Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

The reward-complexity trade-off in schizophrenia

Samuel J. Gershman, Lucy Lai
doi: https://doi.org/10.1101/2020.11.16.385013
Samuel J. Gershman
1Department of Psychology and Center for Brain Science, Harvard University
2Center for Brains, Minds and Machines, MIT
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: gershman@fas.harvard.edu
Lucy Lai
3Program in Neuroscience, Harvard University
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Action selection requires a policy that maps states of the world to a distribution over actions. The amount of memory needed to specify the policy (the policy complexity) increases with the state-dependence of the policy. If there is a capacity limit for policy complexity, then there will also be a trade-off between reward and complexity, since some reward will need to be sacrificed in order to satisfy the capacity constraint. This paper empirically characterizes the trade-off between reward and complexity for both schizophrenia patients and healthy controls. Schizophrenia patients adopt lower complexity policies on average, and these policies are more strongly biased away from the optimal reward-complexity trade-off curve compared to healthy controls. However, healthy controls are also biased away from the optimal trade-off curve, and both groups appear to lie on the same empirical trade-off curve. We explain these findings using a cost-sensitive actor-critic model. Our empirical and theoretical results shed new light on cognitive effort abnormalities in schizophrenia.

Competing Interest Statement

The authors have declared no competing interest.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.
Back to top
PreviousNext
Posted November 17, 2020.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
The reward-complexity trade-off in schizophrenia
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
The reward-complexity trade-off in schizophrenia
Samuel J. Gershman, Lucy Lai
bioRxiv 2020.11.16.385013; doi: https://doi.org/10.1101/2020.11.16.385013
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
The reward-complexity trade-off in schizophrenia
Samuel J. Gershman, Lucy Lai
bioRxiv 2020.11.16.385013; doi: https://doi.org/10.1101/2020.11.16.385013

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Neuroscience
Subject Areas
All Articles
  • Animal Behavior and Cognition (3700)
  • Biochemistry (7815)
  • Bioengineering (5692)
  • Bioinformatics (21335)
  • Biophysics (10601)
  • Cancer Biology (8202)
  • Cell Biology (11969)
  • Clinical Trials (138)
  • Developmental Biology (6782)
  • Ecology (10424)
  • Epidemiology (2065)
  • Evolutionary Biology (13905)
  • Genetics (9728)
  • Genomics (13103)
  • Immunology (8168)
  • Microbiology (20061)
  • Molecular Biology (7874)
  • Neuroscience (43163)
  • Paleontology (321)
  • Pathology (1281)
  • Pharmacology and Toxicology (2266)
  • Physiology (3362)
  • Plant Biology (7250)
  • Scientific Communication and Education (1316)
  • Synthetic Biology (2012)
  • Systems Biology (5549)
  • Zoology (1133)