
Simultaneous modeling of a Spatial Cuing Task 

1 

Simultaneous Modeling of Reaction Times 
and Brain Dynamics in a Spatial Cuing Task 
 

Simon R. Steinkamp1, *, Gereon R. Fink1, 2, Simone Vossel1, 3, †, Ralph Weidner1, † 

1 Cognitive Neuroscience, Institute of Neuroscience & Medicine (INM-3), Research Centre Juelich, 

52425, Juelich, Germany 

2 Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of 

Cologne, 50937, Cologne, Germany 

3 Department of Psychology, Faculty of Human Sciences, University of Cologne, 50923, Cologne, 

Germany 

† both authors contributed equally 

* Corresponding author: 

Simon R. Steinkamp 

Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3) 

Forschungszentrum Jülich, 

Leo-Brand-Str. 5, 52425 Jülich, Germany 

Email: s.steinkamp@fz-juelich.de 

 

Abstract 

Understanding how brain activity translates into behavior is a grand challenge in neuroscientific 

research. Simultaneous computational modeling of both measures offers to address this 

question. The extension of the dynamic causal modeling (DCM) framework for BOLD 

responses to behavior (bDCM) constitutes such a modeling approach. However, only very few 

studies have employed and evaluated bDCM, and its application has been restricted to binary 

behavioral responses, limiting more general statements about its validity.  
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This study used bDCM to model reaction times in a spatial attention task, which involved two 

separate runs with either horizontal or vertical stimulus configurations. We recorded fMRI data 

and reaction times (n=29) and compared bDCM to classical DCM and a behavioral Rescorla-

Wagner model using goodness of fit-statistics and machine learning methods.  

Data showed that bDCM performed equally well as classical DCM when modeling BOLD 

responses and better than the Rescorla Wagner model when modeling reaction times. Notably, 

only using bDCM’s parameters enabled classification of the horizontal and vertical runs 

suggesting that bDCM seems to be more sensitive than the other models. Although our data 

also revealed practical limitations of the current bDCM approach that warrant further 

investigation, we conclude that bDCM constitutes a promising method for investigating the link 

between brain activity and behavior.  

Keywords: spatial attention, fMRI, simultaneous modeling, effective connectivity, dynamic 

causal modeling, behavioral dynamic causal modeling 
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Introduction 

Computational modeling can deepen our understanding of how the brain processes 

information and produces overt behavior. In the field of psychology, computational modeling 
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has a long history in describing and explaining behavioral concepts. For example, 

reinforcement learning algorithms have been used to explain classical conditioning (Rescorla 

et al., 1972), drift-diffusion models have been used to model reaction times in decision-making 

tasks (Ratcliff, 1978), and race models have been used as theoretical formulations of visual-

spatial attention (Bundesen, 1990). Similarly, different computational modeling approaches 

have been employed in the fields of neuroscience and neuroimaging. For example, generative 

graphical models of brain connectivity describing blood oxygenation level-dependent (BOLD) 

amplitudes in response to experimental inputs can be estimated using dynamic causal 

modeling (Friston et al., 2003, 2017), and multivariate temporal response functions have been 

used to model ongoing sensory stimulation, like speech, in electrophysiological recordings 

(Crosse et al., 2016). 

Although computational models are very prominent in the two fields, behavioral and neural 

responses are mostly treated separately (Turner et al., 2017). However, a combined modeling 

approach could provide us with deeper insights into the neural processes and the emergence 

of behavior. Here, different approaches have been proposed: One possibility is to correlate the 

parameters of neural and behavioral models to describe how the different measures are related 

across different participants (Vossel et al., 2016). Alternatively, in model-based fMRI, the 

behavioral computational model’s outputs (or hidden states) are used as a factor in a classical 

GLM analysis. One such factor could be a participant’s perceived cue validity in a probabilistic 

spatial cueing task, which can be recovered from reaction times (e.g., Dombert et al., 2016). 

Leveraging the theory-driven performance of cognitive models allowed to determine more 

specific brain activation patterns of cognitive processes than by using non-specific measures 

such as reaction times (Turner et al., 2017). A third option is a joint modeling approach (Turner 

et al. 2017). Here, an overarching set of parameters is used to describe both brain activity and 

behavior. An example is a study by Nunez et al. (2015), where the drift-diffusion model 

parameters were constrained with task-based brain activity, incorporating the covariation 

between reaction times and neural-activity on a trial-by-trial basis. 
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Although these approaches are tremendously useful, none of them employs an integrative 

model describing the generation of brain activity and behavior, allowing us to investigate the 

hidden processes behind the two measurements directly. Rigoux and Daunizeau (2015) have 

provided such a framework, where DCM is extended by an additional output function to 

describe behavioral responses (behavioral DCM, bDCM). This simultaneous modeling does 

have not only high descriptive power but also allows thorough diagnostics of the model. For 

example, by disabling specific nodes in the network (i.e., artificial lesions), conclusions can be 

drawn about the contribution or necessity of different brain regions to the emergence of 

behavioral patterns. So far – to our knowledge – bDCM has been applied to a larger datasets 

in one study, which modeled binary choices in an economic decision making task (Shaw et al., 

2019). 

In the current study, we show that bDCM can be extended to continuous measures (i.e., 

reaction times). Furthermore, we provide a direct comparison between bDCM and classical 

DCM and between bDCM and an adjusted version of the Rescorla-Wagner model (Rescorla 

et al., 1972; Vossel, Mathys, et al., 2014). 

As a testing ground, we modeled the effects of attentional reorientation along the horizontal 

and vertical meridians in a spatial cueing-paradigm, where participants had to report the 

orientation of a pre-cued Gabor patch. In trials in which invalid cues indicated an incorrect 

location of the target Gabor patch (20 % of the trials), participants had to reorient their attention 

to the opposite location (Posner, 1980). This paradigm has been found to elicit reliable reaction 

time differences between invalid and valid trials, both on the individual and the group level 

(Hedge et al., 2017). Additionally, it has been shown that the internal representation of cue-

validity can be modeled using the Rescorla-Wagner model as a generative model of reaction 

times (Mengotti et al., 2017; Rescorla et al., 1972; Vossel, Mathys, et al., 2014). 

Besides the reliable behavioral effects, the cortical networks involved in this task have been 

characterized by multiple studies. We have previously analyzed the present dataset using 

classical DCM (Steinkamp et al., 2020), which has also been used in similar cueing paradigms 
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(c.f., Vossel et al., 2012). Moreover, studies in patients with stroke-induced lesions have 

revealed brain regions that are critically involved in spatial cueing-tasks (Corbetta & Shulman, 

2011; Malherbe et al., 2018; Posner et al., 1984). It is well established that the orientation of 

visual-spatial attention is mediated by a dorsal fronto-parietal attention network consisting of 

the intraparietal sulci (IPS) and the frontal eye fields (FEF). This network interacts with a ventral 

fronto-parietal attention network of ventral frontal cortex, and the temporoparietal junction 

(TPJ) when a sudden reorientation of attention is necessary (Corbetta et al., 2005; Corbetta & 

Shulman, 2011). 

In addition to comparing bDCM, which simultaneously models behavior and brain activity, to 

classical DCM and a purely behavioral model, we also investigated whether bDCM parameters 

encode additional information about the task that is not comprised in DCM or the Rescorla-

Wagner model. For this, we followed the idea of generative embedding (Brodersen, Haiss, et 

al., 2011; Brodersen, Schofield, et al., 2011) and tested whether we could separate the 

horizontal and vertical runs of our experiments based on the parameter estimates of our 

models, which was not possible in previous analyses (Steinkamp et al., 2020). 

Methods 

Participants 

Data were collected from 29 participants (15 female, 21-39 years old, M=25, SD=3) with normal 

or corrected-to-normal vision (all right-handed, Edinburgh handedness Inventory (Oldfield, 

1971), M=0.86, SD=0.14), who provided written informed consent to participate in the study. 

One participant had to be excluded subsequently because of noncompliance. Another 

participant was excluded due to excessive head-movement (predefined criteria translation > 

3mm, rotation > 3°). Furthermore, we could not extract the time-series for the left-TPJ VOI in 

one participant. Therefore, the final sample included 26 participants. The ethics board of the 

German Psychological Association had approved the study. Volunteers were paid 15€ per hour 

for their participation. The dataset has been used in a previous study (see Steinkamp et al., 

2020). 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 17, 2020. ; https://doi.org/10.1101/2020.11.16.384198doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.16.384198
http://creativecommons.org/licenses/by/4.0/


Simultaneous modeling of a Spatial Cuing Task 

6 

Task 

 

Figure 1 Il lustration of the spatial cueing paradigm. In the upper row, a valid tr ial of the 
horizontal run is shown. The lower row depicts an example of an invalid trial in the vertical 
run. Reproduced from Steinkamp et al. (2020). 

Participants performed a spatial cueing task while lying in a 3T Trio (Siemens, Erlangen) MRI 

scanner. Stimuli were displayed on a screen behind the scanner bore, which could be seen 

via a mirror (mirror to display distance: 245 cm) that was mounted on a 32-channel head coil. 

The participants’ task was to report the orientation (horizontal/vertical) of a target Gabor patch 

(size 1° visual angle) by button presses of either the left or the right index finger while 

continuously fixating a diamond in the center of the screen (0.5° visual angle). A brightening 

of the central diamond (500 ms) indicated the beginning of a trial and was followed by a spatial 

cue after 1000 ms (brightening of one of the diamond’s edges for 200 ms) that indicated the 

location of the next target stimulus with 80 % probability. Participants were explicitly informed 

about the percentage of cue validity. The possible target locations were indicated by empty 

boxes (1° width) located to the left, right, top, and bottom of the fixation diamond (4° visual 

angle). After 400 ms or 600 ms, the target stimulus appeared for 250 ms at the cued location 

or in the box opposite to it. Distractor stimuli (constructed from two overlapping Gabor patches 

that were rotated by -45° and 45°, respectively) appeared simultaneously in the remaining 

three locations.  Participants performed two runs of the spatial cueing-paradigm. In one run, 
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targets and cues occurred along the vertical axis, in another along the horizontal axis (see 

Figure 1). 

Each run consisted of five blocks of 40 trials (32 valid, 8 invalid). All possible combinations of 

target location, target orientation, and inter stimulus interval were presented in random order 

within each block. The time between the trials was drawn from the set of 2.0 s, 2.7 s, 3.2 s, 

3.9s, or 4.5 s with equal probability. Between the blocks, there was a break of 10 to 13 s. 

Run order (vertical or horizontal first) and the response mapping (left index finger for vertical 

orientations/right index finger for horizontal orientations or vice versa) were counterbalanced 

across participants. Before the experiment, participants performed a rapid detection task to 

train the mapping of stimulus-response associations. Here, targets appeared rapidly in the 

middle of the screen, and participants had to press the corresponding button as fast as 

possible. Immediate feedback and a running score of their accuracy were given. Additionally, 

there were 20 practice trials with feedback before each run of the main experiment. 

Stimulus presentation and response collection were controlled using PsychoPy (version 

1.85.3, Peirce, 2007, 2008; Peirce et al., 2019). 

Behavioral analysis 

The mean reaction time was calculated for each participant and cueing condition and for each 

target location. Before calculating the mean reaction times, we preprocessed the data for each 

participant separately. First incorrect, missed, and outlier trials were removed. Outliers were 

defined as trials with reaction times below 0.2 s and reaction times greater than the 75th 

percentile + 3 * Inter Quartile Range (IQR). The higher threshold for outlier exclusion was 

chosen to retain as many trials as possible in the analysis (removed trials, including errors, in 

the horizontal run: invalid M = 2.54, SD = 2.63; valid M = 6.62, SD = 5.91; in the vertical run: 

invalid M = 3.12, SD = 1.8; valid M = 6.0 SD = 3.94). 

For the analysis of the “validity effect” (i.e., the slowing of reaction times in invalid as compared 

to valid trials), the data were pooled across the two runs (horizontal/vertical). The mean 
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reaction times of the 2 x 4 (cueing x target location) factorial design were then analyzed in a 

repeated-measures ANOVA. The analysis was conducted in Python 3.7 using pingouin 

(version 0.3.3, Vallat, 2018).  

fMRI analyses 

For each participant and each run, we collected 557 T2*-weighted images using an echo planar 

imaging (EPI) sequence (time of repetition (TR) 2.2 s; echo time (TE) 30 ms; flip angle 90°). 

Each recorded volume consisted of 36 transverse slices with a slice thickness of 3mm and a 

field of view of 200mm. The voxel size was 3.1 x 3.1 x 3.3 mm. The first 5 images were 

discarded to account for T1 equilibrium artifacts. Next to functional images, we also obtained 

an anatomical T1-weighted image for each participant, which was used in the preprocessing. 

We preprocessed the fMRI data using fmriprep (version 1.1.1, Esteban et al., 2019), a robust 

and standardized pipeline, which applies slice-time correction, realignment, and normalization 

to MNI space. A detailed preprocessing report can be created automatically (see 

http://fmriprep.readthedocs.io/en/1.1.1/workflows.html), and has been included in the 

supplement. 

Data was further spatially smoothed using an 8 x 8 x 8 mm FWHM Gaussian kernel. This step 

was done in Matlab 2018b (The MathWorks, Inc., Natick, Massachusetts, United States), using 

SPM12 (version 7771, Friston, 2007).  

fMRI - GLM 

A classical GLM analysis was performed to identify activation peaks during attentional 

orientation and reorientation, which were later used to extract BOLD time-series data for the 

DCM analysis. The GLM analysis was conducted using SPM12. First-level models were 

created with four regressors of interest for each run, representing invalidly cued targets on the 

left (iL) and on the right (iR), as well as validly cued targets on the left (vL) and the right (vR) 

for the horizontal run, and invalidly and validly cued targets in the lower (iD, vD) and the upper 

(iU, vU) part of the screen in the vertical run. 
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To account for other physiological noise in the BOLD signal, we added the three rotation and 

three translation estimates of the rigid body transform, the average white matter signal, and 

the average cerebral spinal fluid (CSF) signal as nuisance regressors. We further included the 

squared time-series of the 8 regressors, the time-shifted time-series (t-1), as well as the square 

of the shifted time-series, resulting in a total of 32 nuisance regressors (Friston et al., 1996). 

We also applied a high pass filter at 128 s. For each run, four first-level contrasts were 

calculated: T-contrasts of valid and invalid trials versus baseline, an F-contrast of target onset 

versus baseline, which were used in the VOI analysis, and a differential contrast of invalid trials 

greater than valid trials. The latter contrast isolates brain regions involved in the attentional 

reorientation of attention. 

At the group (second)- level, we investigated the differential contrast of invalid > valid trials 

using two planned one sample permutation t-tests against 0 using SnPM 13 (Nichols & 

Holmes, 2002), with default settings, 10000 permutations, and no additional variance 

smoothing. The cluster forming threshold was estimated during the processes with a 

predefined voxel-level cutoff of p < 0.001. 

Modeling Analysis 

In the following, we will describe the modeling approaches used in our analysis, followed by a 

description of our model assessments and further analyses. 

Rescorla-Wagner Model 

We employed a variant of the Rescorla-Wagner model that we already used previously 

(Mengotti et al., 2017). While these studies were interested in the α parameter (the learning 

rate that describes how quickly participants adjust their internal assessment of the cue-

validity), we applied this modeling approach to simulate reaction times in a trial-by-trial fashion. 

For parameter estimation, we defined new functions for the VBA (Variational Bayesian 

Analysis) toolbox (clone from master, in Jan. 2020, Daunizeau et al., 2014). 

We used the following reinforcement learning formula as the evolution function, describing the 

hidden process governing the generation of reaction times. 
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𝑣𝑡 =  𝑣(𝑡−1) + α ∗  δ 

Where δ = 𝑢𝑡 − 𝑣(𝑡−1) describes the prediction error at trial t. The external input 𝑢𝑡 ∈ [0,  1] 

describes whether the cue at time t was either valid (1) or invalid (0), α is the learning rate and 

𝑣𝑡 is the participant’s perceived cue validity after observation of trial t. 

The observation function (i.e., the mapping from perceived cue validity to reaction times) was 

defined as: 

𝑔𝑡 = 𝑢𝑡 ∗ (ζ𝑣 +  ζ2 ∗ 𝑣𝑡−1) + (1 − 𝑢𝑡 ) ∗ [ζ𝑖 + ζ2 ∗ (1 − 𝑣𝑡−1)]  

According to this formulation, the perceived cue-validity of the previous trial governs the 

responses, with different bias parameters for valid and invalid trials and a general scaling 

parameter of the predictions. 

Table 1 depicts the Gaussian priors used in our estimation: 

Table 1: Overview of parameters and prior values of the Rescorla-Wagner Model.  

Parameters μ σ 
 

 

α 0.5 0.5 To ensure 0 < α ≤ 1, α was logit and 
inverse logit transformed during parameter 
updating 

ζ𝑣 0 1  

ζ𝑖 0 1  

ζ2 0 1  

𝑣0 0.5 1 Initial state of v 

 

Behavioral DCM 

In the following, we will provide a short overview of key-concepts of dynamic causal modeling 

(DCM). For a full derivation and detailed description of DCM, see (Friston et al., 2003; Rigoux 

& Daunizeau, 2015; Stephan et al., 2008). DCM is a fully-Bayesian approach to create a 

generative model of brain dynamics and infer effective connectivity between selected brain 

regions. In principle, DCM describes how experimental variations (described by the input u) 

drive the neural activity (x, the hidden states) in brain regions of interest in a dynamical system. 

The evolution function (𝑥̇ = f(𝑥,  𝑢)) describes the temporal dynamics of the hidden states (𝑥̇) 
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and how they are influenced by external inputs (u). In DCM for fMRI, the evolution function f is 

typically described as: 

f(𝑥, 𝑢, θ) =̂ Ax + ∑ 𝑢𝑗𝐵𝑗𝑥 + 𝐶𝑢

𝑗

 

Where j corresponds to the number of inputs and i to the number of brain regions. The neural 

evolution parameters in θ correspond to the entries in A (fixed connectivity between brain 

regions), 𝐵𝑗 (modulation of connection strength by input j), C (direct effects of inputs). 

Hemodynamic states z (dependent on the neural states x) are then gated through an 

observation function: 

y = g(𝑧,  ϕ) + 𝜖 

This function captures BOLD signal variations based on the hemodynamic states (z) and the 

hidden neural activity (x), with hemodynamic parameters ϕ. This mapping allows to observe 

and infer the hidden neural dynamics via the BOLD signal. 

BDCM augments the described formulation of DCM by an additional evolution (h(𝑥, 𝑢, ψ)) and 

observation functions (𝑔𝑟(𝑟) + ϵ𝑟) to map the hidden neural dynamics to behavioral responses. 

The evolution function h of the new “behavioral” state follows the same rationale as the function 

f in the DCM formulation: 

h(𝑥,  𝑢,  ψ) =̂  𝐴𝑟x + ∑ 𝑢𝑗𝐵𝑟
𝑗
𝑥 +  𝐶𝑟𝑢

𝑗

  

Here the parameter vector ψ describes the linear (𝐴𝑟) components of the behavioral state, as 

well as the direct (𝐶𝑟) and modulatory (𝐵𝑟
𝑗
) influences of experimental manipulations. 𝐴𝑟 is an 

analogy of the weight vector in a regression model. In the original paper, the neural states were 

mapped to binary behavioral observations (button press absent or present) via a sigmoidal 

function: 

s(𝑟) =
1

1 + 𝑒−100∗(ρ+𝑟)
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Here, ρ is an unknown bias term and r is the response or decision state. In our study, we 

slightly adjusted the sigmoid mapping, by changing the scale on which it operates. As we are 

not expecting reaction times slower than 3 s, we used this as an upper bound: 

s(𝑟) =
3

1 + 𝑒−100∗(ρ+𝑟)
 

Regions 

As in our previous study (Steinkamp et al., 2020), we included bilateral IPS and FEF in our 

DCM model, which correspond to the central nodes of the dorsal fronto-parietal attention 

network (Vossel, Geng, et al., 2014). Additionally, as part of the ventral attention network, we 

included the TPJ bilaterally. As additional inclusions (e.g., the inferior/middle frontal gyrus) 

would have led to increasing model complexity and computational resources (and time), we 

did not include other brain regions, which may also play a role in attentional reorienting. 

Based on our assumptions about the dorsal and ventral attention network’s interplay, we 

created three automatic meta-analysis using Neurosynth (https://www.neurosynth.org/, 

Yarkoni et al., 2011), to define the seed coordinates for the subsequent VOI analysis (see 

Table 2). Our regions of interest were bilateral IPS (search term: “intraparietal sulcus”), bilateral 

FEF (search term: “frontal eye”), and bilateral TPJ (search term: “tpj”). We downloaded the 

corresponding association maps (associations, p<0.01 FDR corrected) and identified the seed 

location as the peak voxel in the cluster of interest, using the Anatomy toolbox (v2, Eickhoff et 

al., 2005). In all three maps, the two largest clusters encompassed our regions of interest in 

either the left or right hemispheres. 

Table 2: Regions and search-terms for automated Neurosynth meta-analyses. 

Region NeuroSynth 
(accessed 
10.10.19) 

Z-
Statistic 

X Y Z 

IPS – left “intraparietal 
sulcus” 

14.6 -30 -50 42 

IPS – right “intraparietal 
sulcus” 

13.5 40 -38 44 

FEF – left “frontal eye” 13.9 -30 -4 52 
FEF – right “frontal eye” 14.6 32 -6 52 
TPJ – left “tpj” 8.56 -60 -54 20 
TPJ – right “tpj” 11.4 58 -50 14 
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In each run, we used the participant level t-maps (thresholded at p < 0.1 uncorrected) to search 

for individual local maxima in a 12 mm sphere around the seed coordinates. The first principle 

component of BOLD time-courses in a 9 mm VOI around the participant’s maximum was 

extracted and adjusted based on the F-contrast defined in the first-level analysis. Task-related 

activity for the IPS and FEF VOIs was defined by the contrast of valid trials against baseline 

and for TPJ by the contrast of invalid trials against the baseline. 

Preprocessing 

We preprocessed the BOLD signal by detrending the signal in each VOI (spm_detrend) and 

scaling the BOLD amplitude across VOIs to a maximum value of 4 (see spm_dcm_estimate). 

Behavioral data were extracted from the event data, and as in the previous analyses, error 

trials and trials with missed responses, as well as RTs fulfilling the outlier criterion (RT < 0.2s 

and RT > 3 * IQR + UQ), were excluded. 

BOLD data were resampled from a TR of 2.2 s to a sampling rate of 1.1 s (by interspersing 

“NaN” values). The behavioral observations were set to occur at the corresponding target 

onset, which was also downsampled to a resolution of 1.1 s. No resampling of BOLD data was 

performed for the classical DCM analysis. As the Rescorla-Wagner model represents trial-by-

trial dynamics, the corresponding preprocessed reaction times were used, excluding error and 

missed trials. 

For our modeling, we assumed homogenous HRF dynamics across the six regions, fixing the 

initial states of the model to 0 and estimating the shape of the observation noise hyper-prior 

distributions. For this, we assumed that we would be able to explain 10 – 90% of the variance 

in both the BOLD and the reaction time data. The prior distributions over the other parameters 

were set to the defaults of the VBA toolbox. We used the same hyperpriors for the explained 

variance of the BOLD signal in the classical DCM analysis and the Rescorla-Wagner model’s 

behavioral responses. 
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To define the inputs into the DCM models, we created separate SPM-design matrices that 

were only used to define the input streams. Stream one was defined as the driving input to all 

six regions, containing an impulse every time a target stimulus appeared (irrespective of the 

cueing condition or target location). The second stream was used purely for the modulatory 

effects, containing an impulse only in invalidly cued targets. The input streams were extracted 

from the SPM design matrix and were centered before entering the model inversion 

(spm_detrend). As mentioned above, the Rescorla-Wagner model is modeling trial-by-trial 

variations (rather than continuous time), so the input to this model was a vector consisting of 

ones and zeros, indicating whether the current trial is invalid or valid. 

Model definition 

We used the same general model structure for behavioral and classical DCM analysis. As in 

our previous publication, we used IPS, FEF, and TPJ as our brain regions of interest. For our 

analysis, we inverted a single model. The fixed connectivity structures of our model (i.e., the 

A-matrix) had full connections in each hemisphere and connections between homologous 

regions (Figure 2). As we did not include visual areas in our modeling approach, all six regions 

received driving input (C-matrix). For bidirectional intra- and interhemispheric modulatory 

connections (B-matrix), we considered the IPS and TPJ. Connections in both hemispheres to 

the FEF were unidirectional, assuming that there were no feedback modulations from FEF to 

the other brain regions. In the case of bDCM, we also considered all six nodes as output 

regions.  
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Figure 2: Basic structure of the DCM model . Regions were fully inter-connected in each 
hemisphere, and homologous regions were connected. All regions received driving input. 
We assumed that all connections between the regions were modulated by invalid trials, 
except for feedback and interhemispheric connections from FEF. 

Model evaluation of the Rescorla-Wagner model, classical DCM, and bDCM 

As all three models are based on different underlying data at different times scales (i.e., 

reaction times only, BOLD time-series only, or both), we only compared the models based on 

their outputs, applying classical goodness of fit-statistics. The R2-score,  

S𝑆𝑡𝑜𝑡 =   ∑(𝑦𝑡 − 𝑦̅)2

n

𝑡

 

S𝑆𝑟𝑒𝑠 = ∑(𝑦𝑡 − 𝑦̂𝑡)2

n

𝑡

  

𝑅2 = 1 − (
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
) 

where 𝑦𝑡 describes the datapoint at 𝑡, with 𝑛 timepoints in total. The average of y is defined as 

𝑦̅, and 𝑦̂ are predicted values. Similarly, we also calculated the mean absolute error (MAE) 

MAE =
1

𝑛
  ∑|𝑦𝑡 − 𝑦̂𝑡|

𝑛

𝑡
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Here, we estimated for each subject whether the fit-statistics were different from random for 

each of the model outputs by permutation testing. The predicted values 𝑦̂ were shuffled 10000 

times (without replacement), and the two statistics were recalculated. The permutation p-value 

for the models is then reported as the proportion of fits greater than the model’s R2 –score 

(smaller in case of MAE) plus one divided by the number of permutations plus one (Ojala & 

Garriga, 2010). At the group level, we report the proportion of significant models, based on a 

permutation p-value < 0.05. 

To compare the model performance on reaction times, we used (Bayesian-) paired t-tests to 

test for differences between the fit-statistics (R2 -score and mean absolute error (MAE)), 

separately for the two runs. We then investigated how well bDCM and the Rescorla-Wagner 

model simulate the underlying reaction time distributions. This was achieved by calculating a 

two-sample Kolmogorov-Smirnov test between the model-derived reaction times of the 

Rescorla-Wagner model or bDCM and the measured reaction times. Finally, paired t-tests 

were used on the distance between the distributions (as determined by the KS-test) to test 

which simulation followed the measured data more closely (i.e., had a smaller distance at the 

group level). 

We applied a mixed-effects linear model for each error term to compare differences in 

performance to the BOLD data fit between classical DCM and bDCM. The mixed-effects model 

followed the following formula, where “Score” either depicts the mean absolute error or the R2-

score: 

Score~Model + Region + Run + Model ∗ Region + Model ∗ Run 

and Model has the two factors “DCM” and “bDCM”, “Run” describes either the horizontal or 

vertical run, and “Region” indicates the “Score” for either VOI. Each model also contained a 

random intercept for each participant. 
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Generative Embedding 

We also investigated whether bDCM parameters encode additional information, which is not 

contained in classical DCM or in the Rescorla-Wagner model. Therefore, we tested whether 

the parameters derived from our computational models could be used to separate the 

horizontal and vertical run. Note that our previous work using classical DCM did not provide 

any evidence for distinct behavioral or neural processes (Steinkamp et al., 2020). 

To test if a separation is possible and which sets of parameters encode the necessary 

information, we ran several experiments using different feature sets. Our feature sets for DCM 

and bDCM were: “AB”, the sum of the “A” and “B” matrices (19 parameters); “AB + C”, 

extending the feature set with the “C” matrix parameters (25 parameters); in case of bDCM we 

additionally tested the feature sets “AB + hA”, where the “hA” matrix was also included in the 

set (25 parameters); “AB + C + hA”, including all connectivity parameters of the bDCM (31 

parameters); “C + hA”, using only the input and outputs connections of bDCM. We then also 

tested whether we can find any information in the parameters of the Rescorla-Wagner model 

(see Table 2, “RW”, 4 parameters), and whether parameters of DCM and the Rescorla-Wagner 

model in combination have a beneficial effect (“AB + C + RW”, 29 parameters). To be sure that 

there was no additional information in the BOLD time-series, we also included a feature set 

based on the correlation of the time-series of the six VOIs in our experiments (“Correlation”, 

15 parameters) and of the time-lagged correlation with the time-series (“Correlation + 

Correlationt-1”, 51 parameters). Correlations were established using nilearn’s 

ConnectivityMeasure (Abraham et al., 2014), with no variance scaling. 

As we have a minimal sample size for classification approaches (26 participants, 52 instances), 

we applied an elaborate cross-validation procedure for our results. We applied 5-fold cross-

validation to obtain an estimate of the accuracy of each feature set, whose significance was 

further evaluated by permutation testing (1000 iterations, scikit-learn’s, 

permutation_test_score; Pedregosa et al. (2011)). To keep more independence between the 

train and test-sets, we ensured that a given participant’s instances were not distributed across 
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training and test-sets. Due to the small sample size and high variance between participants, 

we repeated the cross-validation procedure 20 times, shuffling the participants order, and 

creating different train-test splits for each iteration. 

To account for a certain amount of algorithmic variance, we performed the procedure above 

using two classifiers, a logistic regression, and a linear support vector machine (scikit-learn, 

using default parameters). Input data were normalized using robust-scaling (scikit-learn’s 

RobustScaler). 

Lesion Analysis 

We also applied lesion analysis to the bDCM model, as described in Rigoux and Daunizeau 

(2015). Here, the afferent connections towards a single brain region were reduced to 0 to 

simulate the absence of this region (i.e., to create an artificial lesion). The simulated data from 

such a lesioned model can be used to better understand behavioral changes after damage to 

certain brain regions. 

To alleviate the problem of numerical instabilities, which resulted in values resulting in infinity 

or minus infinity for the hidden states, we changed the posterior self-inhibitory connection in 

the DCM model to log(1) (to ensure inhibition, i.e., negativity, self-connections in DCM are 

exponentiated before subtraction from the diagonal of the A matrix). While increasing the self-

inhibition solved the problem of instabilities, it significantly impacted the fit-statistics of the non-

lesioned model. Therefore, we only provide a qualitative description of the lesion analysis. In 

the end, we simulated data for all 26 participants for each lesion and several levels of lesion 

extent. This means, rather than switching off the afferent connections (i.e., the inputs to the 

region) altogether, we also simulated data for connections that had 95 %, 75 %, 50 %, 25 %, 

5%, and 0 % of the original incoming strength. 

Since a few models still were numerically unstable, we then cleaned the simulated data by 

removing datasets on a per lesion basis where the variance after the 20th trial was close to 0 

(i.e., the simulated reaction times flatlined at the maximum/minimum of the sigmoid function) 

and which returned non-values. In the qualitative analysis, we compared the group-mean 
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validity effects for different lesions, extents, and target sides, removing participants who had 

an absolute validity difference greater than 2 secs. 

Results 

Behavior 

To test for reaction time effects of cueing (valid or invalid) and target-side (left, right, down, 

up), as well as their interactions, we applied a 2 x 4 repeated measures ANOVA (see also 

Figure 3). There was no significant effect of target-side (F(1.965, 49.125) = 0.1, p = 0.902,  η𝑝
2 

= 0.004, ε = 0.655). However, a significant main effect of cueing (F(1, 25) = 26.647, p < 0.001, 

η𝑝
2 = 0.516, ε = 1.0) and a weak significant interaction between target-side and cueing (F(2.88, 

72) = 2.866, p = 0.045,  η𝑝
2 = 0.103, ε = 0.96) were observed. All reported p-values were 

Greenhouse-Geisser corrected to account for a lack of sphericity. 

 

Figure 3: Box- and swarm plots of mean-reaction time data for each participant in the 8 
conditions. The boxes indicate the inter-quarti le range (IQR),  the l ine in the middle the median 
reaction t ime, whiskers are extended to include the lower and upper quartiles plus 3 times the 
IQR. Loose points indicate outliers.  The ANOVA’s results are readily visible,  as there are longer 
reaction times in invalid trials but no apparent effects between the different target -positions.  
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FMRI GLM 

The contrasts of invalid versus valid trials isolating reorienting-related activity for the two runs 

are reported in Figure 4 (group t-maps are provided on neurovault:  

NV_LINK, (Gorgolewski et al., 2015), the corresponding tables reporting global and local 

maxima for the different clusters are in supplement S2). We performed a one-sample 

permutation t-test on the first-level contrast images (invalid > valid), with a predefined cluster-

forming threshold of p < 0.001, the results are reported family-wise error corrected at p < 0.05 

(cluster threshold horizontal k = 58 voxels, vertical k = 70 voxels). In both maps, we found 

areas classically associated with the dorsal and ventral attention networks. For example, in 

both runs, we observed significant activation in bilateral intraparietal sulci and frontal-eye 

fields. Activations of the ventral attention networks were less robust. For the horizontal run, for 

example, the invalid versus valid contrast revealed an involvement of the middle frontal gyrus 

predominantly in the right hemisphere and no significant activation close to the seed regions 

 

Figure 4: Non-parametric T-maps contrasting invalid > valid trials for the two runs (p < 0.05 
FWEc). The purple overlay indicates the regions where the 9mm VOIs for the bDCM analysis 
were extracted (sum of the participant’s masks).  
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for the temporoparietal junction at the given threshold. However, the temporoparietal junction 

was significantly activated in the vertical run. 

Model Fit 

Reaction Time Data 

We calculated the mean absolute error (MAE) and the R2 statistic for the Rescorla-Wagner 

and bDCM models and assessed their significance on a per-subject level by calculating 

permutation tests. In the horizontal run, the bDCM (mean absolute error, M = 0.091, SD = 

0.033, percent sig = 96.2 %; R2 score, M = 0.117, SD = 0.084, percent. sig = 100 %) performed 

well when compared to the Rescorla-Wagner model (mean absolute error, M = 0.094, SD = 

0.033, percent sig. = 53.8 %; R2 score, M = 0.066, SD = 0.08, percent. sig = 69.2 %). The 

results of the vertical run yielded a very similar picture, where the differences between the 

bDCM (mean absolute error, M = 0.093, SD = 0.034, percent sig. = 100 %; R2 score, M = 

 

Figure 5: Boxplots comparing the different fit -statistics across models in the horizontal run. 
Please note that for the R2-score a higher value is better, while the opposite is true for the 
mean absolute error. The dashed l ines between the boxplots indicate individual participants.  
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0.158, SD = 0.143, percent. sig = 100 %) and the Rescorla-Wagner model (mean absolute 

error, M = 0.096, SD = 0.038, percent sig. = 80.8 %; R2 score, M = 0.094, SD = 0.141, percent. 

sig = 88.5 %) were even more pronounced (see Figure 5). The paired t-tests (Table 3) 

confirmed this pattern and revealed a better fit for the vertical run. BDCM had a lower error 

and greater fit than the Rescorla-Wagner model. 

Table 3: Paired t-tests between the fit-statistics of bDCM and Rescorla-Wagner models. 
The differences between the fit-statistics favor the bDCM model.  

Run Error T (df 25) p-val CI95% cohen-d BF10 

Horizontal MAE -3.557 0.002 -0.0, -0.0 0.066 23.692 

Horizontal R2 5.803 < 0.001 0.03, 0.07 0.625 4.249.729 

Vertical MAE -2.644 0.014 -0.01, -0.0  0.098 3.571 

Vertical R2 5.204 < 0.001 0.04, 0.09 0.456 1.048.508 
 

Furthermore, we evaluated how well the reaction time distributions of the two models’ 

simulations matched the real reaction time distribution (Figure 6). We calculated the distance 

between the distributions of measured and simulated reaction times for each run, participant, 

and cueing-condition using the Kolmogorov-Smirnov test. We then performed paired t-tests in 

order to ascertain which simulation better matches the original distribution. In all cases, the 

bDCM simulation provided a better match (horizontal run, valid cueing, t(25) = -10.155, p < 

0.001, Cohen’s d = 2.432, BF10 = 4.39 * 1010; horizontal run, invalid cueing, t(25) = -8.121, p < 

0.001, Cohen’s d = 2.392, BF10 = 7.51 * 108; vertical run, valid cueing, t(25) = -7.619, p < 0.001, 

Cohen’s d = 2.049, BF10 = 2.56 * 108; vertical run, invalid cueing, t(25) = -9.931, p < 0.001, 

Cohen’s d = 2.475, BF10 = 2.87 * 1010 ). Based on visual inspection of the differences in reaction 

time distributions, deviations were especially pronounced at the extreme ends of the 

distribution. 
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Figure 6: Left column, Kolmogorov -Smirnov distance between the s imulated responses between 
the measured reaction t imes and bDCM or the Rescorla -Wagner model.  The grey shading 
indicates non-significant differences. BDCM has, in general, a lower distance to the original 
distribution, and in many cases, the tests were non -significant. Both models also appeared to 
be better in the prediction of the invalid reaction t ime distribution. Middle Column: Cumulative 
reaction time distribution represented by the deciles of each model. The measured reaction 
times (green) have a more extensive spread than the reaction times from bDCM (blue) and the 
Rescorla-Wagner model (orange). Right column: The pair ed difference between the deciles of 
the Rescorla-Wagner model and bDCM. Differences are especially large in more extreme deciles.  
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BOLD Data 

In a further step, we investigated whether DCM and bDCM were comparable in their fit to the 

measured BOLD data. For this, we calculated the fit-statistics (mean absolute error and R2-

score) for the two modeling approaches and the two runs. Since this yields fit-statistics for each 

brain region, we calculated two linear mixed-effects models (MLM) with participant as a random 

factor to test for a main-effect or interaction effects of model and fit-statistic, as well as the 

main effect of run and interactions between model and run (Figure 7). The results of the mixed-

effects models are summarized in Table 4. Importantly, we did not find a significant main effect 

of model. However, there were significant main effects of brain region, these effects did not 

interact with the choice of model, indicating that the two models performed similarly. A similar 

conclusion can be drawn when looking at the different runs. Again, there were no significant 

main effects nor interactions of the factor model. 

Table 4: Results of the MLM analysis for BOLD fit-statistics. The table is split for mean 
absolute error and R2  score.  

 R2 Score  Mean Absolute Error 
 

Coef. Std.Err. z P>|z|  Coef. Std.Err. z P>|z| 

Intercept 
0.176 0.012 14.986 < 

0.001 
 

0.317 0.014 22.720 < 
0.001 

DCM 0 0.013 -0.017 0.986  0 0.016 -0.021 0.983 

FEF Right 
-0.048 0.012 -3.879 < 

0.001 
 

-0.033 0.015 -2.189 0.029 

IPS Left 
-0.053 0.012 -4.268 < 

0.001 
 

-0.054 0.015 -3.574 < 
0.001 

IPS Right 
-0.063 0.012 -5.109 < 

0.001 
 

-0.072 0.015 -4.764 < 
0.001 

TPJ Left 
-0.075 0.012 -6.074 < 

0.001 
 

0.03 0.015 1.946 0.052 

TPJ Right 
-0.083 0.012 -6.727 < 

0.001 
 

-0.007 0.015 -0.436 0.663 

Vertical Run 
-0.003 0.007 -0.411 0.681 

 
0.031 0.009 3.593 < 

0.001 

DCM * FEF Right 0.007 0.017 0.428 0.669  0 0.021 0.002 0.999 

DCM * IPS Left 0.008 0.017 0.483 0.629  -0.001 0.021 -0.033 0.973 

DCM * IPS Right 0.005 0.017 0.301 0.763  -0.001 0.021 -0.044 0.965 

DCM * TPJ Left 0.01 0.017 0.552 0.581  -0.002 0.021 -0.087 0.93 

DCM * TPJ Right 0.009 0.017 0.501 0.617  -0.001 0.021 -0.059 0.953 

Vertical Run * DCM 0.008 0.01 0.801 0.423  -0.002 0.012 -0.137 0.891 
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Figure 7: Box plots for the different fit -statistics. Left column shows the data for the horizontal 
run, the right data for the vertical run. The upper row indicates the R 2 scores and the lower row 
the mean absolute error.  
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Generative Embedding 

In this analysis, we tested how well the different models could separate the vertical and 

horizontal runs from each other using two different kinds of machine learning algorithms. Due 

to the high variability in our data (a very low number of training instances, difficult task), we 

decided to shuffle the assignment of train-test folds so that the cross-validation was performed 

multiple times. We assessed how often predictions of a classifier were significant (permutation 

P-Value < 0.05) and calculated the average predictive accuracy. The horizontal run could not 

be separated from the vertical run using combinations of features that were not derived from 

bDCM parameters (see Figure 8). This indicated that bDCM provided us with some very minute 

differences between the two runs, that were not included in other models or the BOLD signal. 

 

Figure 8: Classifier performance for the 20 shuffles of our dataset, sorted by average 
performance. In the upper row, the average performance and spread across iterations are 
shown, and transparent violin -plots indicate the distribution of permutation scor es. In the 
lower panel,  the distribution of permutation p -values is  indicated, with the black line indicating 
the p < 0.05 cut-off.  
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Lesion Analysis 

 

Figure 9: Validity effect for simulated reaction t imes for the horizontal run, after brain lesions 
of different extent.  An extent of 1 means that no lesion occurred. An extent of 0 indicates that 
the region was fully disabled. Boxplots in dicate the median of the data, the IQR, and the 
minimum and maximum values. Outliers exceed the 1.5 * IQR criterion.  
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Figure 9 depicts the results of the lesion analysis for the horizontal run (the vertical run can be 

found in the supplement). Constraining the self-connections in the model resulted in significant 

decreases in model fit of reaction time data in both the horizontal run (paired t-tests; MAE, 

t(25) = 5.054, p < 0.001, Cohen’s d = 0.197; R2-score, t(25) = -6.573, p < 0.001, Cohen’s d = 

1.260) and the vertical run (paired t-tests; MAE, t(25) = 4.159, p < 0.001, Cohen’s d = 0.175; 

R2-score, t(25) = -7.185, p < 0.001, Cohen’s d = 0.898). Despite this note of caution, there 

were some interesting trends in the data. The effect of lesion extent on the validity effect 

seemed highly specific for the different network nodes with some lesions increasing and other 

lesion decreasing the validity effect, depending on the extend of the artificial lesion.  

From a computational anatomy perspective, lesioning the TPJ yielded plausible effects, with a 

gradual increase in the contralesional validity effect following larger lesions.  

Discussion 

We applied bDCM (Rigoux & Daunizeau, 2015) to simultaneously model neural responses and 

reaction times in a spatial cueing task. We here demonstrated that bDCM could not only be 

applied to binary responses, but also to continuous read-outs (i.e., reaction times).  

After reproducing previously published effects of cue validity at the behavioral and neural level, 

we modeled behavioral and functional imaging data in three different ways. BDCM, as a novel 

approach, was compared to both classical DCM and the behavioral Rescorla-Wagner model. 

As all three models serve different purposes and rely on different data on different timescales, 

we restricted the model comparison to the models’ outputs and fit-statistics.  

Although the original paper on bDCM suggested that incorporating behavior also leads to an 

advantage in representing the BOLD response of bDCM over classical DCM, we did not find 

significant differences between both modeling approaches. The benefit of including behavioral 

measures might only be prevalent when BOLD recordings are noisier than behavioral 

recordings (Rigoux & Daunizeau, 2015). 
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Furthermore, we compared simulated reaction times of bDCM and our implementation of the 

Rescorla-Wagner model (Vossel, Mathys, et al., 2014). BDCM had in general a better fit to 

reaction time data (reflected in higher R2-score and lower error) and represented the 

distribution of reaction times more closely in both valid and invalid trials (reflected in 

significantly lower distances, which were calculated by the Kolmogorov-Smirnov test). Both the 

Rescorla-Wagner model and bDCM did not model the extreme ends of the reaction 

distributions well, however, bDCM deviated less from the measured data. 

Note that this comparison was not performed to favor one model over the other. Instead, it was 

conducted to evaluate bDCM against the performance of a highly specialized, validated, and 

less complex model in a cueing task. Despite the superior fit of bDCM, the Rescorla-Wagner 

model performed extremely well, given the small number of parameters. Hence, if we penalized 

for model complexity, the Rescorla-Wagner model would probably be identified as the 

preferred model for reaction times. BDCM also incorporates the dynamics of the BOLD 

response and operates on a timescale of seconds, rather than trials. Thus, having only 8 

parameters more than the classical DCM (69 parameters) seems to be an adequate increase 

in complexity. The resulting more detailed representation of reaction time distributions in bDCM 

might be useful to uncover relevant aspects for assessing cognitive functions as previously 

demonstrated for other modeling approaches. For example, parameters of drift-diffusion 

models of reaction times (Smith & Ratcliff, 2009) were found to be related to general 

intelligence (van Ravenzwaaij et al., 2011) and working memory (Schmiedek et al., 2007). 

Furthermore, distributional reaction time analysis may categorize healthy participants and 

patients suffering from psychiatric disorders (Kaiser et al., 2019; Karalunas et al., 2014; 

Vinogradov et al., 1998). The Rescorla-Wagner model could also be used for such 

differentiations, especially in the domain of belief-updating (Mengotti et al., 2017). By modeling 

a single cognitive process, however, the Rescorla-Wagner model is very dependent on the 

presence and size of a participant’s validity effects (see analysis in S3, showing that the 

correlation between model fit and cue-validity are higher for Rescorla-Wagner than bDCM).  
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BDCM, in contrast, simulated smoother reaction time distributions (larger number of non-

significant p-values in KS-test), possibly providing a richer representation of the underlying 

processes. Although bDCM may reflect a portion of variance in the reaction time data that is 

not task-related, this variance could reflect the processes of belief-updating in a more complex 

brain-dynamics-dependent matter. BDCM is a model of brain dynamics that can, in principle, 

be applied to any task, while the Rescorla-Wagner model represents a specialized model of a 

cognitive process. 

As bDCM can be applied to model different behavioral read-outs in various tasks, it can 

enhance our understanding of how DCM’s connectivity parameters relate to behavior. So far, 

this link could only be established using indirect methods, such as correlations between DCM 

parameters and behavioral measures across participants. For example, DCM’s task 

connectivity parameters have been related to symptoms of depression and schizophrenia 

(Desseilles et al., 2011; Schlösser et al., 2008; Wu et al., 2014), and have been correlated with 

behavioral measures before and after interventions using non-invasive neurostimulation 

(Grefkes et al., 2010). Although the investigation of such associations does not allow causal 

interpretations, bDCM enables more firm conclusions how brain dynamics in selected brain 

regions impact behavior. 

Furthermore, brain and behavioral dynamics both regularize bDCM, so that the model 

parameters encode the most reliable set of information from both sources (Rigoux & 

Daunizeau, 2015). This procedure could yield more robust and stable connectivity estimates 

but also encode more specific information. This may be particularly relevant for so-called 

“generative embedding” approaches, where a generative model and its estimated parameters 

are used as a form of dimensionality reduction (Brodersen, Haiss, et al., 2011; Brodersen, 

Schofield, et al., 2011). In fact, this was confirmed by our findings, where it was possible to 

differentiate the horizontal from the vertical run only when using the bDCM model’s connectivity 

parameters. This makes bDCM a unique approach for the identification of biomarkers that are 

relevant for certain behaviors – provided that they are stable across participants and sessions 

(Elliott et al., 2020).  
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Since bDCM is a generative model, it can also be used to simulate how alterations to the 

underlying brain network might change behavior (Rigoux & Daunizeau, 2015). This allows 

simulating the behavioral effects of neuromodulatory interventions and the generation of new 

hypotheses and experiments. The guidance and information of computational models will 

eventually lead to a better understanding of the neural mechanisms underlying behavioral 

outcomes (Kriegeskorte & Douglas, 2018; Turner et al., 2017). 

Unfortunately, applying artificial lesions to the network model in our study revealed technical 

problems of this approach. More specifically, the estimated models lacked numerical stability 

and required manual intervention, which substantially changed the model’s output. Even 

though some of the resulting patterns were consistent with the literature (e.g., an increase of 

the contralesional validity effect after a lesion to right TPJ and to a lesser extent in left TPJ 

(Malherbe et al., 2018; Posner et al., 1984)), other simulations were highly variable. Hence, 

the relatively novel bDCM approach’s potential problems, such as over-fitting and non-

generalizability, need to be considered in future studies. 

Conclusion 

bDCM was applied for the first time to reaction time data of a larger sample of participants. Our 

findings provided evidence for a considerable additional value of the method compared to a 

purely behavioral model and classical DCM and identified practical use issues. Data suggest 

that bDCM is indeed a promising tool to enhance our understanding of how brain dynamics 

generate specific behavioral patterns. 
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