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 2 

Introductory paragraph 26 

Mosaic variants (MVs) reflect mutagenic processes during embryonic development1 and 27 

environmental exposure2, accumulate with aging, and underlie diseases such as cancer 28 

and autism3. The detection of MVs has been computationally challenging due to sparse 29 

representation in non-clonally expanded tissues. While heuristic filters and tools trained 30 

on clonally expanded MVs with high allelic fractions are proposed, they show relatively 31 

lower sensitivity and more false discoveries4-9. Here we present DeepMosaic, combining 32 

an image-based visualization module for single nucleotide MVs, and a convolutional 33 

neural networks-based classification module for control-independent MV detection. 34 

DeepMosaic achieved higher accuracy compared with existing methods on biological and 35 

simulated sequencing data, with a 96.34% (158/164) experimental validation rate. Of 932 36 

mosaic variants detected by DeepMosaic in 16 whole genome sequenced samples, 21.89-37 

58.58% (204/932-546/932) MVs were overlooked by other methods. Thus, DeepMosaic 38 

represents a highly accurate MV classifier that can be implemented as an alternative or 39 

complement to existing methods. 40 

 41 

Postzygotic mosaicism describes a phenomenon whereby cells arising from one zygote harbor 42 

distinguishing genomic variants1, 10. MVs can act as recorders of embryonic development, cellular 43 

lineage, and environmental exposure. They accumulate with aging, play important roles in human 44 

cancer progression3, 10, and are implicated in over 200 non-cancerous disorders11, 12. Collectively, 45 

estimates are that MVs contribute to 5-10% of the ‘missing genetic heritability’ in more than 100 46 

human disorders11, 13. 47 

 48 

Compared with the higher allelic fractions (AF) of 5-10% found in clonal tumors or pre-cancerous 49 

mosaic conditions, AFs found in non-clonal disorders, or neutral variants used for lineage studies, 50 

are typically present at much lower AFs. Existing methods, however, based on classic statistical 51 

models like MuTect29 and Strelka27 and heuristic filters are often optimized for the high fraction 52 

variants in cancer with relatively high variant AFs. Similarly, because of their conceptual origin in 53 

cancer, most existing programs including the more recent NeuSomatic14, also require matched 54 

control samples. This can be problematic when mutations are present across different tissues 55 

(‘tissue shared’ mosaicism), or when only one sample is available. 56 

 57 

Newer methods that aim to overcome these limitations, such as MosaicHunter5 or 58 

MosaicForecast4, are based conceptually similarly on the use of features extracted from raw data, 59 

rather than the sequence and alignment themselves, or replace the filters with traditional 60 

machine-learning methods. While these are a useful proxy, they only represent a limited window 61 

into the sheer wealth of information. Because of these limitations, researchers often resort to 62 

visual inspection of raw sequence alignment in a genome browser, a so-called ‘pileup’, to 63 

distinguish artifacts from true positive variants15. This is a laborious and low-throughput process 64 
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that allows spot checking, but cannot be implemented on a large scale for variant lists numbering 65 

in the thousands for programs like MuTect2. 66 

 67 

Image-based representation of pileups and the application of deep convolutional neural networks 68 

represents a potential solution for these limitations. Previous attempts like DeepVariant14 were 69 

successful in detecting heterozygous or alternative homozygous single nucleotide variants 70 

(SNVs) from direct representation of aligned reads by using deep neural networks. The 71 

DeepVariant genotype model, unfortunately, did not consider a mosaic genotype, and lacked 72 

orthogonal validation experiments. Here we introduce DeepMosaic comprising two modules: a 73 

visualization module for image-based representation of SNVs, which forms the basic input for a 74 

convolutional neural network (CNN)-based classification module for mosaic variant detection. 75 

Seven different biological and computationally simulated dataset as well as amplicon validation 76 

were used to train and benchmark DeepMosaic. 77 

 78 

To automatically generate a useful visual representation similar to a browser snapshot, we 79 

developed the visualization module of DeepMosaic (DeepMosaic-VM, Fig.1a-d). The input for 80 

this visualization is short-read WGS data, processed with a GATK current best-practice pipeline 81 

(insertion/deletion, or INDEL, realignment and base quality recalibration). DeepMosaic-VM 82 

processes this input into an ‘RGB’ image, representing a pileup at each genomic position. In 83 

contrast to a regular browser snapshot, we encode sequences as different intensities within one 84 

channel, and use other channels for base quality and strand orientation. We further split the 85 

pileup of reference reads and alternative reads based on the reference genome information (Fig. 86 

1a-d), to improve visualization and allow assessment of mosaicism at a glance. 87 

 88 

The classification module of DeepMosaic (DeepMosaic-CM) is a CNN-based classifier for MVs. 89 

We trained 10 different CNN models with more than 180,000 image-based representations from 90 

both true-positive and true-negative biological variants in several recently published high-quality 91 

experimentally validated public datasets16-18, and computationally simulated reads with added 92 

MVs (employing Illumina HiSeq error models) across a range of AFs and depths (Fig. 1e, 93 

Methods and Supplementary Fig. 1a-b) to select a model with optimal performance. To ensure 94 

its resemblance of real data, we controlled the distribution of AFs in the training set 95 

(Supplementary Fig. 1c). In addition, a range of expected technical artifacts, including multiple 96 

alternative alleles, homopolymers, and alignment artifacts, were manually curated and labeled 97 

negative in the training set to represent expected pitfalls that often result in false positive mosaic 98 

calls for other programs (Supplementary Fig. 1d). 99 

 100 

To further expand training across a range of different read depths, the biological training data 101 

were also up- and down-sampled to obtain data at read depths ranging from 30x to 500x 102 

(Supplementary Fig. 1e), which includes the most commonly used depths for WGS in current 103 

clinical and scientific settings. In addition to the output from DeepMosaic-VM, we further 104 

incorporated population genomic and sequence features (e.g. population allele frequency, 105 
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genomic complexity, ratio of read depth), which are not easily represented in an image, as input 106 

for the classifier (Fig. 1f). Depth ratios were calculated from the expected depth and used to 107 

exclude false positive detections from potential copy number variations (CNVs). gnomAD 108 

population allelic frequencies were used to exclude common variants. Segmental duplication and 109 

repeat masker regions were used to exclude 24% of low complexity regions genome-wide. 110 

 111 

Ten different CNN architectures were trained on 180,000 training variants described above. The 112 

CNN models included Inception-v319, which was used in DeepVariant; Deep Residual Network20 113 

(Resnet) which was used in the control-dependent caller NeuSomatic; Densenet21 and 7 different 114 

builds of EfficientNet22, for its high performance on rapid image classification (Methods, 115 

Supplementary Fig. 2a). Each model was trained on the data described above with 5 to 15 116 

epochs to optimize the hyper-parameters until training accuracies plateaued (>0.90). 117 

 118 

To compare the different models after training and to contrast models trained with distinct 119 

datasets, we employed an independent gold-standard validation dataset of ~400 MVs from one 120 

brain sample23 (BioData2, Methods) and another amplicon-validated dataset from 18 samples 121 

from one individual18 (BioData3, Methods). On these, EfficientNet-b4 showed the highest 122 

accuracy, Matthews’s correlation coefficient, and true positive rate when trained for 6 epochs 123 

(Supplementary Fig. 2b). We thus selected this model as the default model of DeepMosaic-CM 124 

(Supplementary Fig. 3a and Fig. 1f). Additional EfficientNet-b4 models trained on the 1:1 mixture 125 

of biological data and simulated data showed similar performance compared with biological data 126 

only training set but much higher specificity compared with models trained only on simulated data 127 

(Supplementary Fig. 2c).  128 

 129 

To uncover the information prioritized by the selected default model, we used a gradient 130 

visualization technique with guided backpropagation24 to highlight the pixels with guiding 131 

classification decisions (Supplementary Fig. 3b). The results suggested that the algorithm not 132 

only recognized the edges for reference and alternative alleles, but also integrated additional 133 

available information, such as insertion/deletions in the sequences, overall base qualities, 134 

alignment artifacts, and other features which may not be extracted by digested feature-based 135 

methods. 136 

 137 

We evaluated the performance of DeepMosaic using 20,265 variants from the above training 138 

data that were hidden from model training and selection. The receiver operating characteristic 139 

(ROC) curve and precision-recall curves on the hidden validation dataset showed >0.99 area 140 

under the curve for a range of coverages (30x ~500x, Supplementary Fig. 4a and 4b) across a 141 

range of AFs (Supplementary Fig. 4c and 4d), demonstrating high sensitivity and specificity. 142 

 143 

Next, we benchmarked DeepMosaic’s performance relative to other detection software, using 144 

data generated from two distinct sequencing error models to test for its utility on general 145 

sequencing data. We compared the performance of DeepMosaic with the widely used MuTect2 146 
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(paired mode), Strelka2 (somatic mode) with heuristic filters, MosaicHunter (single mode), and 147 

MosaicForecast (Methods). We generated two additional computationally simulated datasets of 148 

439,200 and 180,540 positions based on the error model of a different Illumina sequencer with 149 

similar methods as the training set (NovaSeq, SimData2, Methods) or a similar ratio of true 150 

positive and true negative labels as real biological data18 by replacing reads from the ‘Genome 151 

in a Bottle’ sample HG002 (NA24345, SimData3, Methods)25, 26, with AF ranges from 1% to 25%, 152 

and depth ranges from 50x to 500x. MuTect2 paired methods and Strelka2 somatic mode used 153 

simulated mutated samples as “tumor” and simulated reference or original HG002 samples as 154 

“normal” for their paired modes. DeepMosaic showed equal or better performance than all other 155 

methods tested, especially for low allelic fraction variants (Fig. 2 and Supplementary Fig. 5), 156 

noticeably, even for low read depth data; and it performed better than methods that have 157 

additional information from paired samples. Overall DeepMosaic showed a 1.5-3 fold increase of 158 

the detection sensitivity for AFs under 3% compared with other methods (Fig. 2b), with 159 

comparable specificity (Fig 2a). This is likely because our models integrate additional genomic 160 

sequence and quality information from the original BAM file (Supplementary Fig. 3b), and are 161 

capable of distinguishing mosaic variants from different Illumina error models. 162 

 163 

To exclude limitations resulting from benchmarking with simulated data and demonstrate that 164 

models trained on PCR-amplified libraries are also useful for PCR-free sequencing libraries, we 165 

extended benchmarking to biological data. We performed the same comparison on our recently 166 

published 200x WGS dataset12 with 16 samples (blood and sperm) from 8 healthy individuals27. 167 

Paired methods compared two samples from the same individual, and control-independent 168 

samples used a published dataset of a panel of normals28. Variants detected by MuTect2 (paired 169 

mode), Strelka2 (somatic mode) and MosaicHunter (single mode) were subjected to a series of 170 

published heuristic filters27, 28. As we had access to the biological samples, we also performed 171 

orthogonal validation, using deep amplicon sequencing of 241 randomly selected MVs with a 172 

representative AF distribution compared to the complete candidate variant list (Methods, Fig. 3a 173 

and 3b, Supplementary Table 1). 174 

 175 

As expected from the test of the computationally generated data, DeepMosaic showed the 176 

highest overall validation rate (96.34%, 158/164) among all 5 methods (Fig. 3c), demonstrating 177 

the power of DeepMosaic that models trained on PCR-amplified biological data and simulated 178 

data can accurately classify these PCR-free biological data. Of the 932 MVs detectable by 179 

DeepMosaic, 21.89% (204/932, 33/34 experimentally validated) were overlooked by 180 

MosaicForecast, 58.58% (546/932, 96/98 validated) overlooked by MosaicHunter, 50.32% 181 

(469/932, 90/94 validated) overlooked by Strelka2 (somatic mode) with heuristic filters, 43.13% 182 

(402/932, 81/85 validated) overlooked by MuTect2 (paired mode) with heuristic filters27. 183 

DeepMosaic also accurately detected variants with relatively low AFs (Fig. 3d). Finally, 184 

DeepMosaic outperformed other methods across most of the AF bins (Fig. 3e). 185 

 186 
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In current practice, researchers often combine multiple programs in one variant detection pipeline 187 

to detect different categories of MVs27-29. We thus further compared DeepMosaic with different 188 

pipelines used in recent publications, using data from 200x WGS of the 16 samples27: 1] With 189 

the MosaicForecast pipeline4, which uses MuTect2 single mode (each sample compared with 190 

the publicly available panel of normal) as input; 2] With what we call the M2S2MH pipeline, which 191 

we recently published27, combining MuTect2 paired mode (i.e. compared between different 192 

samples from a same individual), Strelka2 somatic mode and MosaicHunter single mode 193 

followed by a series of heuristic filters (Supplementary Fig. 6a). Of the 932 MVs identified by 194 

DeepMosaic, 78.11% (728/932, 125/130 validated) overlapped with MosaicForecast and 60.09% 195 

(560/932, 87/91 validated) overlapped with M2S2MH. In contrast, 21.89% (204/932, 33/34 196 

validated) were undetected by MosaicForecast, and 39.91% (372/932, 71/73 validated) were 197 

overlooked by M2S2MH. These variants uniquely detected by DeepMosaic all showed validation 198 

rate > 97% (Supplementary Fig. 6b and 6c), demonstrating that DeepMosaic can accurately 199 

detect a considerable number of variants undetectable by widely used methods. 200 

 201 

To test the performance of these samples on data widely curated clinically, we compared 202 

detection sensitivity for genome samples with standard WGS read depth, by down-sampling 203 

blood-derived data from a 70-year old healthy individual, in whose blood we observed the highest 204 

number of mosaic variants (due to clonal hematopoiesis27). As all programs had high validation 205 

on this sample at 200x, the recovery rate was used to distinguish the ability of different programs 206 

to detect clonal hematopoiesis variants. DeepMosaic showed similar recovery in the down-207 

sampled data (Supplementary Fig. 7) as M2S2MH and slightly outperformed MosaicForecast at 208 

100x and 150x. We found that the performance of DeepMosaic was not substantially influenced 209 

by the read depth according to the down-sampling benchmark on biological data. 210 

 211 

To understand whether different pipelines had unique strengths or weaknesses, we separated 212 

all the detected variants into 7 groups (G1-G7) based upon sharing between different pipelines, 213 

Supplementary Fig. 7a). DeepMosaic specific variants showed similar base substitution features 214 

compared with other methods (Supplementary Fig. 7b). Similar to the computationally derived 215 

data, we found that DeepMosaic recovered additional low AF MVs with high accuracy (validation 216 

rate 95%, Supplementary Fig. 7c). Finally, we summarized the genomic features of variants 217 

detected by DeepMosaic and other pipelines. All caller groups report similar ratios of intergenic 218 

and intronic variants (Supplementary Fig. 8a). Analysis of other genomic features showed 219 

DeepMosaic-specific variants (G1) expressed consistency with other groups (Supplementary Fig. 220 

8b), reflecting that the low-fraction variants detectable only by DeepMosaic do not represent 221 

technical artifacts.  222 

 223 

While we propose DeepMosaic as a powerful tool for mosaic variant detection, it currently is 224 

underpowered for mosaic INDELs and mosaic repetitive variant detection which might be error-225 

prone in the genome. In practice, MosaicForecast can detect mosaic INDEL variants with high 226 

accuracy, while M2S2MH has good performance for tissue-specific variants due to the inclusion 227 
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 7 

of additional information from the “normal” comparison sample. Thus different methods 228 

complement one another.  229 

 230 

DeepMosaic is the first image-based tool for the accurate detection of mosaic SNVs from short-231 

read sequencing data and does not require a matched control sample. Compared with 232 

NeuSomatic that compresses all the bases in a genomic position into 10 features6, DeepMosaic-233 

VM provides complete representation of information present in the BAM file. Compared with other 234 

re-coding methods like DeepVariant14, DeepMosaic-CM has the ability to define MVs as an 235 

independent genotype and DeepMosaic-VM can be applied as an independent variant 236 

visualization tool for the user’s convenience. To further integrate population information not 237 

present in the raw BAM, 4 different features are also integrated in DeepMosaic to facilitate 238 

classification. 239 

 240 

Despite the unique features from image representation and a neural network based variant 241 

classifier, DeepMosaic can reproducibly identify the majority (~70%) of variants detectable by 242 

conventional methods; in addition, however, this unique architecture results in higher sensitivity, 243 

and the detection of variants with relatively lower AF both in simulated and experimentally derived 244 

data validated by orthogonal experiments. DeepMosaic shows a drop of sensitivity at higher AF, 245 

likely due to our inclusion of depth ratio which help to avoid false-positive calls from CNV. The 246 

higher sensitivity at lower AFs will make it a good complement for other methods. 247 

 248 

Both down-sampled biological data in blood of an individual with advanced age and 249 

computationally generated data showed that DeepMosaic has the potential to identify variants at 250 

relatively high sensitivity and high accuracy for WGS at depths as low as 50x. Clonal 251 

hematopoiesis in blood without a known driver mutation is reported30, but can be difficult to detect 252 

because of technical limitations induced by noise and lower supporting read counts31. For the 253 

past 10-15 years, hundreds of thousands of whole-genome sequencing datasets from clinical, 254 

commercial, or research labs have been generated at relatively low depth, but most have not 255 

been subjected to unbiased mosaicism detection due to lack of sufficiently sensitive methods. 256 

DeepMosaic could enable a genome-level unbiased detection of mutations that requires only 257 

conventional sequencing data. 258 

 259 

By using a training set comprising representative technical artifacts such as homopolymers and 260 

truncated reads, DeepMosaic acquired the power to distinguish biologically true positive variants 261 

from false positives, which might be filtered out directly by rule-based methods like 262 

MosaicHunter5 or MosaicForecast4. We demonstrated that training the models on a mixture of 263 

~1:1 simulated and biological data does not adversely affect performance on an independent 264 

biological evaluation set. We also demonstrated that DeepMosaic works well for various Illumina 265 

short read sequencing platforms applying different library preparation strategies (PCR-amplified 266 

and PCR-free). 267 

 268 
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Although the EfficientNet-b4 performed best, we provide all pre-trained models (Densenet, 269 

EfficientNet, Inception-v3, and Resnet) as DeepMosaic-CM modules on GitHub. Users are 270 

provided with the options to prepare their own data with labeled genotypes for model training for 271 

DeepMosaic, to generate data-specific, personalized models, to test other potential factors 272 

influencing detection sensitivity such as the ratio of positive:negative labels, and to increase the 273 

detection specificity for DeepMosaic on specialized data sets. For instance, homopolymers and 274 

tandem repeats are increasingly recognized as important in disease and development, but are 275 

currently not detected with DeepMosaic, because of the limited training data; however, users 276 

with specialized data sets could remedy this problem by re-training. 277 

 278 

Likewise, gnomAD population AF features used in this study also rely on a matched ancestry 279 

background to avoid population stratification. Annotations such as gene names, variant 280 

functional annotations, gnomAD allelic frequency, homopolymer and dinucleotide repeat 281 

annotation, as well as segmental duplication and UCSC repeat masker regions are provided in 282 

the final output to facilitate customization, as described at the GitHub homepage of DeepMosaic 283 

(https://github.com/Virginiaxu/DeepMosaic). Finally, apart from MuTect2 single mode, 284 

DeepMosaic can also process variant lists generated by multiple methods such as the GATK 285 

HaplotypeCaller with ploidy 50 or 10023. Thus, DeepMosaic can be used directly as is, or can be 286 

customized to the needs of the end users, providing an adaptable and efficient mosaic variant 287 

detection workflow. 288 
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 365 

  366 

Fig. 1| Image representation, model training strategies, and framework of DeepMosaic. 367 

a, DeepMosaic-VM: Composite RGB image representation of sequenced reads separated into 368 

“Ref” - reads supporting the reference allele; or “Alts'' - reads supporting alternative alleles; each 369 

outlined in yellow. b, Red channel of the compound image contains base information from BAM 370 

file. “D” - deletion; “A” – Adenine; “C” – cytosine; “G” – guanine; “T” – thymine; “N” – low-quality 371 

base. Yellow box: Var: candidate position, centered in the image. c, Green channel: base quality 372 

information. Note that channel intensity was modulated in this example for better visualization. 373 

d, Blue channel: strand information (i.e. forward or reverse). e, Model training, model selection, 374 

and overall benchmark strategy for DeepMosaic-CM (Methods and Supplementary Fig. 1). Ten 375 

different convolutional neural network models were trained on 180,000 experimentally validated 376 

positive and negative biological variants from 29 WGS data from 6 individuals sequenced at 377 

100x16, 17 (BioData1), as well as simulated data with different AFs (SimData1) resampled to a 378 

different depth. Models were evaluated based upon an independent gold-standard biological 379 

dataset from the 250x WGS data of the Reference Tissue Project of the Brain Somatic Mosaicism 380 

Network23 (BioData2) as well as an independent 300x WGS dataset from the Brain Somatic 381 
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Mosaicism Network Capstone project18 (Biodata3). DeepMosaic was further benchmarked on 16 382 

independent biological datasets from 200x WGS data27 (BioData4) as well as 619,740 383 

independently simulated variants (SimData2 and SimData3). Deep amplicon sequencing was 384 

carried out as an independent evaluation on variants detected by different software (Supplement 385 

Table 1). f, Application of DeepMosaic-CM in practice. Input images are generated from the 386 

candidate variants. 16 convolutional layers extracted information from input images. Population 387 

genomic features were assembled for final output. Images of positive and negative variants are 388 

shown as examples. Conv: convolutional layers; MBConv: mobile convolutional layers. 389 

  390 
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 391 

Fig. 2| DeepMosaic performance on simulated benchmark variants. 392 

a, Benchmark test on 180,540 genomic positions (SimData3) generated by replacing reads from 393 

biological data with simulated variants. DeepMosaic showed higher accuracy, F1 score, MCC 394 

(Matthews correlation coefficient), sensitivity, and comparable specificity compared with widely 395 

accepted methods for mosaic variant detection. b, Sensitivity of DeepMosaic and other mosaic 396 

callers on SimData3 at simulated read depths and AFs. DeepMosaic performed equally well or 397 
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better than other tested methods, especially at lower read-depths and lower expected AFs. 398 

  399 
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 400 

 401 

Fig. 3| DeepMosaic performance validated on biological data.  402 

a, DeepMosaic and other mosaic variant detection methods were applied to 200x whole-genome 403 

sequencing data from 16 samples, which were not used in the training or validation stage for any 404 

of the listed methods (BioData4). Raw variant lists were either obtained by comparing samples 405 

using a panel-of-normal28 strategy with MuTect2 single mode, between different samples from a 406 

same individual using MuTect2 paired mode or Strelka2 somatic mode, or detected directly 407 

without control with MosaicHunter single mode with heuristic filters27. A total of 46,928 candidate 408 

variants from MuTect2 single mode were analyzed by DeepMosaic and MosaicForecast. 409 
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Orthogonal validation with deep amplicon sequencing was carried out on a total of 241 variants 410 

out of the 1355 candidates called by at least one method. b, Distribution of AFs of the whole 411 

candidate mosaic variant list and the 241 randomly selected variants. c, Comparison of validation 412 

results between different mosaic variant calling methods, ‘UpSet’ plot shows the intersection of 413 

different mosaic detection methods and the validation result of each category. Variants identified 414 

by DeepMosaic showed the highest validation rate on biological data. d, Examples of validated 415 

variants called by DeepMosaic and MosaicForecast (i), only by DeepMosaic (ii), or by 416 

DeepMosaic and other traditional methods (iii). e, Comparison of validation rate in different AF 417 

range percentage bins of variants. DeepMosaic showed the highest validation rate at a range of 418 

AFs, approximately 48 experimentally validated variants are shown in each AF bin. 419 

420 
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Methods 421 

Curation of training and benchmark data 422 

SimData1: 423 

For the initial training procedure, 10,000 variants were randomly generated on chromosome 22 424 

to get the list of alternative bases. Pysim32 was then used to simulate paired-end sequencing 425 

reads with random errors generated from the Illumina HiSeq sequencer error model. Alternative 426 

reads were generated by replacing the genomic bases with the alternative bases in the list, with 427 

the same error model. Alternative and reference reads were randomly mixed to generate an 428 

alternative AF of 0, 1, 2, 3, 4, 5, 10, 15, 20, 25, and 50%. The data were randomly sampled for 429 

a targeted depth of 30, 50, 100, 120, 150, 200, 250, 300, 400, and 500x. FASTQ files were 430 

aligned to the GRCh37d5 human reference genome with BWA (v0.7.17) mem command. Aligned 431 

data were processed by GATK (v3.8.1) and Picard (v2.18.27) for marking duplicate, sorting, 432 

INDEL realignment, base quality recalibration, and germline variant calling. The up- and down-433 

sampling expanded this dataset into a pool of 990,000 different variants. Depth ratios were 434 

calculated as defined. To avoid the situation that randomly generated mutations falls on a 435 

common SNP position in the genome, which would bias the training and benchmarking, gnomAD 436 

allele frequencies were randomly assigned from 0 to 0.001 for simulated mosaic positive and 437 

from 0 to 1 for simulated negative variants, which were established as homozygous or 438 

heterozygous. 439 

 440 

BioData1: 441 

Variant information and raw sequencing reads from 80-120x PCR-amplified PE-150 WGS data 442 

of 29 samples from 6 normal individuals were extracted from published data16, 17 on SRA 443 

(SRP028833, SRP100797, and SRP136305). 921 variants identified from WGS of samples from 444 

different organs of the donors and validated by orthogonal experiments were selected and 445 

labeled as mosaic positive. 492 genomic positions from the control samples validated with 0% 446 

AF were selected and labeled as negative. 162 variants with known sequencing artifacts were 447 

first filtered by MosaicHunter, manually selected and labeled as negative. The 1575 genomic 448 

positions were also down-sampled and up-sampled for a targeted depth of 30, 50, 100, 150, 200, 449 

250, 300, 400, and 500x, to expand this dataset into a pool of 14,175 different conditions. Depth 450 

ratios were calculated accordingly, gnomAD allele frequencies, segmental duplication, and 451 

repeat masker information was annotated.  452 

The entire BioData1 and random subsampling from SimData1 were combined to generate a 453 

training and validation dataset with approximately 200,000 variants from the 1,000,000 training 454 

variants. 180,000 variants were selected for model training, 45% from SimData1 and 55% from 455 

resampling of BioData1. This dataset was used for the model training and evaluation of the 456 

sensitivity and specificity of the selected model, and their features including AF distribution and 457 

biological appearances were very similar to published biological data (Supplementary Fig. 1). 458 

 459 

BioData2: 460 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 2, 2021. ; https://doi.org/10.1101/2020.11.14.382473doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.14.382473
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

To estimate the performance of the pre-trained models and select the model with the best 461 

performance for DeepMosaic-CM, we introduced an independent gold-standard dataset. 462 

Variants were computationally detected from replicated sequencing experiments generated from 463 

6 distinct sequencing centers and validated in 5 different centers, known as the common 464 

reference tissue project from the Brain Somatic Mosaicism Network23. 400 variants underwent 465 

multiple levels of computational validations including haplotype phasing, CNV exclusion, 466 

population shared exclusion, as well as experimental validation such as whole-genome single 467 

cell sequencing, Chromium Linked-read sequencing (10X Genomics), PCR amplicon 468 

sequencing, and droplet digital PCR. After validation, 43 true positive MVs and 357 false positive 469 

variants were determined as gold-standard evaluation set for low-fraction single nucleotide MVs 470 

from the 250x WGS data23. We extracted deep whole-genome sequences for those variants, 471 

labeled them accordingly and used them as gold standard validation set for model selection 472 

(Supplementary Fig. 2). 473 

 474 

BioData3: 475 

To evaluate the performance of DeepMosaic-CM trained on a different portion of biological 476 

variants, we included another large-scale validation experiment we recently generated. Variant 477 

information and raw sequencing reads of 300x PCR-free PE150-only WGS of 18 samples from 478 

9 different brain regions, cerebellum, heart, liver, and both kidneys of one individual were 479 

extracted from the capstone project of the Brain Somatic Mosaicism Network18. 1400 genomic 480 

positions with variants identified from WGS sample and reference homozygous/heterozygous 481 

controls validated by orthogonal experiments were selected and labeled as positive and negative 482 

according to the experimental validation result. The 1400 genomic positions were also down- 483 

and up-sampled for a targeted depth of 30, 50, 100, 150, 200, 250, 300, 400, and 500x. Depth 484 

ratios were calculated accordingly, gnomAD allele frequencies, segmental duplication, and 485 

repeat masker information were annotated. 486 

 487 

SimData2:  488 

To compare the performance of DeepMosaic and other software to detect mosaicism on 489 

simulated data, we randomly generated another simulation dataset, with the following 490 

modifications: 1] only 7610 variants on non-repetitive region of chromosome 22 were considered 491 

true positive genomic positions; 2] random errors were generated from the Illumina NovaSeq 492 

sequencer error model. 3] Data was randomly down-sampled and up-sampled for a targeted 493 

depth of 50, 100, 200, 300, 400, and 500x. A total of 439,200 different variants were generated. 494 

FASTQ files were aligned and processed with BWA (v0.7.17), SAMtools (v1.9), and Picard 495 

(v2.18.27). The data was subjected to DeepMosaic as well as MuTect2 (GATK v4.0.4, both 496 

paired mode and single mode), Strelka2 (v2.9.2), MosaicHunter (v1.0.0), and MosaicForecast 497 

(v8-13-2019) with different models trained for different read depth (250x model for depth≥300x). 498 

 499 

SimData3: 500 

We further generated another simulation dataset in a way that was fundamentally different from 501 
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the training data with a positive:negative ratio similar to real data18 to compare the performance 502 

of DeepMosaic and other software for the detection of mosaic variants. We selected 30,090 503 

genomic positions with reference homozygous genotype from a different genomic region (the 504 

entire Chromosome 1) of the whole-genome deep sequences from the ‘Genome In a Bottle’ 505 

sample HG002 (NA24345)26. The genomic positions from the 30,090 positions were genotyped 506 

as homozygous and fulfilled additional criteria 1] zero alternative bases in the raw sequencing 507 

data; 2] no detectable insertions/deletions in the position of interest; 3] have a genomic distance 508 

of at least 1000 bases between each other. On this clear background, 15,471 of them were 509 

labeled as “true negative“ with reference homozygous genotype, 6868 were labeled as “true 510 

positive” mosaic variants with expected alternative AF 0.01, 0.02, 0.03, 0.04, 0.05, 0.10, 0.15, 511 

0.20, and 0.25 (on average 763 variants for each genotype); 7751 were labeled as “true negative” 512 

heterozygous variants with alternative AF 0.50; the latest version of a different software 513 

BAMSurgeon (updated 24 Dec 2020) was used to generate this simulation dataset and retain 514 

the sequencing errors from the original biological samples. The original bam file was first up-515 

sampled, alternative reads were replaced to generate the expected AF, mapped back to the 516 

genome and merged back to the bam file, according to the software manual25. Bam files with 517 

and without simulated data were downsampled to 500x, 400x, 300x, 200x, 100x, and 50x. The 518 

data were subjected to DeepMosaic as well as MuTect2 (GATK v4.0.4, both paired mode and 519 

single mode), Strelka2 (v2.9.2), MosaicHunter (v1.0.0), and MosaicForecast (v8-13-2019) with 520 

different models trained for different read depth (250x model for depth≥300x), the performance 521 

of the 180,540 points were evaluated. 522 

 523 

BioData4: 524 

This additional dataset was used to compare the performance of DeepMosaic and other mosaic 525 

variant callers on biological samples. 16 WGS samples from blood and sperm of 8 individuals 526 

were sequenced at 200x27 (PRJNA588332). WGS was performed using an Illumina TrueSeq 527 

PCR-free kit with 350bp insertion size and sequenced on an Illumina HiSeq sequencer. Reads 528 

were aligned to the GRCh37 genome with BWA (v0.7.15) mem and duplicates were removed 529 

with sambamba (v0.6.6) and base quality recalibrated by GATK (v3.5.0). Processed BAM files 530 

were subjected to DeepMosaic as well as MuTect2 (GATK v4.0.4, both paired mode and single 531 

mode), Strelka2 (v2.9.2), MosaicHunter (v1.0.0), and MosaicForecast (v8-13-2019) with 200x 532 

models trained for the specific depth. Data from one of the individuals (F02) was down-sampled 533 

to 150x, 100x, 50x, and 30x with the SAMtools (v1.9) view command for the further benchmark 534 

of DeepMosaic. 535 

Neural network building and model training 536 

For the 10 neural network architectures, Inception-v3, Resnet and Densenet were imported from 537 

PyTorch’s (v1.4.0) built-in library, while the 7 different builds of EfficientNet were imported from 538 

the efficientnet_pytorch (v0.6.1) Python (v3.7.1) package. The final fully connected layer of each 539 

model was replaced to be fed into 3 output units representing intermediate results instead of the 540 

default 1,000 output units for the 1,000 ImageNet classes to significantly reduce the total images 541 
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required to extract basic features such as edges, stripes from raw images. A transfer-learning 542 

method was adopted for model training. Each model’s initial pre-trained weights provided by 543 

Pytorch and efficientnet_pytorch packages were trained on the ImageNet dataset. Before model 544 

training, we randomly divided the entire training dataset (including down-sampling and up-545 

sampling of SimData1 and BioData1) to 80% “training” and 20% “evaluation” sets and fixed the 546 

split during model training while shuffling the order within the training set and evaluation set for 547 

each training epoch to form mini-batches for gradient descent. Each network architecture was 548 

trained using a batch size of 20 with a stochastic gradient descent (SGD) optimizer with learning 549 

rate of 0.01, and momentum of 0.9. The training was terminated until the training losses 550 

plateaued and evaluation accuracy reached 90% for each model architecture. The training was 551 

conducted on NVIDIA Kepler K80 GPU Nodes on San Diego Supercomputer Centre’s Comet 552 

computational clusters. 553 

Network selection 554 

To select the “best-performing” neural network architecture among the trained Inception-v3, 555 

Resnet, Densenet and 7 different builds of EfficientNet, the gold standard evaluation dataset 556 

(BioData2) was used to test each model’s performance on biological (non-simulated) MVs 557 

determined by the dataset. Accuracy, MCC, True positive rates were calculated for each model 558 

and in the end EfficientNet-b4 at epoch 6 with the highest Accuracy, MCC and True positive rate 559 

among all model architectures was selected as our DeepMosaic model. The performance of 560 

DeepMosaic model (EfficientNet-b4 architecture) was further evaluated. 561 

Independent model training and evaluation for DeepMosaic-CM 562 

To evaluate the performance of DeepMosaic-CM when trained on a different portion of biological 563 

variants, 15 epochs were trained for the EfficientNet-b4 architecture on 5 different training sets 564 

consisting of 122, 424 genomic positions. EfficientNet was imported from the efficientnet_pytorch 565 

(v0.6.1) Python (v3.7.1) package. The 5 different training sets were generated based on 566 

SimData1, BioData1, SimData2, and BioData3. 1] BioData only: 40,808 variants from the entire 567 

of BioData1 and BioData3 were pooled. The overall positive:negative ratio was 26.8%:73.2%. 2] 568 

SimData only for SimData1: 40,808 variants were selected from SimData1 with the matched 569 

number of positive and negative labels as BioData only. 3] SimData only for SimData2: 40,808 570 

variants that were agreed by both MuTect2 and Strelka2 as “positive” or agreed by both methods 571 

as “negative” were selected from SimData2 with the matched number of positive and negative 572 

labels compared to BioData only. 4] BioData+SimData for SimData1: 40,808 variants half from 573 

BioData half from SimData only for SimData1 were selected with the matched number of positive 574 

and negative labels compared to BioData only. 5] BioData+SimData for SimData2: 40,808 575 

variants half from BioData half from SimData only for SimData2 were selected with the matched 576 

number of positive and negative labels compared to BioData only. Each network architecture 577 

was trained using a batch size of 4 with a stochastic gradient descent (SGD) optimizer with a 578 

learning rate of 0.01, and momentum of 0.9. Fifteen different epochs were trained on each of the 579 

5 training sets described above, and the model after each epoch is saved for performance 580 
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evaluation. The training was conducted on NVIDIA GTX 980 GPU Nodes on San Diego 581 

Supercomputer Center’s Triton Shared Computing Cluster (TSCC). The training performance of 582 

the models was further evaluated on BioData2, which has not been used for any of the training 583 

procedures. 584 

Usage of DeepMosaic 585 

Detailed instructions for users as well as the demo input and output is provided on GitHub 586 

(https://github.com/Virginiaxu/DeepMosaic). 587 

Orthogonal validation with deep amplicon sequencing 588 

Deep amplicon sequencing analysis was applied to 241 variants from the 1355 candidates 589 

detected by all 5 mosaic variant callers from the 200× WGS of 16 samples27 to experimentally 590 

confirm the validation rate of DeepMosaic as well as other methods. PCR products for 591 

sequencing were designed with a target length of 160-190 bp with primers being at least 60 bp 592 

from the base of interest. Primers were designed using the command-line tool of Primer333 with 593 

a Python (v3.7.3) wrapper. PCR was performed according to standard procedures using GoTaq 594 

Colorless Master Mix (Promega, M7832) on sperm, blood, and an unrelated control. Amplicons 595 

were enzymatically cleaned with ExoI (NEB, M0293S) and SAP (NEB, M0371S) treatment. 596 

Following normalization with the Qubit HS Kit (ThermoFisher Scientific, Q33231), amplification 597 

products were processed according to the manufacturer’s protocol with AMPure XP Beads 598 

(Beckman Coulter, A63882) at a ratio of 1.2x. Library preparation was performed according to 599 

the manufacturer’s protocol using a Kapa Hyper Prep Kit (Kapa Biosystems, KK8501) and 600 

barcoded independently with unique dual indexes (IDT for Illumina, 20022370). The libraries 601 

were sequenced on a NovaSeq platform with 100 bp paired-end reads. Reads from deep 602 

amplicon sequencing were mapped to the GRCH37d5 reference genome by BWA mem and 603 

processed according to GATK (v3.8.2) best practices without removing PCR duplicates. Putative 604 

mosaic sites were retrieved using SAMtools (v1.9) mpileup and pileup filtering scripts described 605 

in previous TAS pipelines27. Variants were considered positively validated for mosaicism if 1] 606 

their lower 95% exact binomial CI boundary was above the upper 95% CI boundary of the control; 607 

2] their AF was >0.5%. The number of reference and alternative alleles calculated from the 608 

Amplicon validation was provided in Supplementary Table 1. 609 

Analysis of different categories of variants overlap with different genomic features 610 

In order to assess the distribution of MVs and their overlap with genomic features, an equal 611 

number of variants (mSNVs/INDELs as in group G1-G7 in Supplementary Fig. 6) was randomly 612 

generated with the BEDtools (v2.27.1) shuffle command within the region from Strelka2 without 613 

the subtracted regions (e.g. repeat regions). This process was repeated 10,000 times to generate 614 

a distribution and their 95% CI. Observed and randomly subsampled variants were annotated 615 

with whole-genome histone modifications data for H3k27ac, H3k27me3, H3k4me1, and 616 

H3k4me3 from ENCODE v3 downloaded from the UCSC genome browser 617 

(http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/)—specifically for the overlap with 618 
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peaks called from the H1 human embryonic cell line (H1), as well as peaks merged from 10 619 

different cell lines (Mrg; Gm12878, H1, Hmec, Hsmm, Huvec, K562, Nha, Nhek, and Nhlf). Gene 620 

region, intronic, and exonic regions from NCBI RefSeqGene 621 

(http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/refGene.txt.gz); 10 622 

Topoisomerase 2A/2B (Top2a/b) sensitive regions from ChIP-seq data (Samples: GSM2635602, 623 

GSM2635603, GSM2635606, and GSM2635607); CpG islands: data from the UCSC genome 624 

browser (http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/); genomic regions with 625 

annotated early and late replication timing34; high nucleosome occupancy tendency (>0.7 as 626 

defined in the source, all values were extracted and merged) from GM12878; enhancer genomic 627 

regions from the VISTA Enhancer Browser (https://enhancer.lbl.gov/); and DNase I 628 

hypersensitive regions and transcription factor binding sites from Encode v3 tracks from the 629 

UCSC genome browser (wgEncodeRegDnaseClusteredV3 and wgEncodeRegTfbsClusteredV3, 630 

respectively). 631 
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Supplementary Information: 633 

  634 

Supplementary Figure 1 635 

Training strategies and examples of training data for DeepMosaic. 636 

(a) More than 200,000 training and validation variants were generated for DeepMosaic, including 637 

computational simulations (SimData1), biologically validated variants from existing studies with 638 

manually curated technical artifacts (BioData1). We further included 1 gold standard dataset for 639 

testing and model selection (BioData2); all selected positive or negative variants underwent 640 

amplicon sequencing in at least one tissue sample according to the publication. We further 641 

included independent simulated data (SimData2 and SimData3) and biological data (BioData3 642 

and BioData4) to benchmark DeepMosaic. (b) The overall strategies of model training and 643 

benchmarking for each tested model. (c) The distribution of probability density of expected AFs 644 

for different variants from the training set. Red: Reference homozygous variants and technical 645 

artifacts are labeled “Negative” in the training set. Green: Heterozygous variants are also labeled 646 

“Negative” in the training set. Blue: True mosaic variants are labeled “Positive” in the training set. 647 

(d) Two examples of false positive variants with different sequencing artifacts, left: multiple 648 

alternative alleles from sequencing bias or alignment artifacts; right: reads truncated because of 649 

sequencing or alignment artifacts. (e) All training images were down-sampled and up-sampled 650 

into 30x, 50x, 100x, 150x, 200x, 250x, 300x, 400x and 500x, mutant allelic fractions (AFs) from 651 
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the simulated data that were set as 1%, 2%, 3%, 4%, 5%, 10%, 15%, 20%, 25% and shown.  652 
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Supplementary Figure 2 654 

Network model selection based on independent gold-standard testing set. 655 

(a) Comparison of network structures implementing a variety of classification algorithms. For 656 

different build versions of EfficientNet, only a general structure is shown. Inception v3 was used 657 

in DeepVariant, and Resnet was used in NeuSomatic. (b) All models were trained on 180,000 658 

training variants from BioData1 and SimData1 until the models reach training accuracy > 0.9. 659 

Accuracy, Matthews’s correlation coefficient (MCC), and Sensitivity of different network 660 

structures trained with the same data with different epochs. EfficientNet-b4 trained at 6 epochs 661 

demonstrated the highest Accuracy, MCC, and Sensitivity on the gold standard validation set23 662 

(BioData2); thus it was used as the default core model for DeepMosaic. We additionally provide 663 

an option for experienced users to train their own models with self-labeled training data. (c) 664 

EfficientNet-b4 models were trained on 5 additional datasets, each for 15 epochs. The training 665 

datasets were generated with different compositions of biologically validated data and simulated 666 

data. Models trained only on simulated data showed overall higher sensitivity but much lower 667 

specificity on the gold standard evaluation set (BioData2) due to the high fraction of false-positive 668 

calls. Models trained only on biological data showed similar overall performance compared with 669 

models trained on a mixture of biological and simulated data. All three training sets are generated 670 

with the same number of positive and negative data points as the biological data and with the 671 

same number of total variants. M2S2 Positive: training variants were labeled positive by both 672 

MuTect2 and Strelka2. 673 

  674 
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 675 

Supplementary Figure 3 676 

The convolutional neural network of the DeepMosaic default model and gradient 677 

visualization with guided backpropagation for the DeepMosaic default model 678 

(EfficientNet-b4).  679 
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(a) Down- sampled and up-sampled image files coded from original BAM files were used as 680 

input. 16 mobile convolutional layers were adapted from EfficientNet-b4, with optimized 681 

parameter size and structures. Numbers represent the dimensions of trained hyperparameters. 682 

(b) A mosaic, a homozygous, and a heterozygous variant with artifacts, as well as a technical 683 

artifact, are shown here for the gradient visualization with guided backpropagation method23 684 

implemented for the DeepMosaic core model, EfficientNet-b4 trained at epoch 6, left: image 685 

coding, right: gradient heatmap. The edges of bases, the sequence information, as well as 686 

other high-dimensional information, are highlighted by the model.  687 
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 688 

Supplementary Figure 4 689 

Performance of DeepMosaic default model (EfficientNet-b4) on data hidden from training. 690 

(a) Receiver operating characteristic (ROC) curve for DeepMosaic. True positive rates (TPR) 691 

and false-positive rates (FPR) were evaluated from 20,265 variants (BioData1 and SimData1) 692 

hidden from model training and model selection. Colors show groups of intended read depth. (b) 693 

Precision-recall curves for DeepMosaic, evaluated from the 20,265 hidden variants, dots showed 694 

the performance of the default parameters for DeepMosaic-CM. (c) ROC curve for DeepMosaic. 695 

TPR and FPR were evaluated from 20,265 variants (BioData1 and SimData1) hidden from model 696 

training and model selection. Colors show groups of bins of different expected AFs. (d) Precision-697 

recall curves for DeepMosaic, evaluated from the 20,265 hidden variants, dots showed the 698 

performance of the default parameters for DeepMosaic-CM for different AF bins. Iso-F1 curves 699 

were shown for each precision-recall pairs with identical F1 scores labeled in (b) and (d).  700 
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 701 

Supplementary Figure 5 702 

Performance of DeepMosaic and other mosaic variant callers on SimData2. 703 

Sensitivity of DeepMosaic and other mosaic callers on 439,200 independently simulated 704 

benchmark variants (SimData2) at simulated read depths and AFs. DeepMosaic performed 705 

equally well or better than other tested methods, especially at lower expected AFs. 706 

  707 
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  708 

Supplementary Figure 6 709 

Comparison of DeepMosaic and traditional mosaic variant calling strategies on a 710 

biological dataset (BioData4) 711 

(a) Compared with the mosaic variant calling strategy (M2S2MH) used in a previous publication, 712 

DeepMosaic and MosaicForecast strategies are also listed. (b) Schematics for amplicon 713 

validation. Primers were designed for different candidates and amplicons were collected for 714 

Illumina sequencing. Information from aligned reads were calculated and genotypes were 715 

determined. (c) Venn diagram of the experimentally validated results and the portions of variants 716 

from different study strategies. DeepMosaic demonstrated a 96.3% (158/164) validation rate. Of 717 
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all the 932 variants identified by DeepMosaic, 39.91% (372/932) were missed by the MuTect2 718 

Strelka2 MosaicHunter pipeline27 with validation rate 97.26 (71/73) and 21.89% (204/932) were 719 

missed by the MosaicForecast4 pipeline with validation rate 97.06 (33/34). 720 

  721 
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 722 

 723 

Supplementary Figure 7 724 

Comparison of features of variants called by DeepMosaic and other pipelines. 725 

(a) Different overlapping groups of variants detected by the 3 pipelines were separated into 7 726 

groups. (b) DeepMosaic-specific (G1) variants present similar base-substitution features 727 

compared with variants detected by the MuTect2-Strelka2-MosaicHunter combined pipeline as 728 

well as MosaicForecast pipeline (G2-G7). (c) Allelic fractions of the variants detected in the 729 

original WGS sample showed that DeepMosaic-specific variants (G1, G2, and G4) showed a 730 
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significantly lower average AF than variants detectable by all 3 pipelines (G3, p<2.2e-16 by a 731 

two-tailed Wilcoxon rank sum test with continuity correction) and lower than variants detectable 732 

only in other pipelines (G5, G6, and G7, p=0.0027 by a two-tailed Wilcoxon rank sum test with 733 

continuity correction). (d) Recovery rate of DeepMosaic, M2S2MH, and MosaicForecast at 734 

different depths from down sampling of BioData3. DeepMosaic showed a similar variant recovery 735 

rate compared with M2S2MH and MosaicForecast, even when considering the lower AF variants 736 

detected by DeepMosaic. 737 
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 739 

Supplementary Figure 8 740 

Enrichment of genomic features for variants called by DeepMosaic and conventional 741 

methods. 742 

(a) Variants called from different pipelines shared similar variant types and contributions. The 743 

groups are defined the same as Supplementary Fig. 6a. The relative contribution of different 744 

types of MVs is stable between different variant groups. (b) Enrichment analysis of variants in 745 

different genomic features. Unlike the variants shared with other callers, DeepMosaic-specific 746 

(G1) variants present depletion in high nucleosome occupancy regions. 10,000 permutation was 747 

carried out on randomly selected gnomAD variants, significant comparisons are shown in pink. 748 

Overall DeepMosaic-specific variants (G1) do not show significantly different genomic features 749 

compared with permutation intervals. 750 
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Supplementary Text: Members of the Brain Somatic Mosaicism Network 752 

Boston Children's Hospital: August Yue Huang, Alissa D'Gama, Caroline Dias, Christopher A. 753 

Walsh, Javier Ganz, Michael Lodato, Michael Miller, Pengpeng Li, Rachel Rodin, Robert Hill, 754 

Sara Bizzotto, Sattar Khoshkhoo, Zinan Zhou 755 

 756 

Harvard University: Alice Lee, Alison Barton, Alon Galor, Chong Chu, Craig Bohrson, Doga 757 

Gulhan, Eduardo Maury, Elaine Lim, Euncheon Lim, Giorgio Melloni, Isidro Cortes, Jake Lee, 758 

Joe Luquette, Lixing Yang, Maxwell Sherman, Michael Coulter, Minseok Kwon, Peter J. Park, 759 

Rebeca Borges-Monroy, Semin Lee, Sonia Kim, Soo Lee, Vinary Viswanadham, Yanmei Dou  760 

Icahn School of Medicine at Mt. Sinai: Andrew J. Chess, Attila Jones, Chaggai Rosenbluh, 761 

Schahram Akbarian 762 

 763 

Kennedy Krieger Institute: Ben Langmead, Jeremy Thorpe, Jonathan Pevsner, Sean Cho  764 

 765 

Lieber Institute for Brain Development: Andrew Jaffe, Apua Paquola, Daniel Weinberger, 766 

Jennifer Erwin, Jooheon Shin, Michael McConnell, Richard Straub, Rujuta Narurkar 767 

 768 

Mayo Clinic: Alexej Abyzov, Taejeong Bae, Yeongjun Jang, Yifan Wang 769 

 770 

Sage Bionetworks: Cindy Molitor, Mette Peters 771 

 772 

Salk Institute for Biological Studies: Fred H. Gage, Meiyan Wang, Patrick Reed, Sara Linker 773 

 774 

Stanford University: Alexander Urban, Bo Zhou, Xiaowei Zhu 775 

 776 

Universitat Pompeu Fabra: Aitor Serres Amero, David Juan, Inna Povolotskaya, Irene Lobon, 777 

Manuel Solis Moruno, Raquel Garcia Perez, Tomas Marques-Bonet 778 

 779 

University of Barcelona: Eduardo Soriano 780 

 781 

University of California, Los Angeles: Gary Mathern 782 

 783 

University of California, San Diego: Danny Antaki, Dan Averbuj, Eric Courchesne, Joseph 784 

Gleeson, Laurel Ball, Martin Breuss, Subhojit Roy, Xiaoxu Yang 785 

 786 

University of Michigan: Diane Flasch, Trenton Frisbie, Huira Kopera, Jeffrey Kidd, John 787 

Moldovan, John V. Moran, Kenneth Kwan, Ryan Mills, Sarah Emery, Weichen Zhou, Xuefang 788 

Zhao 789 

 790 

University of Virginia: Aakrosh Ratan 791 
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 792 

Yale University: Alexandre Jourdon, Flora M. Vaccarino, Liana Fasching, Nenad Sestan, Sirisha 793 

Pochareddy, Soraya Scuderi 794 

 795 

Data availability 796 

WGS data used to generate the training set are available at the Sequence Read Archive (SRA, 797 

Accession No. SRP028833 and SRP100797). The gold standard WGS data and validated 798 

capstone project data are available at the National Institute of Mental Health Data Archive 799 

(NIMH NDA Study ID 792 and 919: https://dx.doi.org/10.15154/1504248) and the Brain 800 

Somatic Mosaicism Consortium Data Portal. Simulated data generated from NA24385 (HG002) 801 

are available at https://humanpangenome.org/hg002/. The independent sperm and blood deep 802 

WGS data are available at SRA (Accession No. PRJNA588332). 803 

Code availability 804 

DeepMosaic is implemented in Python; the code, documentation and demos are available at 805 

https://github.com/Virginiaxu/DeepMosaic. 806 
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