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Abstract

Summary: Networks provide a powerful framework to analyze spatial omics experiments. However, we lack tools
that integrate several methods to easily reconstruct networks for further analyses with dedicated libraries. In addition,
choosing the appropriate method and parameters can be challenging.

We propose tysserand, a Python library to reconstruct spatial networks from spatially resolved omics experiments. It
is intended as a common tool to which the bioinformatics community can add new methods to reconstruct networks,
choose appropriate parameters, clean resulting networks and pipe data to other libraries.

Availability and implementation: tysserand software and tutorials with a Jupyter notebook to reproduce the results
are available at https://github.com/VeraPancaldilab/tysserand

Contact: alexis.coullomb@inserm.fr, vera.pancaldi@inserm.fr

Supplementary information: Supplementary data are available at Bioarziv online.

1 Introduction

Recent technologies have made it possible to produce phenotypic data at the resolution of single cells (or higher) in
intact sample slices, both at the levels of proteins [1, 2] or mRNA [3, 4]. Taking advantage of spatial information is
essential for revealing the biology of healthy organs and dissecting the complex processes involved in cancer, such a
tumor progression and response to treatments[5].

Existing spatial omics analysis libraries such as trendsceek[6], SpatialDE[7] and PySpacell[8] use marked point
processes theory. Another fruitful approach is to represent tissues as networks, where nodes are cells and edges are
interactions between cells which are established through physical contact. Network theory is already used for spatial
analysis in the Python Spatial Analysis Library (PySAL)[9] for geospatial data science, and PySpacell, based on PySAL,
provides 3 methods to reconstruct networks: k-nearest neighbors, radial distance neighbors and cell contact neighbors.
However, due to its dependence on PySAL, it is not ideally suited to test other network reconstruction methods and
PySAL methods do not scale well with big datasets of thousands of cells. Moreover, the choice of a reconstruction method
and parameters can be hard, and the potential to use the reconstructed network with other dedicated network analysis
libraries remains a priority. Here, following the Unix philosophy[10] according to which programs do one thing and
do it well and programs work together, we present tysserand, a Python library to reconstruct spatial networks starting
from object positions (cells, nuclei, ...) or image segmentation results. We aim at encouraging the centralization
of efforts in network construction from the bioinformatics community in one place, to promote integration of new
reconstruction methods, providing algorithms for parameters selection, network processing to remove reconstruction
artifacts, computational performance improvement and the addition of interfaces with external network analysis libraries
such as NetworkX[11], iGraph[12] or Scanpy[13] for single-cell data analysis.

2 Results

tysserand can consider two types of alternative inputs (Figure 1). First, an Mx2 array of the M cells’s x/y coordinates
or, second, a ’segmentation image’ with integers ranging from 0 to K representing K segmented areas in a microscopy
image, with 0 values indicating the background. For the coordinates array input, 3 methods are already available
to reconstruct networks, based on the Scipy[14] library implementation: k-nearest neighbors (knn), radial distance
neighbors (rdn) and Delaunay triangulation (Figure S3). We think Delaunay triangulation is best suited to represent
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tissues and interactions between contacting cells, whereas the rdn method is more appropriate to model interactions by
diffusing chemicals, as already noticed by PySpacell authors[8]. For inputs consisting in cell segmentation images, we
implemented the area contact neighbors method (Figure S7). It leverages the scikit-image[15] and OpenCV[16] libraries
to detect for each area which neighbors are in direct contact or closer than a given distance. The tysserand library
provides simple visualization utilities to choose appropriate parameters for each network construction method and tools
to clean the resulting networks from typical artifacts, such as very long edges between nodes on the border of samples
after Delaunay triangulation (Figure S4). tysserand also provides utilities to visualize interactively multi-channels bio-
images with the Napari[17] library, which allows the user to pan, zoom and modify each channel intensity to better
define or modify networks built with tysserand (Figure S2).

Internally, tysserand adopts simple and efficient representations of networks to allow rapid prototyping of new
network construction or cleaning methods. A network is represented by 2 arrays: a first M x2 array for nodes coordinates
(that are the center of segmented objects if a segmentation image is provided as input), and an Lx2 array to represent
the L edges between nodes indicated by their index in the first coordinates array. Finally, tysserand can convert networks
into formats used by specialized libraries such as NetworkX, iGraph and Scanpy.
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Figure 1: tysserand can take as inputs an array of nodes positions or an image resulting from segmentation processing.
4 methods are implemented for now to reconstruct spatial networks, and they can be manually curated with napari
for interactive visualization and annotations. The resulting networks can then be exported to formats compatible with
libraries dedicated to network analysis or using networks in their downstream analyses.

To compare the quality of reconstructed networks across methods, we considered the network reconstruction task as
a classification task, were a model has to predict the presence or absence of edges between all possible pairwise nodes
combinations. We can then define the true positives as the edges that were successfully predicted to exist, the false
positive as the edges that were erroneously predicted to exist, the false negative as the edges that were erroneously
predicted to not exist, and the true negatives as the edges that were successfully predicted to not exist. We will note
their quantity TP, FP, FN and TN respectively. Given n the number of nodes in a network, TN scales with the number
of all pairwise combinations, which is 0.5 x (g), whereas the number of actual edges scales linearly with the number of
nodes, as cells have a limited number of possible neighbors, regardless the size of the tissue sample. Thus, as the size
of the network increases, TP, FP and FN become negligible compared to TN, which prevents us from using standard
classification quality metrics such as the adjusted accuracy or the Matthews correlation coefficient. Thus, we defined a
measure of network reconstruction quality as the true positive ratio TPR = %.

tysserand allowed us to easily compare networks generated with the knn and rdn methods, the Delaunay triangula-
tion, as well as the equivalent Voronoi tessellation implemented in PySAL.

We first compared the execution time of these methods on randomly generated sets of node positions (Figures S6).
Across all sizes of node sets the tysserand Delaunay implementation is always at least 51 times faster than PySAL’s.
This speed-up is valuable in the range of several tens of thousands of nodes, which is often the size of current bioimage
datasets.

We then compared the quality of reconstructed networks on simulated tissue images (data available on the GitHub
repository, description in Text S1, Figures S7 and S8). For the most realistic simulations implementing noise in cell
positions and empty spaces in the tissue, the default tysserand Delaunay method is always more accurate than PySAL
method (Table S1). For less realistic simulations performances are discussed in Text S1. Finally, we compared the
methods’ output quality on a real bioimage (Figure S1) annotated with napari and the associated utilities implemented
in tysserand. Qualitatively, Delaunay triangulation is best suited to reconstruct spatial networks of tissue samples, as
most edges link contacting cells, whereas the knn and rdn methods produce networks with excessively connected areas
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or missing edges (Figure S3). Quantitatively, the tysserand Delaunay method was the most accurate method (Table
S2), slightly better than PySAL’s method while being 126 times faster.

3 Conclusion

tysserand can reconstruct spatial networks from different inputs, such as sets of node positions or segmented areas,
and the resulting networks can be further processed with dedicated network analysis libraries. It already implements 4
common network reconstruction methods as well as tools to facilitate the choice of parameters for network construction,
artifact removal and tools to facilitate manual networks creation or modifications. tysserand Delaunay triangulation
is faster than the PySAL equivalent method even with big datasets, which is important for the analysis of multiple
tissue samples, and produces networks of better quality on real bioimages. We hope the bioinformatics community will
be willing to participate in the implementation of new methods for more accurate and domain specific spatial network
reconstruction to advance the field of bioimage processing.
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