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Summary 13 

The current SARS-CoV-2 pandemic has emphasized the vulnerability of human 14 

populations to novel viral pressures, despite the vast array of epidemiological and 15 

biomedical tools now available. Notably, modern human genomes contain evolutionary 16 

information tracing back tens of thousands of years, which may help identify the viruses 17 

that have impacted our ancestors – pointing to which viruses have future pandemic 18 

potential. Here, we apply evolutionary analyses to human genomic datasets to recover 19 

selection events involving tens of human genes that interact with coronaviruses, 20 

including SARS-CoV-2, that started 25,000 years ago. These adaptive events were 21 

limited to ancestral East Asian populations, the geographical origin of several modern 22 

coronavirus epidemics. An arms race with an ancient corona-like virus may thus have 23 

taken place in ancestral East Asian populations. By learning more about our ancient 24 

viral foes, our study highlights the promise of evolutionary information to combat the 25 

pandemics of the future. 26 

 27 

Introduction 28 

In the past 20 years, strains of the beta coronavirus genus (family Coronaviridae; Richman et 29 

al., 2020) have been behind three major zoonotic outbreaks with grave impacts for human 30 

populations (Ou et al., 2020). The first outbreak, commonly known as SARS-CoV (Severe Acute 31 

Respiratory Syndrome), originated in China in late 2002 and eventually spread to 30 additional 32 

counties where it infected more than 8,000 people and claimed nearly 800 lives (Hoffmann and 33 

Kamps, 2003). Four years later, MERS-CoV (Middle East respiratory syndrome coronavirus) 34 

affected >2,400 people and caused over 850 deaths, mostly in Saudi Arabia (World Health 35 

Organization, 2019). The most recent outbreak began in late 2019 when SARS-CoV-2 – a less 36 

virulent but far more contagious strain than those behind the two previous epidemics – emerged 37 

in mainland China before spreading rapidly across the rest of the world, triggering an ongoing 38 

pandemic (COVID-19) that so far has infected 45 million people and resulted in over one million 39 

deaths worldwide (Dong et al., 2020). 40 
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The devastation caused by SARS-CoV-2 has inspired a worldwide research effort to develop 41 

new vaccines and strategies that aim to curb its impact by determining the factors that underlie 42 

its epidemiology. The resulting research has revealed that socioeconomic (e.g. access to 43 

healthcare and testing facilities), demographic (e.g. population density and age structure), and 44 

personal health factors all play a major role in SARS-CoV-2 epidemiology (Balogun et al., 2020; 45 

Sattar Naveed et al., 2020; Scarpone et al., 2020). Additionally, several genetic loci that mediate 46 

SARS-CoV-2 susceptibility and severity have been found in contemporary European 47 

populations (Ellinghaus et al., 2020; Roberts et al., 2020), one of which contains a genetic 48 

variant that increases SARS-CoV-2 susceptibility that was likely introduced into the ancestors of 49 

modern Europeans after they interbred with Neanderthals ~40,000 years ago (Zeberg and 50 

Pääbo, 2020). This historical admixture event has led to genetic differences within and between 51 

contemporary human populations that directly impact COVID-19 epidemiology – the 52 

Neanderthal-derived variant haplotype is now carried by 8% of modern Europeans, but at lower 53 

frequencies in African populations whose ancestors did not experience this admixture event – 54 

and suggests that evolutionary analyses of human populations may help reveal these genetic 55 

differences and ultimately assist in the development of novel drugs and therapies to combat the 56 

negative impacts of SARS-CoV-2.  57 

Throughout the evolutionary history of our species, positive natural selection has frequently 58 

targeted proteins that physically interact with viruses – e.g. those involved in immunity, or used 59 

by viruses to hijack the host cellular machinery (Barreiro et al., 2009; Enard et al., 2016; Sawyer 60 

et al., 2005). In the ~6 million years since the ancestors of humans and chimpanzees 61 

separated, selection has led to the fixation of gene variants encoding virus-interacting proteins 62 

(VIPs) at three times the rate observed for other classes of genes (Enard et al., 2016; Uricchio 63 

et al., 2019). Moreover, strong selection on VIPs has continued in human populations during the 64 

past 50,000 years, as evidenced by VIP genes being enriched for adaptive introgressed 65 

Neanderthal variants and also selective sweep signals (i.e. selection that drives a beneficial 66 

variant to substantial frequencies in a population), particularly around VIPs that interact with 67 

RNA viruses, a viral class that includes the coronaviruses (Enard and Petrov, 2018, 2020).  68 

The accumulated evidence suggests that ancient viral epidemics have occurred frequently 69 

during the history of our species; however, we currently do not know if selection has made a 70 

substantial contribution to individual- and population-level differences in the SARS-CoV-2 71 

response in modern humans. Indeed, it is possible that many ancient epidemics were restricted 72 
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to specific ancestral human populations that will have resulted in differences in the distribution 73 

of genetic variants that mediate viral epidemiology in modern human populations.  74 

Accordingly, here we investigate whether ancient coronavirus epidemics have created genetic 75 

differences within and across modern human populations, by examining if selection signals are 76 

enriched within a set of 420 VIPs specific to the coronavirus (denoted CoV-VIPs; Table S1) 77 

across 26 worldwide human populations from the 1000 Genomes Project (1000 Genomes 78 

Project Consortium, 2015). These CoV-VIPs comprise 332 SARS-CoV-2 VIPs that were 79 

recently identified by high-throughput mass spectrometry (Gordon et al., 2020) and an additional 80 

88 proteins that were manually curated from the coronavirus literature (e.g. SARS-CoV-1, 81 

MERS, HCoV-NL63, etc; Table S1; Enard and Petrov, 2018), and form part of a larger set of 82 

5,291 previously published VIPs (SI; Table S1) from multiple viruses known to infect humans 83 

(Enard and Petrov, 2018). Our focus upon host adaptation at VIPs is motivated by evidence 84 

indicating that these protein interactions are the central mechanism that viruses use to hijack 85 

the host cellular machinery (Enard and Petrov, 2018). Accordingly, VIPs are much more likely to 86 

have functional impacts on viruses than proteins not known to interact with viruses (see SI: Host 87 

adaptation is expected at VIPs). Our enrichment-based approach is expected to be particularly 88 

powerful if the ancestors of one or more of the 26 modern human populations were exposed to 89 

epidemics driven by coronavirus-like viruses that resulted in selection upon multiple CoV-VIPs 90 

(see Discussion). 91 

Our analyses of CoV-VIPs find a strong enrichment in sweep signals in these proteins across 92 

multiple East Asian populations, which is absent from other human populations. This suggests 93 

that an ancient coronavirus epidemic drove an adaptive response in the ancestors of East 94 

Asians, which is in strong agreement with the current geographic range of the major known 95 

animal reservoirs of coronaviruses (Wong et al., 2019). Further, by leveraging ancestral 96 

recombination graph approaches (Speidel et al., 2019; Stern et al., 2019) we find that amongst 97 

the putatively selected CoV-VIPs, 42 first came under selection around 900 generations 98 

(~25,000 years) ago and exhibit a coordinated adaptive response that lasted until around 200 99 

generations (~5,000 years) ago. By drawing upon other publicly available datasets, we show 100 

that the CoV-VIP genes are enriched for anti- and proviral effects and variants that affect 101 

COVID-19 etiology in modern European populations (https://grasp.nhlbi.nih.gov/Covid19GWAS 102 

Results.aspx), and that the inferred underlying causal mutations are situated near to regulatory 103 

variants active in lungs and other tissues negatively impacted by COVID-19. Taken together, 104 
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these independent lines of evidence provide strong support for an ancient coronavirus (or 105 

related virus) epidemic that emerged 25,000 years ago in the ancestors of contemporary East 106 

Asian populations, whose genetic signature remains apparent in the genomes of the present-107 

day populations now living in this region. 108 

The SARS-CoV-2 pandemic represents a great threat for humanity, a point clearly emphasized 109 

by the COVID-19 Host Genetics Initiative, who stated that “insights into how to better 110 

understand and treat COVID-19 are desperately needed” and that “it is critical for the scientific 111 

community to come together around this shared purpose” (https://www.covid19hg.org; The 112 

COVID-19 Host Genetics Initiative, 2020). In this study, we show how by extracting evolutionary 113 

information from publicly available genomic datasets we can achieve a small but significant step 114 

towards this important goal, and highlight the potential for similar analyses to play an important 115 

role in the future of medical research. 116 

Results 117 

Signatures of adaptation to an ancient epidemic 118 

Viruses have exerted strong selective pressures on the ancestors of modern humans (Enard 119 

and Petrov, 2020; Uricchio et al., 2019). Accordingly, we use two population genetic statistical 120 

tests that are sensitive to such genetic signatures (i.e. selective sweeps) – nSL (Ferrer-Admetlla 121 

et al., 2014) and iHS (Voight et al., 2006) – and which are able to detect genomic regions 122 

impacted by strong selection across a wide range of parameters (e.g. different starting and end 123 

frequencies of the selected allele). Both statistics also have the advantage of being insensitive 124 

to background selection (Enard et al., 2014; Schrider, 2020), thereby reducing the potential 125 

impact of false positives in our analyses.  126 

After scanning each of the 26 populations for signals of selection, we apply an enrichment test 127 

that was previously used to detect enriched selection signals in RNA VIPs in human populations 128 

(Enard and Petrov, 2020). Briefly, for each population and selection statistic, we rank all genes 129 

based on the average selection statistic score observed in genomic windows ranging from 50kb 130 

to 2Mb. Different windows sizes are used because smaller windows tend to be more sensitive to 131 

weaker sweeps, whereas larger windows tend to be more sensitive to stronger sweeps (Enard 132 

and Petrov, 2020; STAR Methods). After ranking the gene scores, we estimate an enrichment 133 

curve (Figure 1) for gene sets ranging from the top 10 to 10,000 ranked loci (STAR Methods). 134 
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Enrichment is then calculated for each set of top ranked genes using a block-randomization 135 

approach that accounts for the genomic clustering of neighboring CoV-VIPs (Enard and Petrov, 136 

2020; STAR Methods). For our control gene set, we use protein-coding genes situated at least 137 

500kb from CoV-VIPs to avoid overlapping the same sweep signals. Additionally, genes in the 138 

control sets are chosen to have similar characteristics as the CoV-VIPs (e.g. similar 139 

recombination rates, density of coding and regulatory sequences, percentage of immune genes, 140 

percentage of genes that interact with bacteria; see STAR Methods for the complete list of 141 

factors) to ensure that any detected enrichment is virus-specific rather than due to a 142 

confounding factor (Enard and Petrov, 2020). Finally, we also exclude the possibility that 143 

functions other than viral interactions might explain our results by running a Gene Ontology 144 

analysis (Gene Ontology Consortium, 2015; SI; Tables S2, S3 and Figure S1). 145 

Applying this approach to each of the 26 human populations from the 1,000 genomes dataset, 146 

we find a very strong enrichment of sweep signals in CoV-VIPs across all top-ranked gene set 147 

sizes that is specific to the five East Asian populations (whole enrichment curve for nSL and iHS 148 

combined P=2.10-4; Figures 1 & S2; STAR Methods). No enrichment is observed for populations 149 

from other continental regions, including in neighboring South Asia (whole enrichment curve for 150 

nSL and iHS combined P>0.05 in all cases; Figures 1 & S2). Further, no enrichment is detected 151 

for VIP sets for 17 other viruses in East Asian populations (whole enrichment curve for nSL and 152 

iHS separately or combined, P>0.05 in all cases; Figures S3 & S4). Taken together, these 153 

results suggest that coronaviruses, or a phylogenetically related viral taxon, have driven ancient 154 

epidemics in ancient human populations that are ancestral to modern East Asians, and this 155 

enrichment is unlikely to have been caused by any other virus represented in our set of 5,291 156 

VIPs (Table S1). The enrichment is most substantial for the top-ranked gene sets ranging 157 

between the top 10 and top 1,000 loci (Figure 1; whole enrichment curve P=3.10-6 for nSL, 158 

P=4.10-3 for iHS, P=6.10-5 for iHS and nSL combined), and is particularly strong for the top 200 159 

loci in large windows (1 Mb) where a four-fold enrichment is observed for both nSL and iHS 160 

statistics (pertaining to between 10 to 13 selected CoV-VIPs amongst the top 200 ranked 161 

genes; Table S4). This suggests that strong selection targeted multiple CoV-VIPs in the 162 

common ancestors of modern East Asian populations. That the selected haplotype structures 163 

are detected by both the iHS and nSL methods suggests that they are unlikely to have occurred 164 

prior to 30,000 years ago, as both nSL and iHS have little power to detect adaptive events 165 

arising before this time point in human evolution (Sabeti et al., 2006). 166 

 167 
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 168 
Figure 1. Coronavirus VIPs nSL ranks enrichmentA,B,C,D,E are East Asian populations, 169 
F,G,H,I are populations from other continents. The y axis represents the bootstrap test (STAR 170 
Methods) relative fold enrichment of the number of genes in putative sweeps at CoV-VIPs, 171 
divided by the number of genes in putative sweeps at control genes matched for multiple 172 
confounding factors. The x axis represents the top rank threshold to designate putative sweeps. 173 
Black full line: average fold enrichment over 5,000 bootstrap test control sets. Fold enrichments 174 
greater than 20 are represented at 20. Grey area: 95% confidence interval of the fold 175 
enrichment over 5,000 bootstrap test control sets. The rank thresholds where the confidence 176 
interval lower or higher fold enrichment has a denominator of zero are not represented (For 177 
example, graph B, top 10 rank threshold). Lower confidence interval fold enrichments higher 178 
than 20 are represented at 20 (for example, graph B, top 30 rank threshold). Red dots: 179 
bootstrap test fold enrichment P<0.001. Orange dots: bootstrap test fold enrichment P<0.05. 180 
Note that the bootstrap test p-values are not the same as the whole curve enrichment p-value 181 
estimated using block-randomized genomes on top of the bootstrap test (STAR Methods). 182 

An ancient epidemic in the ancestors of East Asians starting around 25,000 years ago 183 

To further unravel the history of the coronavirus-like epidemics in the ancestors of East Asians, 184 

we use a recent ancestral recombination graph (ARG)-based method, Relate (Speidel et al., 185 

2019), to infer the timing and trajectories of selected loci for the CoV-VIPs. By estimating ARGs 186 

at variants distributed across the entire genome, Relate can reconstruct coalescent events 187 

across time and detect genomic regions impacted by positive selection while explicitly 188 

controlling for historical variation in population demography. To approximate the start time of 189 

selection, Relate estimates the first historical time point that a putatively selected variant had an 190 

observable frequency greater than zero (STAR Methods). We use this approximation as the 191 

likely starting time of selection, although we note that this method does not account for selection 192 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 16, 2020. ; https://doi.org/10.1101/2020.11.16.385401doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.16.385401
http://creativecommons.org/licenses/by/4.0/


8 

on standing variants that had non-zero frequencies at the onset of selection (STAR Methods). 193 

Additionally, we use the iSAFE software – which enables the localization of selected mutations 194 

(Akbari et al., 2018) – along with a curated set of regulatory variants (expression QTLs; eQTLs) 195 

from the eGTEx Project (2017) to help identify the likely causal mutations in the selected CoV-196 

VIP genes. There is good evidence that the majority of adaptive mutations in the human 197 

genome are regulatory mutations (Enard et al., 2014; Kudaravalli et al., 2009; Nédélec et al., 198 

2016; Quach et al., 2016) and, accordingly, we find that iSAFE peaks are significantly closer to 199 

GTEx eQTLs proximal to CoV-VIP genes than expected by chance (iSAFE peak proximity test, 200 

P<10-9; STAR Methods). Therefore, for each CoV-VIP gene, we chose a variant with a low 201 

Relate p-value (<10-3; STAR Methods) that is situated at or close to a GTEx eQTL associated 202 

with the focal gene to estimate the likely starting time of selection for that gene (STAR Methods; 203 

Figure S5). 204 

Using this approach, we observe 42 CoV-VIPs (Table S5 and Figure S5) with selection starting 205 

times clustered around a peak 870 generations ago (~200 generations wide, potentially due to 206 

noise in our estimates; Figure 2). While this amounts to about four times more selected CoV-207 

VIP genes than were detected using either nSL or iHS (both detected around ten CoV-VIPs 208 

amongst the top 200 ranked genes; Table S4) this is not unexpected as Relate has more power 209 

to detect selection events than nSL and iHS when the beneficial allele is at intermediate 210 

frequencies at the point of measurement (typically <60%; Figure 3; Enard and Petrov, 2020; 211 

Ferrer-Admetlla et al., 2014; Voight et al., 2006). The relatively tight temporal clustering of 212 

starting times forms a highly significant peak (peak significance test P=2.3.10-4; Figure 2) when 213 

comparing the observed clustering of CoV-VIPs start times with the distribution of inferred start 214 

times for randomly sampled sets of genes (STAR Methods). Note that this peak significance test 215 

is gene clustering-aware (STAR Methods).  Further, this significance test is not biased by the 216 

fact that CoV-VIPs are enriched for sweep signals, as the test remains highly significant  217 

(P=1.10-4) when using random control sets with comparable high-scoring nSL statistics (STAR 218 

Methods). This suggests that the tight temporal clustering of selection events is a specific 219 

feature of the CoV-VIPs, rather than a confounding aspect of any gene set similarly enriched for 220 

sweeps.  221 

 222 

 223 

 224 
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 225 

Figure 2. Timing of selection at CoV-VIPs 226 
The figure shows the distribution of selection start times at CoV-VIPs (pink distribution) 227 
compared to the distribution of selection start times at all loci in the genome (blue distribution). 228 
Details on how the two distributions are compared by the peak significance test, and how the 229 
selection start times are estimated with Relate, are provided in STAR Methods. 230 

The genes with clustered selection starting times around 900 generations ago are enriched in 231 

strong nSL signals, as shown by running the peak significance test using only CoV-VIPs and 232 

controls with strong nSL signals (Figure S6). Conversely, the peak disappears when restricting 233 

this test to weaker nSL signals (P=0.53 when using the lowest 50% of nSL statistics; STAR 234 

Methods). Importantly, our estimates of the timing of selection are not biased by our use of 235 

methods that rely on selected variants not being fixed in the population at the time of genome 236 

sampling (i.e. nSL and iHS). When rerunning our analytical pipeline focusing only on strong 237 

candidate loci according to Tajima’s D (Tajima, 1989), a statistic developed to detect complete 238 

sweeps (i.e. fixed mutations), we observe the same clustering of selection events starting 239 

around 900 generations ago (Figure S7). Further, the remaining 382 CoV-VIPs that are not part 240 

of this temporal cluster around 900 generations ago are not more likely to have significant 241 

Tajima’s D values than controls (whole enrichment curve P=0.07). Consequently, our results are 242 

consistent with the emergence of a coronavirus epidemic ~900 generations, or ~25,000 years 243 

(900 generations * 28 years per generation; Moorjani et al., 2016), ago that drove a burst of 244 

strong positive selection in the ancestors of East Asians, which may represent a genetic record 245 

of a multi-generational coronavirus (or related virus) epidemic amongst the 26 human 246 

populations tested here.  247 
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Strong selection drove coordinated changes in multiple CoV-VIP genes over 20,000 years 248 

To learn more about the likely duration of the selection pressure acting on the ancestors of East 249 

Asians, we use CLUES (Stern et al., 2019) to infer allele frequency trajectories and selection 250 

coefficients for the inferred beneficial mutations proximal to the 42 CoV-VIP genes with 251 

selection starting 900 generations ago (Figure 3). CLUES uses the temporal variation in 252 

population size and coalescence rates inferred by Relate to reconstruct frequency trajectories 253 

while taking demographic fluctuations into account. Our observation of sweep signals at 42 254 

CoV-VIP genes in the ancestors of East Asians suggests that the putative underlying viral 255 

epidemic likely spanned multiple generations (i.e. the time needed for selection to drive initially 256 

rare alleles to intermediate/high frequencies). Accordingly, we anticipate that selection was 257 

probably strongest when the naive host population was first infected by the virus, before 258 

gradually waning as the host population adapted to the viral pressure (Hayward and Sella, 259 

2019). Similarly, a decrease in the virulence of the virus over time, a phenomenon that has been 260 

reported during the long term bouts of host-virus coevolution (Best and Kerr, 2000), would also 261 

result in the gradual decrement of selection coefficients across time. Hence, for each of the 42 262 

CoV-VIPs predicted to have started coming under selection ~900 generations ago, we use 263 

CLUES to estimate the selection coefficient in two successive time-intervals (between 1,000 264 

and 500 generations ago, and from 500 generations ago to the present), predicting that 265 

selection would be stronger in the oldest interval. We note that a 500 generation interval was 266 

reported as the approximate timespan that CLUES provides reliable estimates for humans 267 

(Stern et al., 2019); however, intervals of this length are not adequate to obtain reasonable 268 

estimates of the precise duration of the selective pressure (Stern et al., 2019), so we do not 269 

attempt to estimate this parameter here. Also, because CLUES uses a computationally 270 

intensive algorithm, following the recommendations of Stern et al. (2020) we base our estimates 271 

on only two of the five East Asian populations (i.e. Dai and Beijing Han Chinese; Figure 3A, B 272 

respectively). 273 

Using this two-interval configuration, CLUES infers that beneficial mutations experienced an 274 

exponential increase in frequency between 800 and 500 generations ago for most of the CoV-275 

VIPs, which was preceded by a more moderate establishment phase (Figure 3A, B). The 276 

selected mutations are estimated to have continually increased in frequency until ~200 277 

generations (approximately 5,000 years) ago, after which they remained relatively stable (Figure 278 

3A, B). Accordingly, CLUES estimates very high selection coefficients in the interval between 279 

1,000 and 500 generations ago (Dai average s = 0.05, Beijing Han s = 0.11), but much weaker 280 
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selection coefficients from 500 generations ago up to the present (Dai average s = 0.003, 281 

Beijing Chinese s = 0.004; Figure 4A, B). These patterns are consistent with the appearance of 282 

a strong selective pressure that triggered a coordinated adaptive response across multiple 283 

independent loci, which waned through time as the host population adapted to the viral pressure 284 

and/or as the virus became less virulent. Although selective pressures other than a coronavirus 285 

or related virus might also contribute to these patterns, we note that the signal is restricted 286 

specifically at CoV-VIPs and none of 17 other viruses that we tested exhibit the same temporal 287 

clustering ~900 generations ago in East Asia (peak significance test P>0.05 in all cases; STAR 288 

Methods). Further, this test remained highly significant when retesting the temporal clustering of 289 

CoV-VIPs using only other RNA VIPs as the control set (P=4.10-4; Table S1), consistent with 290 

the clustered selection signals being a coordinated adaptive response to coronaviruses or a 291 

phylogenetically related viral taxon. 292 

 293 

 294 
Figure 3. Coronavirus selected VIPs allele frequency trajectories over time estimated by 295 
CLUES 296 
Each frequency trajectory is for one of the 42 Relate selected mutations at CoV-VIPs within the 297 
peak around 900 generations ago (STAR Methods). A) Frequency trajectories in the Chinese 298 
Dai CDX 1,000 Genomes population. B) Frequency trajectories in the Han Chinese from Beijing 299 
CHB 1,000 Genomes population. 300 
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 301 

Figure 4. Coronavirus selected VIPs selection coefficients estimated by CLUES 302 
This figure shows classic R boxplots of selected coefficients at the 42 Relate selected mutations 303 
within the peak around 900 generations ago (STAR Methods). A) Selection coefficients in the 304 
Chinese Dai CDX 1,000 Genomes population. B) Selection coefficients in the Han Chinese from 305 
Beijing CHB 1,000 Genomes population. Left: average selection coefficients between 0 and 500 306 
generations ago. Right: average selection coefficients between 500 and 1,000 generations ago. 307 

Selected CoV-VIPs are enriched for antiviral and proviral factors 308 

To further clarify that an ancient viral epidemic caused the strong burst of selection we observe 309 

~900 generations ago in the ancestors of East Asians, and not another ecological pressure 310 

acting on the same set of genes, we test if the 42 selected CoV-VIPs are enriched for genes 311 

with anti- or proviral effects relative to other CoV-VIPs (i.e. loci that are known to have a 312 

detrimental or beneficial effect on the virus, respectively). Because the relevant literature for 313 

coronaviruses is currently limited – which also applies to the relatively recent SARS-CoV-2 virus 314 

– we extend our set of anti- and proviral loci beyond those associated with coronaviruses to 315 

include loci reported for diverse viruses with high confidence from the general virology literature 316 

(see SI: Host adaptation is expected at VIPs; Table S1). We find that 21 (50%) of the 42 CoV-317 

VIPs that came under selection ~900 generations ago have high-confidence anti- or proviral 318 

effects (vs. 29% for all 420 CoV-VIPs), a significant inflation in anti- and proviral effects 319 

(hypergeometric test P=6.10-4) that further supports our claim that the underlying selective 320 

pressure was most likely a viral epidemic. 321 
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Selected mutations lie near regulatory variants active in SARS-CoV-2 affected tissues 322 

Coronavirus infections in humans are known to have pathological consequences for specific 323 

bodily tissues, whereby we investigate if the genes targeted by selection in the ancestors of 324 

East Asians are also enriched for regulatory functions in similar tissues. In light of our finding 325 

that many putative causal mutations in CoV-VIPs were proximal to eQTLs, we investigate 326 

whether selected mutations are situated closer to eQTLs for a specific tissue than expected by 327 

chance, as this would indicate that the tissue was negatively impacted by the virus (prompting 328 

the adaptive response). Briefly, we estimate a proximity-based metric that quantifies the 329 

distance between the location of the causal mutation estimated by iSAFE and the tissue-specific 330 

eQTLs for the 42 loci that likely started coming under selection ~900 generations ago, and 331 

compare this to the same distances observed amongst randomly sampled sets of CoV-VIPs 332 

(Figure 5; STAR Methods). 333 

Using this approach, we find that GTEx lung eQTLs lie closer to predicted causal mutations 334 

amongst the 42 putative selected loci than for any other tissue (P=3.10-5; Figure 5). Several 335 

additional tissues known to be negatively affected by coronavirus – blood and arteries (Bao et 336 

al., 2020; Grosse et al., 2020), adipose tissue (Michalakis and Ilias, 2020) and the digestive 337 

tract (Elmunzer et al., 2020) – also exhibit closer proximities between putative causal loci and 338 

tissue-specific eQTLs than expected by chance (Figure 5). Interestingly, the spleen shows no 339 

tendency for eQTLs to lie closer to selected loci than expected around 900 generations ago 340 

compared to other evolutionary times, perhaps because the spleen is replete with multiple types 341 

of immune cells that might be more prone to more regular adaptation in response to diverse 342 

pathogens over time, and less prone to adaptive bursts restricted over time in response to a 343 

specific pathogen (Quintana-Murci, 2019). Our results indicate that the tissues impacted in the 344 

inferred multi-generational viral epidemic in ancestors of East Asians match those pathologically 345 

affected by the SARS-CoV-2 infection in contemporary populations, providing further evidence 346 

that this ancient infection might have been a coronavirus or related virus. 347 

 348 

 349 

 350 

 351 
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 352 

Figure 5. Proximity of selection signals to GTEx eQTLs at the 42 selected CoV-VIPs 353 
compared to random CoV-VIPs 354 
The histogram shows how close selection signals localized by iSAFE peaks are to the GTEx 355 
eQTLs from 25 different tissues, at peak-VIPs compared to randomly chosen CoV-VIPs (STAR 356 
Methods). How close iSAFE peaks are to GTEx eQTLs compared to random CoV-VIPs is 357 
estimated through a proximity ratio. The proximity ratio is described in the STAR Methods. It 358 
quantifies how much closer iSAFE peaks are to eQTLs of a specific GTEx tissue, compared to 359 
random expectations that take the number and structure of iSAFE peaks, as well as the number 360 
and structure of GTEx eQTLs into account (STAR Methods). Four stars: proximity ratio test 361 
P<0.0001. Three stars: proximity ratio test P<0.001. Two stars: P<0.01. One star: P<0.05. Note 362 
that lower proximity ratios can be associated with smaller p-values for tissues with more eQTLs 363 
(due to decreased null variance; for example, skeletal muscle vs. pancreas). 364 

Coronavirus VIPs are enriched for SARS-CoV-2 susceptibility and COVID-19 severity loci 365 

Our results indicate that many of the selected CoV-VIPs now sit at intermediate to high 366 

frequencies in modern East Asian populations. Accordingly, we anticipate that these 367 

segregating loci should make a measurable contribution to the inter-individual variation in 368 
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SARS-CoV-2 susceptibility and (COVID-19) severity amongst contemporary populations in East 369 

Asia, and predict that such loci would be readily detectable in a reasonably-powered genome 370 

wide association study (GWAS) investigating these traits in East Asian populations. While such 371 

a scan has yet to be reported for a large East Asian cohort, two GWASs were recently released 372 

that used sizable British cohorts to investigate SARS-CoV-2 susceptibility (1,454 cases and 373 

7,032 controls; henceforth called the susceptibility GWAS) and severity (325 cases [deaths] 374 

versus 1,129 positive controls; henceforth called the severity GWAS) (data from the UK 375 

Biobank; Sudlow et al., 2015; https://grasp.nhlbi.nih.gov/Covid19GWASResults.aspx). While we 376 

are unable to precisely identify the causal variants for the selected CoV-VIP genes observed in 377 

the ancestors of East Asians – nor would these variants necessarily occur as outliers in a 378 

GWAS conducted on the British population – we note that it is possible that other variants in the 379 

same CoV-VIP genes may also produce variation in SARS-CoV-2 susceptibility and severity 380 

amongst modern British individuals. 381 

By contrasting variants in CoV-VIPs against those in random sets of genes, we find that variants 382 

in CoV-VIPs have significantly lower p-values for both the susceptibility GWAS and severity 383 

GWAS than expected (simple permutation test P<10-9 for both GWAS tests; STAR Methods). 384 

More importantly, the 42 CoV-VIPs from the selection event starting ~900 generations ago have 385 

even lower GWAS p-values compared to other CoV-VIPs (P=0.0015 for susceptibility GWAS 386 

and P=0.023 for severity GWAS; STAR Methods). This result indicates that the selected genes 387 

inferred in our study might contribute to individual variation in COVID-19 etiology in modern 388 

human populations in the UK, providing further evidence that a coronavirus or related virus may 389 

have been the selection pressure behind the adaptive response we observe in the ancestors of 390 

East Asians. 391 

Selected CoV-VIP genes include multiple known drug targets 392 

Our analyses suggest that the 42 CoV-VIPs identified as putative targets of an ancient 393 

coronavirus (or related virus) epidemic might play a functional role in SARS-CoV-2 etiology in 394 

modern human populations. We find that four of these genes (SMAD3, IMPDH2, PPIB, GPX1) 395 

are targets of eleven drugs being currently used or investigated in clinical trials to mitigate 396 

COVID-19 symptoms (STAR methods). While this number is not higher than expected when 397 

compared to other CoV-VIPs (hypergeometric test P>0.05), we note that most of the 42 genes 398 

identified here have yet to be the focus of clinical trials for SARS-CoV-2-related drugs. In 399 

addition to the four selected CoV-VIP genes targeted by coronavirus-specific drugs, five 400 
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additional selected CoV-VIP genes are targeted by multiple drugs to treat a variety of non-401 

coronavirus pathologies (Table S6). This raises the possibility that such drugs could be 402 

repurposed for therapeutic use in the current SARS-CoV-2 pandemic. Indeed, an additional six 403 

of the 42 selected CoV-VIPs have been identified by (Finan et al., 2017) as part of the 404 

“druggable genome” (Table S6). 405 

Discussion 406 

By scanning 26 diverse human populations from five continental regions for evidence of strong 407 

selection acting on proteins that interact with coronavirus strains (CoV-VIPs), we identified a set 408 

of 42 CoV-VIPs exhibiting a coordinated adaptive response that emerged around ~25,000 years 409 

ago (900 generations; Figure 2). This pattern was unique to the ancestors of East Asian 410 

populations, being absent from any of the 21 non East-Asian human populations tested here. By 411 

using ARG methods to reconstruct the trajectories of selected alleles, we show that this 412 

selection pressure produced a strong response across the 42 CoV-VIP genes that gradually 413 

waned and resulted in the selected loci plateauing at intermediate frequencies. Further, we 414 

demonstrate that this adaptive response is likely the outcome of a multigenerational coronavirus 415 

epidemic, as attested by the clustering of putatively selected loci around variants that regulate 416 

tissues known to exhibit COVID-19-related pathologies, and the enrichment of variants 417 

associated with SARS-CoV-2 susceptibility and severity, as well as anti- and proviral functions, 418 

amongst the 42 CoV-VIP genes selected starting 900 generations ago. 419 

An important limitation of our study is that some of our analyses rely upon comparative datasets 420 

that were generated in contemporary human populations that have different ancestries than the 421 

East Asian populations where the selected CoV-VIP genes were detected. In particular, both of 422 

the eQTL and GWAS datasets come from large studies that are primarily focused on 423 

contemporary populations from Europe, and none of the five European populations in our study 424 

exhibit the selection signals observed in the genomes of East Asians. Accordingly, more direct 425 

confirmation of the causal role of 42 CoV-VIP genes in COVID-19 etiology will require the 426 

appropriate GWAS to be conducted in East Asian populations. The detection of genetic 427 

associations amongst the 42 CoV-VIPs in a GWAS on contemporary East Asians would provide 428 

further evidence that coronaviruses comprised the selection pressure that drove the observed 429 

adaptive response. Moreover, a high-powered GWAS in East Asian populations could also 430 

identify the putative causal loci that currently impact individual variation in COVID-19 etiology in 431 

East Asian individuals. 432 
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Insights into ancient viral epidemics from modern human genomes 433 

A particularly salient feature of the adaptive response observed for the 42 CoV-VIPs is that 434 

selection appears to be acting continuously over a 20,000 year period. The activity of a viral 435 

pressure over such an extensive time period is not consistent with epidemics that started in 436 

recorded human history, which tend to be circumscribed to a few generations. This apparent 437 

disparity is reconcilable if coronavirus epidemics had occurred at regular intervals across the 438 

history of East Asian populations. In recent human history, coronavirus epidemics have 439 

occurred on a decadal scale – MERS from 2002 to 2004, SARS in 2007, and SARS-CoV-2 from 440 

2019 until the present – which suggests that a similar temporal distribution of coronavirus 441 

outbreaks might have also occurred across the history of contemporary East Asians. An 442 

alternate hypothesis is that the viral pressure remained present throughout the 20,000 year 443 

period, and initially exerted a strong selective pressure before becoming less severe over time 444 

as a consequence of host adaptation and/or a reduction in virulence. This scenario might be 445 

similar to coevolutionary history of seasonal influenza and the Variola virus in human 446 

populations. As this manuscript was in the final stages of preparation, the first host-virus 447 

interactomes were published for SARS-CoV-1 and MERS-CoV, which exhibit an extensive 448 

overlap with the SARS-CoV-2 interactome used in the present study (Gordon et al., 2020). This 449 

suggests that coronaviruses share a broad set of host proteins that they interact with, which 450 

should also apply to ancient coronaviruses. These patterns are consistent with one or more 451 

coronaviruses driving episodic selection events in East Asian prehistory that produced the 452 

signals that we report here.  453 

Further validation of the historical trajectories of the causal mutations at selected genes is still 454 

needed, including more finely resolved temporal and geographic patterns that could be derived 455 

from ancient DNA sampled from across East Asia that span the human occupation of this 456 

region; however, the requisite ancient samples are lacking at the moment. Nonetheless, we 457 

note the geographic origin of several modern outbreaks of coronaviruses in East Asia, and their 458 

exclusion from other parts of the world, point to East Asia being the most likely location where 459 

these ancient populations came into contact with the virus. Given that most recently recorded 460 

coronavirus outbreaks have been traced to zoonoses (direct or indirect with other animal 461 

intermediates) from East Asian bats (Wong et al., 2019), our results suggest that East Asia was 462 

also a natural range for coronavirus reservoir species during the last 25,000 years. 463 
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Applied evolutionary medicine: using evolutionary information to combat COVID-19 464 

The net result of the ancient selection patterns on the CoV-VIPs in ancient human populations is 465 

the creation of genetic differences amongst individuals now living in East Asia, and between 466 

East Asians and populations distributed across the rest of the world. As we demonstrate in this 467 

study, this evolutionary genetic information can be exploited by statistical analyses to identify 468 

loci that are potentially involved in the epidemiology of modern diseases – COVID-19 in the 469 

present case. Such evolutionary information may ultimately assist in the development of future 470 

drugs and therapies, by complementing information obtained from more traditional 471 

epidemiological and biomedical research. For example, a recent study focusing on TMPRSS2 – 472 

a gene encoding for a transmembrane protein that plays a key role in SARS-CoV-2 infection – 473 

found that East Asian populations carry two protein coding variant that are correlated with low 474 

fatality rate for COVID-19 cases (Jeon et al., 2020). While such studies provide high quality 475 

information on a specific gene, the evolutionary approach adopted here is able to leverage 476 

evolutionary information embedded in modern genomes to identify candidate genomic regions 477 

of interest. This is similar to the information provided by GWAS – i.e. lists of variants or genes 478 

that are potentially associated with a particular trait or disease – though we note that the 479 

information provided by evolutionary analyses comes with an added understanding about the 480 

historical processes that created the underlying population genetic patterns. 481 

The current limitation shared by population genomic approaches such as GWAS and the 482 

evolutionary analyses presented here, is that they identify statistical associations, rather than 483 

causal links, between genomic regions and traits, thereby necessitating additional research to 484 

confirm causality. In addition to the various forms of empirical information that we provide here, 485 

further evidence of causal relationships between the CoV-VIPs and COVID-19 etiology could be 486 

obtained by examining which viral proteins the selected CoV-VIPs interact with, thereby 487 

establishing the specific viral functions that are affected. As a preliminary observation, we find 488 

that the 35 of the 42 selected SARS-CoV-2 VIPs tend to interact with more viral proteins than 489 

expected by chance (SI). Such information will help establish genetic causality and will also 490 

improve our understanding how hosts adapt in response to viruses. 491 

The ultimate confirmation of causality requires functional validation that the genes interact with 492 

the virus, or that drugs targeting these genes have a knock-on impact for the virus. Notably, 493 

several CoV-VIP genes are existing drug targets showing the functional importance of these 494 

particular loci (Table S6), several of which are currently being investigated or used to treat 495 
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severe cases in the current COVID-19 pandemic. It remains to be established if the other genes 496 

we have identified in this study might also help guide drug repurposing efforts and provide a 497 

basis for future drug and therapeutic development to combat COVID-19 and related 498 

pathologies. 499 

Conclusion 500 

By leveraging the evolutionary information contained in publicly available human genomic 501 

datasets, we were able to infer ancient viral epidemics impacting the ancestors of contemporary 502 

East Asian populations, which initially arose around 25,000 years ago, resulting in coordinated 503 

adaptive changes across at least 42 genes. Importantly, our evolutionary genomic analyses 504 

have identified several new candidate genes that might benefit current efforts to combat COVID-505 

19, either by providing novel drug targets or by repurposing currently available drugs that target 506 

these candidate genes (Tables S4 & S6). More broadly, our findings highlight the utility of 507 

incorporating evolutionary genomic approaches into standard medical research protocols. 508 

Indeed, by revealing the identity of our ancient pathogenic foes, evolutionary genomic methods 509 

may ultimately improve our ability to predict – and thus prevent – the epidemics of the future. 510 

� Star Methods 511 

Important note: for convenience, the 42 CoV-VIPs that we infer to have started coming 512 

under selection around 900 generations ago are called peak-VIPs in the Methods. 513 

Key resources table 514 

 515 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Deposited Data 

1000 Genome Project - Phase 3 (1000 Genomes Project 
Consortium, 2015) 

ftp://ftp.1000genomes.ebi.ac.
uk/vol1/ftp/release/20130502/  

VIPs –this manuscript –Table S1 

Relate-estimated coalescence 
rates, allele ages and selection 
P-values for the 1000GP 

(Speidel et al., 2019) https://zenodo.org/record/323
4689  
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GTEx expression (GTEx Project, 2017) https://gtexportal.org/home/d
atasets  

Protein-protein interactions 

(IntAct) 

(Luisi et al., 2015) https://www.ebi.ac.uk/intact  

The density of conserved 

segments (PhastCons) 

(Siepel et al., 2005) http://hgdownload.cse.ucsc.e
du/goldenPath/hg19/phastCo
ns46way/  

The density of regulatory 

elements 

– http://hgdownload.soe.ucsc.e

du/goldenPath/hg19/encodeD

CC/wgEncodeRegDnaseClus

tered 

The recombination rate (Hinch et al., 2011) https://www.well.ox.ac.uk/~an

jali/AAmap/  

Software and Algorithms 

selscan (compute nSL). (Szpiech and Hernandez, 
2014) 

https://github.com/szpiech/sel

scan 

hapbin (compute iHS) (Maclean et al., 2015) https://github.com/evotools/h

apbin 

Gene Set Enrichment Pipeline (Enard and Petrov, 2020) https://github.com/DavidPierr
eEnard/Gene_Set_Enrichme
nt_Pipeline  

Relate (Speidel et al., 2019) https://myersgroup.github.io/r

elate/ 

CLUES (Stern et al., 2019) https://github.com/35ajstern/c

lues 

iSAFE (Akbari et al., 2018) https://github.com/alek0991/i

SAFE 

 516 
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Coronavirus VIPs 517 

We used a dataset of 5,291 VIPs (Table S1). Of these, 1,920 of these VIPs are high confidence 518 

VIPs identified by low-throughput molecular methods, while the remaining VIPs were identified 519 

by diverse high-throughput mass-spectrometry studies. For a more detailed description of the 520 

VIPs dataset, please refer to SI: Host adaptation is expected at VIPs. 521 

Genomes and sweeps summary statistics 522 

To detect signatures of adaptation in various human populations, we used the 1,000 Genome 523 

Project phase 3 dataset which provides chromosome level phased data for 26 distinct human 524 

populations representing all major continental groups (1000 Genomes Project Consortium, 525 

2015). To measure nSL separately in each of the 26 populations, we used the selscan software 526 

available at https://github.com/szpiech/selscan (Szpiech and Hernandez, 2014). To measure 527 

iHS, we used the hapbin software available at https://github.com/evotools/hapbin (Maclean et 528 

al., 2015). 529 

Ranking of sweep signals at protein-coding genes and varying window sizes 530 

To detect sweep enrichments at CoV-VIPs, we first order, separately in each of the 26 1,000 531 

Genomes populations, human Ensembl (Cunningham et al., 2019) (version 83) protein-coding 532 

genes according to the intensity of the sweep signals at each gene. As a proxy for the intensity 533 

of these signals, we use the average of either iHS or nSL across all the SNPs with iHS or nSL 534 

values within a window of fixed size, centered at the genomic center of genes, halfway between 535 

the most upstream transcription start site and the most downstream transcription end site. We 536 

then rank the genes according to the average iHS or nSL (more precisely their absolute values) 537 

in these windows. We get six rankings for six different fixed window sizes: 50kb, 100kb, 200kb, 538 

500kb, 1,000kb and 2,000kb. We do this to account for the variable size of sweeps of different 539 

strengths. We then estimate the sweep enrichment at CoV-VIPs compared to controls over all 540 

these different window sizes considered together, or at specific sizes, as described below and in 541 

Enard & Petrov (Enard and Petrov, 2020). 542 

Estimating the whole ranking curve enrichment at CoV-VIPs and its statistical 543 

significance 544 

To estimate a sweep enrichment in a set of genes, a typical approach is to use the outlier 545 

approach to select, for example, the top 1% of genes with the most extreme signals. Here we 546 

use a previously described approach to estimate a sweep enrichment while relaxing the 547 
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requirement to identify a single top set of genes. Instead of, for example, only estimating an 548 

enrichment in the top 100 genes with the strongest sweep signals, we estimate the enrichment 549 

over a wide range of top X genes, where X is allowed to vary from the top 10,000 to the top 10 550 

with many intermediate values. This creates an enrichment curve as in Figure 1. Figure 1 shows 551 

the estimated relative fold enrichments at CoV-VIPs compared to controls, from the top 1,000 to 552 

the top 10 nSL. The statistical significance of the whole enrichment curve can then be estimated 553 

by using block-randomized genomes, as described in Enard & Petrov (Enard and Petrov, 2020). 554 

In brief, block-randomized genomes make it possible to generate a large number of random 555 

whole enrichment curves while maintaining the same level of clustering of genes in the same 556 

candidate sweeps as in the real genome, which effectively controls for gene clustering. 557 

Comparing the real whole enrichment curve to the random ones then makes it possible to 558 

estimate an unbiased false-positive risk (also known as False Discovery Rate in the context of 559 

multiple testing) for the observed whole enrichment curve at CoV-VIPs. A single false positive 560 

risk can be estimated for not just one curve but by summing over multiple curves combined, 561 

thus making it possible to estimate a single false positive risk over any arbitrary numbers of rank 562 

thresholds, window sizes, summary statistics, and populations. For instance, we estimate the 563 

false-positive enrichment risk of P=2.10-4 at CoV-VIPs for rank threshold from the top 10,000 to 564 

top 10, over six window sizes, for the five East Asian populations in the 1,000 Genomes data, 565 

and for both nSL and iHS, all considered together at once. This makes our approach more 566 

versatile and sensitive to selection signals ranging from a few very strong sweeps, to many, 567 

more moderately polygenic hitchhiking signals. The entire pipeline to estimate false-positive 568 

risks with block-randomized genomes is available at 569 

https://github.com/DavidPierreEnard/Gene_Set_Enrichment_Pipeline (Enard and Petrov, 2020). 570 

Building sets of controls matching for confounding factors 571 

To estimate a sweep enrichment at CoV-VIPs, we compare CoV-VIPs with random control sets 572 

of genes selected far enough (>500kb) from CoV-VIPs that they are unlikely to overlap the 573 

same large sweeps. We do not compare CoV-VIPs with completely random sets of control 574 

genes. Instead, we use a previously described bootstrap test to build random control sets of 575 

genes that match CoV-VIPs for a number of potential confounding factors that might explain a 576 

sweep enrichment, rather than interactions with viruses. The bootstrap test has been described 577 

in detail (Enard and Petrov, 2020), and is available at 578 

https://github.com/DavidPierreEnard/Gene_Set_Enrichment_Pipeline. 579 
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We include 11 different potential confounding factors in the bootstrap test: 580 

- average GTEx expression in 53 GTEx V6 tissues. 581 

- GTEx expression in lymphocytes. 582 

- GTEx expression in testis. 583 

- the number of protein-protein interactions from the Intact database, curated by Luisi et al. 584 

(Luisi et al., 2015). 585 

- the Ensembl (v83) coding sequence density in a 50kb window centered on each gene. 586 

- the density of conserved segments identified by PhastCons  (Siepel et al., 2005) 587 

(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/phastCons46way/). 588 

- the density of regulatory elements, estimated by the density of Encode DNase I V3 Clusters 589 

(http://hgdownload.soe.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegDnaseClustered/) 590 

in a 50kb window centered on each gene. 591 

- the recombination rate in a 200kb window centered on each gene (Hinch et al., 2011). 592 

- the GC content in a 50kb window centered on each gene. 593 

- the number of bacteria each gene interacts with, according to the Intact database (as of June 594 

2019; https://www.ebi.ac.uk/intact/). 595 

- the proportion of genes that are immune genes according to Gene Ontology annotations 596 

GO:0006952 (defense response), GO:0006955 (immune response), and GO:0002376 (immune 597 

system process) as of May 2020.  598 

Estimating adaptation start times at specific genes with Relate 599 

As times of emergence of adaptive mutations, we use the publicly available estimates from 600 

Relate (https://myersgroup.github.io/relate/). Relate estimates mutation emergence times while 601 

controlling for fluctuations of population size over time, based on the coalescence rates it 602 

reconstructs after inferring ancestral recombination graphs at the scale of the whole genome 603 

(Speidel et al., 2019). Relate provides two times of emergence of mutations, one low estimate 604 

(less generations ago), and one high estimate (more generations ago). The low time estimate 605 

corresponds to the time when Relate estimates an elevated probability that the frequency of the 606 

mutation is different from zero. The high time estimate corresponds to the time when Relate 607 

estimates that the probability is not too small that the frequency of the mutation is different from 608 

zero. For our purpose of estimating when selection started, the low time estimate is the best 609 

suited, because it provides an estimate of when the frequency of a selected mutation was 610 

already high enough to distinguish from zero, for those mutations where selection started from a 611 
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very low frequency. For cases where selection started with standing genetic variants that were 612 

already distinguishable from zero, the Relate low time estimates for the emergence of mutations 613 

do not provide a good proxy for when selection actually started. Thus, if we were able to 614 

estimate when selection started for standing genetic variants, we might be able to observe an 615 

even stronger peak than the one we see when just relying on those variants where selection 616 

started from low frequencies.  617 

Using the low Relate time estimates is also justified due to the fact that the sweep establishment 618 

phase can take very variable amounts of time before the start of the sweep exponential phase. 619 

During the establishment phase, selected alleles are still mostly governed by drift which makes 620 

pinpointing the actual starting time of selection difficult. In this context, the low Relate time 621 

estimates provide an estimate of the time when the selected alleles were no longer at very low 622 

frequencies not statistically different from zero, and closer to entering the exponential phase, 623 

which provides a more certain time estimate for when selection started for certain. 624 

An important step is then to choose at each CoV-VIP locus, and all the other control loci, which 625 

Relate mutation to use to get a single time estimate for each locus. Note that here we make an 626 

assumption that each locus has experienced only one single adaptive event. Given our finding 627 

that iSAFE peaks at CoV-VIPs are much closer to GTEx V8 eQTLs than expected by chance, it 628 

is likely that the selected adaptive mutations are regulatory mutations at, or close to annotated 629 

eQTLs for a specific gene. They are not necessarily exactly located at eQTLs, because current 630 

eQTLs annotations may still be incomplete, and in our case we use eQTLs identified in GTEx 631 

V8 using mostly European individuals, even though we analyse selection signals in East Asian 632 

populations. Because of these limitations, we use the Relate estimated time at the mutation 633 

where Relate estimates the lowest positive selection p-value within 50kb windows centered on 634 

eQTLs. We also only consider variants with a minor allele frequency greater than 20%, given 635 

the signals detected by iHS and nSL that only have some power to detect incomplete sweeps 636 

above 20% frequencies (Ferrer-Admetlla et al., 2014; Voight et al., 2006). This also excludes a 637 

potential risk of confounding by low frequency neutral or weakly deleterious variants, that can 638 

show selection-like patterns when their only way to escape removal early on is through a 639 

chance, rapid frequency increase that can look like selection. The Relate selection test is based 640 

on faster than expected coalescence rates given the population size at any given time, and its 641 

results are publicly available at https://myersgroup.github.io/relate/. Note that the mutation with 642 

the lowest Relate p-value does not always overlap with an iSAFE peak (Figure S5), which is not 643 

entirely surprising if the haplotype signals exploited by both Relate and iSAFE partly 644 
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deteriorated due to recombination since the time selection at CoV-VIPs was strong (Figures 3 645 

and 4). Both of these methods are indeed designed to locate the selected variant right after, or 646 

during, active selection. 647 

Because we work with five different East Asian populations, we more specifically select the 648 

variant with the lowest Relate selection test p-value on average across all the five East Asian 649 

populations. Then, we also use the corresponding average low Relate mutation time estimate 650 

across the five East Asian populations. We do not attempt to estimate the selection time and p-651 

value by considering all 1,000 Genomes East Asian individuals tested together by Relate, 652 

because then the Relate selection test is at a greater risk of being confounded by population 653 

structure. Finally, we only consider CoV-VIPs and other control genes with an average Relate 654 

selection test p-value lower than 10-3, to make sure that we indeed use estimated times at 655 

selected variants. 656 

The peak significance test 657 

To test if the peak of Relate time estimates around 900 generations ago at CoV-VIPs (Figure 2) 658 

is expected simply by chance or not, we designed a peak significance test. The test compares 659 

the peak at CoV-VIPs, with the top peaks obtained when repeatedly randomly sampling sets of 660 

genes. We first identify the most prominent peak at CoV-VIPs by visual inspection of the pink 661 

distribution of Relate times for CoV-VIPs compared to the blue distribution of Relate times for all 662 

protein-coding genes with an estimated Relate time (Figure 2). To build these distributions, top 663 

Relate selected mutations shared between multiple neighboring genes (CoV-VIPs or controls) 664 

are counted only once, to avoid a confounding effect of gene clustering (152 selected variants at 665 

CoV-VIPs, 1771 selected variants for all protein coding genes). The peak around 900 666 

generations ago (870 generations more exactly) spans approximately 200 generations, where 667 

the pink distribution is clearly above the blue one. We then use a 200 generations-wide window, 668 

sliding every generation from 0 to 6,000 generations to verify the peak more rigorously. Sliding 669 

one generation after another, each time we count the difference between the number of Relate 670 

selected variants at CoV-VIPs that fall in the sliding 200 generations window, and the number of 671 

Relate selected variants at all other genes that are not CoV-VIPs, weighted by the percentage 672 

of variants found at CoV-VIPs, to correct for the different size of the two sets of variants. Using 673 

this sliding window approach, the top of the peak is found at 870 generations, with a difference 674 

of 19.5 additional Relate selected variants between 770 and 970 (870 plus or minus 100) at 675 

CoV-VIPs compared to the null expectation. 676 
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We then repeat the sliding of a 200 generations window to identify the maximum peak and 677 

measure the same difference, but this time for random sets of Relate selected variants of the 678 

same size (152 selected variants out of the 1,771 selected variants). To estimate p-values, we 679 

then compare the actual observed difference with the distribution of differences generated with 680 

one million random samples. 681 

As mentioned in the Results, one potential issue is that we run the peak significance test after 682 

we already know that CoV-VIPs are enriched for iHS and nSL top sweeps, and especially 683 

enriched for nSL top sweeps. This enrichment may skew the null expectation for the distribution 684 

of Relate times at CoV-VIPs. In other words, there is a risk that any set of genes with the same 685 

sweep enrichment might exhibit the same peak as CoV-VIP. As a result, comparing CoV-VIPs 686 

with randomly chosen non-CoV-VIPs may not be appropriate. To test this, we repeat the peak 687 

significance test, but this time comparing the peak at CoV-VIPs with the peaks at random sets 688 

of non-CoV-VIPs that we build to have the same distribution of nSL ranks as CoV-VIPs. To do 689 

this, we define nSL bins between ranks 1 and the highest rank with a rank step of 100 between 690 

each bin, and we count how many Relate selected variants fall in each bin (each gene has one 691 

nSL rank and one Relate selected variant). To build the random set, we then fill each of the 100 692 

bins with the same number of random non-CoV-VIPs, as long as their nSL rank falls within that 693 

bin. We use the average nSL rank over the five East Asian populations, and the lower 694 

population-averaged rank of either 1 Mb or 2Mb window sizes (where we observe the strongest 695 

enrichment at CoV-VIPs, see Results). The results of the peak significance test are unchanged 696 

when using the matching nSL distribution (peak significance test P=1.10-4 vs. P=2.3.10-4 697 

without matching nSL distribution).  698 

In further agreement with the fact that the sweep enrichment does not confound the peak 699 

significance test, the peak at CoV-VIPs stands out more when repeating the peak significance 700 

test using a smaller nSL top rank limit (Figure S6). In this case, we compare sets of CoV-VIPs 701 

and sets of controls both enriched in stronger sweep signals. Thus, if stronger sweep signals at 702 

CoV-VIPs biased the peak significance test, we would expect the peak to fade away when 703 

comparing only CoV-VIPs and controls both with stronger nSL signals. Conversely, we observe 704 

that half of the CoV-VIPs with the weaker nSL signals (population-averaged nSL rank higher 705 

than 7,200 for both 1Mb and 2Mb windows) do not show a significant peak (peak significance 706 

test P=0.53). 707 
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The iSAFE peaks/eQTL proximity test 708 

Adaptation in the human genome was likely mostly regulatory adaptation through gene 709 

expression changes (Enard et al., 2014; Kudaravalli et al., 2009; Nédélec et al., 2016; Quach et 710 

al., 2016). To test if positive selection at CoV-VIPs likely involved regulatory changes, we ask 711 

whether the signals of adaptation around CoV-VIPs are localized closer than expected by 712 

chance to GTEx eQTLs that affect the expression of CoV-VIPs in present human populations. 713 

Indeed, the genomic regions at or close to CoV-VIP GTEx eQTLs are likely enriched for CoV-714 

VIP regulatory elements, and therefore the most likely place to find CoV-VIP-related adaptations 715 

in the genome. To localize where adaptation occurred, we use the iSAFE method that was 716 

specifically designed for this purpose (Akbari et al., 2018). iSAFE scans the genome and 717 

estimates a score that increases together with proximity to the actual selected mutation. The 718 

higher the score, the higher the odds that the scored variant is itself the selected one, or close 719 

to the selected one. An important caveat is that iSAFE is designed to localize where selection 720 

happened right after it happened, or as selection is still ongoing. In our case, we have evidence 721 

that selection was strong at CoV-VIPs only more than 500 generations (~14,000 years) ago, 722 

and then much weaker more recently (Figure 4). This could be an issue, because we expect 723 

that recombination events that occurred after the strong selection might have deteriorated the 724 

iSAFE signal that relies on haplotype structure. This is because recombination mixes together 725 

the haplotypes that hitchhiked with the selected mutation, with those that did not. In line with 726 

this, we often do not observe simple, clean iSAFE score peaks, but instead, iSAFE score 727 

plateaus and more rugged peaks (Figure S5). For this reason, we designed an approach to not 728 

only identify the top of simple iSAFE peaks, but also more rugged peaks or plateaus. First, to 729 

measure iSAFE scores, we combine all the haplotypes from the five East Asian populations 730 

together as input, since we found that the selection signal at CoV-VIPs is common to all these 731 

populations (iSAFE parameters: --IgnoreGaps --MaxRegionSize 250000000 --window 300 --732 

step 100 --MaxFreq .95 --MaxRank 15). We then use a 500kb window sliding every 10kb to 733 

identify the highest local iSAFE value in the 500kb window (Figure S8). Once we have the 734 

highest local iSAFE value and coordinate, we define a broader iSAFE peak as the region both 735 

upstream and downstream where the iSAFE values are still within 80% of the maximum value 736 

(Figure S8). This way, we can better annotate iSAFE plateaus and rugged peaks, and take into 737 

account the fact that they can span more than just a narrow local maximum (Figure S5). 738 

Once the local iSAFE peaks are identified, we can ask how close GTEx eQTLs are to these 739 

peaks compared to random expectations. We first measure the distance of each CoV-VIP GTEx 740 
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eQTL to the closest iSAFE peak. To avoid redundancy, we merge eQTLs closer than 1kb to 741 

each other into one test eQTL at the closest, lower multiple of 1,000 genomic coordinates (for 742 

example 3,230 and 3,950 would both become 3,000). We then measure the average of the log 743 

of the distance between all CoV-VIPs and their closest iSAFE peak. We use the log (base 10) of 744 

the distance, because it matters if the eQTL/iSAFE peak distance is 100 bases instead of 745 

200kb, but it does not really matter if the distance is 200kb or 600kb, because the iSAFE peak 746 

at 300kb is likely not related to the eQTL more than the peak at 600kb. Once we have the 747 

average of log-distances, we compare it to its random expected distribution. To get this random 748 

distribution, we measure the log-distance between each CoV-VIP eQTL and the iSAFE peaks, 749 

but after shifting the iSAFE scores left or right by a random value between 1Mb and 2Mb (Figure 750 

S8; less, or no shift at all if this falls within telomeres or centromeres). We shift by at least 1Mb 751 

to make sure that we do not rebuild the original overlap of iSAFE peaks with eQTLs again and 752 

again (some iSAFE peaks, or more precisely rugged peaks and plateaus can be wide and 753 

include several hundred kilobases; see Figure S5). The random shifting effectively breaks the 754 

relationship between eQTLs and iSAFE peaks, while maintaining the same overall eQTL and 755 

peak structure (and thus variance for the test). The random log-distance distribution then 756 

provides an overall random average log-distance to compare the observed average long-757 

distance with, as well as estimate a p-value. 758 

Then, to more specifically ask if lung eQTLs at CoV-VIPs or the eqTLs of other specific tissues 759 

are closer to iSAFE peaks than expected by chance, we can do the same but only using the 760 

eQTLs of that specific tissue. The analysis represented in figure 5 is however more complicated 761 

than just testing if CoV-VIP eQTLs for a specific tissue are closer to iSAFE peaks than expected 762 

by chance by randomly sliding iSAFE values. Instead, what we ask is whether the 42 peak-VIPs 763 

have eQTLs for a given tissue that are even closer to iSAFE peaks than the eQTLs of all CoV-764 

VIPs in general. To test this, for example with lung eQTLs, we first estimate how close lung 765 

eQTLs are to iSAFE peaks at peak-VIPs, compared to random expectations, by measuring the 766 

difference between the observed and the average random log-distance, just as described 767 

before. We then count the number of peak-VIPs with lung eQTLs (19 out of 25 peak-VIPs with 768 

GTEx eQTLs), and we randomly select the same number of any CoV-VIP (which may randomly 769 

include peak-VIPs) as long as the random set of CoV-VIPs has the same number of lung eQTLs 770 

(plus or minus 10%) as the set of peak VIPs with lung eQTLs (the same gene can have multiple 771 

eQTLs for one tissue). We make sure that the tested and the random sets have similar numbers 772 

of genes and eQTLs so that the test has the appropriate null variance. We then measure the 773 
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difference between the observed log-distance, and the randomly expected average log-distance 774 

for the random set of CoV-VIPs, exactly the same way we did before for the actual set of peak-775 

VIPs. We then measure the ratio of the observed difference in log-distance between peak-VIPs 776 

and the random expectation after many random shiftings (1,000), divided by the average of the 777 

same difference measured over many random sets of CoV-VIPs. The final ratio tells us how 778 

much closer lung eQTLs are to iSAFE peaks at peak-VIPs compared to CoV-VIPs in general, 779 

and still takes the specific eQTLs and iSAFE peak structures at each locus into account, since 780 

we compare differences in log-distances expected while preserving the same eQTL and iSAFE 781 

peak structure (see above the description of the random coordinate shifting). One important last 782 

detail about the test is that because we already found that the 50% of loci with the lowest nSL 783 

signals do not show a peak of selection at CoV-VIPs around 900 generations ago (see Results), 784 

we do not use these loci in this test since any iSAFE peak there is much more likely to represent 785 

random noise, not actual selection locations, and thus likely to dilute genuine signals. Using this 786 

test, we find that lung and other tissues’ eQTLs at peak-VIPs are much closer to iSAFE peaks 787 

than they are at CoV-VIPs in general. This test thus specifically tells that adaptation happened 788 

closer to lung eQTLs, specifically around 900 generations ago compared to other evolutionary 789 

times. By estimating the same ratio for 24 other tissues with at least 10 peak-VIPs with the 790 

specific tested tissue eQTLs, we can finally rank each tissue for its more pronounced 791 

involvement in adaptation ~900 generations ago, as done in figure 5. It is particularly interesting 792 

in this respect that the tissue with least evidence for being more involved in adaptation at that 793 

time more than other evolutionary times is spleen. Spleen indeed likely represents a good 794 

negative control as a tissue strongly enriched in immune cell types and likely to have evolved 795 

adaptively for most of evolution. 796 

UK Biobank GWAS analysis 797 

To compare the UK Biobank GWAS p-values at different loci, we assigned one p-value for each 798 

gene, either CoV-VIPs, peak-VIPs or other genes, even though each gene locus can have many 799 

variants with associated GWAS p-values. To assign just one single GWAS p-value to each 800 

gene, we selected the variant with the lowest p-value at or very close (<1kb) to GTEx eQTLs for 801 

a specific gene, in line with the fact that GWAS hits tend to overlap eQTLs (Hormozdiari et al., 802 

2016), and to remain consistent with the rest of our manuscript. We then compared the average 803 

p-value between different sets of genes using classic permutations (one billion iterations). 804 
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Drug targets identification 805 

We queried the databases DGIdb (Cotto et al., 2017), and PanDrugs (Piñeiro-Yáñez et al., 806 

2018) for drugs targeting CoV-VIPs and peak-VIPs. For hits from PanDrugs we limited the 807 

results to only genes that are in direct interaction with the designated drug. Drugs targeting 808 

peak-VIPs are presented in Table S6. In addition, we present a list of peak-VIPs that are not 809 

currently drug targets, but have been previously identified in (Finan et al., 2017) as viable drug 810 

targets (druggable genome).  811 
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