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ABSTRACT

Motivation: In many bioinformatics pipelines, k-mer counting is often a required step, with existing
methods focusing on optimizing time or memory usage. These methods usually produce very large
count tables explicitly representing k-mers themselves. Solutions avoiding explicit representation of
k-mers include Minimal Perfect Hash Functions (MPHFs) or Count-Min sketches. The former is
only applicable to static maps not subject to updates, while the latter suffers from potentially very
large point-query errors, making it unsuitable when counters are required to be highly accurate.
Results: We introduce Set-Min sketch, a sketching technique inspired by Count-Min sketch, for
representing associative maps, more specifically, k-mer count tables. We show that Set-Min sketch
provides a very low error rate, both in terms of the probability and the size of errors, much lower
than a Count-Min sketch of similar dimensions. On the other hand, Set-Min sketches are shown to
take up to an order of magnitude less space than MPHF-based solutions, especially for large values
of k. Space-efficiency of Set-min takes advantage of the power-law distribution of k-mer counts in
genomic datasets.
Availability: https://github.com/yhhshb/fress

Keywords Sketching · k-mers · Counts

1 Introduction

Counting k-mer occurrences in genomic sequences is a rather common task in many bioinformatics pipelines. It is
often the first step performed before a more complicated analysis, and its main applications go from read trimming [1]
to alignment-free variant calling [2, 3]. In recent years, many k-mer counting algorithms have been proposed, such as
Jellyfish[4], DSK[5] or KMC[6].

All these tools output a map associating k-mers to their counts. Such a map can require a fairly big amount of disk
space, especially when large values of k are used. For example, the KMC output for a human genome with k = 32
weights in at around 28 GB, and even when compressed, memory efficiency remains an important issue. A way to
tackle this problem is to only store counters, discarding k-mers information. This idea is supported by the fact that
in many applications, queried k-mers come from partially assembled reads or succinct representations, such as SPSS
[7, 8], or Colored de Bruijn graphs[9], that is, only k-mers present in the original data are queried for their frequencies.

The idea of storing only counter information and not k-mers is also supported by the observation that the number of
distinct k-mer counts in genomic data is relatively small. It is known that k-mer counts in genomes obey a “heavy-tail”
power-law distribution1 with a relatively large absolute value of the exponent [10, 11]. For such distributions, the
number of distinct k-mers makes a linear fraction of the data size, while the number of distinct k-mer counts is relatively

1Here we assume k to be sufficiently large, typically k > log4 L, where L is the data size.
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small. For example, for the human genome and k = 27, there are about 2.5 billions distinct k-mers but only about 8,000
distinct frequency values. This is because the majority of k-mers have a very small count: in the above example, 97%
of k-mers are unique and 99% of k-mers have a count of at most 5. Frequent k-mers often tend to have an identical
count as well, due to transposable elements: for example, k-mers specific to Alu repeats in primate genomes will likely
have the same count.

Our contribution. We propose a new probabilistic data structure that we call Set-Min sketch capable to represent
k-mer count information in small space and with small errors. The sketch guarantees that the expected cumulative error
obtained when querying all k-mers of the dataset can be bounded by εN where N is the number of all k-mers (i.e.
essentially, the size of the dataset). We provide a theoretical analysis in order to dimension the sketch according to
the desired error bound. We further present experimental results on a range of datasets illustrating the benefits of our
approach, and compare it with alternative solutions: Count-Min sketch and Minimal Perfect Hashing. Note, finally, that
Set-Min sketch is a general data structure in that it can be used to efficiently represent a mapping of k-mers to any type
of labels, provided that the number of possible labels is relatively small.

Applications. Set-Min sketch can have different use cases. In this paper, we explore the probabilistic compression
of genomic k-mer counter tables in case of large k values. Thanks to the characteristic skewed distribution of the
frequencies for large ks, a Set-Min sketch is able to provide a more space-efficient map than other representations with
low errors.

One application of Set-Min sketches, not explored here, is to act as a temporary representation while building more
complex structures based on counters. Consider, for example, the exact computation of weighted pairwise distances
between all pairs of genomes in a given set. Examples of such distances are the Bray-Curtis similarity measure, see
e.g. [12], or Weighted Jaccard similarity estimation [13]. The most naive algorithm is to first produce count tables for
each dataset and then compare them pair-wisely to produce the desired output. Instead of storing whole tables, one can
store multiple Set-Min sketches together with a presence-absence data structure, such as a Bloom filter. By doing so,
the weighted comparison computation is reduced to a single pass through the presence-absence data structure with the
counters of a given k-mer retrieved on-demand from the Set-Min sketches of the datasets in which the k-mer is found.

Another possible application is sharing counter information between different computational units in a distributed
setting. Consider, for example, a scenario where a server oversees multiple less powerful machines. All nodes have
access to the same genomic representation (say, a set of contigs), but only the server can efficiently perform k-mer
counting, while the smaller machines have the task of processing incoming data based on the counts. In this case, the
server could send a Set-Min sketch to all its subordinates.

One further feature of Set-Min sketch is its mergeability from redundant maps. A large map can be split into m
sub-maps without the restriction of having disjoint sets of keys. Even if some maps have redundant information, i.e.
share common (key,value) pairs, the Set-Min sketch built by cell-wise union of the m sketches will be equivalent to the
sketch built from the whole original map. Count-Min sketches do not have this property but instead they are mergeable
when constituent maps should be "added up". In case of redundancy, Count-Min will simply count each repeated item
multiple times. In this respect, Set-Min and Count-Min sketches may have complementary uses.

Outline of the paper. In Section 2, we start by formally introducing the relevant terminology and underlying methods.
Section 3 presents the idea and algorithmic foundations of our method. Our results are presented in Section 4 while
Section 5 discuss the limitations of our method and possible workarounds. We conclude in Section 6 with a summary of
the work.

2 Background

2.1 k-mer spectrum

A k-mer spectrum is a distribution of k-mer frequencies across all k-mers occurring in the data, showing how many
k-mers support each frequency value. For large values of k, k-mer spectra follow a power-law distribution [10, 11]
characterized by a linear-like dependence when represented in the log-log scale. That is, the k-mer frequency distribution
fits a dependence f(t) ≈ c · t−a, where a is usually greater than 2. An example of the spectrum for the human reference
genome with k equal to 32 is given in Figure 1.

According to this distribution, a very large fraction of k-mers have very low frequencies, while a few k-mers have
"unexpectedly" large frequencies. Large value of a implies that there are relatively few distinct frequency values with
non-zero support, whose number depends as the 1

a -power of the number of k-mers.

2.2 Count-Min sketch

2
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Figure 1: k-mer spectrum of the human
genome for k = 32 in the log-log scale.

Count-Min sketch is a sketching technique for memory efficient represen-
tation of high-dimensional vectors. First introduced in [14], it is especially
suitable for the streaming framework where vectors are dynamically up-
dated. A Count-Min sketch is a matrix of R×B counters. Each row i of
the matrix is associated with a hash function hi(·). At construction time,
each key is hashed using the hash functions to index one bucket in each
row, and the counter for the key is added to each of these buckets. Because
of the additive nature of the update, knowing the total counter of each key
beforehand is not required and the construction can be maintained over a
stream of keys. A query returns the minimum bucket value among the ones
associated to the given key.

In general, given a Count-Min sketch built on a vector a, withR = dln(1
δ )e

and B = d eεe for any given ε and δ, the over-estimate error of an individual
counter is bounded by ε‖a‖1 with probability at least 1− δ, where ‖a‖1
is the L1-norm of a [14]. If counts follow a power-low distribution with
parameter α > 1, B can be reduced to O(ε−1/α) to guarantee the same
bounds [15].

However, when query accuracy is at a premium, these bounds may not be sufficient. For example, ifB = Θ((‖a‖1)1/α),
then Count-Min sketches guarantees only O(1) error for point queries, with high probability. In the experimental part of
this work (Section 4), we show that when applied to the k-mer counting, the error of Count-Min may not be acceptable.

2.3 Minimal Perfect Hashing

Minimal Perfect Hash Functions (MPHFs) are hash functions associating an ordering to keys of an input set. More
precisely, given a set S of keys, a minimal perfect hash function h(·) maps each key of S into a unique index of the
interval [0, |S| − 1]. Therefore, MPFHs can represent k-mer counter tables when augmented with an accessory array A
of size |S| containing the counters.

The construction of a MPHF can be hyper-graph peeling-based [16, 17] or array-based [18]. The first family of
algorithms leads to smaller MPHFs, close to the theoretical space lower-bound of 1.44 bits per key, while array-based
MPHFs are more cache friendly and much easier conceptually despite being less memory efficient than their mainstream
counterparts. First introduced in [18], array-based MPHFs have found their way to bioinformatics applications via a
practical implementation called BBHash [19]. Albeit theoretically simpler than its inspiring method, BBHash achieves
great time-memory trade-offs and was the first implementation capable of constructing a hash function for a set of
cardinality of 1012.

Array-based construction algorithms work by repeatedly resolving collisions when hashing the keys to arrays. Each cell
of the arrays cannot contain more than one element. The index of a key is retrieved by a query to a rank/select data
structure counting the number of cells occupied before the wanted element. During construction, it is thus necessary to
save the sets of colliding keys or to re-run the construction algorithm over the entire stream of keys multiple times,
generating a new array for each layer.

Given its simplicity and its reliance on simple arrays of elements, hereafter we focus on array-based MPHFs, with
BBHash as the reference method.

3 Methods

3.1 Set-Min sketch in a nutshell

Assume we are given a set K of keys with associated values taken from a set L with |L| � |K|. In our case, K is a
set of k-mers and L the set of their frequencies, although our method will hold for any set of labels L, not necessarily
numerical. We want to compactly implement the associative map of (key,value) pairs. A Set-Min sketch is an R×B
matrix M where each bucket is treated as a set, initially empty. Similar to Count-Min sketch, rows in the matrix
correspond to hash functions hi, 0 ≤ i ≤ R− 1, that we assume pairwise independent.

At construction time, the key of each (key,value) pair (p, `) is hashed by the hash functions to retrieve its buckets and
the value ` is inserted into each set. Formally, we update M(i, hi(p)) = M(i, hi(p)) ∪ {`} for each row i. Figure 2
shows an example.
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Figure 2: Example of a Set-Min sketch with L = {`1, `2}. Two pairs (e, `1) and (f , `2) with e 6= f have been inserted
into the sketch, with e, f hashed to the same bucket at line 2.

To retrieve the value associated with a key p, we compute the intersection of the corresponding sets, that is
∩0≤i≤R−1hi(p). If the intersection is a singleton, the value is returned. If the intersection is empty, p is not present in
the map. If the intersection contains more than one value, we have a collision.

3.2 Dealing with collisions

When we have a collision, we have to decide which label to return to the query. The choice is guided by the number of
k-mers supporting each label of the intersection: the label with the smallest support is returned. The rationale for this is
that the label with the smallest support has the smallest probability to appear "by chance", as labels with larger support
belong to more buckets in the sketch and are therefore more likely to occur in the intersection by chance. Thus, the
algorithm compares spectrum values for all labels in the intersection, and returns the label with the smallest value (ties
are broken randomly). If the spectrum is monotonically decreasing (as it is usually the case for large k, see Figure 1),
then the label returned is simply the largest one among those in the intersection.

In this work we assume that only k-mers present in the dataset can be queried. In this case, a query can no longer result
in an empty intersection. We further optimize by not storing in the sketch the label `1 with the largest support. For
large k, `1 is usually 1, which is the frequency of the largest fraction of k-mers. `1 is retrieved implicitly: when the
intersection is empty, `1 is returned. This optimization allows us to save space and will be further discussed later. Note
that, with these modification, an error may occur even if the resulting intersection is a singleton but the right label is
actually `1 and not the label obtained.

3.2.1 Bounding the total error

We now show that with Set-Min sketch, we can bound the total absolute error over all k-mers present in a dataset.
Consider a sketch S built on a map assigning to each k-mer p ∈ K a value (label) `p ∈ L which is the frequency of p in
the dataset. We denote by c` the number of k-mers with frequency ` ∈ L (spectrum value).

Consider

D =
∑
p∈K
|ˆ̀p − `p| (1)

where ˆ̀
p is the label of p returned by the sketch. Our goal is to dimension R and B such that D ≤ ε‖a‖1, where ‖a‖1

is the total number of k-mers in the dataset (roughly, the dataset size) and 0 < ε ≤ 1.

Querying p returns an incorrect frequency m 6= `p iff m occurs in the intersection and cm < c`p . The probability of
this event is

(
1−

(
1− 1

B

)cm)R
≈
(

1− e−
cm
B

)R
(2)
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Figure 3: Example of collision resolution in case of multiple items occurring in the intersection. The brown label is
returned because it is more rare compared to the blue one.

and the expectation of the error when querying p is then

∑
cm<c`p
m∈L

|m− `p|
(

1− e−
cm
B

)R
. (3)

Summing up over all k-mers, we obtain

E[D] =
∑
`∈L

c`
∑
cm<c`
m∈L

|m− `|
(

1− e−
cm
B

)R
. (4)

The total number of k-mers is ‖a‖1 =
∑
`∈L `c`. Given 0 < ε ≤ 1, our goal is to choose B and R in order to ensure

∑
`∈L

c`
∑
cm<c`
m∈L

|m− `|
(

1− e−
cm
B

)R
< ε

∑
`∈L

`c`. (5)

For sufficiently large k, the spectrum is monotonically decreasing, i.e. cm < c` iff m > `. (5) then rewrites to∑
`∈L

c`
∑
m>`
m∈L

(m− `)
(

1− e−
cm
B

)R
< ε

∑
`≥1

`c`. (6)

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.11.14.382713doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.14.382713
http://creativecommons.org/licenses/by-nc-nd/4.0/


A PREPRINT - NOVEMBER 13, 2020

Assume now that the spectrum follows a power-law with large exponent, that is, c` = C · `−a for some a > 2. Note
that under this assumption, the number of unique k-mers is c1 = C, and the number of all k-mers is∑

`≥1

`c` = C ·
∑
`≥1

1

`a−1
≤ C · a− 1

a− 2
,

since ζ(s) =
∑
i≥1

1
is ≤

s
s−1 for s > 1.

We then have the following result.
Theorem 1. Given 0 < ε ≤ 1, if B > C and R, B satisfy

R · log
B

C
> log

1

ε
, (7)

then (6) holds.

The proof of Theorem 1 is given in the Appendix. The theorem allows us to dimension the Set-Min sketch. For example,
one can set B = αC for some constant α > 1 and R = logα

1
ε .

3.3 Computing tighter sketch dimensions

Theorem 1 provides a way to dimension a Set-Min sketch, provided that the spectrum follows a power-law distribution
with a sufficiently large parameter a. In order to validate these estimates experimentally, and, at the same time, obtain
a tool for computing tighter values B and R for arbitrary spectra, we implemented a simple heuristic hill climbing
algorithm to compute those values by directly solving equation 5.

The algorithm, given below, starts with R = 1 and some initial value of B and then iteratively increments R and
recomputes (4) until equation (5) holds true. In the implementation, B is initially set to 1.44× cmax, where cmax is the
largest spectrum value. After such a value of R is found, the algorithm starts decrementing R while incrementing B to
maintain the total space RB constant as long as (5) holds. The rationale for this step is to have as small R as possible in
order to reduce the query time, while maintaining the total space.

Algorithm 1 Heuristic to compute R and B

1: Input: {c`}`∈L, ‖a‖1 =
∑
`∈L `c`, ε

2: Output: R and B
3: R← 1
4: B ← 1.44× cmax
5: T ← ε‖a‖1
6: E ← E(D) (computed by (4))
7: while E > T do
8: R← R+ 1
9: E ← E(D)

10: end while
11: M ← R×B
12: while E < T do
13: R← R− 1
14: B ← dMR e
15: E ← E(D)
16: end while
17: R← R+ 1
18: B ← dMR e

4 Results

4.1 Implementation

We implemented Set-Min in a software tool named fress, available at https://github.com/yhhshb/fress. The fress
pipeline compares Set-Min with Count-Min and MPHF implementations. BBHash [19] (https://github.com/
rizkg/BBHash) is the only external library required for comparison as Count-Min is implemented within fress.
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Type Name Total k-mers [M] k Distinct k-mers [M] Distinct counts

assembled

Sakai 5.50
11 2.38 69
15 5.23 42
21 5.30 28

melanogaster 143

15 101 883
21 122 710
27 124 605
32 125 522

raimondii 727

15 251 1944
21 546 1019
27 604 699
32 632 540

GRCh38 2935

15 547 12718
21 2327 10038
27 2483 7946
32 2567 6651

unassembled

USakai 25
11 3.06 239
15 9.74 143
21 10.0 97

SRR622461_1 7500

15 676 22323
21 3635 17211
27 3734 13157
32 3703 10643

Table 1: Data-sheet for the datasets used in our study. Columns Total and Distinct k-mers report the number of all and
distinct k-mers respectively. The Distinct counts column reports the number of distinct k-mer frequencies.

Rather than storing a set in each bucket of the sketch, fress only stores an index to an array of involved sets. Note that
its purpose is to only validate the approach, and it does not include any complex optimisation, such as multi-threading
or bit-packing of the final matrix. Sorted spectra and lists of involved sets are explicitly stored in text format in order to
be human-readable and allow for an easier analysis of the results.

4.2 Data

We tested Set-Min on six data sets of different size and complexity. Four of them are fully assembled genomes:

• "Sakai" strain of Escherichia Coli, downloadable from AFproject[20],
• genome of Drosophila melanogaster from FlyBase2,
• genome of Gossypium Raimondii from AFproject,
• human reference genome assembly GRCh383.

The other two contain unassembled reads:

• Sakai strain at 5x coverage from AFproject,
• low-coverage human data SRR622461 from the 1000 Genomes Project4.

Table 1 summarizes the characteristics of each data set for each value of k in our analysis. Observe that, while the
number of distinct k-mers is comparable to the total number of k-mers (data size), the number of distinct k-mer counts
is small. This is in accordance with the power-low distribution discussed in Section 2.1.

4.3 Set-Min vs Count-Min sketch

Table 2 compares Set-Min sketch to Count-Min sketch. Sketch dimensions R and B have been calculated using
Algorithm 1 from Section 3 to insure bound (5) to hold for ε = 0.01. Dimensions of Count-Min sketch were set to be

2http://flybase.org
3ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz
4ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR622/SRR622461/SRR622461_1.fastq.gz . Only the file SRR622461_1 is used in this study

and we then omit the underscored nomenclature to simplify the notation.
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the same. To make the comparison fair, the count with the greatest number of k-mers was not inserted into Count-Min
sketch, similarly to Set-Min. Zero values are thus interpreted as the non-inserted count.

For ease of comparison, column T reports the threshold ε‖a‖1 given to Algorithm 1. Columns Es and Ec report the
actual total sum of errors for Set-Min and Count-Min, respectively. In all reported cases Es < T , as expected. The total
error of Count-Min, Ec is, most of the time, one order of magnitude larger than Es. For SRR622461 with k = 15, it
even exceeds the total number of k-mers ‖a‖1 in the dataset.

The average error of Set-Min is, in most cases, very close to 1, which suggests that the overwhelming majority of
collisions occur between successive counts. Most of them occur between counts 1 and 2, the most abundant ones in the
spectra considered here. The average error of Count-Min is bigger but of the same order of magnitude, except for small
k and unassembled datasets.

On the other hand, the fraction of k-mers producing an error is in striking contrast: in case of Set-Min, about only 1-3%
of distinct k-mers produce an error, while for Count-Min, this fraction is much larger. This shows that Count-Min
cannot be used when most of k-mer counts are expected to be retrieved precisely, for comparable sketch sizes.

Name k R B T Es Ec Ns Nc As Ac

Sakai 11 4 1.04 · 106 5.50 · 104 5.00 · 104 1.39 · 106 1.8 26 1.15 2.24
Sakai 15 5 2.13 · 105 5.50 · 104 4.66 · 104 2.38 · 105 0.9 4 1.01 1.1
Sakai 21 5 1.20 · 105 5.50 · 104 5.29 · 104 4.57 · 105 0.9 7 1.05 1.18

melanogaster 15 5 1.79 · 107 1.43 · 106 1.39 · 106 8.35 · 106 1.4 7 1 1.25
melanogaster 21 4 4.69 · 106 1.43 · 106 1.41 · 106 2.26 · 107 1.1 12 1.03 1.61
melanogaster 27 5 3.72 · 106 1.43 · 106 1.11 · 106 2.28 · 107 0.9 12 1.01 1.48
melanogaster 32 5 3.81 · 106 1.42 · 106 1.11 · 106 2.10 · 107 0.9 12 1.01 1.44

raimondii 15 4 8.36 · 107 7.27 · 106 5.65 · 106 1.50 · 108 2.1 27 1.08 2.25
raimondii 21 4 8.47 · 107 7.27 · 106 5.73 · 106 4.09 · 107 1 6 1.01 1.3
raimondii 27 4 7.14 · 107 7.27 · 106 6.49 · 106 3.56 · 107 1.1 5 1.01 1.22
raimondii 32 4 6.38 · 107 7.27 · 106 6.87 · 106 3.15 · 107 1.1 4 1.01 1.17

GRCh38 15 3 2.26 · 108 2.93 · 107 2.78 · 107 1.36 · 109 2.9 52 1.78 4.74
GRCh38 21 4 1.42 · 108 2.93 · 107 2.60 · 107 1.65 · 108 1.1 6 1.01 1.23
GRCh38 27 4 1.07 · 108 2.93 · 107 2.82 · 107 1.91 · 108 1.1 6 1.01 1.25
GRCh38 32 4 9.84 · 107 2.93 · 107 2.92 · 107 1.85 · 108 1.1 6 1.01 1.22

USakai 11 5 4.58 · 105 2.57 · 105 1.99 · 105 7.44 · 107 2.6 99 2.46 24.6
USakai 15 4 4.79 · 106 2.49 · 105 2.45 · 105 8.01 · 106 1.9 33 1.31 2.53
USakai 21 5 3.99 · 106 2.38 · 105 2.00 · 105 7.91 · 106 1.6 34 1.21 2.35

SRR622461 15 4 1.17 · 108 7.90 · 107 4.93 · 107 1.34 · 1010 3.3 96 2.2 20.68
SRR622461 21 3 2.39 · 109 7.35 · 107 7.09 · 107 5.63 · 108 1.8 9 1.11 1.68
SRR622461 27 4 1.78 · 109 6.80 · 107 4.92 · 107 4.58 · 108 1.3 8 1.04 1.53
SRR622461 32 4 1.72 · 109 6.34 · 107 4.95 · 107 4.01 · 108 1.3 7 1.03 1.48

Table 2: Set-Min compared to Count-Min. R and B are dimensions of Set-Min and Count-Min matrices. T is the
reference upper bound on the sum of errors equal to ε‖a‖1 (right-hand side of (5)). Es and Ec are the sum of errors for
Set-Min and Count-Min respectively. Ns and Nc are the percentages (rounded to integers) of the fractions of distinct
k-mers producing an error, for Set-Min and Count-Min respectively. As and Ac are respective average errors, with
average taken over the number of distinct k-mers resulting in an error in the respective sketch.

4.4 Set-Min sketch vs KMC output

Not surprisingly, Set-Min achieves better memory consumptions than KMC in all our tests (columns Mkmc and Ms of
Table 3). Values of R and B do not change from Table 2. The compression ratio is variable: from a small factor to two
orders of magnitude. The best compression is achieved for larger values of k and assembled genomes. The former is
primarily explained by the decreasing number of distinct counts, due to the power-law behaviour. As for the difference
between assembled genomes and sequencing data, we will discuss it in more details in Section 5.
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Name k Mkmc Ms Cs Mbbhash Mbball Cbball

Sakai 11 1.21 · 107 5.75 · 106 3.41 · 106 9.13 · 105 3.00 · 106 2.01 · 106

Sakai 15 3.80 · 107 1.20 · 106 5.55 · 105 2.06 · 106 5.99 · 106 2.18 · 106

Sakai 21 4.77 · 107 6.77 · 105 3.57 · 105 2.03 · 106 6.00 · 106 2.09 · 106

melanogaster 15 7.08 · 108 1.68 · 108 5.74 · 107 3.87 · 107 2.15 · 108 5.76 · 107

melanogaster 21 9.80 · 108 3.55 · 107 1.62 · 107 4.66 · 107 2.45 · 108 5.22 · 107

melanogaster 27 1.24 · 109 3.75 · 107 1.77 · 107 4.73 · 107 2.48 · 108 5.26 · 107

melanogaster 32 1.37 · 109 3.84 · 107 1.78 · 107 4.90 · 107 2.36 · 108 5.38 · 107

raimondii 15 1.76 · 109 7.54 · 108 3.34 · 108 9.59 · 107 5.98 · 108 2.11 · 108

raimondii 21 4.37 · 109 6.78 · 108 2.08 · 108 2.16 · 108 1.24 · 109 2.90 · 108

raimondii 27 6.04 · 109 5.36 · 108 1.62 · 108 2.37 · 108 1.29 · 109 2.94 · 108

raimondii 32 6.96 · 109 4.79 · 108 1.36 · 108 2.70 · 108 1.38 · 109 3.10 · 108

GRCh38 15 3.83 · 109 1.70 · 109 9.32 · 108 2.09 · 108 1.65 · 109 5.67 · 108

GRCh38 21 1.86 · 1010 1.28 · 109 3.58 · 108 9.32 · 108 6.46 · 109 1.03 · 109

GRCh38 27 2.48 · 1010 9.66 · 108 2.79 · 108 9.86 · 108 6.57 · 109 1.05 · 109

GRCh38 32 2.82 · 1010 8.38 · 108 2.50 · 108 1.08 · 109 6.54 · 109 1.12 · 109

USakai 11 1.54 · 107 1.49 · 107 7.99 · 106 1.17 · 106 4.61 · 106 3.68 · 106

USakai 15 6.95 · 107 2.87 · 107 1.54 · 107 3.72 · 106 1.35 · 107 8.34 · 106

USakai 21 8.53 · 107 3.00 · 107 1.61 · 107 3.91 · 106 1.39 · 107 8.40 · 106

SRR622461 15 4.73 · 109 2.00 · 109 1.51 · 109 2.59 · 108 2.12 · 109 8.38 · 108

SRR622461 21 2.91 · 1010 1.61 · 1010 3.66 · 109 1.48 · 109 1.10 · 1010 2.71 · 109

SRR622461 27 3.73 · 1010 1.60 · 1010 3.88 · 109 1.48 · 109 1.08 · 1010 2.66 · 109

SRR622461 32 4.07 · 1010 1.46 · 1010 3.59 · 109 1.57 · 109 1.04 · 1010 2.65 · 109

Table 3: Set-Min (ε = 0.01) compared to KMC and BBHash (γ = 1). All memory is reported in bytes. Column
Mkmc , Ms, Mbball are the memory requirements to have a fully functional map between k-mers and their frequencies
when applying KMC, Set-Min sketch and BBHash. Mbbhash is the memory of the hash function produced by BBHash
without the external array of frequencies, Cs and Cbball are the compressed versions of Ms and Mbball using gzip.

4.5 Set-Min sketch vs MPHFs

Table 3 also reports the space usage for BBHash with parameter γ = 1 to obtain the best memory-optimized hash
functions. Column Mbbhash is the space (in bytes) required by the hash function only, while Mbball is the space required
by the hash function plus the external array of frequencies.

As in the previous case, Set-Min sketch is more memory-efficient when k is large, where it takes about an order of
magnitude less memory than a MPHF. For small values of k, MPHF takes slightly less space and, being exact, may
therefore be preferable to use. However, one should keep in mind that MPHF does not support any updates of the k-mer
counter map, while a Set-Min sketch is updatable to a certain extent with new (k-mer,count) pairs, and also mergeable
with another possibly redundant map. For long-term storage through gzip compression of the sketches (columns Cs and
Cbball ) Set-Min and MPHFs give equivalent results.

The behaviour of the unassembled datasets is of particular interest. Even for large k’s, MPHF appears to be a better
choice for this type of data. The causes of this phenomenon and possible solutions are discussed in Section 5.

5 Discussion

5.1 Unassembled datasets

As seen in Table 3, for the unassembled datasets, Set-Min sketch does not seem to have an advantage in memory usage,
even for large k’s. We found that this is due to low-count k-mers, specifically to k-mers whose count does not exceed
the sequencing coverage. It is known that for Illumina sequencing, sequencing errors produce a linear growth of the
number of new distinct k-mers (for large k) depending on the coverage (see e.g. Figure 2(b) of [21]). Frequencies of
these "erroneous" k-mers do not have the same statistical behaviour as bona fide k-mers, in particular first spectrum
values do not decay at the same rate as the rest of the spectrum.
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Figure 4: Spectra for the unassembled data sets. Both plots are in log-log scale. k = 21 for USakai, k = 32 for
SRR622461.

Figure 4 shows spectra of the unassembled USakai and SRR622461 datasets. One can observe a slower decay behaviour
for a first few spectrum values. In this situation, Algorithm 1 generates a lot of rows just to make the sketch able to
distinguish, with required precision, between small frequency values.

Note that in practice, distinguishing between small frequencies is often irrelevant. For example, many read assemblers
simply discard low-frequency reads as a way to de-noise the data. In the case of Set-Min, it is possible to collapse
together the first m columns of the spectrum by assigning to all k-mers in this subset the same frequency. This would
considerably reduce the sketch size. Formally, the error guarantee (5) would not hold anymore but most of newly
introduced errors would be small (typically, equal to 1) and occur for low counts only.

To check the above, we constructed a Set-Min sketch for SRR622461 with dimensions (R,B) = (4, 3310557), merging
together the first five columns of the sorted spectrum and assigning count 5 to all merged k-mers. While the final sum
of errors was well above the theoretical limit (109 against 7 · 106), the maximum and average error were respectively 55
and 2.8. In many applications this error level could be acceptable.

5.2 Presence-absence information

As introduced in Section 3.2, in this work we assumed that only k-mers present in the dataset can be queried. This
assumption allowed us to discard the largest value of the spectrum corresponding to unique k-mers, thereby saving
more space than a complete sketch.

Set-Min sketches can seamlessly work without this assumption, but the space required for storing k-mer counters may
not be competitive to other solutions. An alternative is to build an additional data structure, specifically optimized to
answer presence/absence queries (such as a Bloom filter), as a complement to Set-Min sketches.

Another scenario occurs when working with multiple datasets of very high similarity, such as a large collection of
bacterial strains or a collection of RNA-seq data [22, 23]. In this case, it might be beneficial to build a Bloom filter for
the k-mers present in the union of the datasets, and maintain multiple Set-Min sketches to represent k-mer counts in
each dataset.

Note that Set-Min sketches can be also used for long-term storage and transmission of the k-mer composition of a
dataset augmented with count information. The k-mers of the dataset can be reassembled into simplitigs [7] with a
Set-Min sketch storing the (approximated) frequencies. The full count table can be restored from the simplitigs and the
sketch.
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6 Conclusions

We presented Set-Min sketch – a novel sketching method inspired by the Count-Min sketch. Its primary use is to
associate keys to labels without explicitly storing the former. In this paper, we demonstrated the performance of Set-Min
sketch for storing k-mer counts information, where the distribution of labels (k-mer counts) follows a power-law. Under
this assumption, we proposed simple bounds for a Set-Min sketch that guarantee the total error sum to be within an ε
fraction of the total number of k-mers in the dataset.

We showed that Set-Min sketch allows us to save space compared to the raw output of the popular KMC k-mer counting
tool when applied to labels following a skewed distribution, at the price of a very modest error rate. Memory efficiency
is particularly significant in case of whole-genome data and large values of k, where it can reach reductions of two
orders of magnitude. Set-Min has been shown to be more space efficient than the MPHF-based soluton for large values
of k. For smaller k’s, however, MPHFs provide an implementation with comparable memory consumption. Finally,
when compared to Count-Min sketches of comparable dimensions, our sketch achieves better point-query errors thanks
to the distribution-aware dimensioning performed on the k-mer spectrum, and the reliance on already computed count
tables as input.

Acknowledgements. GK was partially funded by RFBR, project 20-07-00652, and joint RFBR and JSPS project
20-51-50007.
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Supplemental Material: Set-Min sketch

Proof of Theorem 1

Our goal is to estimate ∑
`∈L

c`
∑
m>`
m∈L

(m− `)
(

1− e−
cm
B

)R
, (1)

where c` = C · `−a. We assume B > C and approximate 1− e−
cm
B ≈ cm

B = C
Bm

−a. We further lower-approximate
(1) by replacing sums by integrals, thus obtaining

∫ ∞
1

C · `−a
∫ ∞
`

(m− `)
(
C

B
m−a

)R
dmd`. (2)

Routine computation of the integral yields

C

(
C

B

)R
1

(aR− 2)(aR− 1)(aR+ a+ 3)
. (3)

The inequality of the Theorem becomes

(
C

B

)R
1

(aR− 2)(aR− 1)(aR+ a+ 3)
< ε

a− 1

a− 2
. (4)

The Theorem follows.
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Performance comparison for epsilon = 0.01

Name k R B T Es Ns As DMax
s Ec Nc Ac DMax

c

Sakai 8 7 1,020 5.50 · 104 42,059 3.00 · 100 21.56 122 2.80 · 108 1.00 · 102 4,284.98 6,129
Sakai 11 4 1,042,202 5.50 · 104 49,953 1.80 · 100 1.15 7 1.39 · 106 2.60 · 101 2.24 15
Sakai 15 5 212,522 5.50 · 104 46,619 9.00 · 10−1 1.01 2 2.38 · 105 4.00 · 100 1.1 7
Sakai 21 5 120,006 5.50 · 104 52,852 9.00 · 10−1 1.05 4 4.57 · 105 7.00 · 100 1.18 7

melanogaster 15 5 17,850,639 1.43 · 106 1.39 · 106 1.40 · 100 1 4 8.35 · 106 7.00 · 100 1.25 18
melanogaster 21 4 4,694,088 1.43 · 106 1.41 · 106 1.10 · 100 1.03 13 2.26 · 107 1.20 · 101 1.61 55
melanogaster 27 5 3,717,540 1.43 · 106 1.11 · 106 9.00 · 10−1 1.01 7 2.28 · 107 1.20 · 101 1.48 34
melanogaster 32 5 3,814,440 1.42 · 106 1.11 · 106 9.00 · 10−1 1.01 8 2.10 · 107 1.20 · 101 1.44 30

raimondii 15 4 83,575,168 7.27 · 106 5.65 · 106 2.10 · 100 1.08 11 1.50 · 108 2.70 · 101 2.25 65
raimondii 21 4 84,742,080 7.27 · 106 5.73 · 106 1.00 · 100 1.01 9 4.09 · 107 6.00 · 100 1.3 36
raimondii 27 4 71,403,946 7.27 · 106 6.49 · 106 1.10 · 100 1.01 7 3.56 · 107 5.00 · 100 1.22 32
raimondii 32 4 63,793,114 7.27 · 106 6.87 · 106 1.10 · 100 1.01 7 3.15 · 107 4.00 · 100 1.17 22

GRCh38 15 3 225,505,316 2.93 · 107 2.78 · 107 2.90 · 100 1.78 33 1.36 · 109 5.20 · 101 4.74 335
GRCh38 21 4 141,645,448 2.93 · 107 2.60 · 107 1.10 · 100 1.01 12 1.65 · 108 6.00 · 100 1.23 108
GRCh38 27 4 107,171,949 2.93 · 107 2.82 · 107 1.10 · 100 1.01 12 1.91 · 108 6.00 · 100 1.25 66
GRCh38 32 4 98,414,723 2.93 · 107 2.92 · 107 1.10 · 100 1.01 8 1.85 · 108 6.00 · 100 1.22 70

USakai 8 7 276 2.62 · 105 2.30 · 105 3.50 · 100 101.03 623 5.55 · 109 1.00 · 102 84,769.1 1.00 · 105

USakai 11 5 458,224 2.57 · 105 1.99 · 105 2.60 · 100 2.46 23 7.44 · 107 9.90 · 101 24.6 121
USakai 15 4 4,786,091 2.49 · 105 2.45 · 105 1.90 · 100 1.31 5 8.01 · 106 3.30 · 101 2.53 16
USakai 21 5 3,992,620 2.38 · 105 2.00 · 105 1.60 · 100 1.21 4 7.91 · 106 3.40 · 101 2.35 13

SRR622461 15 4 117,393,511 7.90 · 107 4.93 · 107 3.30 · 100 2.2 55 1.34 · 1010 9.60 · 101 20.68 398
SRR622461 21 3 2,385,949,540 7.35 · 107 7.09 · 107 1.80 · 100 1.11 13 5.63 · 108 9.00 · 100 1.68 74
SRR622461 27 4 1,782,384,901 6.80 · 107 4.92 · 107 1.30 · 100 1.04 6 4.58 · 108 8.00 · 100 1.53 21
SRR622461 32 4 1,719,165,525 6.34 · 107 4.95 · 107 1.30 · 100 1.03 5 4.01 · 108 7.00 · 100 1.48 18

Table 1: Full table comparing the performance of Set-Min sketch constructed for ε = 0.01 to all other variables for all possible ks. R = number of rows, B =
number of columns, T = theoretical maximum error bound, Es = sum of errors for Set-Min, Ns = total number of collisions for Set-Min, As = average point-query
error (Es/Ns), DMax

s = Maximum point-query error for Set-Min, Ec = sum of errors for Count-Min, Nc = total number of collisions for Count-Min, Ac = average
point-query error (Ec/Nc), DMax

c = Maximum point-query error for Count-Min
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Memory comparison for epsilon = 0.01

Name k R B Mkmc Ms Cs Mc Cc Mbbhash Mbball Cbball

Sakai 8 7 1,020 3.29 · 105 1.27 · 106 3.32 · 105 1.25 · 104 1.57 · 104 2.61 · 104 1.08 · 105 1.21 · 105

Sakai 11 4 1,042,202 1.21 · 107 5.75 · 106 3.41 · 106 3.65 · 106 2.96 · 106 9.13 · 105 3.00 · 106 2.01 · 106

Sakai 15 5 212,522 3.80 · 107 1.20 · 106 5.55 · 105 7.97 · 105 5.63 · 105 2.06 · 106 5.99 · 106 2.18 · 106

Sakai 21 5 120,006 4.77 · 107 6.77 · 105 3.57 · 105 4.50 · 105 3.53 · 105 2.03 · 106 6.00 · 106 2.09 · 106

melanogaster 15 5 17,850,639 7.08 · 108 1.68 · 108 5.74 · 107 1.56 · 108 5.48 · 107 3.87 · 107 2.15 · 108 5.76 · 107

melanogaster 21 4 4,694,088 9.80 · 108 3.55 · 107 1.62 · 107 3.05 · 107 1.35 · 107 4.66 · 107 2.45 · 108 5.22 · 107

melanogaster 27 5 3,717,540 1.24 · 109 3.75 · 107 1.77 · 107 3.02 · 107 1.44 · 107 4.73 · 107 2.48 · 108 5.26 · 107

melanogaster 32 5 3,814,440 1.37 · 109 3.84 · 107 1.78 · 107 2.86 · 107 1.45 · 107 4.90 · 107 2.36 · 108 5.38 · 107

raimondii 15 4 83,575,168 1.76 · 109 7.54 · 108 3.34 · 108 6.69 · 108 2.70 · 108 9.59 · 107 5.98 · 108 2.11 · 108

raimondii 21 4 84,742,080 4.37 · 109 6.78 · 108 2.08 · 108 6.36 · 108 1.94 · 108 2.16 · 108 1.24 · 109 2.90 · 108

raimondii 27 4 71,403,946 6.04 · 109 5.36 · 108 1.62 · 108 5.00 · 108 1.54 · 108 2.37 · 108 1.29 · 109 2.94 · 108

raimondii 32 4 63,793,114 6.96 · 109 4.79 · 108 1.36 · 108 4.47 · 108 1.32 · 108 2.70 · 108 1.38 · 109 3.10 · 108

GRCh38 15 3 225,505,316 3.83 · 109 1.70 · 109 9.32 · 108 1.78 · 109 6.30 · 108 2.09 · 108 1.65 · 109 5.67 · 108

GRCh38 21 4 141,645,448 1.86 · 1010 1.28 · 109 3.58 · 108 1.35 · 109 3.32 · 108 9.32 · 108 6.46 · 109 1.03 · 109

GRCh38 27 4 107,171,949 2.48 · 1010 9.66 · 108 2.79 · 108 9.65 · 108 2.56 · 108 9.86 · 108 6.57 · 109 1.05 · 109

GRCh38 32 4 98,414,723 2.82 · 1010 8.38 · 108 2.50 · 108 8.37 · 108 2.30 · 108 1.08 · 109 6.54 · 109 1.12 · 109

USakai 8 7 276 3.30 · 105 1.59 · 106 4.60 · 105 4.35 · 103 5.24 · 103 2.62 · 104 1.24 · 105 1.42 · 105

USakai 11 5 458,224 1.54 · 107 1.49 · 107 7.99 · 106 2.86 · 106 3.05 · 106 1.17 · 106 4.61 · 106 3.68 · 106

USakai 15 4 4,786,091 6.95 · 107 2.87 · 107 1.54 · 107 1.91 · 107 1.39 · 107 3.72 · 106 1.35 · 107 8.34 · 106

USakai 21 5 3,992,620 8.53 · 107 3.00 · 107 1.61 · 107 2.00 · 107 1.48 · 107 3.91 · 106 1.39 · 107 8.40 · 106

SRR622461 15 4 117,393,511 4.73 · 109 2.00 · 109 1.51 · 109 1.29 · 109 6.55 · 108 2.59 · 108 2.12 · 109 8.38 · 108

SRR622461 21 3 2,385,949,540 2.91 · 1010 1.61 · 1010 3.66 · 109 1.88 · 1010 3.59 · 109 1.48 · 109 1.10 · 1010 2.71 · 109

SRR622461 27 4 1,782,384,901 3.73 · 1010 1.60 · 1010 3.88 · 109 1.78 · 1010 3.89 · 109 1.48 · 109 1.08 · 1010 2.66 · 109

SRR622461 32 4 1,719,165,525 4.07 · 1010 1.46 · 1010 3.59 · 109 1.63 · 1010 3.65 · 109 1.57 · 109 1.04 · 1010 2.65 · 109

Table 2: Full table comparing the memory of Set-Min sketch constructed for ε = 0.01 to all other variables for all possible ks. R = number of rows, B = number of
columns, Mkmc , Ms = size of Set-Min sketch in bytes, Cs = compressed Set-Min sketch size, Mc = size of Count-Min sketch in bytes, Cc = compressed size of
Count-Min sketch, Mbbhash = size of the MPHF generated by BBHash without the external array, Mbball = total memory for BBHash taking into account the external
array, Cbball = compressed size of Mbball
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Performance comparison for epsilon = 0.001

Name k R B T Es Ns As DMax
s Ec Nc Ac DMax

c

Sakai 8 8 1,227 5.50 · 103 4,921 4.00 · 10−1 21.03 76 2.24 · 108 1.00 · 102 3,429.11 4,933
Sakai 11 6 1,111,682 5.50 · 103 5,332 2.00 · 10−1 1.05 3 4.78 · 105 1.10 · 101 1.85 13
Sakai 15 8 189,752 5.50 · 103 5,405 1.00 · 10−1 1 1 60,364 1.00 · 100 1.05 4
Sakai 21 9 95,243 5.50 · 103 5,142 1.00 · 10−1 1.01 2 1.69 · 105 3.00 · 100 1.07 5

melanogaster 15 6 24,792,555 1.43 · 105 1.32 · 105 1.00 · 10−1 1 2 1.20 · 106 1.00 · 100 1.18 10
melanogaster 21 8 3,352,920 1.43 · 105 1.27 · 105 1.00 · 10−1 1 4 9.23 · 106 6.00 · 100 1.23 19
melanogaster 27 8 3,319,232 1.43 · 105 1.29 · 105 1.00 · 10−1 1 3 8.68 · 106 6.00 · 100 1.21 19
melanogaster 32 8 3,405,750 1.42 · 105 1.30 · 105 1.00 · 10−1 1 3 7.83 · 106 5.00 · 100 1.19 17

raimondii 15 6 89,146,846 7.27 · 105 6.71 · 105 3.00 · 10−1 1.02 5 4.99 · 107 1.10 · 101 1.77 24
raimondii 21 7 69,177,208 7.27 · 105 6.07 · 105 1.00 · 10−1 1 3 1.12 · 107 2.00 · 100 1.15 11
raimondii 27 7 58,288,935 7.27 · 105 6.94 · 105 1.00 · 10−1 1 3 8.89 · 106 1.00 · 100 1.11 9
raimondii 32 8 45,566,510 7.27 · 105 6.41 · 105 1.00 · 10−1 1 2 7.73 · 106 1.00 · 100 1.08 7

GRCh38 15 6 157,853,721 2.93 · 106 2.45 · 106 4.00 · 10−1 1.24 9 1.18 · 109 5.50 · 101 3.95 58
GRCh38 21 7 115,628,937 2.93 · 106 2.77 · 106 1.00 · 10−1 1 3 4.42 · 107 2.00 · 100 1.09 14
GRCh38 27 8 76,551,392 2.93 · 106 2.59 · 106 1.00 · 10−1 1 2 5.81 · 107 2.00 · 100 1.08 13
GRCh38 32 8 70,296,231 2.93 · 106 2.69 · 106 1.00 · 10−1 1 2 5.46 · 107 2.00 · 100 1.07 10

USakai 8 10 236 2.62 · 104 28,302 5.00 · 10−1 88.72 325 6.48 · 109 1.00 · 102 98,860.29 1.17 · 105

USakai 11 6 610,965 2.57 · 104 18,949 3.00 · 10−1 2.12 14 4.18 · 107 9.40 · 101 14.58 81
USakai 15 6 5,105,164 2.49 · 104 23,817 2.00 · 10−1 1.19 4 3.15 · 106 1.50 · 101 2.1 11
USakai 21 7 4,562,994 2.38 · 104 19,817 2.00 · 10−1 1.12 3 2.88 · 106 1.50 · 101 1.96 11

SRR622461 15 5 140,872,213 7.90 · 106 7.38 · 106 6.00 · 10−1 1.69 28 8.27 · 109 9.00 · 101 13.66 231

Table 3: Full table comparing the performance of Set-Min sketch constructed for ε = 0.001 to all other variables for all possible ks. R = number of rows, B =
number of columns, T = theoretical maximum error bound, Es = sum of errors for Set-Min, Ns = total number of collisions for Set-Min, As = average point-query
error (Es/Ns), DMax

s = Maximum point-query error for Set-Min, Ec = sum of errors for Count-Min, Nc = total number of collisions for Count-Min, Ac = average
point-query error (Ec/Nc), DMax

c = Maximum point-query error for Count-Min
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Memory comparison for epsilon = 0.01

Name k R B Mkmc Ms Cs Mc Cc Mbbhash Mbball Cbball

Sakai 8 8 1,227 3.29 · 105 1.49 · 106 4.08 · 105 1.72 · 104 2.11 · 104 2.61 · 104 1.08 · 105 1.21 · 105

Sakai 11 6 1,111,682 1.21 · 107 1.00 · 107 5.44 · 106 5.84 · 106 4.63 · 106 9.13 · 105 3.00 · 106 2.01 · 106

Sakai 15 8 189,752 3.80 · 107 1.71 · 106 8.23 · 105 1.14 · 106 8.41 · 105 2.06 · 106 5.99 · 106 2.18 · 106

Sakai 21 9 95,243 4.77 · 107 9.67 · 105 5.65 · 105 6.43 · 105 5.49 · 105 2.03 · 106 6.00 · 106 2.09 · 106

melanogaster 15 6 24,792,555 7.08 · 108 2.79 · 108 8.14 · 107 2.60 · 108 7.88 · 107 3.87 · 107 2.15 · 108 5.76 · 107

melanogaster 21 8 3,352,920 9.80 · 108 5.42 · 107 2.77 · 107 4.36 · 107 2.21 · 107 4.66 · 107 2.45 · 108 5.22 · 107

melanogaster 27 8 3,319,232 1.24 · 109 5.36 · 107 2.67 · 107 4.32 · 107 2.15 · 107 4.73 · 107 2.48 · 108 5.26 · 107

melanogaster 32 8 3,405,750 1.37 · 109 5.49 · 107 2.66 · 107 4.09 · 107 2.16 · 107 4.90 · 107 2.36 · 108 5.38 · 107

raimondii 15 6 89,146,846 1.76 · 109 1.27 · 109 5.18 · 108 1.07 · 109 4.22 · 108 9.59 · 107 5.98 · 108 2.11 · 108

raimondii 21 7 69,177,208 4.37 · 109 1.03 · 109 3.30 · 108 9.08 · 108 3.04 · 108 2.16 · 108 1.24 · 109 2.90 · 108

raimondii 27 7 58,288,935 6.04 · 109 8.16 · 108 2.55 · 108 7.14 · 108 2.42 · 108 2.37 · 108 1.29 · 109 2.94 · 108

raimondii 32 8 45,566,510 6.96 · 109 6.84 · 108 2.28 · 108 6.38 · 108 2.19 · 108 2.70 · 108 1.38 · 109 3.10 · 108

GRCh38 15 6 157,853,721 3.83 · 109 2.51 · 109 1.59 · 109 2.49 · 109 9.64 · 108 2.09 · 108 1.65 · 109 5.67 · 108

GRCh38 21 7 115,628,937 1.86 · 1010 1.82 · 109 5.74 · 108 1.92 · 109 5.21 · 108 9.32 · 108 6.46 · 109 1.03 · 109

GRCh38 27 8 76,551,392 2.48 · 1010 1.46 · 109 4.75 · 108 1.38 · 109 4.25 · 108 9.86 · 108 6.57 · 109 1.05 · 109

GRCh38 32 8 70,296,231 2.82 · 1010 1.27 · 109 4.25 · 108 1.20 · 109 3.83 · 108 1.08 · 109 6.54 · 109 1.12 · 109

USakai 8 10 236 3.30 · 105 2.21 · 106 6.17 · 105 5.31 · 103 6.38 · 103 2.62 · 104 1.24 · 105 1.42 · 105

USakai 11 6 610,965 1.54 · 107 1.59 · 107 1.07 · 107 4.12 · 106 4.66 · 106 1.17 · 106 4.61 · 106 3.68 · 106

USakai 15 6 5,105,164 6.95 · 107 4.98 · 107 2.41 · 107 3.06 · 107 2.18 · 107 3.72 · 106 1.35 · 107 8.34 · 106

USakai 21 7 4,562,994 8.53 · 107 4.79 · 107 2.48 · 107 3.19 · 107 2.29 · 107 3.91 · 106 1.39 · 107 8.40 · 106

SRR622461 15 5 140,872,213 4.73 · 109 2.65 · 109 2.08 · 109 1.94 · 109 9.50 · 108 2.59 · 108 2.12 · 109 8.38 · 108

Table 4: Full table comparing the memory of Set-Min sketch constructed for ε = 0.001 to all other variables for all possible ks. R = number of rows, B = number of
columns, Mkmc , Ms = size of Set-Min sketch in bytes, Cs = compressed Set-Min sketch size, Mc = size of Count-Min sketch in bytes, Cc = compressed size of
Count-Min sketch, Mbbhash = size of the MPHF generated by BBHash without the external array, Mbball = total memory for BBHash taking into account the external
array, Cbball = compressed size of Mbball

5

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

available under a
(w

hich w
as not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade 

T
he copyright holder for this preprint

this version posted N
ovem

ber 16, 2020. 
; 

https://doi.org/10.1101/2020.11.14.382713
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/2020.11.14.382713
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Background
	k-mer spectrum
	Count-Min sketch
	Minimal Perfect Hashing

	Methods
	Set-Min sketch in a nutshell
	Dealing with collisions
	Bounding the total error

	Computing tighter sketch dimensions

	Results
	Implementation
	Data
	Set-Min vs Count-Min sketch
	Set-Min sketch vs KMC output
	Set-Min sketch vs MPHFs

	Discussion
	Unassembled datasets
	Presence-absence information

	Conclusions

