the case for biomarkers during the onset and early stages of diseases. Last but not least, 39

its operation in gas-phase, has made it challenging to extend the analysis to protein 40

complexes that are held together through transient interactions. 41

Recently, approaches that would enable overcoming the drawbacks of mass spectrom- 42
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etry have been demonstrated and proposed. In particular, Swaminathan et al. [26] have 43

demonstrated the possibility of immobilising peptides onto a glass slide and measuring 44

their fluorescence through total internal reflection microscopy in consecutive cycles 45

of Edman degradation after selectively labelling lysine and cystine residues. While 46

demonstrating the first steps towards the feasibility of single molecule peptide fluorose- 47

quencing, [27] the approach involves a number of consecutive Edman steps, setting a 48

limit on the speed at which the analysis can be performed. 49

To open up the possibility of minute-scale liquid-phase protein identification, here, 50

we devised and demonstrated a microfluidic platform that permits the identification of 51

protein samples on a single chip by relying on obtaining its characteristic multidimensional 52

physicochemical signature. Specifically, by using a multi-wavelength detection system, 53

we obtained readouts describing the tryptophan (Trp), tyrosine (Tyr) and lysine (Lys) 54

content of the protein sample together with an estimate for their hydrodynamic radius 55

(Figure 1). By obtaining such multidimensional signatures for a total of ten proteins 56

and using machine learning approaches for identifying the origin of a set of validation 57

proteins, we showed that such a strategy can be used for identifying proteins with a high 58

confidence. The characterisation and identification process is performed on unlabelled 59

protein samples and on a minute timescale. 60

Materials and Methods 61

Preparation of protein samples and the labelling solution 62

Bovine serum albumin (BSA), β-lactoglobulin (b-lac), glucose oxidase, α-lactalbumin 63

(a-lac), ovalbumin, human transferrin, thyroglobulin (thglb), β-casein and ubiquitin 64

(ubiq) were obtained from Sigma-Aldrich, and alcohol dehydrogenase (alc. dehydr) from 65

Alfa Aesar. All the proteins were dissolved in 25 mM phosphate buffer at pH 8.0 to 66

a micromolar concentration range. The solution used for labelling the lysine residues 67

(Figure 2a) included 12 mM o-phthaldialdehyde (OPA), 18 mM β-mercaptoethanol 68

(BME) and 4% wt/vol sodium dodecyl sulfate (SDS) in 200 mM carbonate buffer at pH 69

10.5. 70

UV-LED microscope 71

The schematic of the optical layout is shown in Figure 2b. The sample was excited 72

using either a 280 nm LED (Thorlabs M280L3, UK) or a 365 nm LED (Thorlabs 73

M365L2, UK) light source with a flip mirror used to switch between the two sources. 74

The light from either of the LEDs was passed through an aspherical lens of focal length 75

20 mm to get a collimated output beam. The beam was passed through a dichroic filter 76

cube, which consisted of an excitation filter (Semrock FF01-280/20-25) and a dichroic 77

mirror (Semrock FF310-Di01-25x36). The light reflected by the dichroic mirror was 78

then focussed onto the sample flowing in a microfluidic chip by an infinity corrected 79

UV objective lens (Thorlabs LMU-10X-UVB, UK) of numerical aperture NA = 0.25. 80

The emitted fluorescent light from the sample was collected through the same objective 81

and an emission filter (Semrock FF01-357/44-25 for a charactersitic tryptophan, FF01- 82

302/10-25 for a charactersitic tyrosine and FF01-452/45-25 for a charactersitic lysine 83

signal) with an air-spaced achromatic doublet lens of focal length 20 mm (Thorlabs 84

ACA254-200-UV) focussing it onto the camera (Rolera EMC2). All the optics used in 85

the set-up were made out of fused silica for high transmission in the UV region. [28, 29] 86
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Microfluidic device fabrication 87

The microfluidic devices were cast using polydimethylsiloxane (PDMS) (Sylgard 184 kit, 88

Dow Corning, USA) from a silicon wafer master imprinted with 50 µm high structures 89

based using standard singlelayer soft-lithography techniques. [30] The precise height of 90

the photoresist structures on different locations across the master mould were measured 91

by a profilometer (DektakXT, UK) to correct the analysis for any variations in structure 92

height across the master. Carbon black nanopowder (Sigma-Aldrich, UK) was added to 93

the PMDS to minimise undesired autofluorescence from the PDMS devices under UV 94

illumination during the measurements. The devices were bonded to a quartz slide (Alfa 95

Aesar, 76.2x25.4x1.0 mm, UK) using plasma treatment (Electronic Diener Femto plasma 96

bonder; 15 seconds at 40% of the full power). The PDMS-glass microfluidic devices were 97

then exposed to an additional extended plasma treatment step (500 seconds at 80% of 98

the full power) to render channel surfaces more hydrophilic with the inlets and outlets 99

blocked with water-filled gel-loading tips immediately after the exposure to maintain 100

their hydrophilic character. 101

Device operation 102

To obtain a multidimensional signature for a sample, the channels of the microfluidic 103

were first filled from the common outlet using a glass syringe (Hamilton, 500 µL, UK), 104

27 gauge needle (Neolus Terumo, 25 gauge, 0.5 x 16 mm, UK), and polyethene tubing 105

(Scientific Laboratory Supplies, inner diameter 0.38 mm, outer diameter 1.09 mm, UK). 106

Gel loading tips filled with the relevant solutions were then inserted into the device inlets 107

(Figure 2a). The fluid flow through of the solutions into the microfluidic channels was 108

controlled using neMESYS syringe pumps (Cetoni GmbH, Germany) that was set to 109

withdraw the solutions at a total flow rate of 200 µL h−1. As described previously, [29] 110

in order to increase the accuracy of the diffusional sizing process, the gel loading tip 111

in the sample inlet was first filled with the auxiliary buffer and a background image 112

of the diffusional sizing area recorded. This micrograph was later used for subtracting 113

the static background arising from the autofluorescence of the PDMS device. The gel 114

loading tip in the sample inlet was then carefully exchanged to a tip including the protein 115

sample with care taken not to introduce any air bubbles in the process. For both images, 116

an exposure time of 500 ms was used. 117

Finally, in order to account for any potential fluctuations in the power output of 118

the LEDs, the intensities of standard calibration solutions (10 µM L-Tryptophan and 119

10 µM 4-methylumbelliferone both in 400 mM potassium borate buffer at pH 9.7) were 120

recorded in a channel adjacent to the top-down identification device itself. The obtained 121

characteristic tryptophan and tyrosine fluorescence values were then normalised by the 122

former of this calibration readings and the lysine value by the latter of the two calibration 123

readings. 124

Results and Discussion 125

Microfluidic multidimensional protein characterisation strategy 126

To facilitate the acquisition of multidimensional physicochemical signatures of proteins 127

directly in solution, we designed a microfluidic device that allowed simultaneously 128

obtaining four characteristic parameters of an unlabelled protein sample. Specifically, 129

after introducing a sample from its corresponding inlet (Figure 2a), first, the characteristic 130

fluorescence intensities indicative of the tryptophan and tyrosine content of the sample 131
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Figure 2. Microfluidic top-down identification strategy. (a) The microfluidic device
used in this study allowed extracting a multidimensional characteristic signature of each
analysed sample describing its (i) tryptophan (Trp) and (ii) tyrosine (Tyr) residues
(yellow highlighted region), (iii) its hydrodynamic radius Rh obtained by monitoring the
diffusion of the sample molecules into a co-flowing buffer (blue highlighted region) and
(iv) its lysine (Lys) content (pink highlighted region). The scale bars on all insets are
200 µm. (b) Schematic representation of the home-built inverted fluorescence microscope
used. The two light sources (280 nm and 365 nm) and emission filters can be switched
readily to record the characteristic fluorescent signals.

5/13

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.11.14.381376doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.14.381376
http://creativecommons.org/licenses/by-nc/4.0/


were recorded in the yellow highlighted area by exciting the microfluidic chip with a 132

UV wavelength (280 nm) LED (Figure 2b) and collecting the emitted fluorescent light 133

using two distinct filters. The filters were chosen such that the collected light originated 134

either predominantly from its tryptophan or from its tyrosine residues (Materials and 135

Methods). 136

The protein sample was then surrounded by a co-flowing buffer in order to monitor 137

the lateral diffusion of the protein sample into an auxiliary carrier medium in space and 138

in time. Such a strategy has been previosly shown to yield the diffusion coefficients 139

of protein samples. [31] In particular, the device we used in this study was designed 140

for the camera field of view (800 µm × 1000 µm) to include four distinct sections of 141

this channel (blue highlighted region), so that a single image could be used to extract 142

the diffusion coefficient as described earlier. [32] The channels were imaged using the 143

280 nm excitation LED in combination with the tryptophan filter as the signal from 144

latter residue was stronger than the signal from tyrosine residues. The diffusion profiles 145

on the micrographs were then fitted to simulated basis functions for particles of known 146

radii and each of the simulated profiles were compared to the measured profiles in order 147

to extract the hydrodynamic radius of each sample. [31–34] 148

Finally, downstream the sizing unit, an on-chip latent labelling strategy was used 149

to conjugate the lysine residues in each protein to o-phthaldialdehyde (OPA) dye 150

molecules [33, 35] (Materials and Methods). The characteristic fluorescence intensity 151

from the OPA labelled lysine residues was measured (pink highlighted region) by switching 152

the UV-LED light source to an LED light source with excitation at 365 nm wavelength 153

(Materials and Methods) at which unconjugated OPA molecules have been observed to 154

show only minimal background fluorescence. The dimensions of the labelling channel 155

were chosen such that the OPA dye and the protein sample would be able to mix for 156

over a 3 second long time period before the measurement was taken, a time scale that we 157

had previously shown allows quantitative insight into the abundance of lysine residues 158

in proteins. [33] 159

All in all, this strategy allowed us to obtain a four-dimensional signature for each 160

protein sample using a single microfluidic chip and a dual-wavelength excitation system. 161

One of the four parameters was later used for normalising the obtained fluorescent signals 162

to obtain a concentration independent signature for each protein. 163

Multidimensional signatures of a set of ten proteins 164

We analysed a set of ten different proteins (Figure 1a) and used the platform described 165

above to obtain multidimensional signatures for each of them. In particular, we performed 166

n = 4 repeats on all the ten proteins using a different microfluidic device for each 167

experiment. We noted that the measured Rh values of all the proteins, which varied by 168

three orders of magnitude in molecular weight, were consistent with the values reported 169

in the literature (Supplementary Table S1). 170

In order to eliminate concentration dependence, the obtained signals in the tryptophan 171

and tyrosine imaging channels were normalised by the signal in the lysine filter. This 172

reduced the data structure to a three-dimensional signature but ensured that the obtained 173

values were independent of the concentration of the protein that was used for analysis. 174

Moreover, the measured intensities were corrected for fluctuations in the laser power 175

by also measuring the fluorescence intensities of calibration solutions in a neighbouring 176

channel, involving L-tryptophan and 4-methylumbelliferone molecules for the 280 nm 177

and the 365 nm LED, respectively (Materials and Methods). 178

The characteristic spaces that each of the analysed ten proteins occupied in a three- 179

dimensional plot are shown in Figure 3d with the 1D projections shown in Figures 3a-c 180

and the underlying data summarised in Supplementary Table S1. In particular, the 181
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three-dimensional visualised ellipsoids (Figure 3d) were defined by the centres being the 182

average of the four measurement points and their radii corresponding to the standard 183

deviation of the four measurements. We noted that the ten analysed proteins varied in 184

their physiochemical signatures with Figure 3d illustrating that it is likely that across a 185

three-dimensional landscape each of the protein acquires a different signature. 186

Protein classification 187

In order to evaluate whether our demonstrated platform is capable of distinguishing 188

proteins reliably and uniquely based on their signatures, we developed two models to 189

perform sample classification. 190

First, using the full data set of 10 classes of proteins with 4 experimental repeats 191

for each class, leave-one-out cross-validation was used to assess the likelihood that a 192

particular sample is classified as the correct protein. In particular, multivariate Gaussian 193

distributions were fitted to each of the ten protein classes with the means computed 194

from the four repeats within each class, or from the three remaining repeats for the 195

class from which the validation sample was removed. The covariance matrices were 196

computed by combining the group variance (using either four or three repeats similarly 197

to the means) with the global variance involving the full dataset of 39 data points 198

excluding the validation sample. A weighting factor of 0.9 was used for the group 199

variance and a weighting factor of 0.1 for the global variance to avoid singular covariance 200

matrices and ensure computational stability while simultaneously taking advantage 201

of the extra information about the system as the variances in the same dimension 202

between the different classes are likely to be similar. Finally, the likelihood of each of the 203

validation samples belonging to each of the protein classes was calculated by estimating 204

the probability density function of the individual multivariate Gaussians at that point. 205

For each protein class, the likelihood was averaged across the four experimental 206

repeats and the resulting values were normalised to one. Figure 3e shows a heatmap of 207

the calculated likelihoods for assigning proteins into available classes with the actual 208

protein being measured on the vertical axis and the protein it is likely to be identified 209

as on the horizontal axis. We observed that, individually, 33 out of 40 samples were 210

classified correctly. Moreover, it can be seen that on average proteins are likely to be 211

assigned to the correct class with high confidence. 212

We note that the above estimates were arrived at by assuming that the errors in the 213

measurements in each dimension were normally distributed, so that the protein classes 214

can be approximated by multivariate Gaussian distributions. In order to improve our 215

analysis and derive an identification strategy that is not making an assumption about the 216

distribution of the errors, we constructed a random forest classifier. As before, leave-one- 217

out cross-validation was used on all 40 samples. In order to reduce variance, each random 218

forest was trained with 1000 decision trees that were built using bootstrapping and with 219

only 2 out of 3 variables selected at random to build each tree. The classification was 220

performed using predictions by these ensemble models and, subsequently, predictions 221

by all individual trees in the ensembles were collected to quantify the confidence of the 222

ensemble model in making the predictions. For each group of four samples corresponding 223

to the same protein class, the average number of trees in the ensemble predicting each 224

target class were taken and normalised to sum to one for each protein. 225

Finally, a heatmap summarising the results was constructed, similarly showing the 226

actual protein being measured on the vertical axis and the protein it is likely to be 227

identified as on the horizontal axis (Figure 3f). The results illustrate that the model 228

predicts the correct class of proteins with high confidence. Moreover, on the individual 229

level, the random forest model misclassified only 4 out of 40 samples, demonstrating 230

a superior performance to the multivariate Gaussian model. This shows that highly 231
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Figure 3. Protein classification from their multidimensional fingerprints. A set of
ten proteins was profiled by acquiring their three-dimensional fingerprints described
by (a) the ratio of the signals measured at the wavelengths where tyrosine and OPA
fluoresce (Materials and Methods; dimension 1), (b) the ratio of the signals measured at
the wavelengths where tryptophan and OPA fluoresce (dimension 2) and (c) the hydro-
dynamic radius, Rh (dimension 3). All these parameters are concentration independent.
(d) Multidimensional signatures of the proteins in a 3D space. The radii of the ellipsoids
correspond to one standard deviation. (e) The likelihoods of protein identification and
misidentification in the 3D space showed in panel (d) assuming multivariate Gaussian
model. (f) The confidence levels of identification process using a random forest classifier
approach that assumes no underlying data distribution. The models identified correctly
82% (multivariate Gaussian) and 90% (random forest classifier) of the tested samples.
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accurate identification of proteins is possible even when no assumptions are made about 232

the underlying distributions of measurement errors or data structure. 233

Protein identification 234

Having confirmed the possibility to classify an unknown protein sample by evaluating 235

which of the pre-determined multidimensional fingerprints it resembles the most (Fig- 236

ure 3), we next set out to explore if it is possible to determine the origin of each of 237

the test samples simply by performing a top-down identification process on the sample 238

without requiring prior knowledge of the fingerprints. 239

To this effect, we first derived relationships that could be used to predict the sequence 240

composition of each sample from its fingerprint. Indeed, the measured fluorescent 241

signals were constructed in a manner where they can be expected to predominantly 242

originate from the tyrosine, tryptophan and lysine residues of the proteins (Materials 243

and Methods) or, in the case of the hydrodynamic radius, be linked to its molecular 244

weight. The observed correlation between the measured fluorescent signals and the 245

amino acid content of the proteins are shown in Figures 4a-b. As before, in order to 246

eliminate any concentration dependence, ratios between the measured signals and amino 247

acid compositions were used. Figure 4c additionally outlines the relationship between the 248

measured hydrodynamic radius and the molecular weight of the proteins. We modelled 249

all the three relationships as linear regressions with zero-intercepts and estimated the 250

gradient of the line by minimising the ordinary least squares (Figure4a-c, dotted lines). 251

It is possible that when more abundant data is available, more nuanced relationships 252

between the measured signals and the sequence-specific quantities can be learned. 253

Next, the derived relationships (Figure 4a-c) were used to convert the measured 254

three-dimensional signature of our test samples into their predicted Trp
Lys and Tyr

Lys ratios 255

and molecular weights. To eliminate any information leakage, we re-fitted the linear 256

regression by excluding the test sample. Following this step, the z-score of the measured 257

sample being a particular protein in the database was calculated by using the estimated 258

sequence-specific properties of this sample as the mean value and the measurement noise 259

as the standard deviation. The heatmap describing the most likely origin of each of 260

the test samples is shown in Figure 4d with the data arranged such that the correct 261

sample appeared on the diagonal of the matrix. These data show that, on average, seven 262

out the ten proteins were identified correctly. On the level of individual measurements, 263

samples were identified correctly in 21 out of 40 experiments (Figure 5). These results 264

illustrate that not only can the multidimensional signatures used for classifying proteins 265

into pre-determined clusters (Figure 3e-f), it is also possible to convert the measured 266

signals into absolute sequence-specific parameters and through this process identify the 267

test samples. 268

Conclusions 269

We developed a strategy for obtaining multidimensional physicochemical signatures of 270

individual proteins on a single microfluidic chip and showed that this strategy can be 271

used for protein classification as well as top-down identification. Specifically, we achieved 272

this objective by designing a chip on which the hydrodynamic radius of a protein sample 273

could be obtained simultaneously with signals describing its tryptophan, tyrosine and 274

lysine content. We showed that this approach generated unique fingerprints for all the 275

ten proteins in our test set and, moreover, that the signatures can be used to identify 276
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Figure 4. Protein identification from their sequence. The correlations between the
measured signals and the sequences of the analysed proteins, specifically (a) the ratio of
the measured tryptophan and OPA signals as a function of the tryptophan and lysine
composition of the proteins, (b) the ratio of the measured tyrosine and OPA fluorescence
signals as a function of their tyrosine and lysine composition and (c) the measured
hydrodynamic radius, Rh, as a function of the molecular weight. In all cases, the dotted
line shows the best fit linear regression function with the intercept set to 0. (d) The
measured signals for each of the ten samples (A–J) were converted to estimates of their
sequence-composition using the relationships outlined in panels (a)-(c) and the latter
estimates were used to evaluate the probabilities of each of the ten samples being any
one of the ten proteins in our dataset by using Gaussian mixture models. The data are
shown such that the correct sample appears on the diagonal of the matrix. Individual
samples were identified correctly on 21 out of 40 occasions. When averaging the results
over n = 4 repeats, seven out of ten proteins were identified correctly.
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Figure 5. Comparison of the performance of the protein classification (Figure 3) and
identification (Figure 4) strategies. When identifying a measured sample directly from
its sequence, samples were identified correctly on 53% of the occasions or on 70% of
the occasions when the results were averaged across the four repeats performed on each
samples. When pre-determined fingerprints were used, proteins were classified correctly
on 83% of the occasions or on 100% of the occasion when the results were averaged
across the repeats. The red dotted line corresponds to the case where the classification
or identification was performed by a process of random guessing.

proteins in a top-down manner. Our results suggest that an on-chip multidimensional 277

protein characterisation strategy could serve as a powerful probe-free approach for 278

on-chip biomarker profiling using only microlitre sized samples. 279
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