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Complex dynamical fluctuations, from molecular noise within cells, collective intelli-
gence, brain dynamics or computer traffic have been shown to display noisy behaviour
consistent with a critical state between order and disorder. Living close to the critical
point can have a number of adaptive advantages and it has been conjectured that evolu-
tion could select (and even tend to) these critical states. One way of approaching such
state is by means of so called self-organized criticality (SOC) where the system poises
itself close to the critical point. Is this the case of living cells? It is difficult to test
this idea given the enormous dimensionality associated with gene and metabolic webs.
In this paper we present an alternative approach: to engineer synthetic gene networks
displaying SOC behaviour. This is achieved by exploiting the presence of a saturation
(congestion) phenomenon of the ClpXP protein degradation machinery in E. coli cells.
Using a feedback design that detects and then reduces ClpXP congestion, a critical
motif is built from a two-gene network system, where SOC can be successfully imple-
mented. Both deterministic and stochastic models are used, consistently supporting
the presence of criticality in intracellular traffic. The potential implications for both
cellular dynamics and designed intracellular noise are discussed.
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I. INTRODUCTION

In order to adapt to environmental challenges, bi-
ological systems exhibit a diverse array of response
mechanisms grounded in sensors and actuators as well
as information-processing units. Adaptive responses
require dynamical features that combine low energetic
costs along with fast changes to efficiently respond
to environmental changes. Flocks of birds and fish
schools widely fluctuate in time but rapidly reorga-
nize when a perturbation (such as the presence of a
predator) occurs. Within cells, noise was early identi-
fied as playing multiple roles affecting cell fate, popu-
lation heterogeneity, signal amplification or response
to stress [1–3]. Noise is both an inevitable outcome
of stochastic molecular interactions and an essential
ingredient in decision making [4].

It has been shown that many complex systems seem
to be poised close to so called critical points separat-
ing ordered from disordered states [5–8]. In a nut-
shell, both living and non-living systems organize at
the boundary separating regular (predictable) from
random (disordered) behaviours. At this point, com-
plex dynamics with scale-invariant properties emerge
[9, 10]. If s defines the total activity in one given event,
such as number of firing neurons [11–14], gene expres-
sion [15–18], number of active ants in a colony [19, 20],
critical epidemic bursts [21] or the size of traffic jams
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[22–24], the resulting distribution P (s) is a fat-tailed
one, following a power-law of the form P (s) ∼ s−γ ,
with a scaling exponent γ usually located within the
interval 2 ≤ γ ≤ 3 [8, 25].

Critical points can be reached by fine-tuning a given
”control” (or bifurcation) parameter η (Fig. 1a-b).
This parameter (such as density of particles, temper-
ature or reaction rate) directly influences the system’s
state, as described by the order parameter S (system’s
activity, for example). The way to criticality based
on tuning key parameters is well illustrated by en-
zymatic queueing processes [26]. These authors used
the framework of queueing theory (QTH) to study
the dynamics of different proteins (the ’customers’ in
QTH) that are processed by a downstream set of en-
zymes that play the role of ’servers’. Specifically, they
considered the native E. coli protease, ClpXP. The
key concept here is that the protease complexes are a
limited resource (hereafter we will thus consider the
amount of ClpXP as a constant) that can only ’pro-
cess’ (degrade) a limited number of incoming proteins.
In Fig. 1a we provide a basic diagram considering a
protein σ being expressed at some given rate η. If the
rate of protein production is low (queues are short),
degradation is efficient since the proteases can pro-
cess all incoming σ units (free phase). If production
is too high, a long queue of molecules ’waiting’ to be
processed will be present (congested phase). The two
regimes are separated by a critical point where an op-
timal balance is reached, along with wide fluctuations
in concentrations [26].

The critical point is a rather unique one. Can these
systems poise themselves into critical states with-
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FIG. 1: Paths to intracellular criticality. Tunable critical dynamics can be found in simple genetic circuits (a) where
a given gene is constitutively expressed into a protein σ that decays and is also actively degraded by cell proteolytic
machinery (ClpXP). By tuning expression rate η (d), a critical rate ηc is found to separate a phase of efficient degradation
from another (light gray) involving congestion. In (b) the thick line indicates that few proteins are found for η < ηc (the
proteolytic machinery efficiently degrades it) while it accumulates on the right side, due to congestion (ClpXP fails to
degrade all the incoming proteins). An alternative, non-tuned path is self-organised criticality (SOC) which can emerge
is provided by the sandpile (c). As grains of sand are slowly added at a rate η, the angle of the pile θ grows and only
small avalanches will be observed. However, as the critical (maximum) θc is reached, avalanches of all sizes take place,
reducing θ. The feedback between the order parameter S and the control parameter θ is summarised in (d). To facilitate
the conditions enabling SOC, a two-gene circuit with negative feedback (e) allows mapping the sandpile feedback diagram
(f). Here, both proteins compete for ClpXP (higher levels of σ1 also implies high values of σ2) and a repression feedback
is mediated by σ2σ2 (the Lac repressor dimer) with σ1 and σ2 acting as order and control parameters, respectively.

out fine tuning? An alternative mechanism to reach
critical states is provided by self-organized criticality
(SOC) [27–29]. In this case, control and order pa-
rameters interact in such a way that the system spon-
taneously self-organizes into a critical state [30, 31].
The canonical example of SOC is the critical sand-
pile (Fig. 1c). By slowly adding grains of sand to the
pile (at a rate η), its slope θ increases. At the begin-
ning, only a few grains will fall down but the number
s of grains in an avalanche rapidly grows as the an-
gle of repose θc is approached. Once we have θ = θc,
the interaction between θ and sand avalanches (the
order parameter) will keep the system at criticality
[29]. This is summarized in Fig. 1d where the nature
of the feedback between control and order parameters
is sketched. Is a SOC mechanism a possible way of
generating critical gene expression dynamics? In this

paper we propose a novel approach to create SOC dy-
namics by engineering the interaction between order
and control parameters in a simple two-gene network
design.

II. RESULTS

A. Two-gene SOC motif model: deterministic
and stochastic dynamics

The importance of the queueing dynamics in the en-
zymatic processing is illustrated by the E. coli stress
response to starvation, which is triggered by an ex-
cess of mistranslated proteins. Stress can cause a
significant increase in the concentration of aberrant
proteins, which must be degraded. When such an
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overload occurs, the concentration of the sigma fac-
tor (the master stress regulator) builds up, eventually
triggering the stress response [34]. Recent theoretical
work also suggests that queueing could be adaptive
in parallel enzymatic networks when the input flux of
substrates is balanced by the maximum processing ca-
pacity of the network [35]. Here we go a step further
and show how a simple SOC circuit can be actually
engineered in vivo.

Our goal in this work is to define the basic design
principle to build a ”genetic sandpile” system that
can capture the feedback structure shown in Fig. 1e.
First of all, consider the simple, two-gene network cir-
cuit shown in Fig. 1e. Two proteins σ1 and σ2 result-
ing from their expression will be used as the build-
ing blocks for the order and control parameters, re-
spectively, thus implementing a SOC feedback loop
(Fig. 1f). The aim is to exploit the topology of the
gene-gene interaction in such a way that the system
can detect the degree of congestion of the ClpXP sys-
tem by using σ2 as a sensor of the σ1 levels. Our con-
trol protein σ2 can form dimers, i. e. σ2 + σ2 → σ2σ2
and this dimeric forms act as inhibitors (see Methods,
eqs. (1-3)). If congestion occurs, the abundance of
σ2 increases and its negative feedback effects also do
so. A standard Hill function will be used to model the
dimers as transcriptional repressors. The construction
of our circuit involves two steps: (a) engineering the
”critical” motif and (b) adjusting the protein produc-
tion levels. This might seem contradictory with the
”self-organized” description of SOC, but an example
of why this is required is given by rice piles [36] which
exhibit SOC but for some given grain aspect ratios.

Along with the topology of the SOC motif, a sepa-
ration of scales is known to be a characteristic of SOC
dynamics [31]. While the control parameter has a slow
dynamics (the angle of the sandpile) the system’s re-
sponse (the avalanche time scale) is fast. In our model,
two additional parameters are used to favor the pres-
ence of criticality. These are the promoter efficiency
for σ2, labelled η2; and an extra inhibition acting on
the repressor σ2σ2 indicated as µ in Fig. 1e. We need
to remember that degradation (and other dissipative
events) affects σ2 and thus a minimal concentration
of this sensor is needed in order to effectively detect
congested states. On the other hand, in order to ex-
perimentally validate our model, we need to tune the
strength of the feedback (required to trigger a rapid
decay of the intracellular concentration of σ1). By
tuning these two parameters, we include both the non-
SOC design based on queueing as a special case [26]
(see Section I in the SM) and a mechanism to achieve
the SOC state.

In Fig. 2 we summarise the behaviour of the two-
gene system (Fig. 1e; see Methods and Section II in
the SM for mathematical details) using both deter-
ministic (Section II.A, SM) and stochastic (Section
II.B, SM) dynamics. A unique stable equilibrium
(σeq = (σ1,eq, σ2,eq), indicated with a solid black circle
in the (σ1, σ2) phase portraits of Fig. 2) is found, with
a characteristic structure of the orbits in the phase
space, as shown in Fig. 2a for the unregulated do-
main (here η2 = 10−3). As the expression rate η2 of

the control parameter increases close to η2 ∼ 10−2, it
is easy to see the presence of a slow-fast dynamics in
the distinct structure of the vector fields consistently
with the SOC requirement of time scale separation.
Here the critical motif allows for large fluctuations in
σ1 to occur (Fig. 2b) as shown by the compression
of the trajectories in the phase portrait close to the
fixed point, to be compared with the more homoge-
neous flow displayed in Fig. 2a for η = 10−3. The
analysis of this system shows that, once close to the
equilibrium point, small changes in the control σ2 trig-
ger marked population spikes in σ1 (see Fig. S4, SM).
Larger values for η2 (Fig. 2c) do not exhibit such a
time scales separation. The analytic and numerical
investigation of the eigenvalues of the fixed point to
study its stability properties reveal the presence of a
maximum in the so called ratio index (Fig. S7, SM),
indicating a remarkable change in the vector field of
the phase portrait when η2 ∼ 10−2 (given our set of
fixed parameters indicated in Fig. 2).

To see how this nonlinear flows behave under the
presence of intrinsic noise, a stochastic numerical im-
plementation of the two-gene circuit has been carried
out using the Gillespie method [32]. In Fig. 2d the

coefficient of variation CV =
√
〈σ2

1〉 − 〈σ1〉2/〈σ1〉 of
the generated time series is displayed against η2 for
three values of µ. This coefficient provides a statis-
tical estimate of the variance of the fluctuations and
a well-defined maximum is observed when η2 ∼ 10−2.
In Fig. 2e we have overlapped several stochastic re-
alisations with the vector field close to the maximum
CV (for η2 = 10−2). The density plot reveals that
the stochastic system visits very frequently the fixed
point σeq (orange-red colours in Fig. 2e), but also wan-
ders far away in the lower part of the phase portrait,
where the vector field is faster and pushes the stochas-
tic paths far away from the equilibrium point, then
returning it back to the deterministic equilibrium. In
Fig. 2f the resulting distribution is displayed. Specif-
ically, if P (σ1) indicates the probability distribution
of σ1 expression levels (activity), the cumulative dis-
tribution is defined as P>(σ1) =

∫ σ1

0
P (σ) dP (σ) and

helps smoothing the random noise exhibited by P (σ1).
If the original distribution follows a scaling P (σ) ∼
σ−γ1 , the cumulative one gives P>(σ1) ∼ σ−γ+1

1 . The
stochastic model gives a value of γ ∼ 3 (fig. 2f) es-
timated from the average of five different runs. The
time series associated to this parameter combination is
shown in the inset, revealing a characteristic bursting
dynamics typical of the SOC state. These results can
be compared with the smooth and Gaussian behaviour
obtained with the unregulated dynamics setting µ = 0
(Fig. 2g-h).

B. Engineering a synthetic SOC circuit in E. coli

The theoretical model predicts that the SOC feed-
back loop defined above (Fig. 1e-f) will display burst-
ing dynamics with fat-tailed activity distributions as-
sociated to the σ1 protein (order parameter). If the
expression level (η2) of the control protein σ2 is large
enough, its concentration will act as a congestion sen-
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FIG. 2: Nonlinear dynamics modeling of a two-gene critical motif. Following the causal scheme sketched in Fig.1 a-c,
and defined by equations (1-2) in the Methods section, the trajectories of the system in the (σ1, σ2) space are displayed
for increasing values of η2. Here the other parameters are η1 = 10−2, δ = 5 × 10−2, δClp C = 10−2, K = θ = 10−3. The
feedback control parameter is (a) η2 = 10−3, (b) η2 = 10−2 and (c) η2 = 0.056, respectively. The nullclines are plotted in
red (dσ1/dt = 0) and blue (dσ2/dt = 0). The orbits (shown with black curves) flow towards a single attractor (σeq). The
vector field is indicated by unitary arrows, the color of which corresponds to their module (blue for small and red for the
heavier). A background color scale is also used showing the arrival time required for each initial condition (σ1(0), σ2(0)).
Here yellow and violet indicate short and long arrival times, respectively. In (b) a combination of slow decays in σ2 and
fast responses for σ1 are at work. The stochastic dynamics of the model reveals a maximum in the CV when η2 ∼ 10−2,
as shown in panel (d) where the colours stand for µ = 0.5 (blue), µ = 1.0 (orange) and µ = 1.5 (green). The relative
location of the deterministic flows are indicated by dashed lines. Three different values of the coupling parameter µ
are also used to show the robust nature of the maximum, where the SOC motif has been tuned to generate fat-tailed
behaviour, as shown in panel (e). In this panel the hot map is plotted on top of the phase space, showing a maximum
close to the attractor as well as the fat-tailed scaling behaviour (f) with P>(σ1) ∼ σ−2

1 which gives γ ∼ 3 for P (σ1).
Here five different runs are shown along with their average (dark line). By contrast, the flows and hot maps for the
non-SOC circuit close to the queuing theory (QTH) transition (g) have a Gaussian pattern (h) with exponential tails as
shown by the straight lines in the linear-log insets. The complete distribution is depicted with the upper violin plots (i)
for different parameter values (as indicated). The effect on the coupling (µ) can be also observed in the different plotted
simulation points.

sor and will repress σ1, following the SOC motif de-
sign. Otherwise, the system will lack the feedback
loop. Here we show how can we engineer the genes cir-
cuit incorporating some parameters that allow includ-
ing the non-SOC phase transition as described above
including intracellular queueing processes as a special
case. Since the time scale of expression changes is
comparable to the replication rate of individual cells,
no individual time series can be gathered, but instead
the collective response of the system will be analyzed
to detect the presence of a SOC state. The under-
lying assumption is thus that we have a colony-level
sampling of the dynamical states and the critical dy-
namics is assessed by looking at the distribution of
cell states and the resulting aggregated statistics (as-

suming ergodicity).

The explicit experimental design of our SOC circuit
implementation is outlined in Fig. 3a-b. The order
parameter is encoded by the green fluorescent protein
(GFP), and the control parameter acting as the con-
gestion sensor, by the LacI repressor protein, the rela-
tive expression of which will be estimated by means of
the expression of the red fluorescent protein (RFP). In
both cases we use the unstable variants GFP-lva and
RFP-lva, respectively. The construct expresses GFP
under the pLacI promoter (η1) while the LacI repres-
sor and RFP reporter protein are under the pBAD
promoter, with non leaky tight regulation and high-
level expression inducible by Arabinose (η2) [52–54].
All three proteins of the circuit are tagged with lva
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FIG. 3: (See next page)

sequence to be degradable by the ClpXP proteolytic
complex.

ClpXP is responsible for degrading proteins carry-
ing the SsrA or YbaQ degron sequences, reducing the
half-life of a tagged protein from hours to minutes.
In an exponentially growing E. coli culture (Optical
Density (OD) OD660 from 0 to 2), the endogenous
levels of ClpX and ClpP are constant and involve
around 100 ClpXP molecules, which can degrade at
least 105 molecules of GFPssrA per cell per replica-
tion cycle. However, due to the limited number of
ClpXP protease complexes, the degrading capacity of

ssrA-tagged proteins can be easily saturated by over
production of a synthetic tagged protein [49–51].

The non-induced circuit depicted in Fig. 3a is
thus a particular instance of our more complex mo-
tif (Fig. 3b) that would correspond in our case to the
presence of endogenous LacI, with the GFP-lva ex-
pression being repressed. The presence of Arabinose
leads to a strong expression of the repressor LacI-
lva (our control parameter) and the reporter protein
RFP-lva. Only when high levels of the -lva tagged
proteins are reached, and the degradation machinery
is saturated, there is enough LacI-lva to repress the
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FIG. 3: Engineered gene circuit implementing the SOC motif in E. coli cells. (a) The gene construct design in
the non-induced state. The expression of ClpXP degradable GFP under the placI promoter can be regulated by the IPTG
concentration present on the medium. (b) The gene construct SOC design in its induced state. The Arabinose (Ara)
concentration controls the production of degradable LacI repressor and RFP, both, under the pBAD promoter. This
design allows to use the red fluorescence as a proxy of LacI concentration. (c) Overlapped bright field and fluorescence
images of bacterial culture induced with Ara (100 mM) and IPTG (10µM). Here, yellow bacteria expresses both GFP and
RFP. (d) Flow cytometry dot plots (green channel vs red channel) of E. coli cultures exposed to different concentrations
of IPTG and Ara. In the non-induced circuit (a), without Ara, the transition from non-congested proteolytic machinery
phase (i e free, SUBCRIT) to congested phase (SPCRIT) depends on the tunable GFP-lva production. As IPTG
increases, hence the de-repression of GFP expression, ClpXP is not able to degrade the excess of GFP and cells are
mostly with high emission in green. When the circuit is induced (b), Ara triggers the expression of the LacI repressor
and the RFP reporter, that are also degraded by the ClpXP complex. The increase of tagged proteins to be degraded
contributes to the congestion of ClpXP but also the LacI repression helps to de-congest by reducing the tagged GFP
expression. Thus, as Ara concentration is increased, we notice a shift towards higher RFP levels along with a dispersal
and lower levels of GFP values. This defines the domain (gray window) where the feedback loop required for SOC can
effectively operate. A SOC state is obtained in the presence of high Ara concentration around the IPTG values close
to the queueing transition. Most cells (Q3 + Q4 ≈ 80%) are emitting in the red channel, but exhibit broad range of
green fluorescence levels, since this state is characterized by fluctuations associated to large bursts of GFP expression
(the heterogeneous GFP expression is apparent in the yellow cells of (c) and in the histogram of Fig. 4). Flow cytometry
analysis of more IPTG-Ara combinations are shown in Section III.D, SM.

production of GFP-lva. The repression loop is con-
sistently removed when the production of GFP-lva
(our order parameter) is reduced enough as for de-
saturate the ClpXP protease that can degrade the
repressor again. The addition of Isopropyl β-d-1-
thiogalactopyranoside (IPTG), as indicated by a neg-
ative input to the repression feedback (see Fig. 3b),
switches on our SOC circuit and allows to control the
level of GFP-lva expression. High levels of IPTG will
lead to an overproduction of GFP-lva and the sub-
sequent ClpXP complex congestion, thus reproducing
the limit case that would correspond to the standard
phase transition of the queueing process [26] (Fig. 1a-
b).

The SOC motif is contained in a single, high-copy
plasmid to ensure a maximal concentration of the vec-
tor while maintaining the parity of the two parts of the
circuit (Fig. 3a-b). The construct was transformed in
XL1-Blue E. coli strain. Further details of the cloning
process and sequences can be found in Section S.III,
SM. Also, this design allows an easy tuning to obtain
parameters involving SOC, in terms of the strength
of the promoter (i. e. pBAD) and by adjusting the
efficiency of the repressor (in our case, IPTG for LacI,
see Section III, SM).

To perform the experiments, a single colony was in-
oculated in a volume of 4 ml, and grown at 37◦C un-
til the exponential phase was reached with an OD660

around 0.6. This homogeneous fresh culture was then
used to inoculate all the conditions used in the ex-
perimental design. Each combination was inoculated
with 1 µl of the starter culture to a final volume of
4 ml. Cells were grown for about 10 hours at 37◦C,
until reaching an approximate OD660 of 0.8-1. The
output of the each condition was then analysed using
both Fluorescence-Activated Cell Sorting (FACS) and
fluorescence microscopy (Fig. 3c-d).

The results from the FACS are displayed in Fig. 3c,
where a 4×4 array of different combinations of IPTG
and Arabinose concentrations define our parameter
space by means of dot plots. The range of con-

centrations shown here are 0 ≤ mM [IPTG] ≤ 1 ,
0 ≤ mM [Ara] ≤ 100 (see the specific values in Fig. 3c
and in Section III, SM). As described above, these
small molecules allow to explore a parameter space
where we can move from a decoupling between the two
genes to a full-fledged repression feedback required for
criticality to occur. The different cell population re-
sponses to the tuning of both IPTG and Ara reveal
the relative impact of each on the SOC motif. The
target for a SOC state implies two requirements: (i)
the expression of large enough levels of the control pa-
rameter to effectively perform its feedback; and (ii) a
GFP expression characterised by bursts but displaying
a low average activity. In the non-induced state, with-
out arabinose (left column), increasing levels of IPTG
concentration promote a standard transition from the
free to the congested phase (sub- and super-critical
phases, indicated in the two bottom and at the two
top panels as SUBCRIT and SPCRIT, respectively).
As IPTG grows, we effectively weaken the strength
of the repression loop until a critical point is reached
allowing congestion to rise. This is clearly observed
from the displacement of the density dot plots from
low to high levels of GFP.

As Arabinose concentration increases, we move in
the other dimension of our parameter space, where
the control molecule gets more common (cells emit
in the red channel) but cannot always effectively act
as a repressor. This clearly is a time point picture
shot of a bacterial population that exhibits the fluc-
tuating GFP levels characteristics of the SOC state.
The same SOC behaviour is shown in the fluorescence
microscope image of Fig 3c, where some bacteria do
not have the ClpXP saturated (and thus do not dis-
play fluorescence), many are near the critical state of
ClpXP saturation with lower levels of effective LacI-
lva to repress the GFP, and exhibiting a wide range of
GFP-lva concentrations (bacteria in yellow) and few
bacteria have enough Laci-lva to degrade the GFP
(bright only in red).

The experiments with E. coli confirm SOC fluctua-
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FIG. 4: (a) Cumulative (non-normalized) distributions P>(σi) of GFP and RFP fluorescence levels, here plotted using
green and red lines, respectively, for the same set of conditions shown in Fig. 3d. The candidate combinations leading
to the SOC state (grey panels) are characterized by a broad range of GFP expression revealed by the tail associated
to large bursts. In (b) and (c) two cumulative histograms are shown for (10µM IPTG, 50 mM arabinose (Ara)) and
(7.5µM IPTG, 50 mM Ara), respectively. Both distributions are close to a scaling law P>(σi) ∼ σ−2

1 thus leading to
a scaling exponent γ ∼ 3, consistent with the stochastic simulations. The insets display the comparison of the raw
histograms of the congested state (green dots (b)) and free-phase (blue dots,(c)), respectively and the SOC state (gray
dots) corresponding to the same IPTG conditions. Additional distributions with a more detailed IPTG-Ara combinations
are shown in Section III.D, the SM.

tions of GFP-lva, while the reporter of the control ele-
ment (i. e. RFP-lva) remains basically stable in terms
of the concentration levels and their dispersal. The
experimental system successfully reproduces another
important feature of criticality, namely the presence
of a power law in the dynamics of the order parameter
σ1. From the existence of a transition in the queue-
ing process between the two phases described above,
we can conjecture that the SOC motif should easily
organize our gene network into this critical boundary
provided that the control of the dimer concentration
allows the loop to work properly. This is precisely
what we found, as shown in Fig. 4a, where we display
the same set of Arabinose-IPTG combinations shown
in Fig. 3d. Here the statistics of expression are shown
in Fig. 4a using cumulative distributions. The his-
tograms of the non-induced E. coli colony with low
Arabinose but tuned using IPTG (left panels) reveals
a single-peak shape (a flat part followed by rapid de-
cay in the cumulative plot). In general, as we increase
the levels of both arabinose and IPTG, the distribu-
tion of our order parameter becomes fat-tailed once

RFP levels become high, and well-defined power laws
can be observed, as the two highlighted in Fig. 4b-c
(the insets are linear-log plots to highlight the different
behaviour of the two components of the SOC motif).
A detailed parameter exploration is provided in Figs.
S10-S17, SM.

III. DISCUSSION

Self-organized criticality (SOC) has a seemingly
paradoxical nature: it involves steady states that are
always on the edge of instability. Are there intracel-
lular processes poised close to critical points? Traffic
dynamics in other contexts suggests that optimal flows
occur close to criticality along with very broad fluctua-
tions exhibiting optimal flow at critical points [22, 23].
Within cells, theoretical work suggests that enzymatic
networks might be poised to criticality when the sub-
strate input rate is balanced by the processing capac-
ity of the enzymatic network [35] and that SOC states
might pervade optimal growth [37]. Such critical bal-
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ance would be a source of adaptation. In this paper
we have followed a constructive approach by building
a new type of network motif implementing the logic
of SOC processes on a two-gene network by following
the basic design principle of linking order and control
parameters [31]. As the activity level (σ1) grows due
to an overloaded proteolytic machinery, the competi-
tion for the ClpXP pool also increases the levels of the
control component σ2 that can dimerize to perform a
negative control on “emission” of σ1 thus effectively
reducing activity.

Using the SOC motif architecture, it was possible
to create a separation of time scales driving to highly
fluctuating, critical dynamics. This work shows for
the first time that this class of “unstable attractor”
can be engineered in living cells. Interestingly, this
is similar to the behaviour of computer traffic models
where packet production is regulated by the amount
of actual congestion [38], which leads to fat-tailed dis-
tributions of packets. Being at the critical state has
important consequences linked with optimality and
might be relevant for information-processing tasks.
Several authors early suggested that biological com-
putation could occur close to phase transitions [19, 39]
and given the potential effects of a critical motif on
other cellular systems performing given tasks, our re-
sults could give support to this conjecture at the cel-
lular level. In this context, Hasty and co-workers have
shown that a proper engineering of the proteolytic
machinery can be used to achieve relevant functionali-
ties, including tunable post-translational coupling [40]
or in vivo drug delivery based on pulses of bacterial
lysis against colorectal tumors [41]. Our SOC motif
could further enhance some of these applications (wide
fluctuations and rapid responses to external signals).
An obvious extension of the critical motif could be
a multicellular circuit able to trigger population-level
avalanches by exploiting the quorum sensing machin-
ery. Similarly, the fat-tailed behaviour could be wired
to a diverse range of functionalities, such as search
paths with fat-tailed statistics where bursting dynam-
ics have adaptive value [43, 44].

Critical states are known to be part of the cogni-
tive equipment of multicellular organisms, from the
simple, non-neural placozoans to neural systems and
animal collectives [45, 46]. The SOC motif might be
a very efficient way of generating the highest pheno-
typic diversity in a microbial population and can be
relevant to expand space of synthetic biology compu-
tational designs [47] into collective intelligence [48]. A
missing point here is the lack of a time dimension that
could help confirming our results and further develop a
theoretical framework. This can be achieved by con-
structing a similar SOC motif within an eukaryotic
cell, where the time scale of the resulting time series
would be smaller than the cell division cycle. Finally,
given the analogies between our system and critical
traffic in parallel computer networks, an extension of
our approach could involve a 3D spatially explicit sys-
tem and the development of statistical physics models
of critical intracellular traffic.

IV. METHODS

A. Plasmids construction

Plasmid construction and DNA manipulations were
performed following standard cloning techniques. The
LacI-lva (BBa C0012), RFP-lva (BBa K1399001)
and GFP-lva (BBa K082003) genes were amplified
from the parts registry collection (2016). The for-
ward primers were synthesized to contain the proper
promoter and/or RBS sequences: the pBAD promoter
and the RBS30 for the LacI gene, RBS34 for RFP
gene and pLacIQ promoter with RBS34 for GFP gene.
The PCR products pBad-RBS30-Lacil-va and RBS3-
RFP-lva were joined together by assembly PCR, and
cloned to pBluescript plasmid in the restriction sites
EcoRI and XbaI. The PCR product pLacIQ-RBS34-
GFP-lva was cloned to a Bluescript plasmid by SpeI
and PstI. The resulting plasmids were joined together
by ScaI and the blund ends of Eco53kI and EcoRV.
The clonings were realized in the pBluescript II SK(+)
plasmid backbone (ColE1 high copy number replica-
tion origin). See sequence of primers in the supple-
mentary table I (see also Fig. S9, SM).

B. Strains and growth conditions

Plasmid cloning and evaluation of the circuit be-
haviour was performed in E. coli XL1-Blue strain. All
characterisation experiments were done in lysogeny
broth (LB) Lennox media (10 g/L Tryptone 5 g/L
Yeast Extract, 5 g/L NaCl ) with a final ampicillin
concentration of 125 µg/mL. Single colonies were in-
oculated in 4 ml and grown at 37◦C with shak-
ing (200 r.p.m.) during 4 hours, to reach an ap-
proximate OD660 of 0.6. One microliter of the cul-
ture was re-inoculated in 4ml of fresh media, supple-
mented with ampicillin, and the corresponding Ara-
binose and IPTG concentrations. The cultures were
grown overnight (10-14 hours) at 37◦C with shaking.
Once they were at OD660 of 0.8-1, were used for fluo-
rescence measures.

C. Imaging of single cell gene expression

The output of the SOC circuit was analyzed after
10h of incubation at 37◦C with different combination
of inputs. Samples were diluted in PBS and analyzed
using flow cytometry (BD LSRFortessa). A total of
104 cells were collected from each sample. Specific
emission fluorescence channels for GFP (FITC-H) and
RFP (PE-H) were measured. A proper gate to sub-
tract the debris particles was set using forward and
side scattering channels. For the FACS graphics, the
GFP and RFP fluorescence of cells inside the gate
were plotted in adjacent axes. The cumulative distri-
butions depict all bacteria with a FITC-H expression
above 102.5. All data was analysed and plotted using
FlowJo (v7) software and customized Phyton code.
The regression line and slopes of the histograms were
calculated using Numpy and ploted with Matplotlib.
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For microscopic images, the cells were harvested at
the same time than the cytometry analysis and pic-
tures were collected with a inverted microscope Le-
ica DMI6000, using a 40x oil objective. Bright field,
red and green fluorescent images were taken, and then
merged using ImageJ.

D. Mathematical modelling

The mathematical model used here is a two-
dimensional system of nonlinear ordinary differential
equations describing the coupling between the order
(σ1) and the control (σ2) parameters required to ob-
tain criticality:

dσ1
dt

= f(σ2)− δ1 σ1 − σ1 Γ(σ1, σ2), (1)

dσ2
dt

= η2 − δ2 σ2 − σ2 Γ(σ1, σ2), (2)

where the following Hill function response [33] is used:

f(σ2) =
η1

θ + µ2σ2
2

, (3)

for the repression mediated by σ2σ2 dimers. The pa-
rameter µ ∈ [0, 1] weights the effect of IPTG on the
strength of the negative control. When σ2 is small
(the ClpXP system is working far from congestion)
we have a production rate f(σ2 → 0) ≈ η1/θ. The in-
hibition function has a threshold value θ representing
the concentration σ∗2 at which the rate drops to half
its maximum value i. e. f(σ∗2) = η1/2θ. For larger
values, it rapidly decays to zero. The saturation func-
tion, namely

Γ(σ1, σ2) =
δcC

K + σ1 + σ2
, (4)

introduces the competition of both proteins for the
proteolytic machinery. Here, as well, the limit case
when no congestion occurs (due to low concentrations
of both σ1 and σ2) gives a constant removal rate pro-
portional to the concentration of ClpXP units, i. e.
Γ(0, 0) = δcC/K. The expression of σ1 gives the be-
haviour of the GFP-lva, whereas σ2 stands for LacI-
lva. Thus f(σ2) is the expression for the response
of pLac (the promoter controlling the expression of
GFP) to the LacI protein. In this function, η1 is de-
fined as the production rate, θ the promoter sensi-
tivity, and finally, µ weights how effective is the re-
pression of LacI (effectiveness being altered by IPTG:
the more IPTG the lower the µ value). The produc-
tion rate of LacI (σ2) is controlled by the pBaD pro-
moter, which will trigger a heavier production when
there is Arabinose in the medium: the more Arabi-
nose, the higher the value of η2. Both proteins are
diluted and degraded at rates δ1 and δ2 respectively.
Finally, both proteins are degraded by the ClpXP sys-
tem, that can be saturated if there are enough pro-
teins to be degraded. For this reason there is a sig-
moid function, with degradation rate δc, C standing
for ClpXP concentration and sensitivity K. Notice
that both proteins compete for the degradation ma-
chinery, thus inhibiting each other (being added in the

denominator). Stochastic simulations of the previous
deterministic model where also implemented using the
Gillespie method [32] (see Section II.B, SM).

Acknowledgments

The authors thank Jordi Garcia-Ojalvo as well as the
members of the Complex Systems Lab for fruitful dis-
cussions. Special thanks to Arianna Bruguera for her
help in the experimental implementation. RS thanks S.
Kauffman, S. Manrubia and the late Per Bak for many
discussions on criticality. This work was supported by
the Bot́ın Foundation by Banco Santander through its
Santander Universities Global Division, the Spanish Min-
istry of Economy and Competitiveness, grant PID2019-
111680GB-I00, a MICIN grant PID2019-111680GB-I00,
an AGAUR FI 2018 grant, and the Santa Fe Insti-
tute (where the key idea was conceptualized). JS has
been partially funded by the CERCA Programme of
the “Generalitat de Catalunya”, by “Agencia Estatal de
Investigación” grant RTI2018-098322-B-I00 and by the
“Ramón y Cajal” contract RYC-2017-22243. AG has
been funded by the AGAUR grant 2017-SGR-1049 and
by the MINECO-FEDER-UE grants PGC-2018-098676-B-
100 and RTI2018-093860-B-C21.

References

[1] Rao, C.V., Wolf, D.M. and Arkin, A.P., 2002. Con-
trol, exploitation and tolerance of intracellular noise.
Nature, 420, 231-237.

[2] Raj, A. and Van Oudenaarden, A., 2008. Nature, nur-
ture, or chance: stochastic gene expression and its
consequences. Cell, 135(2), pp.216-226.

[3] Eldar, A. and Elowitz, M.B., 2010. Functional roles
for noise in genetic circuits. Nature, 467, 167-173.

[4] Balázsi, G., van Oudenaarden, A. & Collins, J.J.,
2011. Cellular decision making and biological noise:
from microbes to mammals. Cell, 144, 910-925.
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[11] Corral, A., Pérez, C.J., Diaz-Guilera, A. and Arenas,
A., 1995. Self-organized criticality and synchroniza-
tion in a lattice model of integrate-and-fire oscillators.
Phys. Rev. Lett. 74.118.

[12] Chialvo D.R. 2010. Emergent complex neural dynam-
ics. Nat. Phys. 6(10), 744-750. You

[13] Plenz D., Niebur E., Schuster H.G. Criticality in neu-
ral systems. Wiley-VCH, Weinheim, Germany (2014).

[14] Hesse J., Gross T. 2014. Self-organized criticality as a
fundamental property of neural systems. Front. Neu-
rosci. 8, 166.

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 17, 2020. ; https://doi.org/10.1101/2020.11.16.385385doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.16.385385


10

[15] Serra, R., M. Villani, A. Graudenzi, and S. Kauffman,
2007, Why a simple model of genetic regulatory net-
works describes the distribution of avalanches in gene
expression data. J. Theor. Biol. 246, 449.

[16] Balleza E., Alvarez-Buylla E.R., Chaos A., Kauffman
S., Shmulevich I., Aldana M. 2008. Critical dynamics
in genetic regulatory networks: examples from four
kingdoms. PLoS One 3(6): e2456.

[17] Valverde, S., Ohse, S., Turalska, M., West, B.J. and
Garcia-Ojalvo, J., 2015. Structural determinants of
criticality in biological networks. Frontiers in physiol-
ogy 6, 127.

[18] Daniels, B.C., Kim, H., Moore, D. et al. 2018. Criti-
cality distinguishes the ensemble of biological regula-
tory networks. Physical review letters 121, 138102.
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