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Abstract 14 

Bacterial decomposition of organic matter in soils is generally believed to be mainly controlled by the 15 

access bacteria have to their substrate. The influence of bacterial traits on this control has, however, 16 

received little attention. Here, we develop a bioreactive transport model to screen the interactive impacts 17 

of dispersion and bacterial traits on mineralization. We compare the model results with two sets of 18 

previously performed cm-scale soil-core experiments in which the mineralization of the pesticide 2,4-D was 19 

measured under well-controlled initial distributions and transport conditions. Bacterial dispersion away 20 
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from the initial substrate location induced a significant increase in 2,4-D mineralization, revealing the 21 

existence of a regulation of mineralization by the bacterial decomposer density, in addition to the dilution 22 

of substrate. This regulation of degradation by density becomes dominant for bacteria with an efficient 23 

uptake of substrate at low substrate concentrations (a common feature of oligotrophs). The model output 24 

suggests that the distance between bacteria adapted to oligotrophic environments is a stronger regulator 25 

of degradation than the distance between these bacteria and the substrate initial location. Such 26 

oligotrophs, commonly found in soils, compete with each other for substrate even at remarkably low 27 

population densities. The ratio-dependent Contois growth model, which includes a density regulation in 28 

the expression of the uptake efficiency, provide a more versatile representation than the substrate-29 

dependent Monod model in these conditions. In view of their strong interactions, bioreactive and transport 30 

processes cannot be handled independently but should be integrated, in particular when reactive 31 

processes of interest are carried out by oligotrophs.  32 

Keywords: biodegradation of organic matter; heterogeneous spatial distributions; bioreactive transport 33 

model; competition for substrate; bacterial traits; ratio-dependent growth 34 

 35 

Highlights 36 

- The impact of spatial distributions on decomposition depends on bacterial traits  37 

- Decomposition can be reduced by competition between bacteria even at low densities 38 
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- Bacterial density regulation counterbalances substrate accessibility regulation 39 

- Regulation of decomposition by bacterial density is more acute for oligotrophs 40 

1. Introduction 41 

Organic carbon is involved in most ecological functions provided by soils (Bünemann et al., 2018). Its 42 

cycling in soil depends upon the activity of microorganisms. Soluble organic molecules are taken up as 43 

substrates by specific populations of soil bacteria, and degraded inside the cells by endoenzymes to 44 

provide carbon and energy. This is precisely the case for the 2,4-Dichlorophenoxyacetic acid (2,4-D) used in 45 

this study as a generic model compound (Don and Weightman, 1985; Pieper et al., 1988; Boivin et al., 46 

2005). Bacterial degradation of soil carbon has generally been modeled with the Monod equation, where 47 

the specific substrate uptake rate is controlled by substrate concentration and bacterial traits such as the 48 

maximum specific growth rate, the yield (or carbon use efficiency) and the “maximum uptake efficiency” 49 

(e.g. Monod, 1949; Sinton et al., 1986; Cheyns et al., 2010). With the Monod equation, at the lowest 50 

substrate concentration, the specific uptake rate is linearly proportional to the substrate concentration. 51 

The proportionality factor is referred to here as the “maximum uptake efficiency” and it reflects the 52 

maximal ability of the cell to capture substrate molecules that collide with its membrane (Button, 1978, 53 

1983). The maximum uptake efficiency can also be understood as the volume from which a cell can harvest 54 

substrate per unit of time, as used in some studies (Desmond-Le Quéméner and Bouchez, 2014; Nunan et 55 

al., 2020; Ugalde-Salas et al., 2020). Each bacterium is assumed to be exposed to the whole substrate 56 

concentration of its surroundings, without any limitation by the population density (Lobry and Harmand, 57 

2006). 58 

The direct contact (exposure) between bacteria and substrate depends on their spatial distributions 59 

(Holden and Firestone, 1997; Nunan et al., 2007). Bacteria and substrate are both heterogeneously 60 

distributed as a result of numerous biotic and abiotic processes (Dechesne et al., 2014; Kuzyakov and 61 
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Blagodatskaya, 2015). There are complex feedback loops between these distributions, dispersive transport 62 

processes such as diffusion and hydrodynamic dispersion (Madsen and Alexander, 1982; Breitenbeck et al., 63 

1988), and the bacterial activity itself such as consumption and growth (Poll et al., 2006). 64 

Aggregated bacterial distributions, as observed at mm-scale for 2,4-D degraders (Vieublé Gonod et al., 65 

2003), have been shown to decrease degradation rates when the distribution of substrate is homogeneous 66 

(Pallud et al., 2004; Dechesne et al., 2010). Yet, the role of bacterial metabolic traits on the impact of 67 

bacterial and substrate distributions on degradation remains mostly unknown, especially when substrate 68 

and bacteria are heterogeneously and dynamically redistributed in soils over µm-to-cm scales by numerous 69 

spatial disturbances (Madsen and Alexander, 1982; Breitenbeck et al., 1988; König et al., 2020). We 70 

investigated the extent to which bacterial activity and transport processes can be treated independently or 71 

should be integrated to characterize, understand and predict degradation under various advective, 72 

diffusive and dispersive conditions. The simultaneous characterization of the impacts of bacterial traits and 73 

transport parameters through their mutual interactions is methodologically challenging. It requires several 74 

well-controlled experiments in comparable degradation conditions, with specific spatial distributions of 75 

substrate and degraders in specific transport conditions, and a spatiotemporal monitoring of the different 76 

carbon pools.  77 

Among the scarce relevant datasets (e.g. Dechesne et al., 2010), we used the two sets of cm-scale soil-core 78 

experiments performed by Pinheiro et al. (2015, 2018), in which the degradation of 2,4-D under different 79 

initial spatial distributions and transport conditions was measured in similar repacked soil columns. Mostly 80 

reported independently, they have shown first that the proximity between bacteria and the initial location 81 

of a heterogeneously distributed substrate exerts a strong control on mineralization. Mineralization was 82 

greater when bacteria were close to the initial location of substrate, even though most of the initial soluble 83 

substrate diffused away from its initial location. This was attributed to the fact that bacteria located far 84 

from the initial substrate location were only exposed to highly diluted substrate concentrations (Babey et 85 
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al., 2017). However, the hydrodynamic dispersion of both bacteria and substrate away from their initial 86 

location caused a greater than four-fold increase in the mineralization of substrate that was not leached 87 

out, to the point that it almost reached the same performance as in homogeneous conditions in which 88 

there was no dilution (Pinheiro et al., 2018). The surprising increase in mineralization suggests a regulation 89 

of mineralization by population density compensating the effect of substrate dilution, the activity of 90 

bacteria being enhanced when their density is diluted by the dispersive percolation events. While such 91 

regulations by bacterial density have not yet been considered in soils, presumably because of the 92 

extremely low apparent bacterial densities found in soils (Young et al., 2008), they are well known in 93 

bioreactors, where they are usually modeled by the ratio-dependent Contois growth law (Contois, 1959; 94 

Harmand and Godon, 2007). 95 

In order to determine the relevance of the putative bacterial decomposer density effect on decomposition, 96 

we developed a quantitative approach to model the two sets of experiments within the same unified 97 

framework (section 2). We assessed the relevance of previously developed models, improved the 98 

calibration of a Monod-based model and investigated an alternative Contois-based model (section 3). We 99 

discuss the implication of the results on the controlling factors of soil organic carbon cycling, on the 100 

relevant bacterial growth models and on the possible bacterial strategies (section 4). 101 

2. Models and methods 102 

2.1. Experiment scheme, geometry and initial distributions 103 

We briefly introduce the experiments performed previously and highlight aspects of the experiments that 104 

are important for the modeling (Fig. 1). The full experimental setting is presented in the supplementary 105 

materials (Fig. S1 and Table S1) for the sake of completeness. Soil columns were packed with two 106 

homogeneous or heterogeneous arrangements of soil cubes, either sterilized, or hosting the indigenous 107 
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microbial communities (referred to as “degraders”) and amended with 
14

C-labelled 2,4-D (referred to as 108 

“substrate”). Two sets of experiments, referred to as “hydrostatic” and “percolation” conditions, were 109 

performed respectively with only substrate diffusion (Pinheiro et al., 2015), or with additional substrate 110 

and bacterial advection and dispersion caused by water percolation (Pinheiro et al., 2018). The initial 111 

locations of the bacteria and substrate were set in the model according to the experimental conditions 112 

(Fig 1A). Initial concentrations used in the model are detailed in Table 1. In the experiments, the mass of 113 

mineralized 
14

C derived from the degradation of the labelled 2,4-D was monitored at the core scale during 114 

at least two weeks (Fig. 1B). These data were used to confront the model processes with a physical system, 115 

as detailed in section 2.5. 116 
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 117 

Fig. 1. Model experimental design, geometry and initial distributions (A) based on previously performed 118 

experiments in hydrostatic (Pinheiro et al., 2015) and percolation (Pinheiro et al., 2018) conditions. The red 119 

and green arrows refer respectively to the 2,4-D and degrader modeled displacements. (B) Experimental 120 
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cumulated production of CO2 (adapted from Pinheiro et al. (2018, 2015), permission for reproduction 121 

granted by Elsevier). 122 

2.2. Bioreactive model 123 

The bioreactive model extends the model published by Babey et al. (2017) (Fig. 2) to account for Contois 124 

growth law as an alternative to Monod’s. The sorption processes, the bacterial lag phase and the nutrient 125 

recycling described below were previously discussed and their use justified in Babey et al. (2017) to 126 

consistently represent the experimental data. The r(∙) notation expresses the reaction rates of the 127 

biochemical dynamics that are expressed as follows: 128 

���� � ��� � 	 ��� � 	 �� � 	 

� �  �� � � 

(1) 

���� � ��� � 	 ���  � (2) 

����� � �� � (3) 

������ � �1 	 ��
� 
 � (4) 

���� � 
 � 	 �� �  (5) 

����� � ���1 	 ��� (6) 

All variable and parameter definitions are listed in Table 1. The dynamics of the specific growth rate µ are 129 

given, for the Monod-based model, by:  130 

�

�� � � �
��	 �

�
  � 	 
� (7) 

and, for the Contois-based model, by: 131 

�

�� � � �
��	

� �⁄
��  � �⁄ 	 
� � � �
��	

�
���  � 	 
�  (8) 

where µ = 0 at t = 0. 132 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 8, 2021. ; https://doi.org/10.1101/2020.11.16.384735doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.16.384735
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

 

The soluble substrate S is either reversibly adsorbed to soil particles (pool A) or irreversibly adsorbed (pool 133 

RS) (Eqs. (1), (2), (3)), or taken up by bacteria B (Eq. (1)) and metabolized into CO2 (Eq. (4)) and new 134 

biomass B (Eq. (5)). kSA and kAS are the reversible sorption coefficients. kR is the irreversible one. Bacteria 135 

death occurs at a constant rate mt (Eq. (5)) and a fraction of the bacterial necromass is considered to return 136 

to the soluble substrate pool S to account for nutrient recycling (Eq. (1)), while the rest is transformed to 137 

biotic residues RB (Eq. (6)). The nutrient recycling is necessary to adequately predict the late dynamics of 138 

mineralization. Its impact on mineralization is only marginal during the first five days. The adsorbed 139 

substrate and biotic residues form the pool of insoluble carbon A + RS + RB. The substrate S is consumed by 140 

bacteria B according to their specific uptake rate (1/y)·µ expressed either by the substrate-dependent 141 

Monod growth law (Eq. (7)) (Monod, 1949) or by the ratio-dependent Contois growth law (Eq. (8)) (Contois, 142 

1959). y is the yield coefficient and relates the specific uptake rate (1/y)·µ to the specific growth rate µ. 143 

µmax is the maximum specific growth rate. κM and κC are Monod and Contois constants respectively. The 144 

effective uptake is delayed by the accommodation rate α, which explicitly takes into account the “memory” 145 

effects of the bacteria when adapting to new conditions (Patarinska et al., 2000). This delay is necessary to 146 

capture the mineralization lag time at the beginning of the experiments (see Fig. S6). Over long time 147 

periods (� � 1/�), µ follows the exact expression of the Monod or Contois equations. All modeled pools (S, 148 

B, CO2, A, RS and RB) were expressed as carbon concentrations in µg·g
-1

 (mass of carbon per mass of dry 149 

soil) considering a soil water content of 0.205 g·g
-1

 (mass of water per mass of dry soil), a bulk density of 150 

the soil column of 1.3 10
3
 g·l

-1
 (mass of dry soil per apparent soil volume) and an average bacterial dry 151 

weight of 2.8 10
-13

 g corresponding to 1.49 10
-13

 g of carbon per cell. These values of water content and 152 

bulk density were those set up in the experiments, the latter corresponding to a water potential adjusted 153 

at -31.6 kPa (pF 2.5). The average bacterial weight was assumed based on Dechesne et al. (2010) and 154 

Pinheiro et al. (2015). The water-filled pore space (54%, volume of water per volume of pores) was such 155 

that oxygen was not considered a limiting factor for 2,4-D degradation. 156 
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 157 

Fig. 2. Graphical representation of the biochemical model and carbon fluxes identified by the arrows. 158 

Under low substrate concentrations S, the specific uptake rate (1/y)·µ becomes equal to S·(1/y)·µmax/κM, 159 

where (1/y)·µmax/κM is referred to as the “maximum uptake efficiency”. 160 

2.3. Reactive transport model 161 

The transport model is based on the diffusion model of Babey et al. (2017) to which advective-dispersive 162 

processes explored in the experiments of Pinheiro et al. (2018) are added. Bacterial leaching out and 163 

dispersion were observed only in the percolation experiments while the substrate was also reported to 164 

diffuse. Hydrodynamic leaching and dispersion were modeled independently, as they result from, 165 

respectively, bypass flow through large pores and complex hydrodynamic dispersion processes coming not 166 

only from usual flow mechanisms but also from large saturation variations and local redistribution of 167 

moisture in the pore network. Due to the lack of adequate experimental data to characterize the details of 168 

the dispersion process, we applied a simple isotropic dispersion coefficient. Complementary numerical 169 

simulations show that other anisotropic dispersion parameterization are only weakly sensitive (Fig. S3). 170 

Bacterial and substrate transports were described with the same advective and dispersive parameters. This 171 

assumption did not significantly alter the results (Fig. S4). Coupled to the equations of the bioreactive 172 

model ((1)-(8)), the full reactive transport model is given by:  173 
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���� � ���� � 	
�����	�� �  � 
	
�����	�� � � �� (9) 

���� � ���� � � 
	
�����	�� � � �� (10) 

���� � ���� for U = A, RB, RS and CO2 (11) 

where ddiff is the effective molecular diffusion coefficient of S, ddisp is the effective hydrodynamic dispersion 174 

coefficient of S and B and ν is their leaching rate. Note that the dispersion coefficient ddisp mostly affected 175 

the spreading of bacteria, given that substrate was mainly spread by diffusion, as noted in section 2.3 and 176 

confirmed by consistent results from equivalent models without hydrodynamic dispersion of S (Fig. S5). 177 

Effective diffusion and dispersion processes were assumed to be isotropic and uniform at the column-scale. 178 

Dispersion and leaching were active only during the observed 1-hour percolation events at days 0, 3 and 6 179 

as controlled by the function G defined as:  180 

���� � 1      � � �0d – 0d1h�; �3d – 3d1h�; �6d – 6d1h� 

���� � 0      otherwise. (12) 

No-flow boundary conditions were imposed at the edges of the soil core (∇S = 0 and ∇B = 0) during periods 181 

outside of the percolation events. The transient evolutions of the water content and their effects on 182 

concentrations were not considered because of the short duration of the percolation events (1 h) and the 183 

absence of detectable effects on the experimental mineralization curve around the percolation events 184 

(Fig. 1D). Hydration conditions were considered constant, constrained by the water potential adjusted to 185 

-31.6 kPa. No bacterial mobility was observed in the hydrostatic experiments, suggesting that the bacterial 186 

mobility observed in the percolation experiments resulted primarily from hydrodynamic dispersion.  187 

Carbon pools concentration dynamics were simulated on a 3 × 6 × 6 regular mesh grid. Although the shape 188 

of the grid was slightly different from that of the cylindrical soil-core, it did not have any observable impact 189 
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(Babey et al., 2017). We recall that substrate and bacteria were initially co-located in the same cube(s). 190 

Each cube was considered to be physically, chemically and biologically homogeneous. Diffusion and 191 

dispersion were simulated using a finite-difference scheme (Iserles, 2009) and coupled with the bioreactive 192 

model, itself solved by the 4
th

 order Runge-Kutta integration method function of MATLAB (Shampine and 193 

Reichelt, 1997). The coupling of transport and bioreactive models was achieved with a sequential 194 

non-iterative operator-splitting method, in which the equations are resolved within each time step in a 195 

sequence of one transport step followed by one bioreactive step (Carrayrou et al., 2004; Lagneau and van 196 

der Lee, 2010). The time steps were smaller than the characteristic diffusion and reaction times to avoid 197 

any coupling issues. 198 

2.4. Exploratory screening 199 

Parameters and their values are listed in Table 1. Sorption parameters and the diffusion coefficient were 200 

set at values that were calibrated and validated by Babey et al. (2017) in independent experiments without 201 

degradation. The mortality rate and the nutrient recycling yield were also kept at the values calibrated in 202 

Babey et al. (2017) as they were considered to be well constrained by the residual mineralization dynamics 203 

of the homogeneous hydrostatic experiment (Fig. 1D). The four biological parameters primarily involved in 204 

the biological response of bacteria to the concentration of substrate were determined to be (1/y)·µmax, α, 205 

B(t=0) and either (1/y)·µmax/κM for the Monod-based model or (1/y)∙µmax/(B(t=0)∙κC) for the 206 

Contois-based model. Each of these four parameters were sampled over 7 logarithmically-distributed 207 

values within the theoretically and physically relevant ranges given by Babey et al. (2017), and all possible 208 

combinations of values were screened (Table S2). We recall that the “maximum uptake efficiency” 209 

(1/y)·µmax/κM characterizes the specific bacterial uptake of substrate at the lowest substrate concentration 210 

(Button, 1991), while the maximum specific uptake rate (1/y)·µmax characterizes the bacterial uptake at the 211 

highest substrate concentration. Note that the uptake yield y was fixed at the value calibrated by Babey et 212 
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al. (2017) with a high degree of certainty. The initial maximum uptake efficiency (1/y)·µmax/(B(t=0)∙κC) in 213 

the Contois-based model was screened in the same range as (1/y)·µmax/κM. The accommodation rate α of 214 

the degrader response ranged from a negligible delay of few minutes (α = 934 d
-1

) to a prolonged delay of 215 

around 10 days (α = 9.34 10
-2

 d
-1

). B(t=0) values were screened around the initial experimental 216 

measurements of the tfdA gene copy number, assuming that one tfdA sequence corresponded to one 217 

bacterium. They ranged over two orders of magnitude to account for the uncertainty of the conversion of 218 

tfdA copy number into alive 2,4-D degraders (Bælum et al., 2006, 2008). Bacterial density in the uptake 219 

efficiency expression will also be expressed in g·l
-1

 (mass of bacteria per volume of water) for a more direct 220 

comparison with the relevant literature. 221 

The spatial distribution of bacteria observed at the end of the experiments could not be used to determine 222 

the effective dispersion coefficient ddisp (Fig. S2). While they qualitatively ascertained that bacteria spread 223 

orthogonally to the percolation direction, experimental data were not sufficiently resolved to be used 224 

quantitatively. The dispersion coefficient was thus screened over 10 values ranging from no dispersion 225 

(ddisp = 0) to complete instant homogenization of the soil core (ddisp = inf) (Table S2). The effective diffusion 226 

coefficient ddiff had been calibrated independently from percolation conditions (Pinheiro et al., 2015; Babey 227 

et al., 2017). The leaching rates ν were determined based on the experimental masses of leached 
14

C 228 

(Pinheiro et al., 2018) (Table 1). Detailed values for the screened parameters are listed in Table S2.  229 

Table 1. Values and range of values of the reactive transport model. The effective dispersion coefficient 230 

ddisp applies only to heterogeneous percolation experiments. B(t=0) is the initial density of bacteria in the 231 

natural cubes. It is considered 1.6 times smaller in the percolation experiments than in the hydrostatic 232 

experiments according to the initial experimental measurements. 233 

Parameter description Symbol Unit 

Fixed values and 

admissible ranges 

for screening 
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initial 

substrate 

concentrati

on 

hydrostatic 

experiments 
S(t=0) 

µg∙g
-1

 (mass of substrate 

carbon per mass of dry soil) 
0.825 

b 

percolation 

experiments 
µg∙g

-1 6.52 
b 

reversible adsorption 

coefficient 
kSA d

-1 0.09207  

reversible desorption 

coefficient 
kAS d

-1 4.361  

irreversible 

adsorption coefficient 
kC d

-1 0.01296  

uptake yield y - 0.5206  

maximum specific 

uptake rate 
(1/y)·µmax d

-1 [0.0190 – 19.5] 

uptake efficiency  
at the lowest substrate 

concentration 

(1/y)·µmax/κ
 a

 

where κ is κM or 

B(t=0)∙κC 

g∙µg
-1

∙d
-1

 (mass of dry soil per 

mass of bacterial carbon per 

unit of time) 

[0.0152 – 159] 
c
 

accommodation 

rate 
α d

-1 [0.00934 – 934] 

initial 

degrader 

population 

density 

hydrostatic 

experiments 
B(t=0) 

µg∙g
-1

 (mass of 

bacterial carbon per mass of 

dry soil) 

[0.0161 – 1.61]
 d

 

percolation 

experiments 
B(t=0) µg∙g

-1
 [0.0101 – 1.01]

 d
 

mortality rate mt d
-1 0.0602  

nutrient recycling yield χ - 0.6010  

effective diffusion 

coefficient 
ddiff m

2
∙d

-1 1 10
-5  e

  

effective dispersion 

coefficient 
ddisp m

2
∙d

-1 [0 – ∞] 

leaching 

rates 
(days 0; 3; 

6) 

homogeneous 

experiments 
ν - 

0.108; 0.226; 0.180  

heterogeneous 

experiments 
0.107; 0.223; 0.178  

a
 The half-saturation constant κ corresponds to κM for the Monod-based model and B(t=0)∙κC for the 234 

Contois-based model (where B(t=0) is the value from the hydrostatic experiments). 235 
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b
 The initial substrate concentration S(t=0) is set equal to the 

14
C-2,4-D concentration amended in the 236 

experiments. 237 

c
 The values of (1/y)·µmax/κ correspond to ranges of [1.65 – 1.73 10

4
] l·g

-1
·d

-1
 (volume of water per mass of 238 

bacteria per unit of time) 239 

d
 The values of B(t=0) correspond respectively to ranges of [1.48 10

-4
 – 1.48 10

-2
] g·l

-1
 (mass of bacteria per 240 

volume of water) for the hydrostatic experiments and [9.24 10
-5

 – 9.24 10
-3

] g·l
-1

 for the percolation 241 

experiments. 242 

e 
The value of ddiff has been calibrated on a 3 × 6 × 6 grid in similar conditions (Babey et al., 2017). 243 

2.5. Model to data comparison 244 

The comparison between the results of the model and the experimental data was based on the core-scale 245 

data of mineralization deduced from the carbon mass mCO2 of 
14

CO2 emissions: 246 

%���
��� �  & '(��), ���)

	

 

 

(13) 

with V the volume of the soil cores. Mineralization at a given time t was expressed as the carbon mass of 247 

cumulated 
14

CO2 emissions (����,�
���) per initial carbon mass of 

14
C-substrate S  (��,��� � 0�) where the 248 

index q identifies the experiment at hand. Indices 1, 2, 3 and 4 are respectively given to the homogeneous 249 

hydrostatic, heterogeneous hydrostatic, homogeneous percolation and heterogeneous percolation 250 

experiments. Data-to-model adequacy was assessed for each of the experiments by a classical root-mean-251 

square evaluation function Jq comparing the modeled mineralization of Eq. (4) to the measured 252 

mineralization at the nq available sampling times ti:  253 
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+
 � , 1-
 . /%���,

�� ���� � %���,


���� ����%�,
�t � 0� 0���

���

1
�

�

 
(14) 

Discrepancies over the full set of experiments J1234 were thus expressed as:  254 

+���� � 214 . +���

���

4
�

�

 
(15) 

Following the systematic parameter screening described in section 2.5, the parameter set minimizing J1234 255 

was determined and referred to as the set calibrated on both hydrostatic and percolation experiments. The 256 

measurement errors were in average 1.7 times higher in the percolation experiments than in the 257 

hydrostatic experiments. This was assumed to be due to differences in experimental setup between the 258 

two sets of experiments of Pinheiro et al. (2015, 2018). This error difference contributed to limit the weight 259 

of the percolation experiments when determining the best-fitting parameter set over the whole set of 260 

experiments (J1234). We made the choice to give an equal weight to all experiments by only taking into 261 

account the average CO2 values.  262 

3. Results 263 

3.1. Model calibration 264 

The calibration of the bioreactive transport model carried out using only the hydrostatic experimental data 265 

(Babey et al., 2017) led to a minimal discrepancy between data and model of J12 = 0.023 (Fig. 3-A1 and A2). 266 

This pre-existing parameterization was used to provide blind predictions of the percolation experiments, 267 

with the effective dispersion coefficient ddisp as an additional fitting parameter. It gave a reasonable 268 

prediction of mineralization in the homogeneous percolation experiment (J3 = 0.038, Fig. 3-A3) but failed in 269 

the heterogeneous percolation experiment (J4 = 0.151, Fig. 3-A4), regardless of the dispersion coefficient 270 

values. The smallest discrepancy J4 was surprisingly obtained without any bacterial dispersion (ddisp = 0) in 271 
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contradiction with the bacterial spread observed in the experimental data (Fig. S2). The final predicted 272 

mineralization was highest when bacteria remained aggregated close to the initial location of the 273 

substrate. The highest predicted mineralization was however four times lower than the experimental data. 274 

The large gap between the experimental data and the modeled scenario suggests that bacterial proximity 275 

to the initial substrate location is not the underlying explanatory mechanism for the high mineralization 276 

rates. On the contrary, it suggests that mineralization might rather be increased by the dispersion of 277 

bacteria towards more diluted substrate concentrations, and that the identified bacterial traits do not 278 

match this increase of mineralization with dispersion. 279 

In order to investigate the capacity of the reactive transport model to fit both hydrostatic and percolation 280 

experimental data, the biological parameters ((1/y)·µmax/κM, (1/y)·µmax, α, B(t=0)) and the dispersion 281 

coefficient (ddisp) were calibrated on both hydrostatic and percolation experiments following the screening 282 

approach given in section 2.4 to minimize J1234. The mineralization dynamics were adequately predicted in 283 

all four experiments with the biological parameter set giving the lowest overall discrepancy (J1234 = 0.032) 284 

and a non-zero dispersion coefficient (ddisp = 1.78 10
-4

 m
2
·d

-1
) (Fig. 3, Table 2). The non-zero dispersion 285 

coefficient indicates that the calibrated model accounts for a positive impact of bacterial dispersion on 286 

degradation. The model results suggest that this effect is necessary to successfully predict the high degree 287 

of degradation in the experimental data. Compared to the parameters calibrated only using the hydrostatic 288 

experiments, the parameter set calibrated on both hydrostatic and percolation experiments also displayed 289 

a much higher maximum uptake efficiency (1/y)·µmax/κM = 26.5 g·µg
-1

·d
-1

 (mass of dry soil per mass of 290 

bacterial carbon per unit of time) (Table 2). The systematic exploration of the parameter space showed 291 

that high maximum uptake efficiency was a common feature of the 1% best-fitting parameterizations over 292 

both hydrostatic and percolation experiments (smallest J1234), with values of 159 and 26.5 g·µg
-1

·d
-1

, 293 

corresponding respectively to 1.73 10
4
 and 2.89 10

3
 l·g

-1
·d

-1
 (volume of water per mass of bacteria per unit 294 
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of time). It underlines the essential role of the maximum uptake efficiency for modulating the impact of 295 

dispersion on degradation, further detailed and explained in section 3.2.3. 296 

Table 2. Parameters for the Monod-based model calibrated by the screening approach (section 2.4) on the 297 

hydrostatic experiments only (Babey et al., 2017) and on both hydrostatic and percolation experiments, 298 

and for the Contois-based model calibrated on both hydrostatic and percolation experiments. 299 

Parameter symbol Unit 

Monod model calibration Contois 

model 

calibration 

on both 

hydrostatic & 

percolation 

experiments 

on the sole 

hydrostatic 

experiments 

on both 

hydrostatic & 

percolation 

experiments 

(1/y)·µmax d
-1

 1.22 9.73 4.86 

(1/y)·µmax/κ 

a
 

g∙µg
-1

∙d
-1

 (mass of 

dry soil per mass of 

bacterial carbon per 

unit of time) 

2.65 
b
 26.5 

b
 2.65 

b
 

α d
-1

 9.341 10
-1

 9.34 10
-2

 9.34 10
-2

 

B(t=0) 

hydrostatic 

experiments 

µg∙g
-1

 (mass of 

bacterial carbon per 

mass of dry soil) 
1.61 10

-1
 3.23 10

-2
 3.76 10

-1
 

percolation 

experiments 
µg∙g

-1
 1.01 10

-1
 2.01 10

-2
 2.34 10

-1
 

ddisp m
2
∙d

-1
 0 

c
 1.78 10

-4  c
 10

-5  c
 

J1234 - 0.079 0.032 0.022 

a
 The half-saturation constant κ corresponds to κM for the Monod-based model and B(t=0)∙κC for the 300 

Contois-based model (where B(t=0) is the value from the hydrostatic experiments). 301 

b
 Values of (1/y)·µmax/κ correspond respectively to 2.89 10

2
, 2.89 10

3
 and 2.89 10

2
 l·g

-1
·d

-1
 (volume of 302 

water per mass of bacteria per unit of time). 303 
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c
 The corresponding spreading values induced by the hydrodynamic dispersion (root-mean-square 304 

displacements) for each percolation events are respectively 0, 3.8 and 0.91 mm, to be compared to the 305 

25 mm radius of the soil column. 306 

 307 

Fig. 3. Mineralization dynamics predicted with the Monod-based model calibrated on the hydrostatic 308 

experiment only (A) and on both hydrostatic and percolation experiments (B). The related experimental 309 

setups are indicated in the top right corner of each graph. The agreement between experiments and model 310 

is indicated by the value of discrepancy J displayed on top and can be visually assessed by the proximity 311 

between the black line and the dots representing respectively the model results and experimental data. 312 

The red line refers to the carbon mass of substrate remaining in the soil core. In the percolation 313 

experiments (A3,4 and B3,4), around 51% of the initial mass of 
14

C was lost through leaching at each 314 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 8, 2021. ; https://doi.org/10.1101/2020.11.16.384735doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.16.384735
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

 

percolation events (t = 0, 3 and 6 days, blue arrows). The carbon balance among the different pools is 315 

detailed in Fig. S7. Note that the reversible sorption eventually accounted for less than 2% of the initial 316 

carbon mass and therefore did not significantly alter the results. 317 

3.2. Analysis of the controls exerted on degradation by substrate dilution and bacterial 318 

density 319 

The effect of dispersion on degradation differed greatly between the two calibrated sets of biological 320 

parameters described in section 3.1. We therefore conducted a more systematic investigation of the 321 

coupled impact of bacterial dispersion and bacterial traits on degradation, revealing its control by substrate 322 

dilution and bacterial density.  323 

3.2.1 Impact of dispersion on degradation 324 

We used the mineralization at the end of the experimental time (day 24) as a proxy for degradation and 325 

determined its sensitivity to dispersion, as a function of the parameterization of bacterial traits. Fig. 4 326 

shows the impact of the dispersion coefficient ddisp on the final predicted mineralization for the two 327 

calibrated biological parameter sets, all other parameters being kept constant (thick red and blue lines). For 328 

the biological parameter set calibrated on hydrostatic experiments, the final mineralization decreased 329 

monotonically with dispersion (Fig. 4, red line). For the parameter set calibrated on both hydrostatic and 330 

percolation experiments, the final mineralization first increased, reached a maximum around 331 

ddisp ≈ 10
-4

 m
2
·d

-1
 and then decreased (Fig. 4, blue line). These two kinds of behaviors were observed 332 

regardless of the parameters α, (1/y)·µmax and B(t=0) as long as (1/y)·µmax/κM remained the same 333 

(Fig. S8). The non-monotonic impact of dispersion on degradation highlights the existence of an optimal 334 

bacterial dispersion for which mineralization is the highest. The comparison between the red and blue lines 335 

on Fig. 4 suggests that the optimal dispersion value depends on the bacterial uptake efficiency. Note that, 336 
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although the optimal dispersion value varied with time due to the spatial dynamics of both bacteria and 337 

substrate (Fig. S9), it tended towards a limit that was mostly reached within 4 to 7 days and is thus 338 

represented at day 24 on Fig. 4.  339 

 340 

Fig. 4. Influence of the dispersion coefficient ddisp on mineralization predicted at day 24 mCO2(t=24) for the 341 

biological parameter set calibrated on the sole hydrostatic experiments (A, thick red line) and on both 342 

hydrostatic and percolation experiments (B, thick blue line). Note that for the model calibrated on both 343 

hydrostatic and percolation experiments, the value of ddisp leading to the highest final mineralization 344 

(ddisp = 1.78 10
-4

 m
2
·d

-1
, thick blue line) is also equal to its calibrated value leading to the best adequacy with 345 

mineralization kinetics (Table 2). 346 

3.2.2 Double control of degradation by substrate dilution and bacterial density 347 

The non-monotonic effect of bacterial dispersion on degradation is an unusual and key feature of the 348 

model calibrated on both hydrostatic and percolation experiments. In the following we will present an 349 

explanation for how such relationships between dispersion and degradation could arise, resulting from a 350 

non-monotonic spatial substrate profile, itself derived from the respective effects of substrate dilution and 351 

bacterial density. 352 
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In the model, the instant exposure of bacteria to their substrate is maximal if all the bacteria are located 353 

inside the voxel(s) with the highest substrate concentration. In the hydrostatic calibrated parameter set, 354 

the profile of substrate concentration primarily resulted from its initial heterogeneity (bell-shape red curve 355 

on Fig. 5A and pseudo bell-shape red curve on Fig. 5B). The flux of substrate reaching each bacterium was 356 

therefore mostly determined by the distance between the bacterium and the initial location of substrate. 357 

The exposure of a single bacterium to the substrate decreased with its distance from the substrate initial 358 

location. This effect is referred to as “substrate dilution”. In these cases (Fig. 5A and B), mineralization was 359 

mainly regulated by substrate dilution, and therefore reduced by bacterial dispersion (Fig. 4, blue line). 360 

However, for the parameter set calibrated on both hydrostatic and percolation experiments, local 361 

degradation by aggregated bacteria reshaped the substrate spatial profile, thus critically changing the 362 

voxel(s) with the highest substrate concentration. The bacteria aggregated at their initial location 363 

consumed the substrate much faster than it was replenished by backward diffusion and dispersion, 364 

creating a critical inversion of the substrate gradient, which led to an intra-population competition for 365 

substrate (Fig. 5C). The competition was critical for bacterial densities as small as 3.5 10
-3

 g·l
-1

 (Fig. 5C). In 366 

contrast, the dispersion of bacteria reduced competition by diluting the highest bacterial densities, thus 367 

flattening the substrate gradient inversion induced by bacterial local degradation, resulting in a better 368 

overall exposure of bacteria to the substrate concentrations, and thus an enhanced mineralization 369 

(Fig. 5D). In these cases (Fig. 5C and D), mineralization was mainly regulated by bacterial density. This 370 

relation between the bacterial density and the limitation of their exposure to the substrate is not 371 

instantaneous and is mediated by the substrate concentration. This is expressed in the model equations 372 

through the dependence of bacterial activity µ(t) on substrate concentration S(t) (Eq. (7)) and the 373 

dependence of the substrate concentration S(t) on degradation µ(t)∙B(t) (Eq. (1)), within each voxel. 374 

However, when bacterial dispersion was too great, substrate dilution became the dominant control again. 375 

This suggests that an optimal bacterial spatial spread exists for which the dilution of substrate is 376 
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compensated by the dilution of high local bacterial densities. The modeled scenario illustrated by the two 377 

calibrated parameter sets were also observed for most of the other parameter sets. The optimal dispersion 378 

coefficient for the 300 best-fitting parameterizations to both hydrostatic and percolation experiments 379 

(smallest J1234 values) was on average ddisp ≈ 2 10
-5

 m
2
·d

-1
 (Fig. S10), corresponding to a root-mean-square 380 

displacement of bacteria of 1.5 to 3.5 mm during each percolation event. 381 

 382 

Fig. 5. Predicted substrate and bacterial spatial concentration profiles after6 days of diffusion and 383 

dispersion in the conditions of heterogeneous percolation experiment, in which bacteria and substrate are 384 

initially located exclusively in the central cube (between 0 and 3 mm). Results are simulated on a 385 

9 × 18 × 18 grid obtained by subdividing the 3 × 6 × 6 grid used for the screenings. The results are 386 

represented for the parameter set calibrated using only the sole hydrostatic experiment, either with a 387 

moderate dispersion (ddisp = 1.78 10
-4

 m
2
·d

-1
) (A) or with the calibrated dispersion (no dispersion) (B), and 388 
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for the biological parameter set calibrated on both hydrostatic and percolation experiments, either without 389 

dispersion (C)  or with the calibrated dispersion (ddisp = 1.78 10
-4

 m
2
·d

-1
) (D). On one hand, bacteria are 390 

exposed to smaller substrate concentrations if they are far from the source (right part of the substrate 391 

concentration profiles). On the other hand, bacteria undergo competition if they are too close from each 392 

other (left part of the substrate concentration profiles). In (C), the bacteria aggregated below d consume 393 

the substrate faster than it is replenished by backward diffusion and dispersion. The total number of 394 

bacteria within the whole soil column at day 6 is similar in (A), (B), (C) and (D), respectively equal to 6.0 10
5
, 395 

9.5 10
5
, 11.5 10

5
 and 11.3 10

5
. The final mineralization at day 24 is however strongly different between 396 

scenario, reaching respectively 3.2%, 5.3%, 9.1% and 24.7% of the initial mass of 
14

C. 397 

3.2.3 Effect of bacterial uptake efficiency on the impact of dispersion on degradation 398 

A non-monotonic substrate concentration profile only occurs when bacterial degradation locally depletes 399 

the substrate faster than it is replenished by diffusion. This area of high local competition for substrate 400 

results from either high local densities of bacteria or high competitiveness or both. Bacterial 401 

competitiveness is related to their maximum uptake efficiency (1/y)·µmax/κM, which also describes their 402 

capacity to maintain their activity and growth under dilute substrate concentrations (Healey, 1980; Button, 403 

1991; Lobry et al., 1992). Bacteria with high maximum uptake efficiency are thus expected to benefit more 404 

from dispersion. Fig. 6 shows the optimal dispersion coefficient as a function of the maximum uptake 405 

efficiency, with all other parameters equal to those of the model calibrated on both hydrostatic and 406 

percolation experiments. The optimal dispersion coefficient, defined as the dispersion coefficient 407 

maximizing the final mineralization, increased with the maximum uptake efficiency. For small maximum 408 

uptake efficiencies of 30 l·g
-1

·d
-1

 and below, mineralization was highest in the absence of dispersion, 409 

suggesting a regulation dominated by substrate dilution. For larger maximum uptake efficiencies, 410 

dispersion impacted positively mineralization, suggesting that degradation shifted from being regulated by 411 
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substrate dilution to being regulated by bacterial densities, as bacteria were both more prone to 412 

competition between themselves and more efficient under diluted substrate conditions. In other words, 413 

the proximity to other bacteria constrained activity more than the proximity to the substrate initial location 414 

enhanced it. This combined effect of the maximum uptake efficiency and the bacterial dispersion on 415 

degradation was a general relationship common to all parameterizations (Fig. S11). 416 

 417 

Fig. 6. Dispersion coefficient giving the highest predicted mineralization at day 24 as a function of 418 

maximum uptake efficiency, all other parameters equal to those of the model calibrated on both 419 

hydrostatic and percolation experiments. 420 
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3.3. The Contois-based model as an alternative to Monod 421 

Given that degradation is regulated by both substrate dilution and bacterial density, and that their relative 422 

importance is modulated by bacterial uptake efficiency at the lowest substrate concentration, 423 

(1/y)·µmax/κM, we investigated the relevance of the Contois model by applying the calibration methodology 424 

of section 2.4, as used in section 3.1. The interest in the Contois growth law (Eq. (8)) stems from the 425 

inclusion of a regulation by density in the expression of the uptake efficiency at the lowest substrate 426 

concentration, becoming (1/y)·µmax/(B(t)·κC). 427 

In comparison with the Monod-based model, the predictions of the experimental observations of Pinheiro 428 

et al. (2015, 2019) were facilitated with the Contois-based model, on three levels. First, the Contois-based 429 

model captured the degradation dynamics better than the Monod-based model, especially for the 1% 430 

best-fitting parameterizations (smallest J1234 values) (Fig. S12). The calibrated Contois-based model had an 431 

overall discrepancy of J1234 = 0.022 (Fig. 7), which was smaller than the lowest value of J1234 = 0.032 432 

obtained for the calibrated Monod-based model (Fig. 3).  433 

 434 
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Fig. 7. Mineralization dynamics predicted with the Contois-based model calibrated on both hydrostatic and 435 

percolation experiments. For representation and legend, see Fig. 3. The carbon balance among the 436 

different pools is detailed in Fig. S7. 437 

Second, the parameter sets that fitted homogeneous experiments also performed well under 438 

heterogeneous conditions, as long as the dispersion coefficient ddisp was calibrated as well (Fig. S13).  It is 439 

an important advantage as it confers a better capacity to predict degradation kinetics for heterogeneous 440 

and varying distributions, once the model is calibrated in homogeneous conditions, which are more 441 

appropriate for the experimental measurement of bacterial parameters. Besides, using a dispersion 442 

coefficient value different from the calibrated one weakened the predictions of the mineralization 443 

dynamics but not the predictions of the mineralization after 24 days, which remained satisfying regardless 444 

of the dispersion coefficient. More precisely, the prediction of the final mineralization became mostly 445 

independent of the dispersion coefficient, as shown for the calibrated model (Fig. 8). This is because, in the 446 

Contois model at low substrate concentrations, the number of active bacteria in a soil volume is exactly 447 

counterbalanced by the regulation of their uptake efficiency by population density (Eq. (8)), resulting in 448 

limited effects of bacterial spreading on overall mineralization (Fig. 8, constant part of the curves). 449 

 450 
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Fig. 8. Influence of the dispersion coefficient on mineralization at day 24 for the Contois-based models 451 

calibrated on the sole hydrostatic experiments (thick red line) and on both hydrostatic and percolation 452 

experiments (thick blue line). For representation and legend, see Fig. 4. 453 

4. Discussion 454 

4.1. Relevance of density control for 2,4-D degradation and soil carbon cycling 455 

4.1.1 Density control of soil oligotroph bacteria 456 

Bulk soil and highly-diluted environments are usually found to be dominated by bacteria with high 457 

maximum uptake efficiency, also called oligotrophs (Fierer et al., 2007; Nunan et al., 2020). Their high 458 

maximum uptake efficiency differentiates their life-history strategies and conditions their ability to thrive in 459 

resource poor environments (Button, 1993), also assimilated to K-strategy (Tecon and Or, 2017), by 460 

opposition to copiotrophic bacteria adapted to rich environments (r-strategy). The maximum uptake 461 

efficiency values of the 1% best-fitting parameter sets were of the order of 10
3
-10

4
 l·g

-1
·d

-1
 (volume of 462 

water per mass of bacteria per unit of time), within the range proposed by Button (1991) to define 463 

oligotrophs. Similar or higher maximum uptake efficiency values of the order of 10
4
-10

5
 l·g

-1
·d

-1
 have been 464 

reported for soil oligotrophs (Ohta and Taniguchi, 1988; Zelenev et al., 2005). Values up to 1.64 10
5
 have 465 

been reported by Tuxen et al. (2002) for 2,4-D degraders in an aerobic aquifer and even greater values 466 

might also be possible (see section S5). The high maximum uptake efficiencies predicted in section 3.1 for 467 

the best-fitting parameterizations are therefore a plausible bacterial trait among 2,4-D degraders as well as 468 

bulk soil bacteria in general. It suggests that density control might be relevant for a component of soil 469 

bacteria, which would benefit from dispersion as suggested by Fig. 6. The calibrated model has shown in 470 

section 3.2.2 that the values of densities from which competition became critical were around 3.5 10
-3

 g·l
-1

, 471 

corresponding to 7.5 10
-7

 g·g (mass of bacteria per mass of dry soil), ranging in the low end of usual total 472 
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soil bacterial densities (Raynaud and Nunan, 2014; Kuzyakov and Blagodatskaya, 2015). This suggests that 473 

competition might play a significant role even under the low bacterial densities observed in bulk soils. 474 

Reciprocally, the model suggests that competition for substrate between copiotrophic bacteria only 475 

appears at much larger population densities, such as those found in soil biofilms (Holden et al., 1997, Or et 476 

al., 2007). Interestingly, copiotrophic bacteria have been reported to cohabit with oligotrophic bacteria 477 

even in diluted environments (Gözdereliler et al., 2012). Results from the screening suggest that, for 478 

densities of copiotrophs as low as for oligotrophs, their impact on overall decomposition in 479 

dilution-dominated environments would be much lower due to their poorly adapted uptake efficiency 480 

(Fig. 4A). Conversely, this striking density regulation might be one of the main limitations of the overall 481 

population densities in soils. Note that this density regulation occurs within a single population with 482 

homogeneous biological constants. Spatial heterogeneities and low substrate concentrations, common in 483 

bulk soil, may indeed shift competition from the inter-population level to the intra-population level 484 

(Pfeiffer et al., 2001; Roller and Schmidt, 2015).  485 

4.1.2 A new perspective on Regulatory Gate hypothesis 486 

Density regulation might partially contribute to explain the common paradox of the apparent uncoupling 487 

between the overall mineralization of a soil volume and the size of its microbial population (Kemmitt et al., 488 

2008). The rate of soil carbon mineralization remains the same even if 90% of the microbial decomposers 489 

are killed. This observation is commonly explained by the Regulatory Gate hypothesis, where 490 

mineralization is assumed to be controlled by an abiotic process, such as desorption or diffusion, that limits 491 

the availability of the substrate, resulting in mineralization rates that are independent of the degrader 492 

abundance. We propose that the density regulation of decomposition in oligotrophic environments may 493 

contribute to this phenomenon, through competition for substrate or other biological interactions. In the 494 

case of competition-related density regulation, it reduces the dependence of the overall carbon 495 

mineralization on degrader abundance, as any increase of population density counterbalances the effect of 496 
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the increased population size. Note that the involved abiotic process, namely the substrate diffusion 497 

backward to bacteria (see section 3.2), is well limiting but only in situations of high bacterial competition. 498 

4.2. Relevance of the ratio-dependent Contois model in soils 499 

As argued in section 3.3, ratio-dependence might facilitate decomposition modeling in the soil conditions 500 

typical of the experiments analyzed here. The Contois model’s (1/y)·µmax/κCB calibrated in homogeneous 501 

conditions might be used in heterogeneous conditions more reliably than the Monod model’s 502 

(1/y)·µmax/κM, at least for soil systems in which the competition for the substrate plays a substantial role 503 

within the degrader population. The similarity between κM and κCB suggests the need to consider 504 

population density when measuring the apparent maximum uptake efficiency of soil bacteria to avoid 505 

underestimating it by unintentionally including density regulation. Moreover, the better predictions 506 

obtained with the Contois model in the soil conditions represented by the experiments suggest that the 507 

Contois ratio-dependence includes not only the effect of competition for substrate at the scale of 508 

measurement, but it can also reasonably reflect other density processes such as the spatial variability of 509 

bacterial distributions at finer scales related to their high degree of local aggregation in microcolonies 510 

(Raynaud and Nunan, 2014). Moreover, ratio-dependence may also include the cumulative effects of 511 

ecological interactions other than competition (Sibly and Hone, 2002). Note that the methodological 512 

approach used in this study for both Monod and Contois models is based on an effective representation of 513 

concentrations and parameters at the mm- to cm-scale of measurements. These effective concentrations 514 

and parameters conceptually integrate the smaller-scale processes highlighted by other studies (Ebrahimi 515 

and Or, 2014; Portell et al., 2018; Tecon et al., 2018). Such microscale processes should be addressed for 516 

further generalization beyond the conditions of the soil experiments analyzed here. Despite its advantages, 517 

Contois models have also a drawback with the fact that the modeled uptake efficiency of bacteria 518 

approaches infinity for low densities, which does not correspond to any physical nor biochemical process 519 
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(Gleeson, 1994; Abrams, 2015). However, this side effect mostly affects a negligible fraction of the bacteria 520 

and the substrate, as it was the case in the soil conditions represented by the experiments. 521 

Further work is required to confront the relevance of the Contois model to other soil systems. To the best 522 

of our knowledge, ratio-dependent growth models such as the Contois model have not yet been 523 

considered for the modeling of microbial degradation in soils. However, the Contois growth equation is 524 

generally accepted to be more appropriate than the Monod equation for modeling immobilized, 525 

heterogeneously distributed or mixed microbial cultures (Arditi and Saiah, 1992; Harmand and Godon, 526 

2007), all of which are characteristics of soils. The regulation of individual activity by population density has 527 

frequently been justified as a “crowding effect” associated with high population densities leading to 528 

competition for substrate (Lobry and Harmand, 2006; Harmand and Godon, 2007; Krichen et al., 2018). 529 

However, little is known about possible density regulation when apparent microbial densities are low, as is 530 

observed in bulk soil (Raynaud and Nunan, 2014; Kuzyakov and Blagodatskaya, 2015), although some 531 

studies have mentioned ratio-dependence in highly-diluted environments such as aquifers (Hansen et al., 532 

2017). As discussed in section 4.1.1, the high maximum uptake efficiencies commonly observed for soil 533 

bacteria adapted to oligotrophic environments are relevant to draw attention on the potential significance 534 

of density control at low densities in oligotrophic soils, and thus ratio-dependent models, among which the 535 

Contois model is a consistent choice.  536 

4.3. Hypothetical relationship between bacterial traits and their spatial strategies 537 

Density regulation might be at the origin of a relationship between bacterial oligotrophy, their location in 538 

soil and their mobility strategy. Soil copiotroph bacteria have a maximum uptake efficiency mostly between 539 

100 l·g
-1

·d
-1

 (Button, 1991) and 800 l·g
-1

·d
-1

 (Daugherty and Karel, 1994; Zelenev et al., 2005). For 540 

copiotrophs with maximum uptake efficiency values below 288 l·g
-1

·d
-1

, bacterial dispersion was largely 541 

detrimental to their activity (Fig. 4 blue line, Fig. 6), in agreement with the results of Pagel et al. (2020), 542 
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suggesting that copiotrophs have more aggregated distributions than oligotrophs. The negligible 543 

mineralization even without dispersion (Fig. 3-A4, Fig. S8) also highlights the fact that copiotrophs are 544 

particularly inefficient at degrading substrates that diffuse in the environment, as also evidenced by Babey 545 

et al. (2017). To maintain significant activity, soil copiotrophs are likely to remain immobile in the close 546 

surroundings of the substrate source or any immobile substrate, likely attached to surfaces or embedded in 547 

EPS matrices. If not, they would be dispersed towards more diluted area where their low maximum uptake 548 

efficiency would result in negligible uptake. On the contrary, to survive and develop, soil oligotrophs should 549 

be able to easily disperse and escape high competition areas. Given that soil is a poor and heterogeneous 550 

environment, this dispersion would be essentially passive (Nunan et al., 2020), through advective processes 551 

for example. We therefore suggest the existence of a theoretical relationship between proximity to 552 

substrate sources (respectively remoteness), copiotrophy (respectively oligotrophy) and attachment 553 

(respectively mobility). 554 

5. Conclusions 555 

Heterogeneous distributions of degraders and substrate in soils strongly control soil organic matter 556 

degradation through their interactions with the bacterial activity. Taking 2,4-D as a model organic solute 557 

substrate for soil bacteria, we investigated the coupled effects of bacteria and substrate distributions on 558 

one side and bacterial traits on the other side on substrate degradation. The analysis of published 559 

experiments with contrasted spreading conditions of both bacteria and substrate reveals that, in addition 560 

to the distance of bacteria from high substrate concentrations, mineralization is also surprisingly limited by 561 

the bacterial density even under the low bacterial densities commonly observed in bulk soils. Moreover, 562 

the impact of bacterial dispersion on solute substrate degradation can shift from negative to positive 563 

depending on the bacterial maximum uptake efficiency. The activity of soil oligotrophs may be mostly 564 

regulated by bacterial density rather than by substrate dilution, echoing the population size paradox 565 
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regularly observed. It follows that the ratio-dependent Contois model might be more relevant to model 566 

bulk soil mineralization in the heterogeneous conditions investigated than the substrate-dependent Monod 567 

model. To predict the impact of spatial distributions on degradation in oligotrophic soil, and more 568 

particularly the impact of bacterial dispersion, we suggest that bacterial densities might be a more useful 569 

measurement than the volumes of soil devoid or occupied with bacteria. With respect to the current lack 570 

of direct microscale data on microbial processes and distributions, we propose some key perspectives on 571 

the bacterial kinetics and distributions. 572 
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