








 

 261 

Figure 6. Example evaluation from the NeonTreeEvaluation R package. Predicted boxes (see 262 

below) in red and ground truth boxes are in black. In this image there are 10 image-annotated 263 

boxes, and 9 predictions. Each prediction matches an image-annotated box with an 264 

intersection-over-union score of greater than 0.4. This leads to a recall score of 0.9 and a 265 

precision score of 1.  266 

Field-annotated Crowns 267 

Individual trees were mapped by visiting two NEON sites and directly mapping polygonal tree 268 

crowns in the remote sensing images using a field tablet and GIS software while looking at each 269 

tree from the ground [18]. False-color composites from the hyperspectral data, RGB, and LiDAR 270 

canopy height images were loaded onto tablet computers that were equipped with GPS 271 

receivers. While in the field, researchers digitized crown boundaries based on the location, size, 272 

and shape of the crown seen in the field. Trees were mapped in 2014 and 2015, and all 273 

polygons were manually checked against the most recent NEON imagery. All crowns that were 274 

no longer apparent in the RGB or LiDAR data (due to tree fall, or overgrowth) were removed 275 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 17, 2020. ; https://doi.org/10.1101/2020.11.16.385088doi: bioRxiv preprint 



 

from the dataset, and minor adjustments to crown shape and position were refined after 276 

examining multiple years of RGB imagery. No adjustments to the polygons were made due to 277 

crown expansion.  278 

 Field-collected crowns are spaced widely throughout the forest with only a handful 279 

overlapping in a single 40mx40m image. Therefore only recall (the proportion of predictions 280 

that match a field-annotated crown polygon at an intersection-over-union threshold of greater 281 

than 0.4) can be assessed. Precision cannot be assessed, since it is not possible to differentiate 282 

an incorrect prediction from a tree that was not mapped. 283 

Training Annotations 284 

It is common for computer vision benchmarks to include fixed training and testing data. During 285 

our research on crown delineation algorithms (Weinstein et al. (2019, 2020a, 2020b) we 286 

annotated many geographic tiles separate from the evaluation data. The training sites were 287 

selected to capture a range of forest conditions including oak woodland (NEON site: SJER), 288 

mixed pine (TEAK), alpine forest (NIWO), riparian woodlands (LENO), southern pinelands 289 

(OSBS), and eastern deciduous forest (MLBS). The training tiles were chosen at random from 290 

the NEON data portal, with the requirement that they did not contain a large amount of missing 291 

data (e.g. due to the presence of an edge of a site) and they did not overlap with any evaluation 292 

plots. Depending on the tree density at the site, we optionally cropped the 1 km
2
 to a smaller 293 

size to create more tractable sizes for annotation. This data is released as part of the 294 

benchmark dataset. However, our goal is to promote the best possible crown-delineation 295 

algorithm regardless of training data, and so we do not believe the inclusion of this training 296 

data should preclude others from applying their trained algorithms on the evaluation dataset. 297 
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Given the large size of training tiles, they were less thoroughly reviewed and were only checked 298 

in the RGB imagery. 299 

Uncertainty in annotations 300 

Differences between image-only annotators  301 

Since the image-annotated crowns were done by visually inspecting the images, the exact 302 

position and number of bounding boxes in an image will depend on the annotators’ 303 

interpretation of crown location. Image interpretation is a standard practice for creating 304 

validation sets in remote sensing (e.g. [19]), but depends on the skill of the interpreter and 305 

always introduces uncertainty to validation. In many computer vision tasks, class boundaries 306 

are clear and definitive. However, the combination of image quality, spatially overlapping 307 

crowns, as well as the two-dimensional view of a complex three-dimensional canopy, makes it 308 

difficult to always identify where one crown ends and another begins. To assess this 309 

uncertainty, a 2nd observer annotated 71 evaluation plots using the same data as the primary 310 

annotator. We then compared these annotations using a range of intersection-over-union (IoU) 311 

thresholds to indicate true positive matching crowns (Figure 7). We found that crown recall 312 

among annotators ranged from approximately 70% at lower IoU thresholds to 90% at higher 313 

IoU thresholds. This variance indicates that differences between annotators reflect differences 314 

in crown extent, not differences in whether or not a tree is present. If tree detection was the 315 

primary area of disagreement, changing the IoU threshold would have minimal effect on the 316 

recall and precision rates. This was also supported at the plot level, where the number of trees 317 
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and mean tree height from the LiDAR cloud were nearly identical across multiple annotators, 318 

but there was more variation in the mean crown area (Figure 7). 319 

 320 

Figure 7. Intersection-over-union scores (top left), as well as plot in level inferences, between 321 

the primary annotator and a 2nd annotator. For the IoU scores, we plotted precision and recall 322 

for 7 different intersection-over-union thresholds. As the overlap threshold decreases, the two 323 

annotators tend to agree on ground truth tree crowns. Analysis is based on 71 evaluation 324 

images (n=1172 trees) that were separately annotated by two different annotators. 325 

 326 

Comparison among image-annotated and field-annotated crowns 327 

To assess the ability for image-annotated crowns to represent field validated data, we 328 

compared image-annotation made by the primary annotator (BW) with the field-annotated 329 

crowns (annotated by SG) at two sites for which there was overlapping remote sensing imagery330 

We compared image annotations and field crowns using the crown recall rate, defined as the 331 

proportion of field-annotated crowns that overlap a image-annotated crowns (IoU threshold > 332 

0.4), and the stem recall rate, defined as the proportion of field-annotated crown centroids that333 

. 

t 
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are within a single image-annotated bounding box. The primary annotator independently 334 

annotated 1553 crowns in images that overlapped with 91 field collected crowns at Mountain 335 

Lake Biological Station (MLBS) and 27 crowns at Ordway-Swisher Biological Station (OSBS). To 336 

prevent the annotator identifying the obvious location of the field crown, the test image 337 

encompassed a large area. Using field-annotated crowns as ground truth, the image 338 

annotations had a centroid rate of 96.7% indicating that image annotation can identify the 339 

presence of trees in all but rare cases. There was more disagreement in the extent of crown 340 

boundaries. The image-annotated crowns had a crown overlap recall of 78.0% with the field-341 

annotated crown polygons. Visual inspection of more stringent intersection-over-union 342 

thresholds showed a disconnect between the quantitative score and the qualitative assessment 343 

of the image-annotated performance (Figure 8), supporting the use of a 0.4 threshold for 344 

identifying a match with empirical tree crowns. However, this decision is subjective and will 345 

depend on the sensitivity of downstream analysis using predicted crowns. While we anticipated 346 

greater recall for large field-annotated crowns, we found only a modest pattern between 347 

increased crown area of field-annotated crowns and correct image-annotated match. In 348 

general, errors tend to be marginally biased towards oversegmentation, where large crowns 349 

are divided into smaller sets sets of branches, but both types of errors occur in relatively similar 350 

frequencies (Figure 9).   351 

 352 

 353 
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 354 

Figure 8. Comparison of field-annotated crowns made by one author (SG) in blue (n=16) and 355 

image-annotated crowns made by another author (BW) in red at Mountain Lake Biological 356 

Station, Virginia. Intersection-over-union scores are shown in white. Only the image-annotated 357 

crowns associated with the field crowns are shown (out of the 206 image-annotated crowns in 358 

this image). From this and similar visualizations we determined that a threshold of 0.4 was a 359 

reasonable choice for eliminating crowns that are not sufficiently overlapping to be used for 360 

ecological analysis.  361 

 362 
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 363 

Figure 9. Comparison of the crown bounding box area of matched field-annotated and image-364 

annotated crowns. Oversegmented crowns have image-annotations that are too small for the 365 

field-annotated crowns. This typically occurs when large trees are erroneously split into smaller 366 

crowns. Undersegmented crowns have image-annotations that are too large for the field-367 

annotated crowns. This typically occurs when dense stands of trees are combined into a single 368 

crown. On average the image-annotations that are below the true positive intersection-over-369 

union threshold of 0.4 (in red) tend to be oversegmented. The bounding box area of the field-370 

annotated crowns was used instead of polygons to reduce the difference in annotation format 371 

and focus on oversegmentation versus undersegmentation in crown detection.  372 

NeonTreeEvaluation R Package 373 

To maximize the value of the benchmark dataset and standardize evaluation procedures, we  374 

developed an R package (https://github.com/weecology/NeonTreeEvaluation_package) for 375 

downloading the evaluation data and running the evaluation workflows. This package takes a 376 

standard submission format as input and can be extended to include additional evaluation 377 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 17, 2020. ; https://doi.org/10.1101/2020.11.16.385088doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.16.385088
http://creativecommons.org/licenses/by/4.0/


 

statistics. This reproducible workflow will be key in creating a more transparent process for 378 

future comparisons among tree crown detection algorithms. This repo also contains a 379 

leaderboard for users to submit scores and submission documents for future reproducible 380 

analysis. 381 

To demonstrate the performance of the benchmark, we used the recently published 382 

DeepForest python package to predict crowns in the evaluation data [21]. DeepForest is a RGB 383 

deep learning model that predicts tree crown bounding boxes. The prebuilt model in 384 

DeepForest was trained with the training data described above, but did not use or overlap 385 

spatially with any evaluation data in the benchmark. For more information on the deep learning 386 

approach see [10,16,21]. Following the best practices for computational biology benchmarking 387 

described in [13], we emphasize that the DeepForest algorithm was designed in conjunction 388 

with these evaluation data and it is therefore not surprising that it performs well, with image-389 

annotated boxes and field-annotated crown polygons both at approximately 70% accuracy 390 

(Table 1, Figure 10). It is also notable that despite the uncertainty with the crown area of the 391 

image-annotated crowns, the overall score is similar among data types.  392 
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Table 1. Benchmark evaluation scores for the DeepForest python package. The submission data 393 

are provided with the NeonTreeEvaluation package installation. The recall and precision range 394 

from 0 to 1. Recall is the proportion of true positives divided by the total number of samples. 395 

Precision is the proportion of predictions that are true positives.  396 

Image-annotated 

 Crowns 

Field-annotated 

Crowns 

Field collected 

Stems 

 

Recall Precision Recall Recall  

79.0 65.9 72.2 74.0  

 397 

398 

Figure 10. Example predictions using the DeepForest algorithm. A) DeepForest predictions in 399 

red and compared to image-annotated crowns in black from Teakettle Canyon, California. B) 400 

DeepForest predictions in red are compared to field-collected stems, with matching stems in 401 

yellow and missing stems in blue, from Jones Ecological Research Center, Georgia. C) 402 

DeepForest predictions in red with the field-annotated crown in black from Mountain Lake 403 

Biological Station, Virginia. The matching prediction is shown in bold while the other predictions404 

are faded for visibility. 405 

 

s 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 17, 2020. ; https://doi.org/10.1101/2020.11.16.385088doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.16.385088
http://creativecommons.org/licenses/by/4.0/


 

Discussion 406 

The benchmark data set is designed to assess tree crown detection in airborne imagery of 407 

forests. This dataset differs from standard computer vision benchmarks due to the large 408 

number and high variability of objects in the dataset. There are over a hundred trees in some 409 

images, which vary in size, shape and spectral properties. Generalization across geography is a 410 

fundamental challenge in remote sensing, and this dataset is constructed to study potential 411 

tradeoffs between local accuracy and generalizability to unseen forest conditions. Even when 412 

algorithms have been developed solely for one site, generalization can be important for future 413 

users in adapting them to new forest conditions.  414 

This dataset is the first to include aligned data from RGB, LiDAR and hyperspectral 415 

sensors for a range of geographic areas. While they are most often analyzed separately, each of 416 

these data types may be useful for tree crown detection. Three-dimensional LiDAR data has 417 

high spatial resolution, but it can be difficult to identify tree boundaries due to a lack of spectral 418 

information. RGB data has spectral information but lacks context on vertical shape and height. 419 

Hyperspectral data is useful for differentiating tree species but is generally at a coarser spatial 420 

resolution. Combining sensor data may lead to more robust and generalizable models of tree 421 

detection at broad scales, which makes having all three data types aligned an important 422 

component of a forward-looking benchmark dataset.  423 

 While the annotations are represented by 2D bounding boxes, there is significant 424 

opportunity to extend the benchmark dataset into new formats and dimensions. For example, 425 

there has been recent interest in object detection using input rasters, both as a replacement for 426 
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traditional bounding boxes, and as an additional step in refining pixel-based contours of object 427 

boundaries. By rasterizing the annotated bounding boxes, the dataset can be used to compare 428 

segmentation strategies such as raster-based versus regional proposal networks. Furthermore, 429 

combining 2D optical data and 3D point cloud annotations remains an active area of model 430 

development. Trees have complex 3D and 2D representations and the data provided in this 431 

benchmark could be used to develop new evaluation procedures across dimensions. 432 

 By providing a repeatable evaluation workflow, we hope to reduce the uncertainty in 433 

novel algorithm development and promote model and data sharing among researchers. Initial 434 

work in [16] showed that deep learning algorithms can learn from multiple geographies 435 

simultaneously, without losing accuracy on the local forest type. This means that data sharing 436 

among researchers can provide mutual benefit to all applications, even from disparate forest 437 

types. By standardizing evaluation criteria, we hope to foster collaboration and comparative 438 

studies to improve the accuracy, generalization, and transparency of tree crown delineation.  439 
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 508 

S1. Selecting overstory trees for the NEON field-collected stems 509 

NEON. 510 

The following filters were applied to the raw NEON field data (ID) after download. An overstory 511 

reference tree must have 512 

● Valid spatial coordinates 513 

● A unique height measurement per sampling period. Species double recorded but with 514 

different heights were discarded 515 

● Sampled in more than one year to verify height measurement 516 

● Changes in between year field heights of less than 6m  517 

● Classified as alive  518 

● A minimum height of 3m to match the threshold in the remote sensing workflow. 519 

● Be at least within 5m of the canopy as measured by the LiDAR height model extracted at 520 

the stem location. The was used to prevent matching with understory trees in the event 521 

that overstory trees were eliminated due to failing in one of the above conditions, or not 522 

sampled by NEON. 523 

 524 

To match trees we took the closest height when two predictions and field stems overlapped. 525 

dropped CLBJ since only 3 points met this criteria. All other sites did not have any data that met 526 

this criteria.   527 
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S2. List of annotations for each geographic site 528 

Table 1. The number of image-annotated tree crowns for each site. 529 

Site, State Forest 

Description 

Evaluation 

Annotations 

Training 

Annotations 

SJER, CA Oak Savanna 462 2533 

TEAK, CA Coniferous 1483 3405 

NIWO, CO Alpine 1862 9730 

MLBS, VA Broadleaf 489 1840 

LENO, AL Broadleaf 75 554 

OSBS, FL Southern Pine 485 1271 

ABBY, OR Coniferous 170  

TALL, AL Southern Hardwoods 93  

BART, NH Northern Hardwoods 103  

BONA, AK Riparian 272  

UNDE, MI Broadleaf 134  

SOAP, CA Coniferous 115  

SERC, MD Broadleaf 91  

SCBI, VA Broadleaf 73  

BLAN, VA Broadleaf 73  

JERC, GA Broadleaf 53  

HARV, MA Northern Hardwoods 171  

DSNY, FL Southern Pine 69  
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CLBJ, TX Broadleaf 108  

DELA, AL Southern Hardwood 86  

ONAQ, UT Desert 25  

WREF, OR Coniferous 124  

 530 
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