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Abstract 

Cell-to-cell heterogeneity is a characteristic feature of the tumor necrosis factor (TNF)-

stimulated inflammatory response mediated by the transcription factor NF-κB, motivating an 

exploration of the underlying sources of this noise. Here we combined single-transcript 

measurements with computational models to study transcriptional noise at six NF-κB-regulated 

inflammatory genes. In the basal state, NF-κB-target genes displayed an inverse correlation 

between mean and noise. TNF stimulation increased transcription while maintaining noise, 

except for the most repressed genes. By fitting transcript distributions to a two-state model of 

promoter activity, we found that TNF primarily stimulated transcription by increasing burst size 

while maintaining burst frequency. Burst size increases were associated with enrichment of 

initiated-but-paused RNA polymerase II at the promoter, and blocking the release of paused 

RNAPII with a small molecule inhibitor decreased TNF-stimulated burst size. Finally, we used a 

mathematical model to show that TNF positive feedback further amplified gene expression noise 

resulting from burst-size mediated transcription, leading to diverse TNF functional outputs. Our 

results reveal potential sources of noise underlying intercellular heterogeneity in the TNF- 

mediated inflammatory response.   
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Introduction 

Tumor necrosis factor (TNF) activates pro-inflammatory and stress response signaling in 

many cell types (Aggarwal, 2003). The TNF inflammatory response is mediated by the 

transcription factor NF-κB, which regulates the expression of hundreds of genes. These genes 

include inflammatory cytokines that can propagate an immune response via paracrine signaling, 

as well as negative regulators of NF-κB (Hoffmann et al, 2002; Pahl, 1999; Smale, 2011). 

Dysregulation of the TNF-stimulated NF-κB response contributes to inflammatory disease states 

(Lewis and Pollard, 2006; Schottenfeld and Beebe-Dimmer, 2006.), and thus NF-κB-induced 

transcription is tightly regulated in cell populations. However, it has been widely observed that 

TNF stimulates significant cell-to-cell heterogeneity in NF-κB signaling and in the transcription 

of its inflammatory gene targets (Cheong et al, 2011; Lee et al, 2014; Tay et al, 2010; Wong et 

al, 2019; Zhang et al, 2017). Although cell-to-cell heterogeneity in NF-κB signaling has been 

widely explored, additional sources of noise underlying transcription are not well understood. 

Understanding these sources of noise may enhance our ability to modulate the inflammatory 

response in clinically relevant ways. 

One major source of single-cell gene expression noise is the fluctuation of promoters 

between transcriptionally active and inactive states, a process termed transcriptional bursting 

(Bahar Halpern et al, 2015b; Dar et al, 2012; Raj et al, 2006. Singh et al, 2010; Skupsky et al, 

2010; Suter et al, 2011.). Though gene expression noise can be buffered by various mechanisms 

(Bahar Halpern et al, 2015a; Padovan-Merhar et al, 2015; Stoeger et al, 2016), in some cases it 

is amplified by regulatory networks to drive diverse cellular behaviors (Acar et al, 2008; Chang 

et al, 2008; Shalek et al, 2014; Weinberger et al, 2005). Several molecular mechanisms have 

been associated with transcriptional bursting including nucleosome positioning (Dey et al, 2015; 

Raser and O’Shea, 2004), chromatin modifications (Chen et al, 2019; Suter et al, 2011), 

transcription factor activity (Li et al, 2018; Senecal et al, 2014), and RNA polymerase (RNAPII) 

pause regulation (Bartman et al, 2019; Wong et al, 2018).  

Although transcriptional bursting has not been extensively studied at endogenous NF-κB 

target genes, it has been well characterized for the HIV long terminal repeat (LTR) promoter, 

which is regulated by NF-κB. Transcriptional bursting at the HIV LTR has been shown to be 

influenced by chromatin environment both in the basal state (Dey et al, 2015; Dar et al, 2012; 

Singh et al, 2010), and after TNF stimulation (Dar et al, 2012; Wong et al, 2018). Specifically, it 
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was shown that TNF could modulate either burst frequency (i.e., the rate of transition from an 

inactive to active state promoter state), or burst size (i.e., the number of transcripts produced per 

burst) of silent-but-inducible HIV LTR promoters, and that the bursting mechanism was 

influenced by the basal histone 3 acetylation state at the promoter (Wong et al, 2018). 

Endogenous NF-κB target promoters are found in basal chromatin environments that resemble 

those of latent-but-inducible HIV promoters (Ramirez-Carrozzi et al, 2009). Thus, we sought to 

determine if molecular mechanisms regulating transcriptional bursting at inducible HIV LTRs 

are similar for endogenous NF-κB targets. 

In this study, we analyzed changes in gene expression noise and transcriptional bursting 

at six endogenous NF-κB target promoters before and after TNF stimulation. We found that NF-

κB-target genes display an inverse correlation between mean and noise in the basal state, and that 

TNF stimulation increases mean transcription while maintaining noise for all but the most 

repressed genes. Using a mathematical model of bursting (Raj et al, 2006; Dey et al, 2015; 

Wong et al, 2018), we inferred that TNF stimulation primarily increases burst size while 

maintaining burst frequency, leading to highly skewed transcript distributions, especially for Tnf 

and Il8. We further found that differences in RNA polymerase (RNAPII) pause regulation are 

associated with differences in the regulation of transcriptional bursting in response to TNF, and 

can be modulated by altering RNAPII pause regulation with a small molecule inhibitor. Finally, 

we used a mathematical model to explore how TNF positive feedback further affects cell-to-cell 

heterogeneity in Tnf transcription when activated by burst size vs. burst frequency increases. We 

find that burst size increases, when amplified by positive feedback, lead to significantly more 

heterogeneous cell populations, with a small subset of high TNF producers, consistent with 

observations from other studies. Overall, we conclude that TNF-mediated transcriptional 

bursting is regulated similarly for endogenous and viral NF-κB target promoters. Moreover, our 

results suggest that burst size-mediated transcription combined with positive feedback may 

contribute to the substantial cell-to-cell variability observed in the TNF-mediated inflammatory 

response. 

 

Results 
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Single-molecule mRNA quantification reveals a conserved mean-noise relationship for 

TNF-NF-κB gene targets in the basal state 

 

To characterize transcriptional noise in NF-κB targets induced by TNF, we analyzed six 

genes regulated by NF-κB. These genes have different roles in the TNF-induced inflammatory 

response. Nfkbia and Tnfaip3 encode the intracellular proteins IκB-α and A20, respectively, 

which negatively regulate NF-κB p65 (Baeurerle and Baltimore, 1988; Heyniinck et al, 1999; 

Hoffmann et al, 2002). Tnf, Il8, Il6 and Csf2 encode the secreted inflammatory cytokines TNF, 

IL-8, IL-6, and GM-CSF, respectively (Fig. 1A). Nfkbia, Tnfaip3, Tnf, and Il8 are classified as 

primary inflammatory genes because they are transcribed directly in response to stimulation in 

immune cells, while Il6 and Csf2 are classified as secondary genes because they require 

synthesis of additional protein regulators prior to transcription (Hargreaves et al, 2009; Ramirez-

Carrozzi et al, 2006; Ramirez-Carrozzi et al, 2009). These genes are found in a range of basal 

chromatin environments, as quantified by the ratio of histone H3 acetylated at lysine 9 and 14 

(AcH3) to total histone H3 levels (AcH3:H3) at their promoters measured by chromatin 

immunoprecipitation (ChIP) in the leukemic Jurkat T cell line. Nfkbia and Tnfaip3 had the 

highest ratio of AcH3:H3, indicating a more open chromatin environment, while Il6 and Csf2 

had much lower ratios, indicating a more closed chromatin state (Fig. 1B).  

In response to TNF stimulation (20 ng/ml), most genes exhibited increased transcription 

that inversely correlated with AcH3:H3 ratio in the basal state: Nfkbia and Tnfaip3 exhibited the 

highest increases, while Tnf and Il8 were significantly lower, as measured in the population by 

RT-qPCR (Fig. 1C). Increases in Il6 and Csf2 were not detectable in the population even four 

hours after TNF stimulation. Notably, the differences in transcription were not due to differences 

in NF-κB p65 binding, because following TNF stimulation, NF-κB p65 promoter binding 

increased similarly across all promoters as measured by ChIP, including at the Il6 and Csf2 

promoters (Fig. 1D).  

To quantify transcription in single cells, we performed single molecule RNA 

fluorescence in situ hybridization (smFISH) in Jurkat T cells (Fig. 1E) (Raj et al, 2008). We 

found very low levels of basal transcription, ranging from an average of 10 mRNAs per cell for 

Nfkbia to less than one mRNA on average per cell for Il6 and Csf2 (Fig. 1F-G). Average mRNA 

levels were inversely correlated with AcH3:H3 ratio. We observed significant cell-to-cell 
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heterogeneity as measured by coefficient of variation (CV) and Fano factor, with higher CV for 

the lower expression genes and higher Fano for the higher expression genes (Fig. 1H-I). Thus, 

the influence of chromatin state is apparent in the mean and variability of basal mRNA levels 

prior to TNF stimulation.  

There is evidence for global constraints on transcriptional noise in mammalian cells 

(Sanchez and Golding, 2013), and our observation of systematic changes in mean and noise 

across NF-κB targets in different chromatin environments is consistent with this hypothesis. To 

explore this further, we plotted the log of mean (log10(mean)) versus the log of noise 

(log10(CV2)) for the basal mRNA measurements of these six NF-κB-regulated genes in Jurkat 

cells, and we observed an inverse linear relationship between noise and mean (Fig. 1J). 

Interestingly, when we plotted log10(mean) versus log10(CV2) for smFISH measurements of the 

same targets made in HeLa cells (Lee et al, 2014) or in murine bone marrow-derived 

macrophage cells, we found that these measurements fell along the same line. Furthermore, basal 

mRNA measurements for exogenous HIV-LTR promoters measured in Jurkat T cells and 

exhibiting similar basal chromatin states (Wong et al, 2018) also fell along the same trendline 

(R2 = 0.79). The slope of this conserved mean-versus-noise trendline suggests non-Poissonian 

stochastic transcription rather than continuous transcription in inducible NF-κB targets (Dar et 

al, 2016; Singh et al, 2010). Altogether we conclude that there is an inverse relationship between 

mean and noise in the basal state that is conserved across NF-κB targets and multiple cell types. 

 

TNF stimulation produces gene-specific changes in transcriptional heterogeneity 

 

Genes in such diverse basal environments likely require recruitment of different factors 

by NF-κB to effectively activate transcription, which may lead to systematic differences in 

single-cell transcription distributions following stimulation (Neuert et al, 2013; Senecal et al, 

2014). To analyze how transcriptional noise is altered by TNF-induced activation of NF-κB, we 

quantified mRNA using smFISH (Fig. 2A). For Nfkbia, Tnfaip3, Tnf, and Il8, we measured 

mRNA counts at one- and two-hours post TNF treatment to capture the peak and reduction in 

expression (Fig. 2B and Fig. 1C). For Il6 and Csf2, we measured mRNA counts at 2- and 4-hours 

post TNF treatment when transcription was still rising. Notably, we were able to measure a 
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significant increase in mRNA levels for Il6 and Csf2 by smFISH, even though increases in 

transcription were not detectable by population-level RT-qPCR (Fig. 1C).  

Although TNF treatment increased mean mRNA counts for all targets, the change in 

transcriptional noise varied by gene, as observed from the single-cell mRNA distributions (Fig. 

C). After TNF treatment, Nfkbia and Tnfaip3 were expressed in most cells, while Tnf and Il8 

were expressed at lower levels with more non-expressing cells, but all four targets exhibited 

long-tailed distributions, with a few cells expressing mRNA counts much higher than the mean. 

In contrast, Il6 and Csf2 were expressed at much lower levels and exhibited less skewed 

distributions (Fig. 2B).  

These differences were apparent when observing the dynamic trends in CV and Fano 

factor. For Nfkiba, Tnfaip3, Tnf, and Il8, the CV of mRNA counts remained relatively constant 

from 0-2 hours, while the CV of mRNA counts for Il6 and Csf2 decreased from 0-4 hours (Fig. 

EV1A). In contrast, the Fano factor for Nfkiba, Tnfaip3, Tnf, and Il8 increased significantly over 

time, while the Fano factor for Il6 and Csf2 remained relatively constant (Fig. EV1B). We found 

no significant reductions in noise after normalizing for cell area (Fig. EV1C), in contrast to other 

targets for which single-cell mRNA expression has been shown to correlate with cell size 

(Bagnall et al, 2018; Padovan-Merhar et al, 2015). This lack of correlation with cell size 

suggests that, for these inflammatory gene targets, shared sources of cellular variation are less 

important than gene-specific noise sources. 

 To visualize how TNF-NF-κB-mediated transcription changed the global mean-noise 

relationship seen in the basal state, we plotted log10(mean) and log10(CV2) of mRNA counts 

before and after TNF treatment. We found that for the NF-κB targets that increased mean 

without a significant reduction in noise, we observed that in some cases they moved outside the 

basal trendline, especially at 2 hours (Fig. 2D, left). In contrast, Il6 and Csf2 remained within the 

trendline of the basal measurements upon TNF treatment for 2 and 4 hours as noise decreased 

with increased mean (Fig. 2D, right). Overall, this suggests that NF-κB differentially regulates 

transcriptional noise  at different target genes following TNF stimulation.  

 

TNF stimulation primarily modulates burst size of NF-κB targets 
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For many mammalian genes, transcription occurs in short bursts. Bursting behavior can 

be effectively modeled with two promoter states, in which a promoter briefly switches from an 

‘off’ state to a transcript-producing ‘on’ state, before switching back to the ‘off’ state (Fig. 3A) 

(Bahar Halpern et al, 2015b; Dar et al, 2012; Raj et al, 2006; Singh et al, 2010; Skupsky et al, 

2010; Suter et al, 2011). In this model, increasing transcription by increasing the frequency of 

bursts results in a lower CV, while increasing transcription by increasing the size of 

transcriptional bursts results in a higher Fano factor. Interpreted in this way, the mean-versus- 

noise plots suggest TNF differentially regulates burst frequency and burst size across different 

NF-κB target genes (Fig. 2D) (Sanchez and Golding, 2013). Therefore, we hypothesized that 

TNF-stimulated transcript distributions might be well described by the two-state bursting model 

of transcription, and that this model might provide insight into the observed differences in 

transcriptional noise across NF-κB target genes. 

To test this, we fit our data to a two-state model of promoter activity (Raj et al, 2006; 

Dey et al, 2015) (Fig. 3A). In this model, also known as the random telegraph model, 

transcription is described by four parameters: rate of transition to the active state, ka; rate of 

transition to the inactive state, ki; rate of transcription in the active state, kt; and mRNA 

degradation rate, kdeg. The probability density function (pdf) of this distribution can be solved 

theoretically and then burst frequency (ka) and burst size (mean number of transcripts produce 

per active state burst, b = kt/ki) can be inferred by finding the optimum fit between the 

experimental and theoretical pdfs using maximum likelihood estimation (MLE) (Raj et al, 2006; 

Dey et al, 2015; Wong et al, 2018).  

To perform MLE, we fixed mRNA decay rate (kdeg) to experimentally measured values 

when possible (Fig. EV2A and Methods). Transcription of Il6 and Csf2 was too low to be 

measured accurately, and so we used the average decay rate measured for the other four targets, 

which displayed similar transcript stability (t1/2 ≈ 40 minutes) and is in line with previously 

reported values (Paschoud et al, 2006). Because burst size is a ratio of kt to ki, we fixed kt and 

used MLE to infer ki as previously described (Dey et al, 2015). For each gene, we performed a 

sensitivity analysis for how estimations of burst size and burst frequency varied with changes in 

the production rate (kt; Fig. EV2B). We chose values of kt within a relatively insensitive range of 

burst size values.   
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After fixing kt and kdeg, we fit our single-cell transcript distributions before and after TNF 

treatment to the two-state model’s pdf and found that the model fit all basal distributions and 

most TNF-stimulated distributions (Fig. EV4). The one exception was for Nfkbia, in which the 

theoretical pdf from the two-state model could not be accurately fit to the TNF-stimulated 

distributions. This is consistent with the high transcriptional rate induced by TNF that might be 

outside the limits of the two-state bursting model (Wilson et al, 2017). The model fits indicate 

that in the basal state, most genes share a low basal burst frequency of ~1 transition per hour and 

a burst size of only a few transcripts (Fig. 3B). TNF treatment drives large increases in burst size 

with minimal changes in burst frequency for Tnfaip3, Tnf, and Il8. In contrast, TNF causes a 

small increase in both burst size and frequency for Il6, and a large increase in burst frequency 

with no change in burst size for Csf2 (Fig. 3B). This suggests that TNF stimulation primarily 

alters the burst size of promoters that exhibit relatively open chromatin environments in the basal 

state. In contrast, for Il6 and Csf2, which exhibit more closed chromatin in the basal state, TNF 

stimulation only modestly affects burst size or, in the case of Csf2, modulates burst frequency. 

These results are consistent with our observations at HIV-LTRs integrated in different chromatin 

environments (Wong et al, 2018) and suggest that mechanisms of transcriptional bursting are 

affected by the chromatin state at the promoter. 

 

TNF-mediated increases in burst size are associated with RNAPII pausing 

 

Activation of a range of transcription factors (TFs) has been associated with changes in 

burst frequency for many genes (Chen et al, 2019; Friedrich et al, 2019; Li et al, 2018), but TF-

mediated changes in burst size have not been as widely reported. To search for potential 

differences in molecular events linked to changes in burst size after TNF treatment, we measured 

chromatin features and binding of transcriptional machinery at our target promoters using ChIP. 

Changes in transcriptional burst frequency have been linked to histone acetylation (Chen et al, 

2019; Nicolas et al, 2018), and we previously showed that TNF-NF-κB-mediated increases in 

burst size at the HIV LTR were associated with regulation of RNAPII activity (Wong et al, 

2018). Therefore, we focused on measuring histone H3 acetylation and markers of RNAPII 

regulation.  
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Specifically, we measured total RNAPII, serine-5 phosphorylated RNAPII (initiating), 

serine-2 phosphorylated RNAPII (elongating), and negative elongation factor (NELF) before and 

at 2 and 4 hours after TNF treatment (Fig. 4A). We found that Il6 and Csf2 accumulated less 

total RNAPII than Nfkbia, Tnfaip3, Tnf, and Il8, which is consistent with the lower relative 

expression levels of these genes after TNF treatment. The disparity in RNAPII enrichment was 

lessened when looking at ser2-p RNAPII (associated with elongation) and heightened when 

looking at ser5-p RNAPII (associated with initiation). Enrichment of NELF, which inhibits 

elongation, coupled with enrichment of ser5-p RNAPII is indicative of paused RNAPII at 

Tnfaip3, Tnf, and Il8, in contrast to the Il6 and Csf2 promoters. Taken together, the RNAPII 

ChIP shows that the Tnfaip3, Tnf, and Il8 promoters, which increase burst size after TNF 

treatment, accumulate more paused RNAPII than the Il6 and Csf2 promoters in response to TNF. 

We also examined histone H3 acetylation at the target promoters by measuring total and 

acetylated H3. After TNF treatment, all six genes increased their AcH3 and decreased total H3 

(Fig. 4A). Nfkbia, Tnfaip3, Tnf, and Il8 increased AcH3 to higher levels than Il6 and Csf2, while 

these two secondary cytokines decreased in total H3 to the same levels as the other targets at 2 

and 4 hours after TNF treatment. Overall, there do not appear to be major differences in 

regulation of histone acetylation directly linked to the differences in bursting regulation, as all 

targets undergo similar changes in histone occupancy and regulation after TNF treatment. 

However, because chromatin remodeling is a molecular step that likely occurs before RNAPII 

regulation, basal differences in histone acetylation might underlie the differential changes we see 

in bursting. 

 Clustering our ChIP data, we find clear separation between Il6 and Csf2 and the more 

highly activated targets that show significant increases in burst size (Fig. 4B). Within the non-

burst frequency increasing genes, Nfkbia separates from all other genes due to its increased 

accumulation of RNAPII, and the primary cytokines Tnf and Il8 separate out from Tnfaip3. The 

clustering supports the idea that differences in molecular events occur at promoters of genes that 

have increased burst frequency (Csf2, Il6), burst size (Tnfaip3, Tnf, Il8), and highly activated 

genes that do not fit our mathematical model of bursting (Nfkbia). 

 

Small molecule inhibitors of histone acetylation and RNAPII pause release alter TNF-

modulated transcriptional bursting 
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Our ChIP data suggested associations between basal H3 acetylation, RNAPII pausing and 

transcriptional bursting in response to TNF. To more directly test these associations, we 

perturbed these processes using small molecule inhibitors and measured effects on TNF-induced 

bursting for Tnfaip3 and Tnf, which fall into the high and middle range of basal AcH3:H3 ratios 

among our targets (Fig. 1B).  

To perturb histone acetylation, we pretreated Jurkat cells with the histone 

acetyltransferase (HAT) inhibitor A-485, a specific inhibitor of the HATs p300/CBP that are 

recruited by NF-κB (Fig. 5A) (Gerritsen et al, 1997; Lasko et al, 2017). We found that treatment 

with A-485 for 4 hours decreased AcH3 levels at the Tnfaip3 and Tnf promoters but did not 

significantly affect total H3 levels as measured by ChIP-qPCR (Fig. 5B). A-485 pretreatment 

significantly decreased mean mRNA expression for both Tnfaip3 and Tnf in response to 1 hour 

of TNF treatment (Fig. 5D). Pretreatment did not significantly alter CV or Fano factor for 

Tnfaip3 or CV for Tnf after TNF treatment, but did reduce Fano for Tnf to basal levels (Fig. 

EV4A, B). Comparing single-cell mRNA distributions, the overall decrease in expression caused 

by A-485 was marked by an increase in Tnf non-expressing cells (Fig. EV4C), and a large 

reduction in the number of cells expressing much higher than the mean for both genes (Fig. 5D). 

These changes were more pronounced for Tnf, for which A-485 pretreatment completely 

eliminated the long-tailed distribution of cells expressing high numbers of mRNA, consistent 

with its impact on Tnf Fano factor. 

 To perturb RNAPII pause regulation, we treated Jurkat cells with JQ1, an inhibitor of the 

BET family of bromodomain proteins, including BRD4, which recruits the positive transcription 

elongation factor b (p-TEFb) that stimulates pause release to NF-κB (Fig. 5A) (Filippakopoulos 

et al, 2010; Hargreaves et al, 2009; Huang et al, 2008). JQ1 has been found to decrease 

promoter-proximal RNAPII as well as alter the bursting of constitutively expressed genes 

(Bartman et al, 2019). We found that JQ1 decreased ser5-p RNAPII accumulation at the Tnfaip3 

and Tnf promoters as measured by ChIP-qPCR, but did not affect total RNAPII (Fig. 5C). JQ1 

concomitantly decreased TNF-stimulated mean expression of both Tnfaip3 and Tnf (Fig. 5D). 

JQ1 did not significantly alter CV or Fano factor for Tnfaip3, but significantly reduced both for 

Tnf (Fig. EV4A, B). When we compared the effect of JQ1 on single-cell mRNA distributions 

after 1-hour TNF treatment, we found that JQ1 decreased the number of cells in the high 
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expressing tail of both Tnfaip3 and Tnf without increasing the number of non-expressing cells for 

either gene (Fig. 5F and Fig. EV4C). This is in contrast to A-485, and is consistent with our 

observation that only ser5-p RNAPII, but not total RNAPII, decreased at the target promoters. 

Overall, these inhibitors decrease TNF-stimulated transcription while differentially affecting 

mRNA distributions.  

Fitting mRNA distributions for TNF treatment following pretreatment with A-485 to the 

theoretical pdf of the two-state model, we found that, in response to TNF treatment, A-485 

decreased burst size for Tnfaip3 while not affecting burst frequency. For Tnf, A485 pretreatment 

prior to TNF stimulation caused an increase in burst frequency without any change in burst size 

compared to the basal state (Fig. 5G, H). Overall, A-485 pretreatment reshaped TNF-induced 

changes in transcriptional bursting such that the transcriptional bursting response of Tnfaip3 

resembles Tnf and Il8 (no change in burst frequency combined with a smaller increase in burst 

size) and the response of Tnf resembles Il6 and Csf2 (no change in burst size combined with an 

increased burst frequency). JQ1 also reduced TNF-induced burst size increases for both Tnfaip3 

and Tnf, and this was accompanied by an increase in burst frequency for both genes, although 

this change was more pronounced for Tnf (Fig. 5G, H). These observations support the 

hypothesis that basal histone H3 acetylation levels at NF-κB target promoters affect how TNF 

treatment alters transcriptional bursting, and that TNF-stimulated accumulation of paused 

RNAPII at its target promoters is linked to an increase in transcriptional burst size. 

 

Mathematical modeling shows how TNF positive feedback amplifies skewed distributions 

produced by transcriptional bursting to create more heterogeneous cell populations   

 

 TNF modulates transcriptional burst size at some promoters and burst frequency at 

others, producing more or less skewed mRNA distributions across a cell population, 

respectively. In addition, TNF positively regulates its own production, and our results show that 

it does this by increasing transcriptional burst size. We and others have shown that TNF exhibits 

significant cell-to-cell variability in response to NF-κB stimulation by TNF and also LPS 

(Adamson et al, 2016; Bagnall et al, 2018; Sung et al, 2014; Xue et al, 2015). Therefore, we 

sought to explore how modulation of burst size combined with positive feedback contributes to 

this observed heterogeneity.  
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 We built a mathematical model of a two-state promoter responding to an initial TNF 

stimulus. As TNF can stimulate its own transcription, we included positive feedback from the 

newly produced TNF on the cell that produced it (simulating autocrine signaling) to explore its 

effects on cell-to-cell heterogeneity (Fig. 6A). We modeled the addition of exogenous TNF as a 

time-dependent change in kt, the mRNA production rate, in order to match the change in burst 

size inferred from our smFISH distributions. We fit this kt function empirically to reproduce our 

averaged experimental mRNA data (Fig. EV5A). We explored a range of TNF positive feedback 

parameters and their effect on the level and timing of maximum Tnf (Fig. EV5B-E). We chose 

values that qualitatively reproduced the dynamic changes in cell-population averages and 

distributions observed in our population level RT-qPCR measurements of Tnf transcription (Fig. 

6B and Fig. 1C). We confirmed that including positive feedback increased and sustained the 

peak of Tnf mRNA at 1 hour and TNF protein production at 8 hours (Fig. 6B and C). 

 Our goal was to use this model to compare how positive feedback affected cell-to-cell 

heterogeneity of TNF production when amplifying TNF-stimulated transcriptional increases of 

similar means but with different noise. To do this, we performed a parameter scan in the absence 

of positive feedback, in which we increased burst frequency (i.e., the activation rate ka) and 

simultaneously decreased burst size (i.e., by increasing the inactivation rate ki). By increasing 

burst frequency while simultaneously decreasing burst size, we were able to identify a region in 

which mean expression remains relatively constant but noise varies due to differences in burst 

behavior (Fig. 6D and E).  

 To analyze how cell-to-cell heterogeneity of TNF production changed with different 

bursting behaviors, we chose four parameter sets. These included one with a large change in 

burst size and no change in burst frequency in response to TNF that resembles our experimental 

data, one with a large increase in burst frequency and no change in burst size to explore the 

opposite extreme, and two with intermediate changes in both. As seen in our experimental data, 

increasing burst size created more long-tailed single-cell mRNA distributions, though the effect 

was somewhat lessened at the protein level (Fig. 6F and G). Quantifying the mean, CV, Fano 

factor, and skew of these distributions, we observed that as transcription activity shifted from 

burst size to burst frequency changes, mean remained constant, while CV, Fano, and skew all 

decreased (Fig. EV5F). 
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To examine the effect of TNF positive feedback on its own production, we compared 

simulations of the parameters sets that increased either burst size or burst frequency with and 

without positive feedback. Including positive feedback produced relatively small increases in 

mean mRNA levels, but these differences were amplified at the protein level (Fig. EV5F). 

Positive feedback also increased the length of the distribution tails, and importantly it did this 

more for the burst size-increasing condition than for the burst frequency-increasing condition 

(Fig. 6H-I). In other words, a small population of high TNF-producing cells was more 

pronounced when transcription was increased via burst size vs. burst frequency. The effect of 

positive feedback on increasing cell-to-cell heterogeneity was evident in the large increase in 

Fano factor that was greatest for the burst size-increasing condition (Fig. EV5F). In contrast, 

including feedback had very little effect on CV (Fig. EV5F). Overall, our modeling indicates that 

positive feedback by TNF coupled with transcriptional increases driven by burst size modulation 

leads to highly skewed distributions of protein across cells. We speculate that these mechanisms 

contribute to small subpopulations of cells with high functionality, such as high TNF-producing 

cells that have been observed in response to activation of the NF-κB-mediated inflammatory 

response in other studies. 

 

Discussion 

 

 Transcriptional bursting is an important process affecting many biological processes, but 

it has not been extensively studied for endogenous NF-κB targets, including cytokines that are 

vital to the inflammatory response. Here, we explored changes in transcriptional bursting in 

response to the inflammatory cytokine TNF in T cells. We found that TNF can modulate either 

burst frequency or burst size depending on basal histone acetylation and regulation of RNAPII 

pausing. Using small molecule inhibitors, we confirmed that altering basal histone acetylation or 

RNAPII pausing after TNF stimulation altered bursting behavior for Tnfaip3 and Tnf. Finally, we 

used mathematical modeling to show that increasing burst size in response to TNF can lead to 

more skewed single-cell distributions as compared to increasing burst frequency and this is 

substantially amplified with TNF positive feedback. 

 We found that TNF primarily increased transcription by increasing burst size, which 

resulted in highly skewed, long-tailed mRNA distributions that are generally marked by large 
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increases in Fano factor. In contrast, transcription factor-mediated increases in burst frequency 

result in less skewed distributions with lower cell-to-cell heterogeneity. Increases in burst 

frequency in response to transcription factor stimulation have been more commonly observed 

than increases in burst size (Chen et al, 2019; Friedrich et al, 2019; Li et al, 2018). Notably, 

most of these examples analyzed cellular processes for which it is important that most or all cells 

in a population respond to a stimulus with similar levels of gene expression such as the DNA 

damage response (Friedrich et al, 2019) or the circadian response to light (Li et al, 2018). In 

contrast, for processes where highly skewed single-cell responses are beneficial, as appears to be 

the case for inflammatory signaling, stimulus-induced burst size increases may be more 

common. Long-tailed distributions with a few outliers far above the population mean have been 

shown to be important for regulating inflammatory signaling at the levels of single-cell 

transcription (Shalek et al, 2014) and cytokine secretion (Xu et al, 2015). Burst size regulation 

was also observed in response to Notch signaling, which is active in both embryonic 

development and maintenance of the germline stem cell niche (Falo-Sanjuan et al, 2019; Lee et 

al, 2019). Creating skewed distributions in transcription between cells that must follow different 

trajectories such as proliferation versus differentiation might help ensure that cells do not easily 

cross over to the other behavior. 

 We found that accumulation of promoter-proximal paused RNAPII in response to TNF 

was linked to increased burst size. RNAPII promoter-proximal pausing occurs throughout the 

mammalian genome, especially at signal-responsive promoters (Adelman and Lis, 2012). Paused 

RNAPII primes a promoter to rapidly respond to an elongation signal, bypassing the need to 

recruit a new RNAPII subunit. In our study, accumulation of paused RNAPII occurred at genes 

with higher basal histone acetylation. We have previously found that both basal histone 

acetylation and RNAPII pause regulation after TNF treatment are linked in the same ways to 

transcriptional bursting from the HIV LTR promoter (Wong et al, 2018). The accumulation of 

RNAPII may also prime promoters to respond more strongly to additional pro-inflammatory 

stimuli, either cytokines produced in response to the first stimulus or another external source. 

 To model transcriptional bursting, we used a simple two-state model in which a promoter 

can occupy either an active ‘on’ state or inactive ‘off’ state, which fit our data from Jurkat T cells 

well. Including a third refractory promoter state that an active promoter transitions to before 

transitioning back to the inactive state has produced better fits in some systems, including 
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bursting of the HIV LTR promoter in HeLa cells (Li et al, 2018; Suter et al, 2011; Zambrano et 

al, 2020). However, the extremely low transition rates we observed from the inactive to the 

active state (burst frequencies on the order of 1 per hour) might be slower than (and thus mask) 

transitions from a refractory to the inactive state. Identification of endogenous NF-κB targets 

with much higher burst frequencies, possibly in other cell types, would help test if a more 

complex model configuration more accurately explains transcription of NF-κB targets. 

 HIV encodes its own positive feedback mediator, the protein Tat, which leads to strong 

positive feedback and full HIV activation in long-tailed distributions that stem from burst size 

increases (Wong et al, 2018). The inflammatory cytokine TNF also positively regulates its own 

expression either in the producing cell or in neighboring cells via autocrine or paracrine 

signaling. We used mathematical modeling to explore how the shape of the single-cell Tnf 

mRNA distribution might be related to biological function. We found that increasing burst size 

rather than burst frequency is required to create a highly skewed single-cell transcript 

distribution, and this is amplified by positive feedback. Positive feedback had a much smaller 

effect on distributions from a burst frequency increase. We only accounted for autocrine 

signaling in our model, and did not consider how the TNF produced by one cell might affect 

neighboring cells. However, paracrine signaling plays a major role in regulating immune 

signaling, so signals from the cells in the high expressing tail of a distribution could have a 

significant role in propagating a pro-inflammatory response in vivo. More work will need to be 

done to explore the role of transcriptional bursting in inflammatory gene expression in other 

immune cell types and for other stimuli besides the cytokine TNF. 

 

Methods 

Reagents and tools table 

Reagent or resource Reference or source Identifier or catalog number 

Experimental model 

Jurkat T cells, clone E6-1 ATCC TIB-152 

Antibodies 

anti-histone H3 rabbit polyclonal Abcam ab1791 

anti-acetyl-histone H3 rabbit 

polyclonal 

Millipore 06-599 

anti-NF-κB p65 rabbit monoclonal  Cell Signaling Technology 8242 
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anti-RNPII N-20 rabbit polyclonal Santa Cruz Biotech sc-899 

anti-ser5-p RNPII rabbit polyclonal Abcam ab5131 

anti-ser2-p RNPII rabbit polyclonal Abcam ab5095 

anti-NELF-E H-140 rabbit 

polyclonal 

Santa Cruz Biotech sc-32912 

anti-acetyl-histone H3 rabbit 

monoclonal 

Cell Signaling Technology 8173 

anti-RNPII NTD rabbit monoclonal Cell Signaling Technology 14958 

anti-ser5-p RNPII rabbit 

monoclonal 

Cell Signaling Technology 13523 

Chemicals, peptides, and other reagents 

Roswell Park Memorial Institute 

1640 medium (RPMI) 

Thermo Fisher Scientific 11875119 

Fetal bovine serum (FBS) Atlanta Biologicals S11150 

Penicillin-Streptomycin Thermo Fisher Scientific 15140122 

Human tumor necrosis factor-alpha 

(TNF) 

Peprotech 300-01A 

A-485 Structural Genomics Consortium 6387 

JQ1 Tocris 4499 

Sodium chloride (NaCl) Thermo Fisher Scientific 7647-14-5 

Tris-EDTA, pH 8.0 Thermo Fisher Scientific AM9858 

Cell-tak Corning 354240 

Lab-Tek #1.0 8-well chambered 

coverglass 

Thermo Fisher Scientific 155411 

μ-Slide 8 well glass bottom 

coverslip 

Ibidi 80827 

70% Ethanol, RNase-Free Thermo Fisher Scientific 15420665 

20X saline-sodium citrate (SSC) Thermo Fisher Scientific AM9763 

Formamide Thermo Fisher Scientific AM9342 

50% Dextran Sulfate Amresco E516 

VectaShield Vector Labs H-1000 

37% formaldehyde Sigma Aldrich 818708 

10x Phosphate Buffered Saline 

(PBS) 

Thermo Fisher Scientific AM9625 

Tween-20 Thermo Fisher Scientific 9005-64-5 

Bovine Serum Albumin (BSA) Sigma B4287 
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Hoechst 33342 Thermo Fisher Scientific H21492 

cOmpleteTM protease inhibitor 

cocktail 

Roche 11836170001 

PureProteome protein G magnetic 

beads 

Millipore LSKMAGG10 

Salmon sperm DNA solution Thermo Fisher Scientific 15632011 

RNAse, DNAse-free Roche 11119915001 

Proteinase K New England BioLabs P8107S 

EDTA American Bio AB00502-01000 

Lithium Chloride (LiCl) Sigma Aldrich 7447-41-8 

IPEGAL CA630 Sigma Aldrich I8896 

Glycine American Bio AB00730-01000 

Agarose Lonza 50074 

20% SDS solution American Bio AB01922-00500 

Deoxycholic acid Millipore 302-95-4 

SYBR safe Invitrogen S33102 

Actinomycin-D Millipore 114666 

Sodium bicarbonate (NaHCO3) Alfa Aesar 144-55-8 

Triton-X-100 American Bio AB02025-00500 

SYBR Green supermix Bio-Rad 1725271 

Commercial Kits 

Upstate EZ-Magna ChIP Millipore 17-10086 

QIAQuick PCR purification kit Qiagen 28104 

RNeasy mini kit Qiagen 74104 

Software and algorithms 

MATLAB 2016b MathWorks  

FISH-quant Mueller et al, 2013. Tsarnov et al, 

2016. 

 

Mathematica 12 Wolfram  

Prism 7 GraphPad  

 

Cell culture and pharmacological treatments 

Jurkat T cell clone E6-1 were obtained from ATCC. Jurkat cells were cultured in Roswell Park 

Memorial Institute 1640 (RPMI) medium (Thermo Fisher Scientific). All media was 

supplemented with 10% fetal bovine serum (Atlanta Biologicals), 100 U/mL penicillin, and 100 
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μg/mL streptomycin (Thermo Fisher Scientific). Cells were maintained in 5% CO2 at 37°C and 

were never cultured beyond passage 20. Cells were grown to at least 500,000 cells/mL before 

treatment with 20 ng/mL recombinant human tumor necrosis factor α (TNF) (Peprotech), 300 

nM A-485 (Structural Genomics Consortium), or 62.5 nM JQ1 (Tocris). To calculate mRNA 

decay rates, Jurkat cells were stimulated with TNF for 1 hour followed by 10 μg/mL 

actinomycin-D treatment for varying times. 

 

Chromatin immunoprecipitation 

Chromatin immunoprecipitation was performed using the Upstate EZ-Magna ChIP kit 

(Millipore). Briefly, 5 million cells per condition were fixed in 1% formaldehyde (Sigma) for 10 

minutes, after which excess formaldehyde was quenched with 10X glycine at room temperature. 

Cells were washed three times with ice cold PBS and then lysed in 300 μL of 1% SDS lysis 

buffer with protease inhibitor cocktail (Roche). Lysates were sonicated with a Diagenode 

Bioruptor Plus with the following settings: 30 minutes of 30 seconds ON/30 seconds OFF at high 

power in a 4°C water bath. Sheared DNA was run on a 1% agarose gel (Lonza) to verify that 

sheared DNA was between 100-1000 bp. Samples were pre-cleared with PureProteome Protein 

G magnetic beads (Millipore) at 4°C and 5% of each sample was aliquoted as a percent input 

control. Samples were incubated with antibody at manufacturers’ recommended concentrations 

overnight at 4°C. PureProteome beads were added and incubated for one hour at 4°C. Beads 

were washed once each with low salt, high salt, and LiCl immune complex wash buffers, then 

washed twice with TE buffer, and then eluted with elution buffer at room temperature. 

Crosslinks were reverse by incubating samples with NaCl overnight at 65°C. DNA was purified 

using the QIAQuick PCR Cleanup kit (Qiagen). DNA was quantified using quantitative PCR 

using SsoAdvanced Universal SYBR Green Supermix on a CFX Connect Real-Time System 

(BioRad). qPCR was run in triplicate and melt curves were run to confirm product specificity. 

 

RT-qPCR 

Total RNA was purified with the RNeasy Mini kit (Qiagen), including an on-column DNase 

treatment. cDNA was synthesized using SuperScript III reverse transcriptase (Thermo Fisher 

Scientific) and dT oligo primer. cDNA was diluted in nuclease-free water and quantified using 

SsoAdvanced Universal SYBR Green Supermix on a CFX Connect Real-Time System (BioRad) 
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with the following amplification scheme: 95°C denaturation for 90 seconds followed by 40 

cycles of 95°C for 15 seconds, 60°C annealing for 10 seconds, and 72°C elongation for 45 

seconds with a fluorescence read at the end of each elongation step. This was followed by a 60°C 

to 90°C melt-curve analysis with 0.5°C increments to confirm product specificity. All samples 

were normalized to the house-keeping gene Gapdh. 

 

smFISH probe design, hybridization, and imaging 

The probe sets targeting Nfkbia, Tnfaip3, and Il8 (Lee et al, 2014) and Tnf (Bushkin et al, 2015) 

were previously described. The probe sets targeting Il6 and Csf2 were designed using the 

Stellaris® RNA FISH Probe Designer (Biosearch Technologies, Inc., Petaluma, CA) available 

online (www.biosearchtech.com). All mRNAs were hybridized with Stellaris RNA FISH Probes 

labeled with Quasar 670 (Biosearch Technologies, Inc.) following the manufacturer’s 

instructions. Briefly, Jurkat cells were treated under indicated conditions and then plated onto 

Cell-Tak (Corning) coated Lab-Tek #1.0 8-well chambered coverglass (Thermo Fisher 

Scientific) or μ-Slide 8 well glass bottom coverslip (Ibidi). Cells were fixed in 3.7% 

formaldehyde (Thermo Fisher Scientific) for 10 minutes and then permeabilized overnight in 

70% ethanol (Fisher Scientific). Cells were hybridized for 12 hours overnight with the following 

probe set specific conditions: 250 nM probe for Tnf/Il6/Csf2 in 2X SSC (Thermo Fisher 

Scientific) with 10% formamide (Thermo Fisher Scientific) and 100 mg/mL dextran sulfate 

(Amresco) at 37°C, 50 nM probe for Tnfaip3 in 2X SSC with 10% formamide and 80 mg/mL 

dextran sulfate at 37°C, 250 nM probe for Nfkbia in 2X SSC with 12% formamide and 100 

mg/mL dextran sulfate at 37°C, and 250 nM probe for Il8 in 2X SSC with 10% formamide and 

100 mg/mL dextran sulfate at 25°C. After hybridization, cells were washed twice with 2X SSC 

and 10% formamide, counterstained with 100 ng/mL Hoechst 33342 (Thermo Fisher Scientific) 

for 15 minutes, and immersed in VectaShield mounting media (Vector Labs). Cells hybridized 

with Nfkbia, Tnfaip3, Tnf, and Il6 probes were imaged on an Axio Observer Zi inverted 

microscope (Zeiss) with an Orca Flash 4.0 V2 digital CMOS camera (Hamamatsu) and a 100x 

APO oil objective (NA 1.4, Zeiss). Cells hybridized with Il8 and Csf2 probes were imaged on an 

LSM 510 spinning disk confocal microscope (Zeiss) with a C9100-13 camera (Hamamatsu) a 

100x TIRF APO oil objective (1.49 NA, Nikon) 
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smFISH image analysis 

We quantified mRNAs in individual cells using FISH-Quant in MATLAB R2016B (Mathworks 

Inc.) (Mueller et al, 2013, Tsanov et al, 2016). Cells were manually identified and outlined, with 

overlapping cells, cells partly in the field of view, and multinucleated cells excluded from 

analysis. Images for all probe sets were filtered using the 2x Gaussian filtering method in FISH-

Quant. Thresholds for mRNA spot detection were determined for each image set by testing the 

FISH-Quant software on images of high and low expressing cells (TNF treated and untreated) 

and comparing to values that were visually derived. The remaining images were then processed 

in batch. Pre-detection thresholds and detections settings were set for each experimental 

condition. 

 

Fitting the two-state model 

Maximum-likelihood estimation (MLE) was used to select burst frequency (ka) and burst size (b 

= kt/ki) parameters that best fit the measured mRNA distributions to the full analytical solution to 

the two-state stochastic gene expression model (Peccoud and Ycart, 1995). MLE was performed 

as numerical minimization over the negative log-likelihood function defined over the probability 

density function (pdf) given the observed experimentally determined RNA distributions for each 

condition using the method of moments. As previously reported, mRNA distributions are not 

sufficient to independently determine the promoter inactivation rate ki and the transcription rate 

kt. Using a previously described method (Rat et al., 2006. Skupskey et al., 2010), we held the 

transcription rate kt constant across all conditions and reported b. Sensitivity analysis of the kt 

value for each gene suggested that our results are largely independent of the kt value chosen for 

each gene (Fig. EV2B). MLE was implemented using custom code in Mathematica 8 (Wolfram 

Inc.) as previously described (Dey et al., 2015). 

 

Statistical analysis 

All smFISH experiments included a sufficient number of cells to characterize the transcript 

distributions (n > 100 cells) and results were confirmed with independent biological replicates. 

The 95% confidence intervals on all descriptive statistics of RNA distributions were estimated 

from the 2.5% and 97.5% quantiles of bootstrapped copy number counts per cell as previously 

described (Dey et al., 2015). 95% confidence intervals on fit burst frequency and size parameters 
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were estimated from the log-likelihood function assuming asymptotic normality of the estimates 

and using 1.92 log-likelihood ratio units as previously described (Dey et al., 2015). The 

difference between two quantities was inferred to be significant (p < 0.05) if the 95% CI’s were 

not overlapping (Schenker and Gentleman 2001). All regression and correlation analysis was 

performed in Prism (Graphpad). 

 

Mathematical Model Development 

We modified a previously published mathematical model of a two-state promoter with positive 

feedback (Wong et al., 2018). Briefly, we modeled transcription as a promoter that transitions 

from an ‘OFF’ state to an ‘ON’ state, and vice versa, with rate constants, ka and ki respectively. 

In the ‘ON’ state, mRNA is produced at the rate km and degraded at a rate of gm. This rate was 

modulated by time via a fitted burst size curve (see below). The mRNA produces TNF protein at 

the rate kp, is exported out of the cell at a rate kex, and degraded at a rate of gp. To model TNF 

positive autoregulation, a feedback loop was introduced into the model to increase the rate of 

mRNA production, km, in respone to increasing exogenous TNF protein. The reactions governing 

this model and the rate constants are described in Table 1. 

 

Table 1: Model reactions and rate constants 

Reaction Parameter 

(units) 

Values Source 

𝑃𝑟𝑜𝑚𝑜𝑡𝑜𝑟 𝑂𝑛 → 𝑃𝑟𝑜𝑚𝑜𝑡𝑜𝑟 𝑂𝑓𝑓 𝑘𝑖(ℎ𝑟−1) 15 Range inferred from 

experimental distributions 

𝑃𝑟𝑜𝑚𝑜𝑡𝑜𝑟 𝑂𝑓𝑓 → 𝑃𝑟𝑜𝑚𝑜𝑡𝑜𝑟 𝑂𝑛 𝑘𝑎(ℎ𝑟−1) 1.3 Range inferred from 

experimental distributions 

𝑃𝑟𝑜𝑚𝑜𝑡𝑜𝑟 𝑂𝑛 ∗ (𝑓𝑚) → 𝑚𝑅𝑁𝐴 𝑘𝑡(ℎ𝑟−1) 𝑘𝑖 ∗ 𝑏 Calculated from fitted burst 

size equation (𝑏 = 𝑘𝑚/𝑘𝑖) 

𝑓𝑚 =  1 +
𝐴 ∗ [𝑇𝑁𝐹(𝑜𝑢𝑡𝑠𝑖𝑑𝑒)]

𝐾 + [𝑇𝑁𝐹(𝑜𝑢𝑡𝑠𝑖𝑑𝑒)]
  

𝐾, 𝐴 500, 25 Parameter scan 

𝑚𝑅𝑁𝐴 → 𝑇𝑁𝐹 (𝑖𝑛𝑠𝑖𝑑𝑒) 𝑘𝑝 (ℎ𝑟−1) 1 Estimated from (Caldwell et 

al., 2014) 

𝑇𝑁𝐹 (𝑖𝑛𝑠𝑖𝑑𝑒) → 𝑇𝑁𝐹(𝑜𝑢𝑡𝑠𝑖𝑑𝑒) 𝑒𝑥𝑝𝑜𝑟𝑡 (ℎ𝑟−1) 18 (Paszek, et al., 2010) with 

assumptions from (Lee, et al., 

2014) 

𝑇𝑁𝐹 → ∅ 𝑔𝑝 (ℎ𝑟−1) 0.36 Estimated from mRNA 

degradation (1/3 of 𝑔𝑚) 

𝑚𝑅𝑁𝐴 → ∅ 𝑔𝑚(ℎ𝑟−1) 1.09 Experimental derivation 
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This model is represented by the following system of ordinary differential equations: 

  

𝑑𝑃𝑟𝑜𝑚𝑜𝑡𝑜𝑟𝑂𝑓𝑓

𝑑𝑡
= −𝑘𝑎 ∗ [𝑃𝑟𝑜𝑚𝑜𝑡𝑜𝑟𝑂𝑓𝑓] + 𝑘𝑖 ∗ [𝑃𝑟𝑜𝑚𝑜𝑡𝑜𝑟𝑂𝑛]   (Equation 1)  

𝑑[𝑃𝑟𝑜𝑚𝑜𝑡𝑜𝑟𝑂𝑛]

𝑑𝑡
= 𝑘𝑎 ∗ [𝑃𝑟𝑜𝑚𝑜𝑡𝑜𝑟𝑂𝑓𝑓] − 𝑘𝑖 ∗ [𝑃𝑟𝑜𝑚𝑜𝑡𝑜𝑟𝑂𝑛]   (Equation 2) 

𝑑𝑚𝑅𝑁𝐴

𝑑𝑡
= {1 +

𝐴∗[𝑇𝑁𝐹(𝑜𝑢𝑡𝑠𝑖𝑑𝑒)]

𝐾+[𝑇𝑁𝐹(𝑜𝑢𝑡𝑠𝑖𝑑𝑒)]
} ∗ 𝑘𝑡 ∗ 𝑃𝑟𝑜𝑚𝑜𝑡𝑜𝑟𝑂𝑛 − 𝑔𝑚 ∗ 𝑚𝑅𝑁𝐴  (Equation 3) 

𝑑[𝑇𝑁𝐹(𝑖𝑛𝑠𝑖𝑑𝑒)]

𝑑𝑡
= 𝑎𝑝 ∗ [𝑚𝑅𝑁𝐴] − (𝑔𝑝 + 𝑒𝑥𝑝𝑜𝑟𝑡) ∗ [𝑇𝑁𝐹(𝑖𝑛𝑠𝑖𝑑𝑒)]  (Equation 4) 

𝑑[𝑇𝑁𝐹(𝑜𝑢𝑡𝑠𝑖𝑑𝑒)]

𝑑𝑡
= 𝑒𝑥𝑝𝑜𝑟𝑡 ∗ [𝑇𝑁𝐹(𝑖𝑛𝑠𝑖𝑑𝑒)] − 𝑔𝑝[𝑇𝑁𝐹(𝑜𝑢𝑡𝑠𝑖𝑑𝑒)] (Equation 5) 

 

To stochastically simulate TNF protein and mRNA transcript production over time, we used a 

network free stochastic simulator (NFSIM) (Sneddon et al., 2011), and then analyzed and plotted 

outputs using MATLAB R2019B (MathWorks, Inc.).   

 

Steady-State Analysis 

To understand how the system behaves under basal conditions, we assumed equilibrium for the 

above equations. First, we examined promotor dynamics, and solved for steady-state. By solving 

EQ 1 and 2 at steady-state, and setting 

 [𝑃𝑟𝑜𝑚𝑜𝑡𝑜𝑟𝑂𝑓𝑓] = 1 − [𝑃𝑟𝑜𝑚𝑜𝑡𝑜𝑟𝑂𝑛]     (Equation 6) 

we derive the following: 

[𝑃𝑟𝑜𝑚𝑜𝑡𝑜𝑟𝑂𝑛] =
𝑘𝑎

𝑘𝑖
∗ [𝑃𝑟𝑜𝑚𝑜𝑡𝑜𝑟𝑂𝑓𝑓]  

[𝑃𝑟𝑜𝑚𝑜𝑡𝑜𝑟𝑂𝑛] =
𝑘𝑎

𝑘𝑖+𝑘𝑎
= 𝐵       (Equation 7) 

We can then examine TNF concentrations inside and outside the cell (EQ 4 and 5), by deriving 

the following: 

𝑒𝑥𝑝𝑜𝑟𝑡 ∗ [𝑃𝑟𝑜𝑡𝑒𝑖𝑛(𝑖𝑛𝑠𝑖𝑑𝑒)] = 𝑔𝑝 ∗ [𝑃𝑟𝑜𝑡𝑒𝑖𝑛(𝑜𝑢𝑡𝑠𝑖𝑑𝑒)]  

𝑎𝑝 ∗ [𝑚𝑅𝑁𝐴] = (𝑔𝑝 + 𝑒𝑥𝑝𝑜𝑟𝑡) ∗ [𝑃𝑟𝑜𝑡𝑒𝑖𝑛(𝑖𝑛𝑠𝑖𝑑𝑒)]  

[𝑃𝑟𝑜𝑡𝑒𝑖𝑛(𝑜𝑢𝑡𝑠𝑖𝑑𝑒)] = (
𝑎𝑝

𝑔𝑝+𝑒𝑥𝑝𝑜𝑟𝑡
) ∗ (

𝑒𝑥𝑝𝑜𝑟𝑡

𝑔𝑝
) ∗ [𝑚𝑅𝑁𝐴] = 𝐶 ∗ [𝑚𝑅𝑁𝐴] (Equation 8) 

Finally, we use EQ3, EQ7, and EQ8 to solve for mRNA values under steady-state conditions, 

following: 
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𝑔𝑚 ∗ [𝑚𝑅𝑁𝐴] = [𝑃𝑟𝑜𝑚𝑜𝑡𝑜𝑟𝑂𝑛] ∗ 𝑘𝑡 ∗ {1 +
𝐴∗[𝑃𝑟𝑜𝑡𝑒𝑖𝑛(𝑜𝑢𝑡𝑠𝑖𝑑𝑒)]

𝐾+[𝑃𝑟𝑜𝑡𝑒𝑖𝑛(𝑜𝑢𝑡𝑠𝑖𝑑𝑒)]
}  

𝑔𝑚∗𝐶

𝐵∗𝑘𝑡
∗ [𝑚𝑅𝑁𝐴]2 + {

𝑔𝑚∗𝐾

𝐵∗𝑘𝑡
− 𝐶 − 𝐴 ∗ 𝐶} ∗ [𝑚𝑅𝑁𝐴] − 𝐾 = 0   (Equation 9) 

 

Using this equation, we explored how the parameter space affects mRNA concentration before 

TNF treatment. By varying feedback parameters–the amplification rate, and the K half-max–we 

recreated regions that matched basal Tnf mRNA conditions (Fig. EV5E). To understand how the 

unbounded feedback parameters influenced the model upon TNF treatment, we ran large 2-D 

parameter scans altering feedback parameters. Two parameters were chosen that qualitatively 

reproduced the time course of TNF-activation experiments under deterministic simulation of the 

model (Fig. EV5B-D) and replicated steady-state values of basal mRNA (Fig. EV5E).   

To explore how changes in burst size and burst frequency influenced phenotypic 

outcomes, we stochastically simulated 1,000 cells using NFSIM, altering the parameters ki and 

ka. Four representative parameter combinations were chosen, each with an average of 10 mRNA 

transcripts per cell at 1 hour (Fig. S1A-B). To depict phenotypic differences of these cells, the 

amount of mRNA transcripts and proteins were plotted as normal kernel density functions at 1 

hour and 8 hours, respectively.   

 

Burst Size Phenomenological Equation 

Addition of TNF increases experimental burst size in a time-dependent curve. As TNF is 

degraded or used, the burst size begins to decrease. We fit an exponential curve to our 

experimental values, weighting the fit according to variance of the data (Figure EV5A). This 

phenomenological equation reflects TNF’s mechanistic activation of NF-κB, and further 

promotion of transcription.  

 

Data availability 

Quantitative smFISH measurements presented in the main figures are provided as figure source 

data. Modeling computer scripts are available at https://github.com/elisebullock/tnftwostate 

 

Acknowledgements 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 17, 2020. ; https://doi.org/10.1101/2020.11.16.384297doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.16.384297


We thank Dr. Nadya Dimitrova for advice on chromatin immunoprecipitation, and Dr. Valerie 

Horsley and Dr. Yannick Jacob for use of lab equipment. We thank Dr. Sanjay Tyagi for sharing 

TNF smFISH probe sequences. We thank the Structural Genomics Consortium for providing the 

small molecule A-485. This work was funded by the National Science Foundation (CBET-

1454301 to K.M.-J.), and the NIH (1R01-GM123011 to K.M-J.). V.L.B. was supported by NIH 

predoctoral training grants in virology (5T32AI055403-12 and 5T32AI055403-13). V.C.W. was 

supported by NIH predoctoral training grants in genetics (2T32GM007499-36, 5T32GM007499-

34, and 5T32GM007499-35). M.E.B. was supported by NIH grant 1T32EB019941. 

 

Author contributions 

V.L.B., V.C.W., S.G., and K.M-J. conceived the study and designed the experiments. V.L.B. and 

V.C.W. performed experiments. M.E.B. performed mathematical and stochastic modeling. 

V.L.B., V.C.W., M.E.B., and K.M-J. analyzed data. V.L.B., M.E.B., and K.M-J. prepared figures 

and wrote the manuscript. All authors edited the manuscript. K.M-J. acquired funding and 

supervised the research. 

 

Conflict of interest 

The authors declare that they have no conflicts of interest. 

 

References 

Acar M, Mettetal JT, Oudenaarden Av (2008) Stochastic switching as a survival strategy in fluctuating 

environments. Nature Genetics 40: 471-475 

 

Adamson A, Boddington C, Downton P, Rowe W, Bagnall J, Lam C, Maya-Mendoza A, Schmidt L, Harper CV, 

Spiller DG, Rand DA, Jackson DA, White MRH, Paszek P (2016) Signal transduction controls heterogeneous NF-

κB dynamics and target gene expression through cytokine-specific refractory states. Nature Communications 7: 

12057 

 

Adelman K, Lis JT (2012) Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nature 

Reviews Genetics 10: 720-731 

 

Aggarwal BB (2003) Signalling pathways of the TNF superfamily: a double-edged sword. Nature Reviews 

Immunology 3: 745-756 

 

Baeuerle PA, Baltimore D (1988) IκB: a specific inhibitor of the NF-κB transcription factor. Science 242: 540-546 

 

Bagnall J, Boddington C, England H, Brignall R, Downton P, Alsoufi Z, Boyd J, Rowe W, Bennett A, Walker C, 

Adamson A, Patel NMX, O'Cualain R, Schmidt L, Spiller DG, Jackson DA, Muller W, Muldoon M, White MRH,  

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 17, 2020. ; https://doi.org/10.1101/2020.11.16.384297doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.16.384297


Bartman CR, Hamagami N, Keller CA, Giardine B, Hardison RC, Blobel GA, Raj A (2019) Transcriptional burst 

initiation and polymerase pause release are key control points of transcriptional regulation. Molecular Cell 73: 519-

532 

 

Birkenkamp-Demtroder K, Christensen LL, Olesen SH, Frederiksen CM, Laiho P, Aaltonen LA, Laurberg S, 

Sørensen FB, Hagemann R, Ørntoft TF (2002) Gene expression in colorectal cancer. Cancer Research 62: 4352-

4363 

 

Bushkin Y, Radford F, Pine R, Lardizabal A, Mangura BT, Gennaro ML, Tyagi S (2015) Profiling T cell activation 

using single-molecule fluorescence in situ hybridization and flow cytometry. The Journal of Immunology 194: 836-

841 

 

Caldwell, A. B., Cheng, Z., Vargas, J. D., Birnbaum, H. A., & Hoffmann, A (2014) Network dynamics determine 

the autocrine and paracrine signaling functions of TNF. Genes & Development 28: 2120–2133. 

 

Chang HH, Hemberg M, Barahona M, Ingber DE, Huang S (2008) Transcriptome-wide noise controls lineage 

choice in mammalian progenitor cells. Nature 453: 544-547 

 

Chen L-F, Lin YT, Gallegos DA, Hazlett MF, Gomez-Schiavon M, Yang MG, Kalmeta B, Zhou AS, Holtzman L, 

Gersbach CA, Grandl J, Buchler NE, West AE (2019) Enhancer histone acetylation modulates transcriptional 

bursting dynamics of neuronal activity-inducible genes. Cell Reports 26: 1174-1188 

 

Cheng Z, Taylor B, Ourthiague DR, Hoffmann A (2015) Distinct single-cell signaling characteristics are conferred 

by the MyD88 and TRIF pathways during TLR4 activation. Science Signaling 8: ra69 

 

Cheong R, Rhee A, Wang CJ, Nemenman I, Levchenko A (2011) Information transduction capacity of noisy 

biochemical signaling networks. Science 334: 354-358 

 

Dar RD, Razooky BS, Singh A, Trimeloni TV, McCollum JM, Cox CD, Simpson ML, Weinberger LS (2012) 

Transcriptional burst frequency and burst size are equally modulated across the human genome. Proceedings of the 

National Academy of Sciences of the United States of America 109: 17454-17459 

 

Dar RD, Shaffer SM, Singh A, Razooky BS, Simpson ML, Raj A, Weinberger LS (2016) Transcriptional bursting 

explains the noise-versus-mean relationship in mRNA and protein levels. PLOS ONE 11: e0158298 

 

Dey SS, Foley JE, Limsirichai P, Schaffer DV, Arkin AP (2015) Orthogonal control of expression mean and 

variance by epigenetic features at different genomic loci. Molecular Systems Biology 11: 806 

 

Falo-Sanjuan J, Lammers NC, Garcia HG, Bray SJ (2019) Enhancer priming enables fast and sustained 

transcriptional responses to notch signaling. Developmental Cell 50: 411-425 

 

Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, Morse EM, Keates T, Hickman TT, Felletar I, 

Philpott M, Munro S, McKeown MR, Wang Y, Christie AL, West N, Cameron MJ, Schwartz B, Heightman TD, 

Thangue NL et al (2010) Selective inhibition of BET bromodomains. Nature 468: 1067-1073 

 

Friedrich D, Friedel L, Finzel A, Herrmann A, Preibisch S, Loewer A (2019) Stochastic transcription in the p53-

mediated response to DNA damage is modulated by burst frequency. Molecular Systems Biology 15: e9068 

 

Gerritsen ME, Williams AJ, Neish AS, Moore S, Shi Y, Collins T (1997) CREB-binding protein/p300 are 

transcriptional coactivators of p65. Proceedings of the National Academy of Sciences of the United States of 

America 94: 2927-2932 

 

Halpern KB, Caspi I, Lemze D, Levy M, Landen S, Elinav E, Ulitsky I, Itzkovitz S (2015) Nuclear retention of 

mRNA in mammalian tissues. Cell Reports 13 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 17, 2020. ; https://doi.org/10.1101/2020.11.16.384297doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.16.384297


Halpern KB, Tanami S, Landen S, Chapal M, Szlak L, Hutzler A, Nizhberg A, Itzkovitz S (2015) Bursty gene 

expression in the intact mammalian liver. Molecular Cell 58: 147-156 

 

Hargreaves DC, Horng T, Medzhitov R (2009) Control of inducible gene expression by signal-dependent 

transcriptional elongation. Cell 138: 129-145 

 

Heyninck K, Valck DD, Berghe WV, Criekinge WV, Contreras R, Fiers W, Haegeman G, Beyaert R (1999) The 

zinc finger protein A20 inhibits TNF-induced NF-κB-dependent gene expression by interfering with an RIP- or 

TRAF2-mediated transactivation signal and directly binds to a novel NF-κB-inhibiting protein ABIN. Journal of 

Cell Biology 145: 1471-1482 

 

Hoffmann A, Levchenko A, Scott ML, Baltimore D (2002) The IκB-NF-κB signaling module: temporal control and 

selective gene activation. Science 298: 1241-1245 

 

Huang B, Yang X-D, Zhou M-M, Ozato K, Chen L-F (2008) Brd4 coactivates transcriptional activation of NF-kB 

via specific binding to acetylated RelA`. Molecular and Cellular Biology 29: 1375-1387 

 

Lasko LM, Jakob CG, Edalji RP, Qiu W, Montgomery D, Digiammarino EL, Hansen TM, Risi RM, Frey R, 

Manaves V, Shaw B, Algire M, Hessler P, Lam LT, Uziel T, Faivre E, Ferguson D, Buchanan FG, Martin RL, 

Torrent M et al (2017) Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours. 

Nature 550: 128-132 

 

Lee C, Shin H, Kimble J (2019) Dynamics of notch-dependent transcriptional bursting in its native context. 

Developmental Cell 50: 426-435 

 

Lee REC, Walker SR, Savery K, Frank DA, Gaudet S (2014) Fold change of nuclear NF-kB determines TNF-

induced transcription in single cells. Molecular Cell 53: 867-879 

 

Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Research 

66: 605-612 

 

Li C, Cesbron F, Oehler M, Brunner M, Hofer T (2018) Frequency modulation of transcriptional bursting enables 

sensitive and rapid gene regulation. Cell Systems 6: 409-423 

 

Mueller F, Senecal A, Tantale K, Marie-Nelly H, Ly N, Collin O, Basyuk E, Bertrand E, Darzacq X, Zimmer C 

(2013) FISH-quant: automatic counting of transcripts in 3D FISH images. Nature Methods 10: 277-278 

 

Neuert G, Munsky B, Tan RZ, Teytelman L, Khammash M, Oudenaarden Av (2013) Systematic Identification of 

Signal-Activated Stochastic Gene Regulation. Science 339: 584-587 

 

Nicolas D, Zoller B, Suter DM, Naef F (2018) Modulation of transcriptional burst frequency by histone acetylation. 

Proceedings of the National Academy of Sciences of the United States of America 115: 7153-7158 

 

Padovan-Merhar O, Nair GP, Biaesch AG, Mayer A, Scarfone S, Foley SW, Wu AR, Churchman LS, Singh A, Raj 

A (2015) Single mammalian cells compensate for differences in cellular volume and DNA copy number through 

independent global transcriptional mechanisms. Molecular Cell 58: 1-14 

 

Pahl HL (1999) Activators and target genes of Rel/NF-κBB transcription factors. Oncogene 18: 6853-6866 

 

Paschoud S, Dogar AM, Kuntz C, Grisoni-Neupert B, Richman L, Kuhn LC (2006) Destabilization of interleukin-6 

mRNA requires a putative RNA stem-loop structure, and AU-rich element, and the RNA-binding protein AUF1. 

Molecular and Cellular Biology 26: 8228-8241 

 

Paszek P (2018) Quantitative analysis of competitive cytokine signaling predicts tissue thresholds for the 

propagation of macrophage activation. Science Signaling 11: eaaf3998 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 17, 2020. ; https://doi.org/10.1101/2020.11.16.384297doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.16.384297


Paszek, P., Ryan, S., Ashall, L., Sillitoe, K., Harper, C. V., Spiller, D. G., Rand, D. A., & White, M. R. H (2010). 

Population robustness arising from cellular heterogeneity. Proceedings of the National Academy of Sciences of the 

United States of America 107: 11644–11649. 

 

Peccoud J, Ycart B (1995) Markovian Modeling of Gene-Product Synthesis. Theoretical Population Biology 48: 

222-234 

 

Raj A, Bogaard Pvd, Rifkin SA, Oudenaarden Av, Tyagi S (2008) Imaging individual mRNA molecules using 

multiple singly labeled probes. Nature Methods 5: 877-879 

 

Raj A, Peskin CS, Tranchina D, Vargas DY, Tyagi S (2006) Stochastic mRNA synthesis in mammalian cells. PLOS 

Biology 4: e309 

 

Ramirez-Carrozzi VR, Braas D, Bhatt DM, Cheng CS, C.Hong, Doty KR, Black JC, A.Hoffmann, M.Carey, Smale 

ST (2009) A Unifying Model for the Selective Regulation of Inducible Transcription by CpG Islands and 

Nucleosome Remodeling. Cell 138: 114-128 

 

Ramirez-Carrozzi VR, Nazarian AA, Li CC, Gore SL, Sridharan R, Imbalzano AN, Smale ST (2006) Selective and 

antagonistic functions of SWI/SNF and Mi-2β nucleosome remodeling complexes during an inflammatory response. 

Genes and Development 20: 282-296 

 

Raser JM, O'Shea EK (2004) Control of stochasticity in eukaryotic gene expression. Science 304: 1811-1814 

 

Sanchez A, Golding I (2013) Genetic determinants and cellular constraints in noisy gene expression. Science 342: 

1188-1193 

 

Schottenfeld D, Beebe-Dimmer J (2006) Chronic inflammation: a common and important factor in the pathogenesis 

of neoplasia. CA: A Cancer Journal for Clinicians 56: 69-83 

 

Senecal A, Munsky B, Proux F, Ly N, Braye FE, Zimmer C, Mueller F, Darzacq X (2014) Transcription factors 

modulate c-Fos transcriptional bursts. Cell Reports 8: 75-83 

 

Shaffer SM, Dunagin MC, Torborg SR, Torre EA, Emert B, Krepler C, Beqiri M, Sproesser K, Brafford PA, Xiao 

M, Eggan E, Anastopoulos IN, Vargas-Garcia CA, Singh A, Nathanson KL, Herlyn M, Raj A (2017) Rare cell 

variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature 546: 431-435 

 

Shalek AK, Satija R, Adiconis X, Gertner RS, Gaublomme JT, Raychowdhury R, Schwartz S, Yosef N, Malboeuf 

C, Lu D, Trombetta JJ, Gennert D, Gnirke A, Goren A, Hacohen N, Levin JZ, Park H, Regev A (2013) Single-cell 

transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498: 236-240 

 

Shalek AK, Satija R, Shuga J, Trombetta JJ, Gennert D, Lu D, Chen P, Gertner RS, Gaublomme JT, Yosef N, 

Schwartz S, Fowler B, Weaver S, Wang J, Wang X, Ding R, Raychowdhury R, Friedman N, Hacohen N, Park H et 

al (2014) Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510: 363-369 

 

Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, Maheswaran S, McDermott U, Azizian N, Zou L, Fischbach 

MA, Wong K-K, Brandstetter K, Wittner B, Ramaswamy S, Classon M, Settleman J (2010) A chromatin-mediated 

reversible drug-tolerant state in cancer cell subpopulations. Cell 141: 69-80 

 

Singh A, Razooky B, Cox CD, Simpson ML, Weinberger LS (2010) Transcriptional bursting from the HIV-1 

promoter is a significant source of stochastic noise in HIV-1 gene expression. Biophysical Journal 98: L32-L34 

 

Skupsky R, Burnett JC, Foley JE, Schaffer DV, Arkin AP (2010) HIV promoter integration site primarily modulates 

transcriptional burst size rather than frequency. PLOS Computational Biology 6: e1000952 

 

Smale ST (2011) Hierarchies of NF-κB target-gene regulation. Nature Immunology 12: 689-694 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 17, 2020. ; https://doi.org/10.1101/2020.11.16.384297doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.16.384297


Sneddon, M.W., Faeder, J.R., Emonet, T (2011) Efficient modeling, simulation and coarse-graining of biological 

complexity with NFsim. Nature Methods 8:177-183 

 

Stoeger T, Battich N, Pelkmans L (2016) Passive noise filtering by cellular compartmentalization. Cell 164: 1151-

1161 
 

Sung M-H, Li N, Lao Q, Gottschalk RA, Hager GL, Fraser IDC (2014) Switching of the relative dominance 

between feedback mechanisms in lipopolysaccharide-induced NF-κB signaling. Science Signaling 7: ra6 

 

Suter DM, Molina N, Gatfield D, Schneider K, Schibler U, Naef F (2011) Mammalian genes are transcribed with 

widely different bursting kinetics. Science 332: 472-474 

 

Tay S, Hughey JJ, Lee TK, Lipniacki T, Quake SR, Covert MW (2010) Single-cell NF-κB dynamics reveal digital 

activation and analogue information processing. Nature 466: 267-271 

 

Tsarnov N, Samacoits A, Chouaib R, Traboulsi A-M, Gostan T, Weber C, Zimmer C, Zibara K, Walter T, Peter M, 

Bertrand E, Mueller F (2016) smiFISH and FISH-quant - a flexible single RNA detection approach with super-

resolution capability. Nucleic Acid Research 44: e165 

 

Weinberger LS, Burnett JC, Toettcher JE, Arkin AP, Schaffer DV (2005) Stochastic gene expression in a lentiviral 

positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity. Cell 122: 169-182 

 

Wilson MZ, Ravindran PT, Lim WA, Toettcher JE (2017) Tracing information flow from Erk to target gene 

induction reveals mechanisms of dynamic and combinatorial control. Molecular Cell 67: 757-769 

 

Wong VC, Bass VL, Bullock ME, Chavali AK, Lee REC, Mothes W, Gaudet S, Miller-Jensen K (2018) NF-kB-

Chromatin Interaction Drive Diverse Phenotypes by Modulating Transcriptional Noise. Cell Reports 22: 585-599 

 

Wong VC, Mathew S, Ramji R, Gaudet S, Miller-Jensen K (2019) Fold-change detection of NF-κB at target genes 

with different transcript outputs. Biophysical Journal 116: 709-724 

 

Xue Q, Lu Y, Eisele MR, Sulistijo ES, Khan N, Fan R, Miller-Jensen K (2015) Analysis of single-cell cytokine 

secretion reveals a role for paracrine signaling in coordinating macrophage responses to TLR4 stimulation. Science 

Signaling 8: ra59 

 

Zambrano S, Loffreda A, Carelli E, Stefanelli G, Colombo F, Bertrand E, Tacchetti C, Agresti A, Bianchi ME, 

Molina N, Mazza D (2020) First responders shape a prompt and sharp NF- B-mediated transcriptional response to 

TNF-α. iScience 23: 101529 

 

Zhang Q, Gupta S, Schipper DL, Kowalczyk GJ, Mancini AE, Faeder JR, Lee REC (2017) NF-kB dynamics 

discriminate between TNF doses in single cells. Cell Systems 5: 638-645 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 17, 2020. ; https://doi.org/10.1101/2020.11.16.384297doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.16.384297


C

Nfkbia Tnfaip3 Tnfa Il8 Il6

A

E
Csf2

F

Nfkb
ia

Tnfa
ip3Tnfa Il8 Il6

Csf2
0

5

10

Nfkb
ia

Tnfa
ip3Tnfa Il8 Il6

Csf2
0.0

0.5

1.0

1.5

2.0

Nfkb
ia

Tnfa
ip3Tnfa Il8 Il6

Csf2
0

5

10

0 1

-1

0

1G

Jurkat Nfkbia
HeLa
BMDM

Il6

Csf2

Tnfa

Il8
Tnfaip3

B

0.0

0.5

1.0

1.5

2.0

2.5

A
cH

3:
H

3 
ra

tio

Blue: Hoechst nuclear stain Magenta: smFISH probes

0 1 2 3 4
0

5

10

15

20

Time (hours)

Fo
ld

 c
ha

ng
e 

in
 e

xp
re

ss
io

n Nfkbia
Tnfaip3
Tnfa

Il8
Il6
Csf2

n.d.
n.d.

H

Nfkbia Tnfaip3 Tnfa Il8 Il6 Csf2

Figure 1

0 10 20 30 40 50 60 70
mRNAs/cell

0

0.02

0.04

0.06

P
D

F

0 5 10 15 20
mRNAs/cell

0

0.1

0.2

0 5 10 15 20 25
mRNAs/cell

0

0.1

0.2

0.3

0 5 10 15
mRNAs/cell

0

0.1

0.2

0.3

0.4

0 2 4 6 8 10
mRNAs/cell

0

0.2

0.4

0.6

0 1 2 3 4 5 6
mRNAs/cell

0

0.2

0.4

0.6

0.8

I J

log10(Mean)

lo
g 10

(C
V2 )

Basal means Basal CVs Basal Fano Factors

M
ea

n 
no

. o
f m

R
N

A

C
V 

of
 m

R
N

A

Fa
no

 fa
ct

or
 o

f m
R

N
A

n = 611 n = 529 n = 839 n = 248 n = 632 n = 167 

0 30 60
0.0

0.2

0.4

0.6

0.8

IP: RelA

Time (min)

Il6
Csf2

Tnfaip3

Nfkbia

Tnf

Il8

D

NF-κB regulators:
Nfkbia and Tnfaip3

Primary cytokines: 
Tnf and Il8

Secondary cytokines: 
Il6 and Csf2

%
 In

pu
t

Il6Csf2
Tnfaip3

NfkbiaTnfIl8

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 17, 2020. ; https://doi.org/10.1101/2020.11.16.384297doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.16.384297


Figure 1. Basal transcriptional noise of NF-κB targets is systematically related to basal 

chromatin environment. 

A NF-κB can recruit a variety of binding partners to target promoters, including the chromatin 

modifying enzyme p300, the elongation complex P-TEFb, and components of transcriptional 

machinery. NF-κB target genes with a variety of functions were chosen for this study. 

B Ratio of enrichment of total histone H3 to acetylated H3 (AcH3) in Jurkat T cells for the 

indicated targets quantified by ChIP-qPCR and shown as % input (non-IP control). Data are 

presented as mean  standard deviation (SD) of three biological replicates. 

C Induction of NF-κB targets in Jurkat T cells in response to 20 ng/ml TNF treatment for 1, 2, 

and 4 hours as measured by RT-qPCR. Target values were normalized to GAPDH and are shown 

as fold change relative to basal expression is shown as mean  SD of 3 biological replicates. 

D Enrichment of RelA before and 30 and 60 minutes after treatment with 20 ng/mL TNF as 

measured by ChIP-qPCR and shown as % input (non-IP control). Data are presented as mean  

SD of three biological replicates. 

E Maximum intensity projections of smFISH fluorescence microscopy z-stacks of basal Jurkat T 

cells stained for the indicated genes. Images were filtered with a dual Gaussian filter in the 

FISH-quant software program and then brightness and contrast enhanced for better visualization. 

Scale bars: 10 μM. 

F Histograms of transcripts per cell for target genes (blue) overlaid with probability density plots 

(red) generated from smFISH data. 

G-I Bar graphs of mean (G), CV (H), and Fano (I) of smFISH distributions for the indicated 

genes. Data are presented as mean  bootstrapped 95% confidence intervals (CIs). 

J Log-log graph of mean versus noise (CV2) of basal mRNA distributions measured in Jurkat T 

cells (black), HeLa cells (red) or murine bone marrow derived macrophages (green) for 

endogenous genes and four HIT lentivirus integrations in Jurkats (blue). Gray shading indicates 

95% CI of the linear regression for the basal burst size trend line. HeLa data from Lee et al. 

(2014) and LTR data from Wong et al. (2018). 
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Figure 2. TNF induces gene-specific changes in transcript distributions at NF-κB targets. 

A Maximum intensity projections of smFISH fluorescence microscopy z-stacks of basal Jurkat T 

cells stained for the indicated genes after treatment with 20 ng/mL TNF. Images were filtered 

with a dual gaussian filter in the FISH-quant software program and brightness and contrast 

enhanced for better visualization. Scale bars: 10 μM. 

B Bar graphs of mean of smFISH distributions before and after TNF treatment for the indicated 

genes. Data are presented as mean  bootstrapped 95% CIs.  

C Probability density plots of single cell mRNA distributions from smFISH before and after 

treatment with 20 ng/mL TNF for the indicated time points. 

D Log-log graph of mean versus noise showing shifts in transcript distributions after treatment 

with 20ng/mL TNF grouped by whether noise and mean increase together (left) or noise 

decreases as mean increases (right). Gray shading indicates 95% CI of basal trend. 
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Figure 3. Inferred fits from two-state promoter model shows that TNF treatment increases 

transcriptional burst size at most targets. 

A Schematic of a two-state promoter model for transcriptional bursting. Burst frequency (ka) and 

burst size (b = kt/ki) were fit based on transcript distributions measured via smFISH. 

B Burst size (top) and burst frequency (bottom) parameter fits from the two-state model in the 

basal state and after treatment with 20 ng/mL TNF for 1, 2 or 4 hours. Data are presented as 

mean  bootstrapped 95% CIs. 
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Figure 4. RNAPII pausing is associated with increases in transcriptional bursting upon 

TNF treatment. 

A Enrichment of histone H3, AcH3, total RNPII, ser5-p RNPII, ser2-p RNPII, and NELF-E in 

the basal state (0 hours) and after treatment (2 and 4 hours) with 20 ng/ml TNF quantified using 

ChIP and shown as % input (non-IP control). Data are presented as mean  SD of three 

biological replicates. 

B Hierarchical clustering of ChIP data before and after TNF treatment separates promoters with 

TNF-mediated increases in burst frequency or burst size. 
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Figure 5. Small molecule inhibitors of H3 acetylation and RNAPII pause release alter TNF-

mediated changes in transcriptional bursting. 

A Schematic of A-485 inhibition of the histone acetyl transferase p300/CBP, which is recruited 

by NF-κB and of JQ1 inhibition of BET bromodomains, which recruit the positive transcription 

elongation factor (P-TEFb). 

B Change in enrichment of histone H3 and AcH3 after treatment with 300 nM A-485 for 4 hours 

measured by ChIP-qPCR and shown as % input (non-IP control) normalized to the uninhibited 

control for each gene. Data are presented as mean  SD of two biological replicates. p-values 

determined by t-test and reported if < 0.1. 

C Change in enrichment of total and Serine-5-phosphorylated RNAPII after 20ng/mL TNF 

treatment for 1 hour with 62.5nM JQ1 measured by ChIP-qPCR and shown as % input (non-IP 

control) normalized to the uninhibited control for each gene. Data are presented as mean  SD of 

two biological replicates. p-values determined by t-test and reported if < 0.1. 

C Bar graphs of mean mRNA level in the basal state, or with and without A-485 pretreatment 

followed by 1-hour TNF treatment measured by smFISH for the indicated genes. Data are 

presented as mean  bootstrapped 95% CIs. Samples with non-overlapping CIs are significant. 

D Bar graphs of mean mRNA in the basal state, or after TNF treatment for 1 hour with or 

without the indicated drug treatments measured by smFISH for the indicated genes. Data are 

presented as mean  bootstrapped 95% CIs. Samples with non-overlapping CIs are significant. 

E Probability density of mRNA distributions measured by smFISH after 1-hour treatment with 

20ng/mL TNF with (blue) or without (red) a 4-hour pretreatment with 300nM A-485. 

F Probability density of mRNA distributions measured by smFISH after 1-hour treatment with 

20ng/mL TNF with (blue) or without (red) a 1-hour cotreatment with 62.5nM JQ1. 

G Burst size parameter fits from the two-state model in the basal state or after 1 hour 20 ng/mL 

TNF treatment with or without the indicated drug treatments. Data are presented as mean  

bootstrapped 95% CIs. 

H Burst frequency parameter fits from the two-state model in the basal state or after 1 hour 20 

ng/mL TNF treatment with or without the indicated drug treatments. Data are presented as mean 

 bootstrapped 95% CIs. 
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Figure 6. Mathematical modeling demonstrates the functional consequences of increasing 

burst size versus burst frequency after TNF stimulation. 

A Schematic of the two-state model of transcription coupled to translation of a protein (TNF) 

that positively feeds back on its own transcription rate. 

B, C Model simulation of cell-population averages of Tnf mRNA (B) and TNF protein (C) 

versus time with and without positive feedback. Data are presented as mean (dark line) and SD 

(shaded region) of 1,000 simulated cells. 

D, E: Cell-population averages from stochastic simulations with positive feedback of Tnf mRNA 

at 1 hour (D) and TNF protein at 8 hours (D) after TNF treatment across a parameter space with 

increasing burst frequency (ka) and decreasing burst size (ki) chosen to produce levels of Tnf 

mRNA similar to experimental observations.  

F, G: Probability density function plots of simulated single-cell mRNA (F) and protein (G) 

numbers for the indicated bursting parameters in response to exogenous TNF treatment. 

H, I: Probability density function plots of simulated single-cell mRNA (H) and protein (I) 

numbers with and without the inclusion of positive feedback for either an increase in only burst 

size or only burst frequency in response to exogenous TNF treatment. 
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Figure EV1. TNF treatment induces differential changes in noise across target genes.
A, B Bar graphs of coefficient of variation (CV) (A) and Fano factor (B) of TNF-stimulated smFISH distribu-
tions presented in Fig. 2B for the indicated genes at the indicated time points. Data are presented as mean 
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Figure EV2 (related to Fig. 3). Validation of parameters used to fit burst size and burst frequency values 
from the two-state model.
A Jurkat T cells were stimulated with 20 ng/mL TNF for 1 hour followed by treatment with 10 μg/mL Actinomy-
cin-D for 0, 15, 30, 45, or 60 minutes and mRNA levels for the indicated target genes were measured by RT-qP-
CR. Exponential mRNA decay rates were fit using non-linear regression. Data are presented as mean  +/- SD 
of three biological replicates.
B Sensitivity analysis of how fitted burst frequency (left) and burst size (right) values vary with the value of kt 
used in the model. Data are presented as mean and bootstrapped 95% CIs. The kt value used is indicated with 
an asterisk.
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Figure EV3 (related to Fig. 3). Probability density functions for best-fit two-state promoter 
model parameters. Histograms (grey) of mRNA distributions for the indicated genes measured 
by smFISH in the basal state and after 20 ng/mL TNF treatment. Red curves show the best fit ana-
lytical probability density function of a stochastic two-state promoter model found by maximum 
likelihood estimation.
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Figure EV4 (related to Fig. 5). A-485 and JQ1 differentially affect noise and the fraction of 
non-responding cells in response to TNF treatment. 
A-B Bar graphs of coefficient of variation (CV) (B) and Fano factor (C) of TNF-stimulated smFISH 
distributions presented in Fig. 2B for the indicated genes at the indicated time points. Data are 
presented as mean and bootstrapped 95% CIs.
C Fraction of cells with no Tnf transcripts after 1 hours of TNF stimulation in combination with the 
indicated inhibitors. Data are presented as mean +/- bootstrapped 95% CIs.
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Figure EV5 (related to Fig. 6). Parameter scans and fits for simulation of Tnf stochastic gene expression 
with positive feedback.   
A A time-dependent burst size function for Tnf mRNA production was fit to experimental data (Fig. 2).
B Single-cell distributions of mRNA numbers are presented for varying values of the strength of TNF positive 
feedback (A) and the value of half-maximal strength (K).
C, D Maximum mRNA transcript numbers (C) and time to reach maximum transcript number (D) for the parame-
ter scan in (B).
E Steady-state basal mRNA transcript levels for the parameter scan in (B).
F Population mean, Fano factor, skew, and CV for mRNA (1 hour after TNF treatment) and protein (8 hours after 
TNF treatment) in simulated single cell populations for four different bursting parameter sets.
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Appendix Fig. 1

Appendix Fig. 1 (related to Methods). Parameter scans to find regions of mRNA expres-
sion. 
A, B Population averages from deterministic simulations of mRNA at 1 hour (A) and protein at 8 
hours (B) after TNF treatment for the fitted kt value over a parameter scan of increasing values 
of ka and decreasing values of ki.
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