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Abstract1

Background: Molecular hydrogen (H2) is a major energy source supporting bacterial2

growth and persistence in soil ecosystems. While recent studies have uncovered3

mediators of atmospheric H2 consumption, far less is understood about how soil4

microbial communities respond to elevated H2 levels produced through natural or5

anthropogenic processes. Here we performed microcosm experiments to resolve6

how microbial community composition, capabilities, and activities change in upland7

(meadow, fluvo-aquic soil) and wetland (rice paddy, anthrosols soil) soils following H28

supplementation (at mixing doses from 0.5 to 50,000 ppmv).9

Results: Genome-resolved metagenomic profiling revealed that these soils harbored10

diverse bacteria capable of using H2 as an electron donor for aerobic respiration (4611

of the 196 MAGs from eight phyla) and carbon fixation (15 MAGs from three phyla).12

H2 stimulated the growth of several of these putative hydrogenotrophs in a dose-13

dependent manner, though the lineages stimulated differed between the soils;14

whereas actinobacterial lineages encoding group 2a [NiFe]-hydrogenases grew most15

in the upland soils (i.e. Mycobacteriaceae, Pseudonocardiaceae), proteobacterial16

lineages harboring group 1d [NiFe]-hydrogenases were most enriched in wetland17

soils (i.e. Burkholderiaceae). Hydrogen supplementation also influenced the18

abundance of various other genes associated with biogeochemical cycling and19

bioremediation pathways to varying extents between soils. Reflecting this, we20

observed an enrichment of a hydrogenotrophic Noviherbaspirillum MAG capable of21

biphenyl hydroxylation in the wetland soils and verified that H2 supplementation22

enhanced polychlorinated biphenyl (PCB) degradation in these soils, but not the23

upland soils.24

Conclusions: Our findings suggest that soils harbour different hydrogenotrophic25

bacteria that rapidly grow following H2 exposure. In turn, this adds to growing26

evidence of a large and robust soil H2 sink capable of counteracting growing27

anthropogenic emissions.28

Keywords: Hydrogenotrophic bacteria, Hydrogen, Hydrogenase, Carbon fixation,29

Biogeochemical cycling30
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Background31

Recent work has revealed that molecular hydrogen (H2) oxidation is a widespread32

treat among soil bacteria [1–4]. H2 is ubiquitously available in all soils through33

atmospheric and edaphic sources [5, 6]. Bacteria expend few resources to mobilize34

this gas, given both its diffusivity through cell membranes and low activation energy,35

and can use the large amount of free energy released by its oxidation for both ATP36

synthesis and carbon dioxide (CO2) fixation [2, 7, 8]. Genomic and metagenomic37

surveys have shown that soil bacteria from at least 17 different phyla encode [NiFe]-38

hydrogenases to consume H2 an energy source [1–3, 9, 10]. The most abundant H2-39

oxidising taxa in oxygenated soils are generally Actinobacteriota, Acidobacteriota,40

and Chloroflexota that encode high-affinity group 1h [NiFe]-hydrogenases [11–19];41

culture-based studies show these bacteria use this enzyme to scavenge trace42

concentrations of H2 as an alternative energy source for persistence when organic43

growth substrates are limiting [12, 15–17, 20–24]. A smaller proportion of soil44

bacteria can grow autotrophically or mixotrophically on H2/CO2 [1, 3, 25–27].45

Classical studies have shown numerous Proteobacteria, for example Ralstonia46

eutropha and Bradyrhizobium japonicum, grow efficiently on high levels of H2 using47

the low-affinity group 1d [NiFe]-hydrogenases [27–34]. More recently, diverse taxa48

have been shown to use group 2a [NiFe]-hydrogenases to grow on H2 at a wide49

range of concentrations [35–39]. Some bacteria use H2 for multiple purposes; for50

example, some Mycobacterium species switch between synthesising the growth-51

supporting 2a hydrogenase and persistence-supporting 1h hydrogenase in response52

to organic carbon availability [40–42].53

Despite these advances, we lack a sophisticated understanding of how soil microbial54

communities respond to H2 availability. In most soils, bacteria are primarily exposed55

to H2 at atmospheric mixing ratios (~0.53 ppmv) [43, 44]. Soil bacteria use high- and56

medium-affinity hydrogenases to consume this trace energy source during growth or57

survival [3, 17, 37, 45–47]. Through their activity, approximately 70 million tonnes of58

the net H2 lost from the atmosphere each year, with far-reaching ecological and59

biogeochemical consequences [6, 48–50]. This process supports the productivity60

and diversity of bacteria, especially in oligotrophic environments [3, 18, 51, 52].61

Moreover, it serves as the main sink in the global hydrogen cycle, in turn regulating62
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the redox state and greenhouse gas levels of the atmosphere [6, 50, 53].63

Nevertheless, multiple environments are known where H2 availability is elevated, for64

example due to biological fermentation and nitrogen fixation, or geological processes.65

For example, H2 can accumulate to percentage levels (~20,000 ppmv) at the66

interface of soils and root nodules, as a result of obligate H2 production during the67

nitrogenase reaction [2, 54, 55]. In turn, these emissions have been proposed to68

influence rhizosphere microbial composition and potentially even fertilise plant69

growth [33, 56–59]. Furthermore, H2 emissions have also been proposed to enhance70

bioremediation of organochloride pollutants through direct or indirect mechanisms71

[60–62]. However, it has proven highly challenging to disentangle the effects of H272

exposure on microbial composition and activity in field settings from other variables.73

Similarly, unresolved is to what extent soil microbial communities can respond to74

anthropogenic H2 emissions [50]. It has been controversially proposed that the75

transition to a hydrogen economy would drastically increase atmospheric H2 levels76

and in turn induce climate forcing [63, 64]. Nevertheless, the microbial soil sink has77

so far maintained atmospheric H2 at constant levels, despite anthropogenic activities78

currently accounting for approximately half of net atmospheric H2 production [6].79

Thus, it is essential to understand how soil microbial composition responds to80

elevated H2 to simultaneously resolve how this gas influences structure of natural81

ecosystems and predict responses to forecast emissions.82

Several studies have used microcosms to investigate how soil microbial composition83

and activity changes following elevated H2 (eH2) exposure, albeit with strikingly84

different results. A shift in the biphasic kinetics of soil H2 uptake in response to85

elevated H2 [65–67]: the high-affinity H2 oxidation activities that dominate in86

untreated soils diminish in favour of fast-acting, low-affinity processes [67–70]. This87

suggests that low-affinity hydrogenotrophs become more abundant or active88

following H2 exposure, though there are apparent discrepancies as to which. A89

pioneering study by Osborne et al indicated that H2 production has a minimal effect90

on microbial abundance, composition, and diversity, but elicited a consistent91

enrichment of actinobacterial taxa across multiple soil types, including mycobacteria92

[57]. Zhang and colleagues, by contrast, observed Actinobacteriota decreased and93

Gammaproteobacteria increased following H2 exposure [71]. Given both of these94

restriction fragment length polymorphism (RFLP)-based studies predated current95
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genome-resolved metagenomic approaches, the taxonomic identity and96

hydrogenase content of the enriched taxa could not be resolved. More recently, the97

Constant group have reexamined the effects of H2 supplementation using amplicon98

and metagenomic sequencing. They observed large-scaler differences in community99

composition and function between the treatment and control groups [67, 72]. They100

also reported that H2-oxidising taxa are rare community members and hence couldn’t101

be accurately accounted for even with deep metagenomic sequencing [73, 74].102

Another recent study reported enrichment of ammonia-oxidising archaea and103

specific actinobacterial and acidobacterial lineages, as well as ammonia-oxidising104

archaea, following soil H2 infusion [75].105

Altogether, these divergent observations warrant new investigations into the effects106

of H2 exposure on microbial community composition and activities. To do so, we107

investigated how H2 exposure at six different doses (from 0.5 to 50,000 ppmv)108

influences two agricultural soils from China with a legacy of organochloride pesticide109

usage, namely an anthrosols soil (herein wetland soil) and fluvo-aquic soil (herein110

upland soil). We combined high-resolution amplicon sequencing with deep genome-111

resolved metagenomic sequencing to resolve the taxonomic identities and metabolic112

capabilities of the taxa that change in abundance in response to H2 exposure. We113

show that both soils harbour a high abundance and diversity of H2-oxidising bacteria,114

and most taxa capable of autotrophic growth on H2/CO2 were generally enriched at115

higher H2 concentrations. However, reflecting differences in the community structure116

of the original soils, the enriched lineages strikingly differ in both phylogenetic117

affiliation and hydrogenase content between the upland and wetland microcosms.118

Contrasting changes in biogeochemical cycling genes and, building on our previous119

observations [60, 61], polychlorinated biphenyl (PCB) biodegradation processes120

were also observed between the soils following H2 exposure. Thus, the effects of H2121

supplementation are highly ecosystem-specific, which reconciles the perplexingly122

different responses observed to H2 supplementation in studies in this area.123

124

Results and Discussion125
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Elevated H2 stimulates growth of different bacteria between the soils, but does126

not significantly affect community richness or abundance127

We first used the 16S rRNA gene as a marker to profile how abundance, alpha128

diversity, and beta diversity of bacteria and archaea present in the wetland and129

upland soils changed in response to H2 exposure. In agreement with the findings of130

Osborne et al [57], no significant change was observed in community abundance131

(based on 16S rRNA gene qPCR; Fig. 1a & Fig. S1a) or diversity (based on132

observed richness, Chao1 richness, and Shannon diversity of 16S rRNA gene133

amplicon sequence variants; Fig. 1a & Fig. S2) between the control and treatment134

microcosms. However, bacterial community composition changed in response to the135

H2 treatment after 84 days. Distance-based redundancy analysis (db-RDA) of beta136

diversity (Bray-Curtis of 16S rRNA gene amplicon sequence variants) confirmed H2137

concentration is the predictor variable most significantly correlated with changes in138

bacterial community composition between the microcosms (R2 = 0.819, p = 0.001 in139

the wetland soil; R2 = 0.950, p = 0.001 in the upland soil; Table S1). For example,140

the samples treated with elevated H2 (500 to 50,000 ppmv in the wetland soil; 20,000141

to 50,000 ppmv in the upland soil) formed distinct clusters from the control in PCoA142

data space (Fig. 1b). Three other predictor variables were also correlated with143

changes in community composition, most notably pH (R2 = 0.629, p = 0.001 in the144

wetland soil; R2 = 0.320, p = 0.047 in the upland soil; Table S1), which significant145

decreased during the H2-enriched microcosms likely as a result of soil bacteria146

oxidising H2 to protons (Table 1).147

Microbial community composition was determined using a combination of 16S rRNA148

gene amplicon sequencing and reconstruction of 16S rRNA gene sequences from149

metagenomic raw reads via GraftM (metagenomes sequenced for microcosms150

exposed to 0.5, 20,000, and 50,000 ppmv H2 only). Observed phylum-level151

community composition was comparable between profiles from metagenomic and152

amplicon sequencing (Fig. 1c). In both soils, most community members (>80%)153

affiliated with six of the globally dominant soil phyla [76, 77], namely Proteobacteria,154

Firmicutes, Acidobacteriota, Actinobacteriota, Chloroflexota, and Gemmatimonadota155

(Fig. 1c). Significant changes in microbial community composition was observed at156

both phylum and genus levels in response to H2 treatment. In both soils, there157

decrease in the relative abundance of Firmicutes in the treatment vs control158
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microcosms after 84 days, primarily due to the decline of several Bacilli genera.159

However, the enriched bacteria strikingly differed between the soils. For the wetland160

soils, in line with previous observations by Zhang et al. [71], there was an enrichment161

in the phylum Proteobacteria (Fig.1c & Table S2). This was driven by significant162

increases in the relative abundance (by over 1%, p < 0.05) of genera such as Dongia,163

and Noviherbaspirillum (Fig. 1d & Table S3). In contrast, in the upland soils, the164

most enriched taxa were Mycobacterium (Actinobacteriota) and Candidatus165

Koribacter (Acidobacteriota); whereas Mycobacterium was a member of the rare166

biosphere in the control microcosms (0.04% relative abundance), it grew in a dose-167

dependent manner to become the most abundant genus in the 50,000 ppmv168

treatments based on both amplicon (5.58%) and metagenomic sequencing (4.86 %)169

(Fig. 1d & Table S3). This observation of a large single-member community shift is170

remarkably similar to Osborne et al.’s RFLP-based inference of the enrichment of171

actinobacterial taxa, including Mycobacterium, following H2 exposure in Australian172

soils [57].173

To gain further insight into community responses to elevated H2, we assembled and174

binned the metagenomes, yielding 196 metagenome-assembled genomes (MAGs;175

Table S4). Reconstructed MAGs comprise taxonomically diverse members from a176

total of two archaeal and 22 bacterial phyla (Fig. 2 and Table S4). In support of 16S177

rRNA gene amplicon analysis (Fig. 1d), most MAGs affiliated with the phyla178

Proteobacteria (52), Actinobacteriota (30), Acidobacteriota (22), Gemmatimonadota179

(20), and Chloroflexota (15). We also retrieved a surprising number of180

Patescibacteria MAGs (17), supporting recent reports that these symbionts can be181

abundant in oxygenated soils [78, 79]. Based on metagenomic read mapping, there182

was a significant enrichment of 21 MAGs (12 phyla) in the wetland soil microcosms183

and 10 MAGs (4 phyla) from in the upland microcosms at high H2 treatments,184

suggesting a complex response at the individual taxon level (Fig. 2). In line with the185

amplicon- and metagenome-based 16S rRNA gene analysis (Fig. 1 & Table S3,186

some MAGs became highly abundant after higher H2 treatments, potentially through187

hydrogenotrophic growth. The most enriched MAGs overall were Noviherbaspirillum-188

affiliated Bin377 in the wetland soil (0.017%, 0.38%, and 0.22% at 0.5, 20,000, and189

50,000 ppmv respectively) and Mycobacterium-affiliated BinFLU20000R1_4 in the190
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upland soil (0%, 0.59%, and 1.36% at 0.5, 20,000, and 50,000 ppmv respectively)191

(Fig. 2).192

Enriched taxa encode different hydrogenase and RuBisCO lineages known to193

support hydrogenotrophic growth194

We used curated metabolic marker gene databases to annotate the metagenomic195

short reads and derived MAGs with a focus on H2 metabolism and carbon fixation196

pathways. In agreement with our recent findings in Australian soils [3], most197

community members were predicted to metabolically versatile with respect to198

electron donor, electron acceptor, and carbon source preferences (Fig. 3, Fig. S3,199

Table S5 & Table S6). As expected from the community profile (Fig. 1 & Table S3),200

almost all community members encoded markers for aerobic respiration (notably201

CoxA, CcoN, CydA), with many having the capacity for denitrification (notably NarG,202

NirK, NorB, NosZ) and hydrogenogenic fermentation (group 3b [NiFe]-hydrogenases)203

(Fig. S3). With respect to electron donor utilisation, the marker genes for the204

oxidation of organic compounds (NuoF, SdhA), H2 (uptake hydrogenases), carbon205

monoxide (CoxL), formate (FdhA), and sulfide (Sqr) were abundant in the short206

reads and widespread in the MAGs. Moreover, there was a widespread capacity for207

carbon fixation primarily through the Calvin–Benson–Bassham cycle (RbcL) (Figs. 2208

& 3). As expected, we observed significant increases in the relative abundance of209

uptake hydrogenases and RuBisCO for both soils in the high H2 microcosms,210

suggesting hydrogenotrophic growth. There were also small but significant changes211

in the abundance of certain genes involved in aerobic respiration, denitrification,212

nitrogen fixation, and sulfide, nitrite, and arsenite oxidation. Moreover, in the wetland213

soils, there was a large enrichment of a gene (BphA) for biphenyl degradation214

following H2 treatment (Fig. 3 & Table S6).215

To gain a deeper insight into the determinants of hydrogenotrophic growth, we built216

phylogenetic trees to classify the [NiFe]-hydrogenase (Fig. S4) and RuBisCO (Fig.217

S5) sequences retrieved from the MAGs based on functionally predictive schemes218

[80, 81]. Respiratory uptake hydrogenases were encoded by 46 MAGs from nine soil219

phyla. Many MAGs encoded group 1h [NiFe]-hydrogenases, suggesting they persist220

in soils by scavenging H2 at atmospheric levels; these hydrogenases were present in221

taxa as diverse as Actinobacteriota (8), Acidobacteriota (6), Proteobacteria (2),222
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Bdellovibrionota (1), Eremiobacterota (1), Gemmatimonadota (1), and Myxococcota223

(1), in line with recent inferences of a diverse and abundant H2 sink in soils [3, 17,224

78]. However, a range of taxa also encoded hydrogenases implicated in225

hydrogenotrophic growth, such as the group 1d and 2a [NiFe]-hydrogenases [37, 82],226

as well as the functionally enigmatic group 1c and 1f [NiFe]-hydrogenases [3, 45]227

(Fig. S4). Of these, four Actinobacteriota, three Proteobacteria, and one228

Acidobacteriota MAGs co-encoded uptake hydrogenases with RuBisCO (Fig. 2).229

Seven of these eight MAGs increased in abundance in the H2-supplemented soils,230

including the previously highlighted Bin377 (Noviherbaspirillum) and231

BinFLU20000R1_4 (Mycobacterium). This suggests that these bacteria grow232

hydrogenotrophically by using electrons derived from H2 for aerobic respiration and233

carbon fixation. These metagenomic inferences are supported by previous culture-234

based studies observing hydrogenotrophic growth in various Mycobacterium species235

[42, 83, 84] and a rice paddy Noviherbaspirillum isolate [85]. Thus, the most strongly236

enriched MAGs in high H2 microcosms were among those capable of237

hydrogenotrophic growth.238

The enzyme lineages supporting hydrogenotrophic growth differed between the soils.239

In the upland soils, the most enriched lineages were Mycobacteriaceae and240

Pseudonocardiaceae harbouring group 2a [NiFe]-hydrogenases with type IE241

RuBisCO, such as the Mycobacterium MAG (Fig S4 & S5). In these soils, the242

abundance of short reads encoding the group 2a [NiFe]-hydrogenase increased by243

17-fold (p = 0.0095) and 49-fold (p = 0.0028) at H2 doses of 20,000 ppmv and 50,000244

ppmv respectively. By contrast, in the wetland soils, the most enriched lineages were245

Burkholderiaceae that encoded group 1d and 2b [NiFe]-hydrogenases together with246

type IA or IC RuBisCO, including two Noviherbaspirillum MAGs. Consistently, in the247

metagenomic short reads for the wetland soil, there was an increase in relative248

abundance of the uptake 1d [NiFe]-hydrogenase (1.8-fold, p = 0.0034) and the249

sensory 2b [NiFe]-hydrogenase (15-fold; p =0.0025). Based on the precedent of the250

closely related species Ralstonia eutropha (Burkholderiaceae), stimulation of the251

sensory hydrogenase by elevated H2 activates a signal transduction cascade that252

increases transcription of the uptake hydrogenase and in turn enables253

hydrogenotrophic growth [86, 87]. Thus, bacteria with the capacity to both sense and254

oxidise H2 can rapidly respond to this energy source becoming available. It should be255
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noted that, while the group 1h and 3b [NiFe]-hydrogenases were the most256

widespread hydrogenases in both soils overall, their abundance minimally changed257

in response to H2 exposure; this reflects their respective physiological roles in258

supporting persistence through atmospheric H2 oxidation during carbon starvation259

and fermentative H2 production during hypoxia [21, 22, 40]. Consistent with the260

community composition (Fig. 1c), Uptake hydrogenases and other marker genes261

associated with anaerobic H2 oxidation processes (e.g. methanogenesis,262

acetogenesis, sulfate reduction) were in low abundance in all microcosms.263

Hydrogenotrophic growth of a specific taxon underlies enhanced PCB264

bioremediation in H2-stimulated wetland soils265

Of the 86 genes profiled, other than hydrogenases and RuBisCO, the determinants266

of PCB bioremediation showed the greatest fold change in response to H2267

supplementation. Based on short reads, in the H2-enriched wetland microcosms, we268

observed a 3.9-fold increase in relative abundance of the genes encoding biphenyl269

dioxygenase (bphA). No equivalent enrichment was observed in the upland soil, by270

contrast. At the MAG level, 14 MAGs encoded enzymes for biphenyl oxidation to271

benzoate (Proteobacteria, Myxocococcota, Chloroflexota, Dadabacteria) (Fig. S6 &272

Table S7). Of these, the metabolic capabilities of four MAGs (>90% completeness,273

<5% contamination) are depicted in Fig. 4a. Five of these MAGs increased in274

abundance at elevated H2 concentrations in wetland soils, including the275

aforementioned Bin377 (Noviherbaspirillum), which was the sole MAG encoding the276

bphA gene.277

Consistent with these observations, we observed divergent effects of elevated H2 on278

PCB77 biodegradation in the two soils (Fig. 4b). After 84 days, the degradation rate279

of PCB77 in the wetland soil at elevated H2 concentrations (5000-50000 ppmv) were280

significantly promoted by 7.65 to 12.66% compared with the 0.5 ppmv (p < 0.05,281

Table 1 & Fig. 4b). By contrast, there were no significant promotion of PCB77282

degradation in the upland soil at elevated H2 concentrations during the experimental283

period (Table 1 & Fig. 4b). Altogether, these findings provide a mechanistic rationale284

for our previous observations that PCB bioremediation is enhanced both by nitrogen285

fixation (resulting in endogenous H2 production) and endogenous H2 addition [60, 61];286
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the enrichment of hydrogenotrophic Burkhoderiaceae and likely other taxa encoding287

biphenyl oxidation genes enhances bioremediation primarily through indirect effects.288

289

Conclusions290

This study demonstrates that phylogenetically and physiologically diverse H2-291

oxidising bacteria reside in soils. Whereas most of these bacteria are292

organoheterotrophs predicted to persist on trace concentrations of H2, a few293

community members are facultative autotrophs that grow on this gas when available294

in elevated concentrations. In our microcosms, the bacterial, hydrogenase, and295

RuBisCO lineages that were enriched in response to H2 availability strikingly differed296

between the soils, in a way that reflected their native community composition. In the297

upland soil, the Mycobacterium MAG and several other lineages emerged from the298

rare biosphere to become dominant community members in the upland soils,299

whereas in the wetland soil a Noviherbaspirillum MAG possessing two hydrogenases300

likely sensed and rapidly consumed high concentrations of H2. These findings in turn301

provide a holistic community context to previous culture-based investigations on302

hydrogenotrophic Actinobacteriota and Proteobacteria. Moreover, these303

observations findings reconcile the seemingly divergent findings of earlier RFLP-304

based studies in this area [57, 71], though are less compatible with certain recent305

reports [67, 72, 74]. Overall, we found that H2 supplementation did not profoundly306

affect microbial community abundance, diversity, or capabilities. However, it can be307

expected that enrichment of hydrogenotrophic taxa will have various effects on308

biogeochemical activities, as reflected by the increased genetic capacity and309

biochemical activity for PCB biodegradation captures in the wetland. Extending these310

findings, we predict that hydrogen emissions from natural or anthropogenic sources311

would select for the growth of facultative hydrogenotrophs, though the lineages312

stimulated are likely to greatly vary between soils.313

314

Methods315

Experimental soils316

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.11.15.383943doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.15.383943
http://creativecommons.org/licenses/by-nc-nd/4.0/


12

The top 20 cm of the soil profile of two agricultural soils were sampled for the317

microcosm experiments. An anthrosols soil, known to have a high capacity for318

pollutant remediation [88], was sampled from long-term paddy wetland field319

experimental station of the Chinese Academy of Sciences located at Changshu,320

Jiangsu province (31°33′N, 120°38′E). A flavo-aquic soil was sampled at a long-term321

abandoned meadow upland field, formerly highly polluted by PCBs, from Taizhou,322

Zhejiang province (28°31′N, 121°22′E). Both soils were air-dried in the laboratory323

and then passed through a 10-mesh screen to remove roots and large particles324

before the preparation of soil microcosms. PCB levels in both soils are within325

permittable levels, with total concentrations of 21 PCBs below 60 μg kg-1 and no326

PCB77 detected in either soil. Detailed soil properties are listed in Table S8.327

Microcosm setup and sampling328

Prior to the microcosm setup, each soil was adjusted to a moisture of 10% (w/w) and329

preconditioned at 30 °C for one week. In order to monitor effects of H2330

supplementation on soil microbial communities and bioremediation, PCB77 was also331

added to both soils to a final concentration of 1 mg kg-1. Specifically, 15 mL of332

PCB77 stock solution (100 mg L-1 in acetone) was added to 150 g soil (dry weight) to333

achieve a concentration of 10 mg kg-1; the soils were placed in a fume hood334

overnight to evaporate the acetone and they were then thoroughly mixed with 1350 g335

uncontaminated soil. Thereafter, approximately 10 g of soil (dry weight) was placed336

in a 120 mL serum bottle and adjusted to a water content of 30 % (w/w) with337

sterilized water. The serum bottles were sealed with butyl rubber stoppers. The338

bottles were flushed with synthetic air (360 ppmv CO2 and 21 % O2 balanced with N2;339

55th Research Institute, China Electronics Technology Group Corporation) for 30 s340

and then an appropriate volume of synthetic air was withdrawn. A defined volume of341

ultra-pure H2 (99.9999%; 55th Research Institute, China Electronics Technology342

Group Corporation) gas was injected to obtain six initial headspace mixing doses of343

H2 (0.5, 50, 500, 5,000, 20,000, and 50,000 ppmv). The 0.5 ppmv vials served as344

controls, given they reflect ambient H2 concentrations, whereas the five other vials345

served as treatment groups with elevated H2 levels. A sterile control (autoclaving at346

121 °C, 1 h three times) was also setup to exclude the factors of soil adsorption of347

PCB77 (Fig. S7). Each day, the control, treatment, and sterile control serum bottles348
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were flushed with synthetic air and then the initial concentrations of H2 were re-349

established as described above, thereby providing a regular H2 supply. All350

treatments were set up in triplicate and incubated at 30 °C in the dark for 84 days.351

Samples were taken on days 0, 14, 28, 56 and 84 for DNA extraction and PCB77352

quantification.353

Analysis of physicochemical properties and PCB77 contents354

To determine physicochemical properties and quantify PCB77 levels, freeze-dried355

soil samples were sieved through a 60-mesh screen to obtain a homogeneous356

matrix.357

The pH, soil organic matter content (SOM), total nitrogen (TN), total phosphorus (TP),358

total potassium (TK), alkali-hydrolyzable nitrogen (AN), available phosphorus (AP),359

and available potassium (AK) were measured as previously described [89]. Briefly,360

soil pH was determined in a soil/water suspension (1:2.5) using pH meter; SOM was361

measured by the K2Cr2O7-H2SO4 oxidation method; TN was determined by Kjeldahl362

digestion; TP and TK were determined by molybdenum-blue colorimetry and flame363

photometry respectively after HF-HClO4 treatment; AN was assayed by alkali-364

hydrolyzed diffusion method; AP was determined by sodium bicarbonate extraction365

and molybdenum blue colorimetry; and AK was detected by ammonium acetate366

extraction and subsequent flame photometer analysis.367

Soil PCB77 was extracted as described by Huang et al [90]. PCB 77 concentrations368

were detected by GC7890 gas chromatograph (Agilent Technologies, Santa Clara,369

CA) equipped with a HP5 column (30 m × 0.32 mm × 0.25 μm). The recovery rates370

for all the samples and detection limit of the GC method for PCB77 ranged from 87371

to 102 % and 2.53 to 5.75 μg kg-1 respectively.372

DNA extraction373

Community DNA was extracted from fresh soil using the FastDNA spin kit for soil374

(MP Biomedicals, Santa Ana, CA) following the manufacturer's instructions. Sample375

DNA integrity was examined by electrophoresis on a 0.8 % agarose gel. Sample376

DNA quantity and purity were determined with a Nanodrop ND-2000 UV-Vis377
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spectrophotometer (NanoDrop Technologies, Wilmington, DE) and using Quant-iT378

PicoGreen fluorescence (Thermo Fisher, Waltham, MA). The DNA samples were379

stored at -80 °C before use.380

Quantitative PCR assays381

Quantitative PCR (qPCR) was used to quantify the copy number of 16S rRNA genes382

for (i) whole bacterial and archaeal community and (ii) anaerobic PCB-degrading383

genus Dehalobacter [91]. PCR amplification was performed using the primer sets384

515F/907R and Dhb-477F/ 647R (Table S9) with cycling conditions as previously385

described [92]. The qPCR reactions were conducted for each soil DNA extract in386

triplicate. Standard curves were established using a linear PCR product by a 10-fold387

serial dilution of plasmid DNA that contained the target fragment. The amplification388

efficiencies were 97.5-99.8%.389

16S rRNA gene amplicon sequencing and analysis390

The V4-V5 region of the 16S rRNA gene was used to determine the composition of391

the soil microbial communities with universal prokaryotic primer sets 515F/907R392

(Table S9) for 36 samples at 84 days (0.5, 50, 500, 5000, 20000, and 50000 ppmv393

H2 treatment). Amplification of the 16S rRNA gene target was performed according394

to the manufacturer’s instructions (Illumina). The amplicons were sequenced by the395

Majorbio Company (Shanghai, China) following the manufacturer's instructions with396

a MiSeq PE300 platform (Illumina, San Diego, CA, USA).397

The resulting raw reads were processed on the QIIME2 platform (version 2020.02)398

using the DADA2 pipeline to resolve exact amplicon sequence variants (ASVs) [93,399

94].The taxonomy of each 16S rRNA gene sequence was analysed using RDP400

classifier algorithm (http://rdp.cme.msu.edu/) against Silva (SSU132) 16S rRNA401

gene database and the Unite (Release 6.0) database using a confidence threshold402

of 70% [95]. Alpha diversity (including observed richness, Chao1 richness, and403

Shannon index) and beta diversity (Bray Curtis) were calculated with mothur (version404

v.1.30.1, collect single command) and QIIME2 with the default parameters,405

respectively [96]. The relationships between beta diversity and environmental406

variables were displayed through distance-based redundancy analyses (db-RDA)407
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based on Bray-Curtis distance (R: vegan package, version 4.0.3). A one-way408

analysis of variance (ANOVA) to test for significant differences in community409

structure between different H2 concentration treatments.410

Metagenomic sequencing, assembly and binning411

Based on the results of 16S rRNA gene amplicon sequencing, the samples from412

higher H2 concentrations treatments (20,000 and 50,000 ppmv) showing obvious413

succession of bacterial communities with 0.5 ppmv at 84 days were subject to414

metagenomic analysis. The extracted DNA was sheared into approximately 400 bp415

fragments using a Covaris M220 shaker (Gene Company Limited, China). The416

metagenomic libraries were prepared using the NEXTFLEX Rapid DNA-Seq Kit417

(PerkinElmer Bioo Scientific, USA). Paired-end sequencing was performed on the418

Illumina HiSeq 4000 platform (Illumina Inc., San Diego, CA, USA) at Shanghai419

Majorbio Bio-pharm Technology Co., Ltd. About six billion base pairs (~6 Gbp) of420

DNA sequences were generated for each sample (Table S10). To explore microbial421

composition of each sample, taxonomic assignments of raw reads were assigned422

using GraftM [97] together with Silva (SSU132) 16S rRNA gene database [95].423

Raw reads were quality-controlled using Read_QC module in the metaWRAP424

pipeline [98]. The quality-controlled metagenomes were individually assembled and425

co-assembled using MEGAHIT v1.1.3 (default parameters) [99]. The resulting426

assemblies were binned using the binning module within the metaWRAP pipeline (--427

metabat2 --maxbin2 --concoct for individual assembly; --metabat2 for co-assembly).428

For each assembly, the three bin sets were then consolidated into a final bin set with429

the bin_refinement module of metaWRAP (-c 50 -x 10 options). The final bin sets430

from both individual assemblies and co-assembly were aggregated and de-431

replicated using dRep v2.5.4 [100] at 95% average nucleotide identity (-comp 50 -432

con 10 options). The quality (completeness and contamination) of MAGs was433

assessed with CheckM [101].434

The taxonomy of each MAG was temporally assigned using GTDB-Tk [102] (GTDB435

R04-RS89 database). The relative abundance of each MAGs was calculated with436

CoverM (https://github.com/wwood/CoverM) as previously described [103]. The437
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taxonomic classification, size, completeness, contamination, strain heterogeneity,438

and N50 of recovered MAGs are summarized in Table S4.439

Functional annotation of reads and MAGs440

For functional annotation of quality-filtered reads with lengths over 140 bp, metabolic441

marker genes covering the major pathways associated with hydrogen cycling,442

carbon fixation, oxidative phosphorylation, anaerobic PCB degradation (reductive443

dehalogenation), and the cycling of nitrogen compounds, sulfur compounds,444

methane, and carbon monoxide were searched as previously described [78].445

DIAMOND blastx mapping [104] was performed with a query coverage threshold of446

80% for all databases, and a percentage identity threshold of 50%, except for group447

4 [NiFe]-hydrogenases, [FeFe]-hydrogenases, CoxL, AmoA, and NxrA (all 60%),448

PsaA (80%), PsbA and IsoA (70%), and HbsT (75%). These reads were then449

transformed to per kilobase per million (RPKM) [105]. Functional annotation of450

putative amino acid sequences involved in aerobic PCB degradation (biphenyl451

degradation, including BphA, BphB, BphC and BphD) was searched as described in452

the supplementary note. The gene abundance in the microbial community was453

then estimated by the method according to Ortiz et al., [78]. Briefly, 14 universal454

single copy ribosomal marker genes were also transformed to RPKM and gene455

abundance in the microbial community was calculated by dividing the read count for456

the gene (in RPKM) by the mean of the read counts of the 14 universal single copy457

ribosomal marker genes (in RPKM). For each MAG, genes were called by Prodigal458

(-p meta) [106]. Genes involved metabolic functions as described above were459

carried out using DIAMOND blastp with a minimum percentage identity of 60%460

(NuoF), 70% (AtpA, ARO, YgfK) or 50% (all other databases) [78], while genes461

involved in biphenyl degradation were annotated against KEGG database using462

GhostKOALA [107].463

Phylogenetic analysis464

For phylogenetic tree construction of MAGs, ribosomal protein sequences generated465

from CheckM were extracted and aligned using MAFFT [108]. Gaps in the alignment466

were removed and the ribosomal protein alignment concatenated as described467

previously [109]. RAxML webserver (https://www.phylo.org/) was used to construct468
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the phylogenetic tree with the parameters: raxmlHPC-HYBRID -f a -n result -s input -469

c 25 -N 160 -p 12345 -m PROTCATLG -x 12345, with the output file uploaded to470

iTOL for visualization [110].471

For amino acid sequences of the group 1, 2 [NiFe]-hydrogenase and ribulose 1,5-472

bisphosphate carboxylase/oxygenase (RuBisCO) large subunit (RbcL), sequences473

were aligned using the ClustalW algorithm included in MEGA7 [111]. Their474

maximum-likelihood phylogenetic trees were constructed using the JTT matrix-475

based model, and was bootstrapped with 50 replicates and midpoint-rooted.476

477
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Tables and Figures839

Table 1. Edaphic properties and PCB degradation rate in different treatments after 84 days.840

Soil

type

H2 levels PCB deg. rate pH SOM TN TP TK AN AP AK

ppmv % g·kg-1 g·kg-1 g·kg-1 g·kg-1 mg·kg-1 mg·kg-1 mg·kg-1

Wetland 0.5 35.29 ± 1.44 d 6.94 ± 0.08 a 15.19 ± 0.37 a 1.09 ± 0.05 a 0.72 ± 0.04 a 18.61 ± 0.62 ab 95.55 ± 7.35 a 11.18 ± 0.32 b 110.83 ± 1.44 b

50 38.90 ± 1.17 cd 6.74 ± 0.02 b 15.77 ± 1.22 a 1.00 ± 0.02 c 0.71 ± 0.02 a 18.81 ± 0.32 a 85.75 ± 11.23 a 12.03 ± 0.65 ab 116.67 ± 7.22 ab

500 40.57 ± 2.78 bc 6.62 ± 0.05 d 16.15 ± 0.30 a 1.01 ± 0.05 c 0.74 ± 0.02 a 18.26 ± 0.38 ab 88.32 ± 0.20 a 12.09 ± 0.38 ab 109.17 ± 3.82 b

5000 47.95 ± 2.44 a 6.66 ± 0.03 cd 15.10 ± 0.15 a 1.04 ± 0.02 ab 0.70 ± 0.04 a 17.45 ± 0.08 b 88.20 ± 7.35 a 12.64 ± 1.03 a 116.67 ± 3.82 ab

20000 42.94 ± 0.98 b 6.73 ± 0.01 bc 15.92 ± 0.37 a 1.05 ± 0.02 ab 0.74 ± 0.04 a 18.60 ± 0.21 ab 93.10 ± 11.23 a 11.67 ± 0.70 ab 122.50 ± 6.61 a

50000 47.60 ± 1.59 a 6.61 ± 0.03 d 16.25 ± 0.55 a 1.03 ± 0.04 ab 0.70 ± 0.06 a 17.40 ± 1.47 b 90.65 ± 4.24 a 11.34 ± 0.62 b 113.33 ± 1.44 b

Upland 0.5 46.56 ± 1.92 ab 5.12 ± 0.01 a 34.02 ± 0.90 a 2.40 ± 0.01 a 0.79 ± 0.01 ab 21.58 ± 0.07 a 196.00 ± 8.49 a 50.30 ± 1.11 a 140.09 ± 2.53 a

50 42.85 ± 0.39 b 4.93 ± 0.06 b 32.59 ± 0.58 b 2.33 ± 0.01 a 0.81 ± 0.01 a 22.44 ± 0.43 a 196.00 ± 4.24 a 49.95 ± 1.87 a 140.00 ± 2.50 a

500 47.88 ± 2.76 a 4.78 ± 0.03 c 32.35 ± 0.32 b 2.34 ± 0.03 a 0.79 ± 0.02 ab 21.66 ± 0.27 a 198.45 ± 7.35 a 51.50 ± 0.97 a 140.83 ± 3.82 a

5000 43.89 ± 2.03 ab 4.71 ± 0.02 d 32.34 ± 0.20 b 2.19 ± 0.28 a 0.77 ± 0.02 b 22.27 ± 0.27 a 193.55 ± 11.23 a 48.99 ± 0.90 a 140.83 ± 3.82 a

20000 43.58 ± 2.67 b 4.69 ± 0.01 d 33.72 ± 0.17 a 2.33 ± 0.07 a 0.79 ± 0.04 ab 22.50 ± 0.94 a 210.70 ± 21.22 a 49.73 ± 1.35 a 140.18 ± 3.21 a

50000 45.22 ± 1.95 ab 4.72 ± 0.01 d 33.93 ± 0.64 a 2.39 ± 0.02 a 0.80 ± 0.02 ab 22.23 ± 0.38 a 198.45 ± 7.35 a 49.90 ± 1.79 a 140.00 ± 2.18 a

PCB77 degradation rate = (initial concentration - residual concentration - sterile control concentration) / initial concentration*100%. The841

abbreviations SOM, TN, TP, TK, AN, AP, and AK referred to soil organic matter, total nitrogen, total phosphorus, total potassium, alkali-842

hydrolysable nitrogen, available phosphorus, and available potassium, respectively. The designations 0.5, 50, 500, 5,000, 20,000 and843

50,000 denote the different mixing ratios of H2 that each microcosm was treated with (in ppmv). Each value is the mean of three844

replicates ± standard deviation. The same letter indicates no significant difference (p < 0.05), as calculated from Duncan’s multiple range845

test.846
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Figure 1. Changes of community abundance, diversity, and composition847

during the soil microcosms (a) Stacked bar chart showing the estimated848

abundance of bacterial and archaeal taxa based on 16S rRNA gene copy number;849

Boxplot showing Shannon index of microbial communities based on 16S rRNA gene850

amplicon sequence variants. (b) The relationship between H2 mixing ratio, soil851

physicochemical properties, and beta diversity are visualised by db-RDA. p values852

are denoted by asterisks (* p < 0.05, ** p < 0.01, *** p < 0.001). Results of marginal853

permutation tests of db-RDA are shown in Table S1. (c) Relative abundance of the854

taxa at the phylum level based on 16S rRNA gene amplicon sequencing and855

metagenome analysis. (d) Differences in relative abundance of key genera between856

the elevated H2-treated soils and control soils (0.5 ppmv H2 treatment) based on 16S857

rRNA gene amplicon sequencing and metagenome analysis. The percent values in858

parentheses refer to the relative abundance of the phylotype in the control soil. Only859

taxa are shown which significantly increased or decreased in relative abundance by860

at least 1% in the treatment versus control microcosms, where * indicates p < 0.05861

(one-way ANOVA with Duncan’s test).862

Figure 2. Phylogenetic tree of 196 assembled contaminated soil microbial863

MAGs. The average abundance of each MAG in the corresponding hydrogen864

treatments in contaminated soil is shown in the outer circle heatmap. Taxonomy865

classification at the phylum level is shown in the inner circle across the 196 MAGs866

spanning 24 phyla. The square indicates MAGs that encode a group 1 or 2 [NiFe]-867

hydrogenase, the circles indicate MAGs that encode a RuBisCO, and the stars868

indicate MAGs that encode PCB degradation pathways. The triangle (left triangle,869

wetland; right triangle, upland) denotes on the diagram those taxa that are870

significantly changed following H2 treatment; Filled symbol indicates significantly871

enriched MAGs, and symbol with border only indicates significantly decreased872

MAGs.873

Figure 3. Changes of metabolic potential of the microbial communities in874

contaminated soils. To infer gene abundance in metagenomes, read counts were875

normalized to gene length and the abundance of 14 single-copy marker genes; while876

the abundance of the right heatmap were normalized by predicted MAG877

completeness.878
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Figure 4. Effect of hydrogen on PCB degradation genes and activities in879

contaminated soils. (a) Metabolic pathways in four MAGs (with > 90%880

completeness and < 5% contamination) predicted to mediate PCB degradation.881

Predicted proteins in the figure are listed in Table S7 and Table S11. (b) Changes882

of residual PCB77 concentrations in the wetland and upland soils during the883

incubation period.884
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