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Abstract

Motivation: Recent advances in single cell transcriptomics have allowed us to examine the identity
of single cells, which has led to the discovery of new cell types and high resolution maps of cell type
composition in tissues. Technologies that measure multiple modalities of single cell data provide a more
comprehensive picture of a cell, but they also create challenges for data integration tasks.
Results: In our work, we jointly consider the spatial location and gene expression profiles of cells to
determine their identity. Specifically, we have developed scHybridNMF (single-cell Hybrid Nonnegative
Matrix Factorization), which performs cell type identification by incorporating single cell gene expression
data with cell location data. We combined nonnegative matrix factorization (NMF) with k-means clustering
to cohesively represent high-dimensional gene expression data and low-dimensional location data,
respectively. We show that scHybridNMF can utilize location data to improve cell type clustering. In
particular, we show that under multiple scenarios, including the cases where there is a small number of
genes profiled and the location data is noisy, scHybridNMF outperforms sparse NMF, k-means, and an
existing method (HMRF) that also uses cell location and gene expression data for cell type identification.
Availability: https://github.com/soobleck/scHybridNMF
Contact: hpark@cc.gatech.edu, xiuwei.zhang@gatech.edu

1 Introduction
Advances in single cell RNA-Sequencing (scRNA-Seq) technology have
provided an unprecedented opportunity for researchers to study the identity
and mechanisms of single cells (Morris, 2019). While scRNA-Seq data is
a major type of data used to study single cells, it cannot fully determine
the identity of a cell (McKinley et al., 2020). As such, it is important
to consider other modalities such as chromatin accessibility (Cusanovich
et al., 2015), protein abundance (Peterson et al., 2017), and spatial
locations (Ståhl et al., 2016; Wang et al., 2018) of single cells.

With the availability of these data, we have entered the era of multi-
modal single-cell -omics, and effective computational methods are crucial
in integrating multi-modal data to learn a comprehensive picture of inter-
and intra-cell processes (Efremova and Teichmann, 2020; Stuart and
Satija, 2019). Spatial location data can provide important information
on the cells’ micro-environment and allow researchers to study cell-cell
interactions (Mayr et al., 2019). This is because cells at nearby locations
tend to form the same cell type – daughter cells tend to keep the same cell
type and similar location as their mother cell.

Considering both the gene expression and location data can lead to
more accurate cell type identification. Technologies that measure the

location and gene expression of the same set of cells often have to comprise
on the number of genes measured (Zhu et al., 2018). Clustering cells using
smaller gene expression profiles can be inaccurate, so incorporating the cell
location data can improve its accuracy. However, reconciling single cell
gene expression and location data for cell type identification is challenging
because different data types can have differing scales, distributions, and
types of noise (Efremova and Teichmann, 2020).

We introduce a matrix low-rank approximation scheme, scHybridNMF
(single-cell Hybrid NMF), to perform cell clustering by jointly processing
2-dimensional cell location and gene expression data. Previously, Zhu
et al developed a HMRF (Hidden Markov Random Field) model and
showed that the spatial location of cells can contribute to cell type
identification (Zhu et al., 2018). We, however, use a matrix low-
rank approximation scheme because of the ease of preserving data
characteristics through constraints and optimization terms. Crafting a
loss-based minimization objective that bakes in these data characteristics
maximally utilizes this information to jointly-cluster cells. We combined
nonnegative matrix factorization with a k-means clustering scheme to
cohesively represent high-dimensional gene expression data and low-
dimensional location data, respectively.

Such joint-clustering methods based on matrix low-rank approximation
have been used in other contexts, such as document clustering (Du et al.,
2019) and . Additionally, promising NMF models have been developed
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for cell type identification for data ranging from just scRNA-Seq data
to encompassing multiple modalities (Duren et al., 2018; Jin et al.,
2020; Kotliar et al., 2019; Shao and Höfer, 2017; Welch et al., 2019).
However, none of these methods incorporate cell locations. We compare
our scHybridNMF model with both the standalone NMF and the k-
means methods, as well as the HMRF method which uses spatial location
information. We show that scHybridNMF is particularly advantageous in
two application scenarios: to use when the number of genes with gene
expression data is small, or and when the location data is noisy.

2 Methods
Matrix low-rank approximations assume that a matrix can be well-
approximated as a product of lower-rank matrices. Many biological
clustering frameworks are designed as matrix low-rank approximation
schemes because they can easily incorporate prior biological knowledge
and data constraints. Likewise, we formulate our multimodal clustering
algorithm as a combination of multiple low-rank approximations. This
formulation is designed to guide the gene expression-based clustering of
cells with cell location clusters.

2.1 Review of Sparse NMF and K-Means Clustering

As part of our design, we incorporate sparse NMF and k-means clustering
for incorporating gene expression and cell location data. We chose
these methods because they can easily be formulated as matrix low-rank
approximations, and creating an objective that incorporates both of these
methods is intuitive. Additionally, the individual characteristics of each
method strongly match the characteristic we wish to preserve in the data.

K-means clustering is an unsupervised learning algorithm that clusters
data points by comparing pairwise distances, usually determined by the
Euclidean distance metric. This metric naturally pairs with location-based
data because it determines the similarity between points by how physically
close they are. The matrix formulation for a Euclidean distance-based
k-means objective for clustering L ∈ R2×n is below.

min
HL∈{0,1}k×n

HT
L1k=1n

‖L−WLHL‖2F (1)

1k and 1n are k-length and n-length vectors of all ones, respectively.
The columns ofWL ∈ R2×k contain k cluster centroids, and the columns
ofHL ∈ Rk×n contain membership information for each data point. If a
point i belongs to a cluster j, HL(i, j) = 1 and 0 for other clusters. The
constraints preserve the hard-clustering quality of HL, as each data point
can only belong to one cluster, which is equivalent to having one 1 per
column ofHL. Additionally, k-means clustering does not require any pre-
processing on location data. Pre-processing input data may remove many
of the underlying characteristics of the location data. As such, k-means
clustering is a good fit for our two-dimensional location data.

NMF is a dimension reduction algorithm that is well-suited for high-
dimensional data. It computes two nonnegative factors, HA and WA of
a specified reduced dimension size p, of the nonnegative input matrix
A ∈ R+

m×n. p is generally much smaller than m and n. The columns
of WA ∈ R+

m×p contain p cluster representatives, and the columns of
HA ∈ R+

p×n contain the cluster membership information for each data
point.

Sparse NMF, in particular, constrains the sparsity in each column of
HA to make it more suitable for hard-clustering (Kim and Park, 2007). It
converts NMF, which can be interpreted as a soft-clustering method, into
more of a hard-clustering method – a data point will have fewer nonzero
entries in the cluster membership matrix, and therefore be represented by
fewer cluster representatives. The results of sparse NMF may be interpreted

as a hard clustering if we assign each data point to its respective maximal
element in its column of HA. For example, if the largest element in the
first column of HA is in the second entry, we can interpret the first data
point as belonging to the second cluster.

Below is the formulation for sparse NMF. The first term is the objective
term for plain NMF factorization, which minimizes the difference between
A andWAHA. SinceHA from NMF is not unique, we force the columns
of WA to have unit norm by normalizing the columns of the computed
WA and accordingly multiplying HA by the reciprocal of the norm. The
final term constrains the sparsity in each column of HA, and the second
term limits the size of the elements inWA. This is to prevent the case that
each element in HA is minimized (and elements in WA are maximized)
while keeping a full sparsity pattern.

min
{WA,HA}≥0

‖A−WAHA‖2F+β||WA||2F+γ
n∑
i=1

||HA(:, i)||2F (2)

2.2 Multimodal Objective

Let A ∈ R+
m×n denote the gene expression matrix and L ∈ R2×n

denote the two-dimensional cell location coordinates, where m is the
number of genes and n is the number of cells. To combine information
about gene expression and spatial location, we computeWA andHA from
sparse NMF and WL and HL from k-means clustering. To combine the
clustering information from k-means clustering and NMF, we set k = p,
which allows for a direct comparison between the two data. Additionally,
we convert the HL into a matrix of confidence scores, ĤL, to add
consideration to how close each cell is to their cluster boundaries. We
find the closest two cluster centroids, b1 and b2, to each cell i, then assign
values to entries in ĤL as in Eqn. (3). All other entries of ĤL are zero.

ĤL(bj , i) =
‖WL(:, bj)− L(:, i)‖2∑2

j′=1

∥∥WL(:, bj′ )− L(:, i)
∥∥
2

, j ∈ [1, 2] (3)

As such, we compareHA with ĤL, and not withHL directly. We use the
following objective function for multimodal clustering:

g(WA, HA) = ‖A−WAHA‖2F + α
∥∥∥HA −HA ◦ ĤL∥∥∥2

F

+δ||WA||2F + ζ

n∑
i=1

||HA(:, i)||2F ,
(4)

where ◦ represents the element-wise product between two matrices.
Every term but the second term in Eqn. (4) is from the sparse NMF objective
in Eqn. (2). The second term combines NMF and k-means clustering
results. Instead of forcing HA and ĤL to be similar overall, the second
term forcesHA and ĤL to be similar in terms of cluster memberships. In
other words, we want the location of the largest element in each column
of HA and the location of the two nonzero elements in the corresponding
column of ĤL to match as much as possible.

The main focus of this work is to use cell location information to aid
the gene expression-based clustering of cells. Because we are specifically
adapting our gene clusters to incorporate location cluster information, our
design seeks to align the cluster membership matrices found in both k-
means and NMF while still considering the accuracy of the gene expression
clustering. Because our method incorporates the predetermined location-
based clusters, it would not make sense to add location clustering in the
objective. That is why ĤL, but not the k-means objective, is in Eqn. (4).

2.3 Proposed Algorithm

We devise scHybridNMF to minimize Eqn. (4) using a consensus
clustering on the clusters determined by sparse NMF on A and k-means
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Hybrid clustering for single cells using NMF and k-means 3

on L. We set initial location cluster centroids for k-means clustering by
computing the hard-cluster memberships of each cell in HA, then taking
the mean of their locations. By design, there will be k different cluster
centroids.

The crux of our algorithm is in the block coordinate descent for
computingHA andWA. These two terms are computed via an alternating
nonnegative least squares (ANLS) formulation. We isolate the terms that
involve HA and WA in Eqn. (4) to formulate the inputs into ANLS.

To solve for HA, we only need to combine the first and second terms
in Eqn. (4). Given that the second term involvesHA twice, we reformulate
the second term as follows:∥∥∥HA −HA ◦ ĤL∥∥∥2

F
=
∥∥∥HA ◦ 1k×n −HA ◦ ĤL∥∥∥2

F
= ‖HA ◦ C‖2F ,

(5)
where C = 1k×n − ĤL and 1k×n the k × n matrix of all ones. We
can represent an element-wise product in a block-ANLS formulation by
computing the formulation column-by-column. Therefore, the new update
rule for the first and second terms of Eqn. (4) is as follows:

HA(:, i)←

argmin
HA(:,i)≥0

∥∥∥∥∥∥∥
 WA√

α ∗ diag(C(:, i))√
ζ1Tk

HA(:, i)−

A(:, i)0k
0


∥∥∥∥∥∥∥
2

F

, (6)

where i ∈ {1, . . . , k}, 1k is a k-length vector of all ones, and 0k
is a k-length vector of all zeros. Each column in HA is element-wise
multiplied to each column in C in Eqn. (5), which can be represented as
a left-multiplication of the column of HA by a matrix whose diagonal
entries are the corresponding column of C.

To solve for WA, we transposed the first and third terms in Eqn. (4):

WA ← argmin
WA≥0

∥∥∥∥∥
(

(HA)
T

√
δ1k×k

)
WT
A −

(
AT

0k

)∥∥∥∥∥
2

F

, (7)

where 1k×k is a k-by-k matrix of all ones. The overall algorithm
is described in Algorithm 1. There exist many stopping criteria that can
ensure the proper convergence of our algorithm. We used the projected
gradient, as used in SymNMF, to be the stopping criterion of scHybridNMF
(Kuang et al., 2015).

Algorithm 1: scHybridNMF: an algorithm to minimize Eqn. (4)

Input : gene expression matrix A ∈ Rm×n+ , cell location matrix
L ∈ R2×n, number of clusters k.

Compute WA, HA using Eqn. (2);
Compute initial location centroids using HA cluster labels;
Compute WL, HL using Eqn. (1) and initial computed centroids;
Compute ĤL using Eqn. (3);
C = 1k×n − ĤL;
while convergence criterion has not been met do

for i = 1, . . . , n do
Compute HA(:, i) using Eqn. (6);

Compute WA using Eqn. (7);
Output: WA and HA.

2.4 Convergence of Algorithm

We use a block coordinate descent (BCD) framework to optimize our
objective function for clustering multimodal data. BCD solves subgroups
of problems for each variable of interest, which iteratively minimizes the
total objective function. Our objective aims to iteratively improve WA

andHA, which defines a two block coordinate descent framework. These

comprise the minimization version of the two-block Gauss-Seidel method,
which assigns H(j) and W (j) values that minimize a shared objective
function, Eqn. (4), one-at-a-time.

An important theorem regarding general block Gauss-Seidel methods
states that if a continuously differentiable function over a set of closed
convex sets is minimized by block coordinate descent, every solution that
uniquely minimizes the function in block coordinate descent is a stationary
point (Bertsekas et al., 1997). This theorem has the additional property that
the uniqueness of the minimum is not necessary for a two-block Gauss-
Seidel nonlinear minimization scheme (Grippo and Sciandrone, 2000).
This was used to show that a two-block formulation for solving plain NMF
via alternating least squares guarantees convergence (Kim et al., 2014).

Given the constrained nonlinear minimization objective in Eqn. (4),
we can rewrite the block coordinate descent as two ANLS formulations,
which follow from Eqns. (6) and (7):

HA(:, i)
(j) ←

argmin
HA(:,i)≥0

∥∥∥∥∥∥∥
 W

(j−1)
A√

α ∗ diag(C(:, i))√
ζ1Tk

HA(:, i)−

A(:, i)0k
0


∥∥∥∥∥∥∥
2

F

,

(8a)

W
(j)
A ← argmin

WA≥0

∥∥∥∥∥∥
(H(j)

A

)T
√
δ1k×k

WT
A −

(
AT

0k

)∥∥∥∥∥∥
2

F

, (8b)

Eqns. (8a) and (8b) are executed consecutively to solve for HA and
WA. We consider Eqn. (8a) to be one block calculation because the
calculations for each individual column are independent of each other.
In other words, the calculation of a column of H(j)

A does not involve any

other column of H(j)
A . We are then able to apply this theorem because

Eqns. (8a) and (8b) constitute a valid minimization scheme equivalent
to minimizing Eqn. (4). As such, we get the following property, which
guarantees the convergence of our algorithm:

Theorem 1. Every limit point {W (j)
A , H

(j)
A } calculated iteratively via

Eqns. (8a) and (8b) is a stationary point of Eqn. (4).

3 Results
To prove the robustness of our algorithm, we tested it against simulated
and real data. For real data, we tested the performance of our algorithm
on the seqFISH dataset, which catalogues a mouse brain cortex. In both
cases, we compare against HMRF, an existing method that also performs
consensus cell clustering on gene expression and cell location data.

3.1 Simulated Data

We use SymSim (Zhang et al., 2019) to simulate single cell gene expression
data where cells are from six cell types. Each dataset has 1600 cells and
600 genes. The number of genes is set to reflect the relatively low number
of genes profiled in some spatially-resolved single cell gene expression
datasets.

We simulate the location data for the cells in a 2-d space such that
cells belonging in the same cell type are closely located in the 2-d location
space. This procedure mimics the cell division process in a tissue. First, in
the 2-d space, we choose a starting location for the earliest cell in each cell
type. Then, for each cell type, a new cell is added in the following fashion:
we randomly choose an existing cell of the same type to be its parent, and
place the new cell next to the parent cell. If there is no available position
next to the parent cell, then the new cell is put in a random empty position.
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We consider different scenarios for the cell location data depending on
how well the clusters are separated in the space. We denote clusters that
are well separated as w-separated, and clusters that are not well separated
as n-separated. For each of these scenarios, we generate location data with
and without noise. In noisy data, cells from different cell types are mixed in
the location space, and in data without noise, cells in the same cell type are
all located together. We obtain the noisy location data from location data
without noise by randomly choosing a percentage of cells and assigning
them locations which are not in the main region of their original cell type.
This is to more accurately emulate real-life data. Fig. 1 shows examples of
these cases, where the case of n-separated with noise (as shown in Fig. 1d)
is closest to real-life data.
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(a) w-separated, no noise
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(b) w-separated, 20% noise
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(c) n-separated, no noise
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(d) n-separated, 20% noise

Fig. 1. An example of noise in location data. The data had σ = 0.3 and 20% noise in
location. In each plot, there are six point colors that correspond to the colorized true cluster
labels. (a) and (b) share the same ground truth w-separated cluster labels, and (c) and (d)
share the same ground truth n-separated cluster labels.

SymSim has a parameter σ (sigma) which adjusts the within-cluster
heterogeneity. When σ increases, the gene expression-based clusters are
less separable. In our experiments we test the performance of our algorithm
with varying σ. The hypothesis is that when σ increases the data is more
difficult for clustering algorithms using the gene expression alone, and we
should gain more improvement through integrating location data.

In our tests, we use different values for σ to generate single cell gene
expression data. For each parameter setting, 10 datesets are generated.
To test on datasets where even less genes are measured, we randomly
sample 50% of the genes from the original gene expression datasets
to get a total of 300 genes. In total, we tested against noisy location
data, which are w-separated and n-separated, paired with gene expression
data with and without sampling. For w-separated location data, we use
σ = {0.4, 0.5, 0.6, 0.7}, and for n-separated location data, we use
σ = {0.3, 0.4, 0.5, 0.6}. We are using lower σ for n-separated data
because we wanted to analyze the performance of our algorithm on cases
where gene expression data may be much more useful than location data
in determining cell identity. This is a boundary case that showcases the
ability of our algorithm to balance the influence of cell locations to the
consensus clustering.

All of the parameters in Eqns. (2) and (4) have an impact on the results,
and we provide analytical forms for setting them. We keep β and δ equal

and constant, at β = δ =
mean(A)∗m
‖A‖2

F

. We also keep γ = n
‖A‖2

F

.

To balance the influence of the HA sparsity term with respect to the
rest of Eqn. (4), we set ζ = γ ∗ mean(A) =

mean(A)∗n
‖A‖2

F

. Finally, we

determined α = c

(
‖A‖2F

‖HA−HA◦HL‖2F

)
, where c is a user-input term

whose recommended range is between 0 and 10. In our experiments,
we use the same c-values for data with and without sampling. For w-
separated data, we use c = [3.5, 4, 4.5, 7.5], and for n-separated data,
we use c = [1.5, 4, 3.5, 4]. Note that HL is calculated from k-means
clustering directly (and is not ĤL). We used this formulation for α
because it normalises the second term by its worst possible value for
‖HA −HA ◦HL‖2F (as per Thm. 1, every iteration improves this norm
difference). It also accounts for the normalising term ‖A‖2F for the first
term.

We compared the quality of clusters determined by gene expression
clustering, cell location clustering, and hybrid clustering of both data. The
methods we used for gene expression clustering were sparse NMF and PCA
plus k-means clustering, which provides a baseline for the performance of
sparse NMF – in cases of higher sigma values, a poor performance from
PCA plus k-means clustering justifies the lower performance of sparse
NMF. For location-based clustering, we just used k-means clustering.
To cluster the combination of the two data, we used scHybridNMF and
HMRF, one of the only published algorithms that also performs a consensus
clustering of the two data.

As an example, Fig. 2 shows the tSNE plots, which visualize high-
dimensional data, of the gene expression data clusters produced by
NMF, scHybridNMF, and the ground truth labels. This shows that our
method improves the performance of cell clustering of the gene expression
immensely.

To quantitatively evaluate the performance of scHybridNMF on our
data, we calculated the adjusted Rand index (ARI) between the calculated
clusters and the ground truth clusters for each set of experiments. In this
context, ARI quantifies how similar two clusterings are to each other while
correcting for chance. If the ARI of a clustering is very similar to the
ground truth clustering, the ARI value should be close to 1. To ensure that
there was an even comparison between sparse NMF, k-means clustering,
and scHybridNMF, we calculated the sparse NMF and k-means clustering
ARIs for the clusters that were used as steps 1 and 2 in Algorithm 1.

(a) sparse NMF (b) scHybridNMF

(c) Ground truth

Fig. 2. An example of NMF vs scHybridNMF vs ground truth clusters for gene expression.
The data had σ = 0.3, 30% of the genes sampled, 20% noise in location, and w-separated
location data. In each plot, there are six point colors that correspond to the six cluster labels.

.license
CC-BY-NC-ND 4.0 Internationalpeer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a

The copyright holder for this preprint (which was not certified bythis version posted February 15, 2021. ; https://doi.org/10.1101/2020.11.15.383281doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.15.383281
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


picture(0,0)(-35,0)(1,0)30 (0,35)(0,-1)30 picture picture(0,0)(35,0)(-1,0)30 (0,35)(0,-1)30 picture

“output” — 2021/2/15 — page 5 — #5

picture(0,0)(-35,0)(1,0)30 (0,-35)(0,1)30 picture picture(0,0)(35,0)(-1,0)30 (0,-35)(0,1)30 picture

Hybrid clustering for single cells using NMF and k-means 5

3.1.1 Experiment 1: All Genes, Noisy Location Data
We consider the case where there is noise in the location data, but no gene
sampling. A dataset with many genes tests how well scHybridNMF can
discern between important differences in gene expression to determine
cell type. We used different amounts of noise for different data, with w-
separated data having 20% and 30% noise and n-separated data having 10%
and 20% noise. This is to account for the inherent ease in location-based
clustering for well-separated data in contrast to not well-separated data. For
each location data with no noise, we generated 10 noisy location datasets
and calculated the average ARI over 100 location-gene expression pairs,
which accounts for each σ and noise percentage. For HMRF, we sampled
4 matrices from each σ value (2 for each location noise percentage) and
averaged the performance of HMRF across 3 values (25, 50, 75) for a
parameter that account for smoothness. We plotted the average values as
a function of σ in Figs. 3 and 4.

0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
d

ju
s
te

d
 R

a
n

d
 I

n
d

e
x

scHybridNMF

HMRF

k-means

sparse NMF

PCA + k-means

(a) 20% noise

0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
d

ju
s
te

d
 R

a
n

d
 I

n
d

e
x

scHybridNMF

HMRF

k-means

sparse NMF

PCA + k-means

(b) 30% noise

Fig. 3. Using all genes with noisy data on w-separated data.
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Fig. 4. Using all genes with noisy data on n-separated data.

In Figs. 3 and 4, our algorithm had higher ARI values than every
other case. This is especially relevant in Figs. 3, where the performance
of k-means clustering often outperforms all of the purely gene expression-
based methods. Improving over cases where k-means performs well shows
that our algorithm can balance gene expression and spatial location when
location data is heavily favored. Even with the decreasing performance
of the k-means clustering results, scHybridNMF improves tremendously
over sparse NMF. This is especially evident in Fig. 3, where scHybridNMF
achieves a much higher performance than both sparse NMF and k-means,
indicating that scHybridNMF is able to gather useful information from
both standalone methods, and that it has high potential to be successful on
real-world data.

3.1.2 Experiment 2: Sampled Genes, Noisy Location Data
In our other case, we investigated the scenario of noisy location data and
a small number of genes, which is the most challenging scenario. This
resembles real-world data the closest because of the limitations of current

sequencing technology. This is because many current technologies that
pairwise measure the gene expression and spatial locations of single cells
cannot also sequence many genes (Zhu et al., 2018).

To get a small number of genes, we randomly sampled 50% of the genes
to get 300 randomly sampled genes. Over each σ-value, we calculated
5 random gene samples over 10 location noise randomizations (for each
noise percentage) for each of the 10 location-gene expression pairs. Again,
we sample 4 location-gene expression data pairs from each sigma value
(with 2 for each noise percentage) and run HMRF on them. We take the
average performance across 3 smoothness parameter values. We plotted
the average ARI values for sampling 50% of the genes as a function of σ
in Figs. 5 and 6. In this experiment, we also run the existing HMRF (Zhu
et al., 2018) method which also performs cell clustering using both cell
location and gene expression data, on the same datasets.
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Fig. 5. Using 50% of the genes with 20% and 30% noise in w-separated data.
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Fig. 6. Using 50% of the genes with 10% and 20% noise in n-separated data.

The results show a clear distinction between scHybridNMF and NMF
and k-means clustering. For the w-separated location data, the ARI
values of scHybridNMF significantly exceeds those of NMF and HMRF
clustering. In data with n-separated location data, scHybridNMF tends to
outperform both k-means clustering and NMF, and ourperforms HMRF
in all cases. Considering the fact that we used c-values that did not vary
very much across the experiments, it is impressive how the performance
of scHybridNMF remained consistently high.

These experiments show that scHybridNMF is robust to small datasets
with noisy locations and a subset of the total number of genes. This sort of
data is prevalent in the real world, and the fact that our algorithm performs
the strongest relative to individually using NMF or k-means on this data
indicates that it is likely to be successful for real data.

3.2 Real Data

We uses mouse brain cortex gene expression and location data from
another consensus clustering scheme, Giotto, which utilizes the HMRF
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algorithm (Dries et al., 2019). This data has been adapted from the
seqFISH+ dataset (Eng et al., 2019), and it has been annotated with
the locations of specific cells as well as their gene expression levels. To
examine the regions that have varied genetic expressions, we isolated the
523 cortex cells and filtered the genes to keep those with mean greater
than 0.7 and correlation of variation greater than 1.2 measured across all
cells. The analysis from (Dries et al., 2019) indicates that there may be 9
clusters, so to be able to compare with their results, we also set the number
of clusters k = 9. We also set c = 4 ∗ 10−13 and ζ =

mean(A)∗αn
‖A‖2

F

. All

other parameters kept their analytic formulations used in simulated data.

(a) k-means clustering

(b) scHybridNMF

(c) Giotto

Fig. 7. The location-based k-means clustering results and consensus clustering results of
scHybridNMF and Giotto on seqFISH data. In each plot, there are nine point colors that
correspond to the nine cluster labels. The left-hand plots represent the cells’ locations, and
the right-hand plots show tSNE-reduced gene expression matrices. Layers 1-6 of the cortex
are labeled with L1-L6, as in Dries et al. (2019).

As in Fig. 7, we get 9 distinct clusters, which can correspond to the
spatial domains in mouse brain, like those found in (Dries et al., 2019).
In the cortex of a brain, we have 6 layers. In numerical order, they are
the molecular, external granular, pyramidal, inner granular, ganglionic,
and multiform layers. Given the k-means clusters in Fig. 7, it is obvious
that purely location-based clustering cannot capture the true shape of the
anatomical layers. As such, we need to combine both the gene expression
and location data to accurately model real-world data.

The clusters determined by scHybridNMF are consistent with the
underlying anatomical layers of the brain cortex. For example, cluster 1
directly matched up with layer 1. For the most part, the clusters determined
by Giotto resemble the layers as well. However, our cluster 5 in Fig. 7
has a more rectangular shape than the small circular cluster 5 in Giotto.

This strongly suggests that our clusters, which are contiguous rectangular
regions, resemble the anatomical layers of the mouse brain cortex more
accurately than the Giotto clusters, which are more amorphous.

We further investigated clusters 5 and 6 assigned by scHybridNMF and
Giotto to see which method provided more biologically meaningful results.
We computed differentially-expressed genes between the two clusters by
performing a t-test for each of the m candidate genes’ expression levels
in the cells of the two clusters. We chose the top 50 genes with the
smallest p-values, and performed a gene ontology (GO) analysis to find
which functions the selected genes were enriched in. The GO analysis
was performed with DAVID, an online functional annotation tool (Huang
et al., 2009a,b). We aimed to record the top 10 GO terms with the most
significant p-values, all of which were required to be below 0.05. However,
there were only 5 GO terms for the Giotto cluster-derived genes. The top 10
GO terms obtained with scHybridNMF cluster labels are in Table 1, while
Table 2 shows the top 5 GO terms obtained with the Giotto clustering.

We observe that, in Table 1, we have 6 terms specific to neuronal cells,
while Table 2 has only 2 terms related to neuronal cells. The fact that many
highly differential genes from scHybridNMF are related to fundamental
properties of neuronal cells specifically, we can assume that the two clusters
identified by scHybridNMF have unique cellular identities. Since the
clusters occupy two cortex layers, which are comprised of different neuron
types, it would make sense to separate them based on neuronal differences.
As we cannot say the same about the GO profile of the differential genes
of Giotto, this gives additional credence to the accuracy of our cluster
boundary between clusters 5 and 6. Furthermore, most of Giotto’s top
GO terms have larger p-values than scHybridNMF’s top GO terms. This
indicates that the clusters determined by scHybridNMF are more likely to
be biologically meaningful than those discovered by Giotto.

4 Conclusions and Discussions
In this paper, we presented a hybrid clustering approach that can better
identify cell types by incorporating the strengths of sparse NMF and k-
means clustering, which work well on high-dimensional single cell gene
expression data and low-dimensional location data. We demonstrated the

Table 1. Top 10 GO terms determined from top 50 differentially-expressed
genes between clusters 5 and 6 in scHybridNMF.

Category Term P-Value
GOTERM_CC Dendrite 7.3E-4
GOTERM_BP Negative Regulation of Cell Cycle 3.6E-3
GOTERM_BP Neuron Differentiation 3.9E-3
GOTERM_CC Myelin Sheath 9.0E-3
GOTERM_MF Ion Channel Inhibitor Activity 1.3E-2
GOTERM_CC Neurofilament 2.0E-2
GOTERM_BP Neurofilament Cytoskeleton Organization 2.5E-2
GOTERM_CC Synapse 2.6E-2
GOTERM_BP Exocytosis 2.8E-2
GOTERM_BP Locomotory Behavior 3.0E-2

Table 2. Top 5 GO terms determined from top differentially-expressed genes
between clusters 5 and 6 in Giotto.

Category Term P-Value
GOTERM_CC Dendrite 9.3E-4
GOTERM_BP Regulation of Adenylate Cyclase Activity 9.7E-3
GOTERM_BP Regulation of cAMP-Mediated Signaling 1.2E-2
GOTERM_BP Cytoskeleton Organization 2.6E-2
GOTERM_CC Neuronal Cell Body 3.6E-2
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robustness of our algorithm through testing it on different simulated data
configurations as well as on a real mouse brain cortex dataset.

We show that our hybrid framework, scHybridNMF, significantly
improves over the clustering accuracy of using sparse NMF alone on gene
expression data by integrating location information. This is particularly
useful for the cases where sparse NMF performance is affected by a
low number of genes in the gene expression data or high within-cluster
heterogeneity. scHybridNMF also outperforms k-means clustering with
only location data under realistic scenarios. Through combining two
classical methods for clustering, sparse NMF and k-means, scHybridNMF
can exploit both the high and low dimensional data and achieve better
performance than using either of the standalone methods, as well as
an existing method HMRF. We also observed that our algorithm found
biologically-meaningful clusters within real data. Against the performance
of Giotto, which uses HMRF in its consensus clustering, our algorithm
more successfully recreated a biologically meaningful separation between
cells near layers 5 and 6 of the cortex.

This framework is inherently flexible, owing to its simple matrix low-
rank approximation formulation. As such, it can be extended via additional
matrix terms and constraints to include more types of data or to perform
biclustering. For example, we can include potential gene-gene interaction
data to perform co-clustering of both cells and genes. The inferred gene
clusters can be further used to study regulatory mechanisms in the cells
and reconstruct gene regulatory networks.
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