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2 

Summary 13 

The current SARS-CoV-2 pandemic has emphasized the vulnerability of human 14 

populations to novel viral pressures, despite the vast array of epidemiological and 15 

biomedical tools now available. Notably, modern human genomes contain evolutionary 16 

information tracing back tens of thousands of years, which may help identify the viruses 17 

that have impacted our ancestors – pointing to which viruses have future pandemic 18 

potential. Here, we apply evolutionary analyses to human genomic datasets to recover 19 

selection events involving tens of human genes that interact with coronaviruses, 20 

including SARS-CoV-2, that likely started more than 20,000 years ago. These adaptive 21 

events were limited to the population ancestral to East Asian populations. Multiple lines 22 

of functional evidence support an ancient viral selective pressure, and East Asia is the 23 

geographical origin of several modern coronavirus epidemics. An arms race with an 24 

ancient coronavirus, or with a different virus that happened to use similar interactions as 25 

coronaviruses with human hosts, may thus have taken place in ancestral East Asian 26 

populations. By learning more about our ancient viral foes, our study highlights the 27 

promise of evolutionary information to better predict the pandemics of the future. 28 

Importantly, adaptation to ancient viral epidemics in specific human populations does 29 

not necessarily imply any difference in genetic susceptibility between different human 30 

populations, and the current evidence points toward an overwhelming impact of 31 

socioeconomic factors in the case of COVID-19.  32 

 33 

Introduction 34 

In the past 20 years, strains of the beta coronavirus genus (family Coronaviridae; Richman et 35 

al., 2020) have been behind three major zoonotic outbreaks with grave impacts for human 36 

populations (Ou et al., 2020). The first outbreak, commonly known as SARS-CoV (Severe Acute 37 

Respiratory Syndrome), originated in China in late 2002 and eventually spread to 30 additional 38 

counties where it infected more than 8,000 people and claimed nearly 800 lives (Hoffmann and 39 

Kamps, 2003). Four years later, MERS-CoV (Middle East respiratory syndrome coronavirus) 40 

affected >2,400 people and caused over 850 deaths, mostly in Saudi Arabia (World Health 41 
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Organization, 2019). The most recent outbreak began in late 2019 when SARS-CoV-2 – a less 42 

virulent but far more contagious strain than those behind the two previous epidemics – emerged 43 

in mainland China before spreading rapidly across the rest of the world, triggering an ongoing 44 

pandemic (COVID-19) that so far has infected 45 million people and resulted in over one million 45 

deaths worldwide (Dong et al., 2020). 46 

The devastation caused by SARS-CoV-2 has inspired a worldwide research effort to develop 47 

new vaccines and strategies that aim to curb its impact by determining the factors that underlie 48 

its epidemiology. The resulting research has revealed that socioeconomic (e.g. access to 49 

healthcare and testing facilities or exposure at work), demographic (e.g. population density and 50 

age structure), and personal health factors all play a major role in SARS-CoV-2 epidemiology 51 

(Balogun et al., 2020; Sattar Naveed et al., 2020; Scarpone et al., 2020). Additionally, several 52 

genetic loci that mediate SARS-CoV-2 susceptibility and severity have been found in 53 

contemporary European populations (Ellinghaus et al., 2020; Roberts et al., 2020), one of which 54 

contains a genetic variant that increases SARS-CoV-2 susceptibility that likely increased in 55 

frequency in the ancestors of modern Europeans after interbreeding with Neanderthals ~40,000 56 

years ago (Zeberg and Pääbo, 2020). This historical admixture event has led to genetic 57 

differences within and between contemporary human populations that directly impact COVID-19 58 

epidemiology – the Neanderthal-derived variant haplotype is now carried by 8% of modern 59 

Europeans, but at lower frequencies in African populations whose ancestors did not experience 60 

this admixture event – and suggests that evolutionary analyses of human populations may help 61 

reveal these genetic differences and ultimately assist in the development of novel drugs and 62 

therapies to combat the negative impacts of SARS-CoV-2.  63 

Throughout the evolutionary history of our species, positive natural selection has frequently 64 

targeted proteins that physically interact with viruses – e.g. those involved in immunity, or used 65 

by viruses to hijack the host cellular machinery (Barreiro et al., 2009; Enard et al., 2016; Sawyer 66 

et al., 2005). In the ~6 million years since the ancestors of humans and chimpanzees 67 

separated, selection has led to the fixation of gene variants encoding virus-interacting proteins 68 

(VIPs) at three times the rate observed for other classes of genes (Enard et al., 2016; Uricchio 69 

et al., 2019). Moreover, strong selection on VIPs has continued in human populations during the 70 

past 50,000 years, as evidenced by VIP genes being enriched for adaptive introgressed 71 

Neanderthal variants and also selective sweep signals (i.e. selection that drives a beneficial 72 

variant to substantial frequencies in a population), particularly around VIPs that interact with 73 

RNA viruses, a viral class that includes the coronaviruses (Enard and Petrov, 2018, 2020).  74 
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The accumulated evidence suggests that ancient RNA virus epidemics have occurred frequently 75 

during the history of our species; however, we currently do not know if selection has made a 76 

substantial contribution to the evolution of human genes that interact more specifically with 77 

coronaviruses. 78 

Accordingly, here we investigate whether ancient coronavirus epidemics have driven past 79 

adaptation within and across modern human populations, by examining if selection signals are 80 

enriched within a set of 420 VIPs that interact with coronaviruses (denoted CoV-VIPs; Table S1) 81 

across 26 worldwide human populations from the 1000 Genomes Project (1000 Genomes 82 

Project Consortium, 2015). These CoV-VIPs comprise 332 SARS-CoV-2 VIPs that were 83 

recently identified by high-throughput mass spectrometry (Gordon et al., 2020) and an additional 84 

88 proteins that were manually curated from the coronavirus literature (e.g. SARS-CoV-1, 85 

MERS, HCoV-NL63, etc; Table S1; Enard and Petrov, 2018), and form part of a larger set of 86 

5,291 previously published VIPs (SI; Table S1) from multiple viruses known to infect humans 87 

(Enard and Petrov, 2018). Our focus upon host adaptation at VIPs is motivated by evidence 88 

indicating that these protein interactions are the central mechanism that viruses use to hijack 89 

the host cellular machinery, as shown by the strong focus of virologists on these interactions 90 

(Enard and Petrov, 2018). Accordingly, VIPs are much more likely to have functional impacts on 91 

viruses than proteins not known to interact with viruses (see SI: Host adaptation is expected at 92 

VIPs). Our enrichment-based approach is expected to be particularly powerful if the ancestors 93 

of one or more of the 26 modern human populations were exposed to epidemics driven by 94 

coronavirus-like viruses that resulted in selection upon multiple CoV-VIPs (see Discussion). An 95 

alternative that we cannot exclude however is that a different type of virus that happens to use 96 

similar VIPs as coronaviruses might instead create an enrichment in adaptation signals at CoV-97 

VIPs. 98 

Our analyses of CoV-VIPs find a strong enrichment in sweep signals in these proteins across 99 

multiple East Asian populations, which is absent from other human populations. This suggests 100 

that an ancient coronavirus epidemic (or another virus using similar VIPs) drove an adaptive 101 

response in the ancestors of East Asians, which is in agreement with the current geographic 102 

range of the major known animal reservoirs of coronaviruses (Wong et al., 2019). Further, by 103 

leveraging ancestral recombination graph approaches (Speidel et al., 2019; Stern et al., 2019) 104 

we find that amongst the putatively selected CoV-VIPs, 42 first may have come under selection 105 

around 900 generations (~25,000 years, most likely 20,000 years ago or more) ago and exhibit 106 

a coordinated adaptive response that lasted until around 200 generations (~5,000 years) ago. 107 
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By drawing upon other publicly available datasets, we show that the CoV-VIP genes are 108 

enriched for anti- and proviral effects and variants that affect COVID-19 etiology in the modern 109 

European British population (https://grasp.nhlbi.nih.gov/Covid19GWASResults.aspx). We 110 

nevertheless do not investigate in which particular direction, as we cannot expect the British 111 

population to be representative of East Asian populations in that respect. We further show that 112 

the inferred underlying causal mutations are situated near to regulatory variants active in lungs 113 

and other tissues negatively impacted by COVID-19. Taken together, these independent lines of 114 

evidence provide support for an ancient coronavirus (or another virus that was using similar 115 

interactions) epidemic that emerged more than 20,000 years ago in the ancestors of 116 

contemporary East Asian populations, whose genetic signature remains apparent in the 117 

genomes of the present-day populations now living in this region. 118 

Results 119 

Signatures of adaptation to an ancient epidemic 120 

Viruses have exerted strong selective pressures on the ancestors of modern humans (Enard 121 

and Petrov, 2020; Uricchio et al., 2019). Accordingly, we use two population genetic statistical 122 

tests that are sensitive to such genetic signatures (i.e. selective sweeps) – nSL (Ferrer-Admetlla 123 

et al., 2014) and iHS (Voight et al., 2006) – and which are able to detect genomic regions 124 

impacted by strong selection across a wide range of parameters (e.g. different starting and end 125 

frequencies of the selected allele). Both statistics also have the advantage of being insensitive 126 

to background selection (Enard et al., 2014; Schrider, 2020), thereby reducing the potential 127 

impact of false positives in our analyses.  128 

After scanning each of the 26 populations for signals of selection, we apply an enrichment test 129 

that was previously used to detect enriched selection signals in RNA VIPs in human populations 130 

(Enard and Petrov, 2020). Briefly, for each population and selection statistic, we rank all genes 131 

based on the average selection statistic score observed in genomic windows ranging from 50kb 132 

to 2Mb (Methods). Different windows sizes are used because smaller windows tend to be more 133 

sensitive to weaker sweeps, whereas larger windows tend to be more sensitive to stronger 134 

sweeps (Enard and Petrov, 2020; Methods). After ranking the gene scores, we estimate an 135 

enrichment curve (Figure 1) for gene sets ranging from the top 10 to 10,000 ranked loci 136 

(Methods). The significance of the whole enrichment curve is then calculated using a genome 137 

block-randomization approach that accounts for the genomic clustering of neighboring CoV-138 
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VIPs, and provides an unbiased false positive risk for the whole enrichment curve (FPR) by re-139 

running the entire enrichment analysis pipeline on block-randomized genomes (Enard and 140 

Petrov, 2020; Methods). For our control gene set, we use protein-coding genes situated at least 141 

500kb from CoV-VIPs to avoid overlapping the same sweep signals. Additionally, genes in the 142 

control sets are chosen to have similar characteristics as the CoV-VIPs (e.g. similar 143 

recombination rates, density of coding and regulatory sequences, percentage of immune genes, 144 

percentage of genes that interact with bacteria; see Methods for the complete list of factors) to 145 

ensure that any detected enrichment is virus-specific rather than due to a confounding factor 146 

(Enard and Petrov, 2020). Choosing controls far away and that match multiple potential 147 

confounding factors has the effect of shrinking the pool of potential control genes, which can 148 

affect the variance and also the representativity of this pool as a null control. The possible 149 

impacts of the size of the control pool are however fully taken into account in the FPR estimated 150 

with block-randomized genomes (Enard and Petrov, 2020; Methods).  Finally, we also exclude 151 

the possibility that functions other than viral interactions might explain our results by running a 152 

Gene Ontology analysis (Gene Ontology Consortium, 2015; SI; Tables S2, S3 and Figure S1). 153 

Applying this approach to each of the 26 human populations from the 1,000 genomes dataset, 154 

we find a very strong enrichment of sweep signals in CoV-VIPs across all top-ranked gene set 155 

sizes that is specific to the five East Asian populations (whole enrichment curve for nSL and iHS 156 

combined FPR=2.10-4; Figures 1 & S2; Methods). No enrichment is observed for populations 157 

from other continental regions, including in neighboring South Asia (whole enrichment curve for 158 

nSL and iHS combined FPR>0.05 in all cases; Figures 1 & S2). Further, no enrichment is 159 

detected for VIP sets for 17 other viruses in East Asian populations (whole enrichment curve for 160 

nSL and iHS separately or combined, P>0.05 in all cases; Figures S3 & S4). Taken together, 161 

these results suggest that coronaviruses, or another type of viruses that used similar 162 

interactions with human hosts, have driven ancient epidemics in ancient human populations that 163 

are ancestral to modern East Asians. This enrichment is unlikely to have been caused by any 164 

other virus represented in our set of 5,291 VIPs, but we still cannot exclude that a currently 165 

unknown type of virus that happened to use similar VIPs as coronaviruses could have been 166 

involved instead (Table S1). The enrichment is most substantial for the top-ranked gene sets 167 

ranging between the top 10 and top 1,000 loci (Figure 1; whole enrichment curve FPR=3.10-6 for 168 

nSL, FPR=4.10-3 for iHS, FPR=6.10-5 for iHS and nSL combined), and is particularly strong for 169 

the top 200 loci in large windows (1 Mb) where a four-fold enrichment is observed for both nSL 170 

and iHS statistics (pertaining to between 10 to 13 selected CoV-VIPs amongst the top 200 171 
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ranked genes; Table S4). This suggests that strong selection targeted multiple CoV-VIPs in the 172 

common ancestors of modern East Asian populations. That the selected haplotype structures 173 

are detected by both the iHS and nSL methods suggests that they are unlikely to have occurred 174 

prior to 30,000 years ago, as both nSL and iHS have little power to detect adaptive events 175 

arising before this time point in human evolution (Sabeti et al., 2006) 176 

 177 
 178 

 179 
Figure 1. Coronavirus VIPs nSL ranks enrichment 180 
A,B,C,D,E are East Asian populations, F,G,H,I are populations from other continents. The y axis 181 
represents the bootstrap test (Methods) relative fold enrichment of the number of genes in 182 
putative sweeps at CoV-VIPs, divided by the number of genes in putative sweeps at control 183 
genes matched for multiple confounding factors. The x axis represents the top rank threshold to 184 
designate putative sweeps. Black full line: average fold enrichment over 5,000 bootstrap test 185 
control sets. Fold enrichments greater than 20 are represented at 20. Grey area: 95% 186 
confidence interval of the fold enrichment over 5,000 bootstrap test control sets. The rank 187 
thresholds where the confidence interval lower or higher fold enrichment has a denominator of 188 
zero are not represented (For example, graph B, top 10 rank threshold). Lower confidence 189 
interval fold enrichments higher than 20 are represented at 20 (for example, graph B, top 30 190 
rank threshold). Red dots: bootstrap test fold enrichment P<0.001. Orange dots: bootstrap test 191 
fold enrichment P<0.05. Note that the bootstrap test p-values are not the same as the whole 192 
curve enrichment false positive risk (FPR) estimated using block-randomized genomes on top of 193 
the bootstrap test (Methods). 194 
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An ancient epidemic in the ancestors of East Asians starting more than 20,000 years ago 195 

To further test the existence of an ancient viral epidemic in the ancestors of East Asians, we use 196 

a recent ancestral recombination graph (ARG)-based method, Relate (Speidel et al., 2019), to 197 

infer the timing and trajectories of selected loci for the CoV-VIPs. If the selective pressure 198 

responsible for the multiple independent selection events at CoV-VIPs was relatively sudden as 199 

expect from a new epidemic, then these selection events should have started independently 200 

around the same time. By estimating ARGs at variants distributed across the entire genome, 201 

Relate can reconstruct coalescent events across time and detect genomic regions impacted by 202 

positive selection, while explicitly controlling for historical variation in population demography. 203 

To approximate the start time of selection, Relate estimates the first historical time point that a 204 

putatively selected variant had an observable frequency unlikely to be equal to zero (Methods). 205 

We use this approximation as the likely starting time of selection, although we note that this 206 

method does not account for selection on standing variants that had non-zero frequencies at the 207 

onset of selection (Methods). Additionally, we use the iSAFE software – which enables the 208 

localization of selected mutations (Akbari et al., 2018) – along with a curated set of regulatory 209 

variants (expression QTLs; eQTLs) from the eGTEx Project (2017) to help identify the likely 210 

causal mutations in the selected CoV-VIP genes. There is good evidence that the majority of 211 

adaptive mutations in the human genome are regulatory mutations (Enard et al., 2014; 212 

Kudaravalli et al., 2009; Nédélec et al., 2016; Quach et al., 2016) and, accordingly, we find that 213 

iSAFE peaks are significantly closer to GTEx eQTLs proximal to CoV-VIP genes than expected 214 

by chance (iSAFE peak proximity test, P<10-9; Methods). Therefore, for each CoV-VIP gene, we 215 

choose a variant with the lowest Relate p-value (<10-3; Methods) that is situated at or close to a 216 

GTEx eQTL associated with the focal gene to estimate the likely starting time of selection for 217 

that gene (Methods; Figure S5). 218 

Using this approach, we observe 42 CoV-VIPs (Table S5 and Figure S5) with selection starting 219 

times clustered around a peak 870 generations ago (~200 generations wide, potentially due to 220 

noise in our estimates; Figure 2). While this amounts to about four times more selected CoV-221 

VIP genes than were detected using either nSL or iHS (both detected around ten CoV-VIPs 222 

amongst the top 200 ranked genes; Table S4) this is not unexpected as Relate has more power 223 

to detect selection events than nSL and iHS when the beneficial allele is at intermediate 224 

frequencies at the point of measurement (typically <60%; Figure 3; Enard and Petrov, 2020; 225 

Ferrer-Admetlla et al., 2014; Voight et al., 2006). The relatively tight temporal clustering of 226 

starting times forms a highly significant peak (peak significance test P=2.3.10-4; Figure 2) when 227 
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comparing the observed clustering of CoV-VIPs start times with the distribution of inferred start 228 

times for randomly sampled sets of genes (Methods). Note that this peak significance test is 229 

gene clustering-aware (Methods).  Further, this significance test is not biased by the fact that 230 

CoV-VIPs are enriched for sweep signals, as the test remains highly significant (P=1.10-4) when 231 

using random control sets with comparable high-scoring nSL statistics (Methods). This suggests 232 

that the tight temporal clustering of selection events is a specific feature of the CoV-VIPs, rather 233 

than a confounding aspect of any gene set similarly enriched for sweeps.  234 

 235 

 236 

Figure 2. Timing of selection at CoV-VIPs 237 
The figure shows the distribution of selection start times at CoV-VIPs (pink distribution) 238 
compared to the distribution of selection start times at all loci in the genome (blue distribution). 239 
Details on how the two distributions are compared by the peak significance test, and how the 240 
selection start times are estimated with Relate, are provided in Methods. 241 

The genes with clustered selection starting times around 900 generations ago are enriched in 242 

strong nSL signals, as shown by running the peak significance test using only CoV-VIPs and 243 

controls with strong nSL signals (Figure S6). Conversely, the peak disappears when restricting 244 

this test to weaker nSL signals (P=0.53 when using the lowest 50% of nSL statistics; Methods). 245 

Importantly, our estimates of the timing of selection are not biased by our use of methods that 246 

rely on selected variants not being fixed in the population at the time of genome sampling (i.e. 247 

Relate). When rerunning our analytical pipeline focusing only on strong candidate loci according 248 

to Tajima’s D (Tajima, 1989), a statistic developed to detect recently completed sweeps (i.e. 249 

fixed mutations), we observe the same clustering of selection events starting around 900 250 

generations ago (Figure S7). Further, the remaining 382 CoV-VIPs that are not part of this 251 
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temporal cluster around 900 generations ago are not more likely to have significant Tajima’s D 252 

values than controls (whole enrichment curve P=0.07). Consequently, our results are consistent 253 

with the emergence of a viral epidemic ~900 generations, or ~25,000 years (900 generations * 254 

28 years per generation; Moorjani et al., 2016), ago that drove a burst of strong positive 255 

selection in the ancestors of East Asians, which may represent a genetic record of a multi-256 

generational viral epidemic amongst the 26 human populations tested here.  257 

Although selective pressures other than a coronavirus or another unknown type of virus with 258 

similar host interactions might also contribute to these patterns, we note that the signal is 259 

restricted specifically at CoV-VIPs and none of 17 other viruses that we tested exhibit the same 260 

temporal clustering ~900 generations ago in East Asia (peak significance test P>0.05 in all 261 

cases; Methods). Further, this test remained highly significant when retesting the temporal 262 

clustering of CoV-VIPs using only other RNA VIPs as the control set (P=4.10-4; Table S1), 263 

consistent with the clustered selection signals being a coordinated adaptive response to a 264 

coronavirus or another virus using similar host interactions. 265 

 266 

Strong selection drove coordinated changes in multiple CoV-VIP genes over 20,000 years 267 

To learn more about the likely start and duration of the selection pressure acting on the 268 

ancestors of East Asians, we use CLUES (Stern et al., 2019) to infer allele frequency 269 

trajectories and selection coefficients for the inferred beneficial mutations proximal to the 42 270 

CoV-VIP genes with selection starting 900 generations ago according to Relate (Figure 3). 271 

CLUES uses the temporal variation in population size and coalescence rates inferred by Relate 272 

to reconstruct frequency trajectories while taking demographic fluctuations into account. Our 273 

observation of sweep signals at 42 CoV-VIP genes in the ancestors of East Asians suggests 274 

that the putative underlying viral epidemic likely spanned many generations (i.e. the time 275 

needed for selection to drive initially rare alleles to intermediate/high frequencies). Accordingly, 276 

we anticipate that selection was probably strongest when the naive host population was first 277 

infected by the virus, before gradually waning as the host population adapted to the viral 278 

pressure (Hayward and Sella, 2019). Similarly, a decrease in the virulence of the virus over 279 

time, a phenomenon that has been reported during the long term bouts of host-virus coevolution 280 

(Best and Kerr, 2000), would also result in the gradual decrement of selection coefficients 281 

across time. Hence, for each of the 42 CoV-VIPs predicted to have started coming under 282 

selection ~900 generations ago, we use CLUES to estimate the selection coefficient in two 283 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 13, 2021. ; https://doi.org/10.1101/2020.11.16.385401doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.16.385401
http://creativecommons.org/licenses/by/4.0/


11 

successive time-intervals (between 1,000 and 500 generations ago, and from 500 generations 284 

ago to the present), predicting that selection would be stronger in the oldest interval. We note 285 

that a 500 generations interval was reported as the approximate timespan that CLUES provides 286 

reliable estimates for humans (Stern et al., 2019); using smaller generations intervals, we would 287 

run the risk of getting overly noisy selection coefficient estimates based on too few coalescent 288 

events. However, 500 generations intervals are not adequate to obtain reasonable estimates of 289 

the precise duration of the selective pressure (Stern et al., 2019), so we do not attempt to 290 

estimate this parameter here, and we simply try to compare the two time periods with each 291 

other. Also, because CLUES uses a computationally intensive algorithm when following the 292 

recommendations of Stern et al. (2020), we base our estimates on only two of the five East 293 

Asian populations (i.e. Dai and Beijing Han Chinese; Figure 3A, B and 3C, D, respectively). 294 

CLUES infers frequency trajectories that are more complex than a simple, clear, abrupt jump in 295 

frequency 900 generations ago. Instead, the estimated frequency trajectories (Figure 3A,B,C,D) 296 

suggest that 900 generations ago is the approximate time when the bulk of the selected variants 297 

reached a frequency of a few percent or more, and approximately when there is an acceleration 298 

in the frequency increase (Figure 3B, D). This might correspond to the transition between the 299 

establishment and exponential phases of the sweeps, and might imply that the selective 300 

pressure is older than 900 generations. The initially flatter, slower increases in frequency, 301 

lasting sometimes up to 600 generations ago for some variants, are compatible with either co-302 

dominant or recessive alleles, and likely exclude dominant alleles that would start increasing in 303 

frequency more abruptly. Interestingly, this would be in good agreement with the rarity of 304 

dominant eQTLs in GTEx, if selected variants were indeed regulatory (GTEx Project, 2017). 305 

Although the flat, slow starts of frequency increases make it hard to pinpoint when selection 306 

started exactly, the vast majority of the selected alleles appear to have reached 5% or higher 307 

frequencies by 600 generations, thus making it highly unlikely that the selective pressure would 308 

have started 600 or less generations ago. Frequency trajectories estimated in the Yoruba 309 

African population (Figure 4A) or the British European population (Figure 4B) also show very 310 

low frequencies 900 generations ago. The selected variants in East Asia are found nowadays at 311 

very low frequencies especially in Africa (Table S6). This implies that they are substantially 312 

older than when selection started in East Asia, which may then be described as selection on low 313 

frequency standing variation. Intriguingly, some variants rise in frequency (up to 40% frequency 314 

at most) in Europe mostly after 800 generations ago. A small number of variants in Africa 315 

increase in frequency (up to 30% frequency at most) after 600 generations ago. 316 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 13, 2021. ; https://doi.org/10.1101/2020.11.16.385401doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.16.385401
http://creativecommons.org/licenses/by/4.0/


12 

The selected mutations are estimated to have continually increased in frequency in East Asia 317 

until ~200 generations (approximately 5,000 years) ago, after which they remained relatively 318 

stable (Figure 3A, C). Accordingly, CLUES estimates very high selection coefficients in the 319 

interval between 1,000 and 500 generations ago (Dai average s = 0.034, Beijing Han average s 320 

= 0.042; Figure 5A, B), but much weaker selection coefficients from 500 generations ago up to 321 

the present (Dai average s = 0.002, Beijing Han average s = 0.003; Figure 5A, B). These 322 

patterns are consistent with the appearance of a strong selective pressure that triggered a 323 

coordinated adaptive response across multiple independent loci, which waned through time as 324 

the host population adapted to the viral pressure and/or as the virus became less virulent. 325 

 326 
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 327 
Figure 3. Selected CoV-VIPs allele frequency trajectories over time estimated by CLUES 328 
in East Asia 329 
Each frequency trajectory is for one of the 42 Relate selected mutations at CoV-VIPs within the 330 
peak around 900 generations ago (Methods). A) Frequency trajectories in the Chinese Dai CDX 331 
1,000 Genomes population. B) Same, but zoomed-in from frequencies 0 to 10%. C) Frequency 332 
trajectories in the Han Chinese from Beijing CHB 1,000 Genomes population. D) Same, but 333 
zoomed-in from frequencies 0 to 10%. 334 
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 338 
Figure 4. Selected CoV-VIPs allele frequency trajectories over time estimated by CLUES 339 
in Africa (Yoruba) and Europe (British) 340 
Same as Figure 3. A) Yoruba population. The graph includes 17 frequency trajectories, the 25 341 
other alleles selected in East Asia being absent in the Yoruba sample (but not Africa overall, 342 
see Table Sx)  B) British population. The graph includes 35 frequency trajectories, the other 343 
seven alleles selected in East Asia being absent in the British sample. 344 
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 345 

Figure 5. Coronavirus selected VIPs selection coefficients estimated by CLUES 346 
This figure shows classic R boxplots of selected coefficients at the 42 Relate selected mutations 347 
within the peak around 900 generations ago (Methods). A) Selection coefficients in the Chinese 348 
Dai CDX 1,000 Genomes population. B) Selection coefficients in the Han Chinese from Beijing 349 
CHB 1,000 Genomes population. Left: average selection coefficients between 0 and 500 350 
generations ago. Right: average selection coefficients between 500 and 1,000 generations ago. 351 

Selected CoV-VIPs are enriched for antiviral and proviral factors 352 

To further clarify that an ancient viral epidemic caused the strong burst of selection we observe 353 

in the ancestors of East Asians, and not another ecological pressure acting on the same set of 354 

genes, we test if the 42 selected CoV-VIPs are enriched for genes with antiviral or proviral 355 

effects relative to other CoV-VIPs (i.e. loci that are known to have a detrimental or beneficial 356 

effect on the virus, respectively). Because the relevant literature for coronaviruses is currently 357 

limited – which also applies to the relatively recent SARS-CoV-2 virus – we extend our set of 358 
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anti- and proviral loci beyond those associated with coronaviruses to include loci reported for 359 

diverse viruses with high confidence from the general virology literature (see SI: Host adaptation 360 

is expected at VIPs; Table S1). We find that 21 (50%) of the 42 CoV-VIPs that came under 361 

selection ~900 generations ago have high-confidence anti- or proviral effects (vs. 29% for all 362 

420 CoV-VIPs), a significant inflation in anti- and proviral effects (hypergeometric test P=6.10-4) 363 

that further supports our claim that the underlying selective pressure was most likely a viral 364 

epidemic. This overlap of antiviral and proviral effects between different viruses also implies that 365 

an unknown virus that happened to use similar VIPs as coronaviruses could have indeed been 366 

responsible. 367 

Selected mutations lie near regulatory variants active in SARS-CoV-2 affected tissues 368 

Coronavirus infections in humans are known to have pathological consequences for specific 369 

bodily tissues, whereby we investigate if the genes targeted by selection in the ancestors of 370 

East Asians are also enriched for regulatory functions in similar tissues. In light of our finding 371 

that many putative causal mutations in CoV-VIPs were proximal to eQTLs, we investigate 372 

whether selected mutations are situated closer to eQTLs for a given tissue than expected by 373 

chance, as this would indicate that the tissue was negatively impacted by the virus (prompting 374 

the adaptive response). Note that the GTEx eQTLs we use are not specific to a single tissue 375 

(eQTLs are rarely so in general), and are shared between tissues. However, each tissue still 376 

has its own specific combination of eQTLs, thus making the results at each tissue not 377 

completely redundant. Briefly, we estimate a proximity-based metric that quantifies the distance 378 

between the location of the causal mutation estimated by iSAFE and the tissue-specific eQTLs 379 

for the 42 loci that likely started coming under selection ~900 generations ago, and compare 380 

this to the same distances observed amongst randomly sampled sets of CoV-VIPs (Figure 6; 381 

Methods). 382 

Using this approach, we find that GTEx lung eQTLs lie closer to predicted causal mutations 383 

amongst the 42 putative selected loci than for any other tissue (P=3.10-5; Figure 6). Several 384 

additional tissues known to be negatively affected by coronavirus – blood and arteries (Bao et 385 

al., 2020; Grosse et al., 2020), adipose tissue (Michalakis and Ilias, 2020) and the digestive 386 

tract (Elmunzer et al., 2020) – also exhibit closer proximities between putative causal loci and 387 

tissue-specific eQTLs than expected by chance (Figure 6). Interestingly, the spleen shows no 388 

tendency for eQTLs to lie closer to selected loci than expected around 900 generations ago 389 

compared to other evolutionary times, perhaps because the spleen is replete with multiple types 390 
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of immune cells that might be more prone to more regular adaptation in response to diverse 391 

pathogens over time, and less prone to adaptive bursts restricted over time in response to a 392 

specific pathogen (Quintana-Murci, 2019). Note that tissues with more eQTLs tend to have 393 

more significant p-values. For example skeletal muscle has a lower proximity ratio than stomach 394 

but also a lower p-value due to the higher statistical power provided by more eQTLs. Our results 395 

indicate that the tissues impacted in the inferred viral epidemic in ancestors of East Asians 396 

match those pathologically affected by the SARS-CoV-2 infection in contemporary populations, 397 

providing further evidence that this ancient infection might have been a coronavirus or another 398 

type of virus that used similar host interactions. 399 

 400 

Figure 6. Proximity of selection signals to GTEx eQTLs at the 42 selected CoV-VIPs 401 
compared to random CoV-VIPs 402 
The histogram shows how close selection signals localized by iSAFE peaks are to the GTEx 403 
eQTLs from 25 different tissues, at peak-VIPs compared to randomly chosen CoV-VIPs 404 
(Methods). How close iSAFE peaks are to GTEx eQTLs compared to random CoV-VIPs is 405 
estimated through a proximity ratio. The proximity ratio is described in the Methods. It quantifies 406 
how much closer iSAFE peaks are to eQTLs of a specific GTEx tissue, compared to random 407 
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expectations that take the number and structure of iSAFE peaks, as well as the number and 408 
structure of GTEx eQTLs into account (Methods). Four stars: proximity ratio test P<0.0001. 409 
Three stars: proximity ratio test P<0.001. Two stars: P<0.01. One star: P<0.05. Note that lower 410 
proximity ratios can be associated with smaller p-values for tissues with more eQTLs (due to 411 
decreased null variance; for example, skeletal muscle vs. pancreas). 412 

Coronavirus VIPs are enriched for SARS-CoV-2 susceptibility and COVID-19 severity loci 413 

Our results indicate that many of the selected CoV-VIPs now sit at intermediate to high 414 

frequencies in modern East Asian populations. Accordingly, we anticipate that these 415 

segregating loci should make a measurable contribution to the inter-individual variation in 416 

SARS-CoV-2 susceptibility and (COVID-19) severity amongst contemporary populations in East 417 

Asia, and predict that such loci would be readily detectable in a reasonably-powered genome 418 

wide association study (GWAS) investigating these traits in East Asian populations. While such 419 

a scan has yet to be reported for a large East Asian cohort, two GWASs were recently released 420 

that used sizable British cohorts to investigate SARS-CoV-2 susceptibility (1,454 cases and 421 

7,032 controls; henceforth called the susceptibility GWAS) and severity (325 cases [deaths] 422 

versus 1,129 positive controls; henceforth called the severity GWAS) (data from the UK 423 

Biobank; Sudlow et al., 2015; https://grasp.nhlbi.nih.gov/Covid19GWASResults.aspx). Because 424 

we use a different population than the ones where we found selection, we only ask, as a form of 425 

functional validation of a viral pressure, if there is an overlap between the selected loci in East 426 

Asia and stronger COVID-19 GWAS hits in the UK Biobank cohort. We do not look at all at the 427 

directionality or the size of effects, as it is dubious that those would be transposable between 428 

populations. This also means that we make no claim at all here about any decrease or increase 429 

of virus susceptibility in any given human population compared to others. Furthermore, we use 430 

the UK-Biobank cohort instead of the complete COVID-19 Host Genetics Initiative meta-GWAS 431 

data (https://www.covid19hg.org/; The COVID-19 Host Genetics Initiative, 2020), to avoid 432 

population stratification to the best extent possible (a legitimate concern with a trait clearly 433 

affected by environmental factors). 434 

While we are unable to precisely identify the causal variants for the selected CoV-VIP genes 435 

observed in the ancestors of East Asians – nor would these variants necessarily occur as 436 

outliers in a GWAS conducted on the British population – we note that it is possible that other 437 

variants in the same CoV-VIP genes may also produce variation in SARS-CoV-2 susceptibility 438 

and severity amongst modern British individuals. 439 
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By contrasting variants in CoV-VIPs against those in random sets of genes, we find that variants 440 

in CoV-VIPs have significantly lower p-values for both the susceptibility GWAS and severity 441 

GWAS than expected (simple permutation test P<10-9 for both GWAS tests; Methods). More 442 

importantly, the 42 CoV-VIPs from the selection event starting ~900 generations ago have even 443 

lower GWAS p-values compared to other CoV-VIPs (P=0.0015 for susceptibility GWAS and 444 

P=0.023 for severity GWAS; Methods). This result indicates that the selected genes inferred in 445 

our study might contribute to individual variation in COVID-19 etiology in modern human 446 

populations in the UK, providing further evidence that a coronavirus or another virus with similar 447 

host interactions may have been the selection pressure behind the adaptive response we 448 

observe in the ancestors of East Asians. Notably, the strongest GWAS hits identified by the 449 

COVID-19 Host Genetics Initiative (listed at https://www.covid19hg.org/publications/) do not 450 

overlap with the 42 CoV-VIPs selected in East Asia. We note however that we do not 451 

necessarily expect the strongest GWAS hits in Europe to be strong hits in other populations. In 452 

addition, although adaptation implies a functional genetic effect, a genetic effect does not 453 

necessarily mean it has adaptive potential. The lack of overlap with the strongest COVID-19 454 

Host Genetics Initiative hits is therefore not necessarily very surprising. It also does not take 455 

away the fact that we found an enrichment in stronger GWAS hits on average at CoV-VIPs and 456 

especially at selected CoV-VIPs. 457 

Selected CoV-VIP genes include multiple known drug targets 458 

Our analyses suggest that the 42 CoV-VIPs identified as putative targets of an ancient 459 

coronavirus (or another virus using similar host interactions) epidemic might play a functional 460 

role in SARS-CoV-2 etiology in modern human populations. We find that four of these genes 461 

(SMAD3, IMPDH2, PPIB, GPX1) are targets of eleven drugs being currently used or 462 

investigated in clinical trials to mitigate COVID-19 symptoms (Methods). While this number is 463 

not higher than expected when compared to other CoV-VIPs (hypergeometric test P>0.05), we 464 

note that most of the 42 genes identified here have yet to be the focus of clinical trials for SARS-465 

CoV-2-related drugs. In addition to the four selected CoV-VIP genes targeted by coronavirus-466 

specific drugs, five additional selected CoV-VIPs are targeted by multiple drugs to treat a variety 467 

of non-coronavirus pathologies (Table S7). This raises the possibility that such drugs could be 468 

repurposed for therapeutic use in the current SARS-CoV-2 pandemic. Indeed, an additional six 469 

of the 42 selected CoV-VIPs have been identified by (Finan et al., 2017) as part of the 470 

“druggable genome” (Table S7). 471 
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Discussion 472 

By scanning 26 diverse human populations from five continental regions for evidence of strong 473 

selection acting on genes that interact with coronavirus strains (CoV-VIPs), we identified a set of 474 

42 CoV-VIPs exhibiting a coordinated adaptive response that likely emerged more than 20,000 475 

years ago (Figure 2). This pattern was unique to the ancestors of East Asian populations (as 476 

classified by the 1,000 Genomes, including South East Asia with the Kinh in Vietnam), being 477 

absent from any of the 21 non East-Asian human populations tested here. By using ARG 478 

methods to reconstruct the trajectories of selected alleles, we show that this selection pressure 479 

produced a strong response across the 42 CoV-VIP genes that gradually waned and resulted in 480 

the selected loci plateauing at intermediate frequencies. Further, we demonstrate that this 481 

adaptive response is likely the outcome of a multigenerational viral epidemic, as attested by the 482 

clustering of putatively selected loci around variants that regulate tissues known to exhibit 483 

COVID-19-related pathologies, and the enrichment of variants associated with SARS-CoV-2 484 

susceptibility and severity, as well as anti- and proviral functions, amongst the 42 CoV-VIP 485 

genes selected starting around 900 generations ago. 486 

An important limitation of our study is that some of our analyses rely upon comparative datasets 487 

that were generated in contemporary human populations that have different ancestries than the 488 

East Asian populations where the selected CoV-VIP genes were detected. In particular, both of 489 

the eQTL and GWAS datasets come from large studies that are primarily focused on 490 

contemporary populations from Europe, and none of the five European populations in our study 491 

exhibit the selection signals observed in the genomes of East Asians. Accordingly, more direct 492 

confirmation of the causal role of 42 CoV-VIP genes in COVID-19 etiology will require the 493 

appropriate GWAS to be conducted in East Asian populations. The detection of genetic 494 

associations amongst the 42 CoV-VIPs in a GWAS on contemporary East Asians would provide 495 

further evidence that one or more coronaviruses, or another virus using similar interactions, 496 

comprised the selection pressure that drove the observed adaptive response. Moreover, a high-497 

powered GWAS in East Asian populations would be required to identify the loci that currently 498 

impact individual variation in COVID-19 etiology in East Asian individuals. Because of these 499 

limitations, and because it would be extremely difficult to control for all the other factors that 500 

differ across the world (including socioeconomic factors), our results do not represent evidence 501 

for any difference in either increased or decreased genetic susceptibility in any human 502 

population.  503 
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Insights into ancient viral epidemics from modern human genomes 504 

A particularly salient feature of the adaptive response observed for the 42 CoV-VIPs is that 505 

selection appears to be acting continuously over a ~20,000 years period, with the caveat that 506 

the start of selection is complex to pinpoint as shown by the analysis of the selected alleles 507 

frequency trajectories (Figure 3). The activity of a viral pressure over such an extensive time 508 

period is not consistent with epidemics that started in recorded human history, which tend to be 509 

circumscribed to a few generations. A possible hypothesis is that the viral pressure remained 510 

present throughout the 20,000 year period, but was only initially strong enough to qualify as a 511 

full-blown pandemic in the commonly understood sense, before becoming less severe over time 512 

as a consequence of host adaptation and/or a reduction in virulence. As this manuscript was in 513 

the final stages of preparation, the first host-virus interactomes were published for SARS-CoV-1 514 

and MERS-CoV, which exhibit an extensive overlap with the SARS-CoV-2 interactome used in 515 

the present study (Gordon et al., 2020). This suggests that coronaviruses share a broad set of 516 

host proteins that they interact with, which should also apply to ancient coronaviruses. These 517 

patterns are consistent with one or more coronaviruses driving selection events in East Asian 518 

prehistory that produced the signals that we report here. That said, and as already mentioned, 519 

we cannot exclude that another, currently unknown type of viruses might have been 520 

responsible, that used the same interactions as coronaviruses with human proteins. The 521 

cumulated evidence in this study still clearly points towards an ancient viral selective pressure. 522 

Further validation of the historical trajectories of the causal mutations at selected genes is still 523 

needed, including more finely resolved temporal and geographic patterns that could be derived 524 

from ancient DNA sampled from across East Asia that span the human occupation of this 525 

region; however, the requisite ancient samples are lacking at the moment. Nonetheless, we 526 

note the geographic origin of several modern outbreaks of coronaviruses in East Asia, point to 527 

East Asia being a likely location where these ancient populations came into contact with the 528 

virus. Given that multiple recently recorded coronavirus outbreaks have been traced to 529 

zoonoses (direct or indirect with other animal intermediates) from East Asian bats (Wong et al., 530 

2019), our results suggest that East Asia might have also been a natural range for coronavirus 531 

reservoir species during the last 25,000 years. 532 

Applied evolutionary medicine: using evolutionary information to combat COVID-19 533 

The net result of the ancient selection patterns on the CoV-VIPs in ancient human populations is 534 

the creation of genetic differences amongst individuals now living in East Asia, and between 535 
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East Asians and populations distributed across the rest of the world. As we demonstrate in this 536 

study, this evolutionary genetic information can be exploited by statistical analyses to identify 537 

loci that are potentially involved in the epidemiology of modern diseases – COVID-19 in the 538 

present case. Such evolutionary information may ultimately assist in the development of future 539 

drugs and therapies, by complementing information obtained from more traditional 540 

epidemiological and biomedical research. For example, a recent study focusing on TMPRSS2 – 541 

a gene encoding for a transmembrane protein that plays a key role in SARS-CoV-2 infection – 542 

found that East Asian populations carry two protein coding variant that are correlated with low 543 

fatality rate for COVID-19 cases (Jeon et al., 2020). While such studies provide high quality 544 

information on a specific gene, the evolutionary approach adopted here is able to leverage 545 

evolutionary information embedded in modern genomes to identify candidate genomic regions 546 

of interest. This is similar to the information provided by GWAS – i.e. lists of variants or genes 547 

that are potentially associated with a particular trait or disease – though we note that the 548 

information provided by evolutionary analyses comes with an added understanding about the 549 

historical processes that created the underlying population genetic patterns. 550 

The current limitation shared by population genomic approaches such as GWAS and the 551 

evolutionary analyses presented here, is that they identify statistical associations, rather than 552 

causal links, between genomic regions and traits, thereby necessitating additional research to 553 

confirm causality. In addition to the various forms of empirical information that we provide here, 554 

further evidence of causal relationships between the CoV-VIPs and COVID-19 etiology could be 555 

obtained by examining which viral proteins the selected CoV-VIPs interact with, thus 556 

establishing the specific viral functions that are affected. As a preliminary observation, we find 557 

that the 35 of the 42 selected SARS-CoV-2 VIPs tend to interact with more viral proteins than 558 

expected by chance (13 instead of six expected, see SI). Such information will help establish 559 

genetic causality and will also improve our understanding of how hosts adapt in response to 560 

viruses. 561 

The ultimate confirmation of causality requires functional validation that the genes interact with 562 

the virus, or that drugs targeting these genes have a knock-on impact for the virus. Notably, 563 

several CoV-VIP genes are existing drug targets showing the functional importance of these 564 

particular loci (Table S7), several of which are currently being investigated or used to treat 565 

severe cases in the current COVID-19 pandemic. It remains to be established if the other genes 566 

we have identified in this study might also help guide drug repurposing efforts and provide a 567 

basis for future drug and therapeutic development to combat COVID-19 and related 568 
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pathologies. It also remains to be established if population-specific past adaptation, and the 569 

underlying selected changes at those genes, could imply different drug efficacies in different 570 

human populations.  571 

Conclusion 572 

By leveraging the evolutionary information contained in publicly available human genomic 573 

datasets, we were able to infer ancient viral epidemics impacting the ancestors of contemporary 574 

East Asian populations, which initially arose likely more than 20,000 years ago, resulting in 575 

coordinated adaptive changes across 42 genes. Importantly, our evolutionary genomic analyses 576 

have identified several new candidate genes that might benefit current efforts to combat COVID-577 

19, either by providing novel drug targets or by repurposing currently available drugs that target 578 

these candidate genes (Tables S4 & S6). More broadly, our findings highlight the utility of 579 

thinking about the possible contribution of evolutionary genomic approaches into standard 580 

medical research protocols. Indeed, by revealing the identity of our ancient pathogenic foes, 581 

evolutionary genomic methods may ultimately improve our ability to predict – and thus prevent – 582 

the epidemics of the future. 583 

 584 

 585 

 586 

 587 
 588 
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Methods 589 

Important note: for convenience, the 42 CoV-VIPs that we infer to have started coming 590 

under selection around 900 generations ago are called peak-VIPs in the Methods. 591 

Key resources table 592 

 593 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Deposited Data 

1000 Genome Project - Phase 3 (1000 Genomes Project 
Consortium, 2015) 

ftp://ftp.1000genomes.ebi.ac.
uk/vol1/ftp/release/20130502/  

VIPs –this manuscript –Table S1 

Relate-estimated coalescence 
rates, allele ages and selection 
P-values for the 1000GP 

(Speidel et al., 2019) https://zenodo.org/record/323
4689  

GTEx expression (GTEx Project, 2017) https://gtexportal.org/home/d
atasets  

Protein-protein interactions 

(IntAct) 

(Luisi et al., 2015) https://www.ebi.ac.uk/intact  

The density of conserved 

segments (PhastCons) 

(Siepel et al., 2005) http://hgdownload.cse.ucsc.e
du/goldenPath/hg19/phastCo
ns46way/  

The density of regulatory 

elements 

– http://hgdownload.soe.ucsc.e

du/goldenPath/hg19/encodeD

CC/wgEncodeRegDnaseClus

tered 

The recombination rate (Hinch et al., 2011) https://www.well.ox.ac.uk/~an

jali/AAmap/  

Software and Algorithms 
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selscan (compute nSL). (Szpiech and Hernandez, 
2014) 

https://github.com/szpiech/sel

scan 

hapbin (compute iHS) (Maclean et al., 2015) https://github.com/evotools/h

apbin 

Gene Set Enrichment Pipeline (Enard and Petrov, 2020) https://github.com/DavidPierr
eEnard/Gene_Set_Enrichme
nt_Pipeline  

Relate (Speidel et al., 2019) https://myersgroup.github.io/r

elate/ 

CLUES (Stern et al., 2019) https://github.com/35ajstern/c

lues 

iSAFE (Akbari et al., 2018) https://github.com/alek0991/i

SAFE 

 594 

Coronavirus VIPs 595 

We used a dataset of 5,291 VIPs (Table S1). Of these, 1,920 of these VIPs are high confidence 596 

VIPs identified by low-throughput molecular methods, while the remaining VIPs were identified 597 

by diverse high-throughput mass-spectrometry studies. For a more detailed description of the 598 

VIPs dataset, please refer to SI: Host adaptation is expected at VIPs. 599 

Genomes and sweeps summary statistics 600 

To detect signatures of adaptation in various human populations, we used the 1,000 Genome 601 

Project phase 3 dataset which provides chromosome level phased data for 26 distinct human 602 

populations representing all major continental groups (1000 Genomes Project Consortium, 603 

2015). To measure nSL separately in each of the 26 populations, we used the selscan software 604 

available at https://github.com/szpiech/selscan (Szpiech and Hernandez, 2014). To measure 605 

iHS, we used the hapbin software available at https://github.com/evotools/hapbin (Maclean et 606 

al., 2015). 607 
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Ranking of sweep signals at protein-coding genes and varying window sizes 608 

To detect sweep enrichments at CoV-VIPs, we first order, separately in each of the 26 1,000 609 

Genomes populations, human Ensembl (Cunningham et al., 2019) (version 83) protein-coding 610 

genes according to the intensity of the sweep signals at each gene. As a proxy for the intensity 611 

of these signals, we use the average of either iHS or nSL across all the SNPs with iHS or nSL 612 

values within a window of fixed size, centered at the genomic center of genes, halfway between 613 

the most upstream transcription start site and the most downstream transcription end site. We 614 

then rank the genes according to the average iHS or nSL (more precisely their absolute values) 615 

in these windows. We get six rankings for six different fixed window sizes: 50kb, 100kb, 200kb, 616 

500kb, 1,000kb and 2,000kb. We do this to account for the variable size of sweeps of different 617 

strengths. We then estimate the sweep enrichment at CoV-VIPs compared to controls over all 618 

these different window sizes considered together, or at specific sizes, as described below and in 619 

Enard & Petrov (Enard and Petrov, 2020). 620 

Estimating the whole ranking curve enrichment at CoV-VIPs and its statistical 621 

significance 622 

To estimate a sweep enrichment in a set of genes, a typical approach is to use the outlier 623 

approach to select, for example, the top 1% of genes with the most extreme signals. Here we 624 

use a previously described approach to estimate a sweep enrichment while relaxing the 625 

requirement to identify a single top set of genes. Instead of, for example, only estimating an 626 

enrichment in the top 100 genes with the strongest sweep signals, we estimate the enrichment 627 

over a wide range of top X genes, where X is allowed to vary from the top 10,000 to the top 10 628 

with many intermediate values. This creates an enrichment curve as in Figure 1. Figure 1 shows 629 

the estimated relative fold enrichments at CoV-VIPs compared to controls, from the top 1,000 to 630 

the top 10 nSL. The statistical significance of the whole enrichment curve can then be estimated 631 

by using block-randomized genomes, as described in Enard & Petrov (Enard and Petrov, 2020). 632 

In brief, block-randomized genomes make it possible to generate a large number of random 633 

whole enrichment curves while maintaining the same level of clustering of genes in the same 634 

candidate sweeps as in the real genome, which effectively controls for gene clustering. 635 

Comparing the real whole enrichment curve to the random ones then makes it possible to 636 

estimate an unbiased false-positive risk (also known as False Discovery Rate in the context of 637 

multiple testing) for the observed whole enrichment curve at CoV-VIPs. A single false positive 638 

risk can be estimated for not just one curve but by summing over multiple curves combined, 639 

thus making it possible to estimate a single false positive risk over any arbitrary numbers of rank 640 
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thresholds, window sizes, summary statistics, and populations. For instance, we estimate the 641 

false-positive enrichment risk of P=2.10-4 at CoV-VIPs for rank threshold from the top 10,000 to 642 

top 10, over six window sizes, for the five East Asian populations in the 1,000 Genomes data, 643 

and for both nSL and iHS, all considered together at once. This makes our approach more 644 

versatile and sensitive to selection signals ranging from a few very strong sweeps, to many, 645 

more moderately polygenic hitchhiking signals. The entire pipeline to estimate false-positive 646 

risks with block-randomized genomes is available at 647 

https://github.com/DavidPierreEnard/Gene_Set_Enrichment_Pipeline (Enard and Petrov, 2020). 648 

Building sets of controls matching for confounding factors 649 

To estimate a sweep enrichment at CoV-VIPs, we compare CoV-VIPs with random control sets 650 

of genes selected far enough (>500kb) from CoV-VIPs that they are unlikely to overlap the 651 

same large sweeps. We do not compare CoV-VIPs with completely random sets of control 652 

genes. Instead, we use a previously described bootstrap test to build random control sets of 653 

genes that match CoV-VIPs for a number of potential confounding factors that might explain a 654 

sweep enrichment, rather than interactions with viruses. The bootstrap test has been described 655 

in detail (Enard and Petrov, 2020), and is available at 656 

https://github.com/DavidPierreEnard/Gene_Set_Enrichment_Pipeline. 657 

We include 11 different potential confounding factors in the bootstrap test: 658 

- average GTEx expression in 53 GTEx V6 tissues. 659 

- GTEx expression in lymphocytes. 660 

- GTEx expression in testis. 661 

- the number of protein-protein interactions from the Intact database, curated by Luisi et al. 662 

(Luisi et al., 2015). 663 

- the Ensembl (v83) coding sequence density in a 50kb window centered on each gene. 664 

- the density of conserved segments identified by PhastCons  (Siepel et al., 2005) 665 

(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/phastCons46way/). 666 

- the density of regulatory elements, estimated by the density of Encode DNase I V3 Clusters 667 

(http://hgdownload.soe.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegDnaseClustered/) 668 

in a 50kb window centered on each gene. 669 

- the recombination rate in a 200kb window centered on each gene (Hinch et al., 2011). 670 

- the GC content in a 50kb window centered on each gene. 671 
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- the number of bacteria each gene interacts with, according to the Intact database (as of June 672 

2019; https://www.ebi.ac.uk/intact/). 673 

- the proportion of genes that are immune genes according to Gene Ontology annotations 674 

GO:0006952 (defense response), GO:0006955 (immune response), and GO:0002376 (immune 675 

system process) as of May 2020.  676 

Estimating adaptation start times at specific genes with Relate 677 

As times of emergence of adaptive mutations, we use the publicly available estimates from 678 

Relate (https://myersgroup.github.io/relate/). Relate estimates mutation emergence times while 679 

controlling for fluctuations of population size over time, based on the coalescence rates it 680 

reconstructs after inferring ancestral recombination graphs at the scale of the whole genome 681 

(Speidel et al., 2019). Relate provides two times of emergence of mutations, one low estimate 682 

(less generations ago), and one high estimate (more generations ago). The low time estimate 683 

corresponds to the time when Relate estimates an elevated probability that the frequency of the 684 

mutation is different from zero. The high time estimate corresponds to the time when Relate 685 

estimates that the probability is not too small that the frequency of the mutation is different from 686 

zero. For our purpose of estimating when selection started, the low time estimate is the best 687 

suited, because it provides an estimate of when the frequency of a selected mutation was 688 

already high enough to distinguish from zero, for those mutations where selection started from a 689 

very low frequency. For cases where selection started with standing genetic variants that were 690 

already distinguishable from zero, the Relate low time estimates for the emergence of mutations 691 

do not provide a good proxy for when selection actually started. Thus, if we were able to 692 

estimate when selection started for standing genetic variants, we might be able to observe an 693 

even stronger peak than the one we see when just relying on those variants where selection 694 

started from low frequencies.  695 

Using the low Relate time estimates is also justified due to the fact that the sweep establishment 696 

phase can take very variable amounts of time before the start of the sweep exponential phase. 697 

During the establishment phase, selected alleles are still mostly governed by drift which makes 698 

pinpointing the actual starting time of selection difficult. In this context, the low Relate time 699 

estimates provide an estimate of the time when the selected alleles were no longer at very low 700 

frequencies not statistically different from zero, and closer to entering the exponential phase, 701 

which provides a more certain time estimate for when selection started for certain. 702 
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An important step is then to choose at each CoV-VIP locus, and all the other control loci, which 703 

Relate mutation to use to get a single time estimate for each locus. Note that here we make an 704 

assumption that each locus has experienced only one single adaptive event. Given our finding 705 

that iSAFE peaks at CoV-VIPs are much closer to GTEx V8 eQTLs than expected by chance, it 706 

is likely that the selected adaptive mutations are regulatory mutations at, or close to annotated 707 

eQTLs for a specific gene. They are not necessarily exactly located at eQTLs, because current 708 

eQTLs annotations may still be incomplete, and in our case we use eQTLs identified in GTEx 709 

V8 using mostly European individuals, even though we analyse selection signals in East Asian 710 

populations. Because of these limitations, we use the Relate estimated time at the mutation 711 

where Relate estimates the lowest positive selection p-value within 50kb windows centered on 712 

eQTLs. We also only consider variants with a minor allele frequency greater than 20%, given 713 

the signals detected by iHS and nSL that only have some power to detect incomplete sweeps 714 

above 20% frequencies (Ferrer-Admetlla et al., 2014; Voight et al., 2006). This also excludes a 715 

potential risk of confounding by low frequency neutral or weakly deleterious variants, that can 716 

show selection-like patterns when their only way to escape removal early on is through a 717 

chance, rapid frequency increase that can look like selection. The Relate selection test is based 718 

on faster than expected coalescence rates given the population size at any given time, and its 719 

results are publicly available at https://myersgroup.github.io/relate/. Note that the mutation with 720 

the lowest Relate p-value does not always overlap with an iSAFE peak (Figure S5), which is not 721 

entirely surprising if the haplotype signals exploited by both Relate and iSAFE partly 722 

deteriorated due to recombination since the time selection at CoV-VIPs was strong (Figures 3 723 

and 5). Both of these methods are indeed designed to locate the selected variant right after, or 724 

during, active selection. 725 

Because we work with five different East Asian populations, we more specifically select the 726 

variant with the lowest Relate selection test p-value on average across all the five East Asian 727 

populations. Then, we also use the corresponding average low Relate mutation time estimate 728 

across the five East Asian populations. We do not attempt to estimate the selection time and p-729 

value by considering all 1,000 Genomes East Asian individuals tested together by Relate, 730 

because then the Relate selection test is at a greater risk of being confounded by population 731 

structure. Finally, we only consider CoV-VIPs and other control genes with an average Relate 732 

selection test p-value lower than 10-3, to make sure that we indeed use estimated times at 733 

selected variants. 734 
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The peak significance test 735 

To test if the peak of Relate time estimates around 900 generations ago at CoV-VIPs (Figure 2) 736 

is expected simply by chance or not, we designed a peak significance test. The test compares 737 

the peak at CoV-VIPs, with the top peaks obtained when repeatedly randomly sampling sets of 738 

genes. We first identify the most prominent peak at CoV-VIPs by visual inspection of the pink 739 

distribution of Relate times for CoV-VIPs compared to the blue distribution of Relate times for all 740 

protein-coding genes with an estimated Relate time (Figure 2). To build these distributions, top 741 

Relate selected mutations shared between multiple neighboring genes (CoV-VIPs or controls) 742 

are counted only once, to avoid a confounding effect of gene clustering (152 selected variants at 743 

CoV-VIPs, 1771 selected variants for all protein coding genes). The peak around 900 744 

generations ago (870 generations more exactly) spans approximately 200 generations, where 745 

the pink distribution is clearly above the blue one. We then use a 200 generations-wide window, 746 

sliding every generation from 0 to 6,000 generations to verify the peak more rigorously. Sliding 747 

one generation after another, each time we count the difference between the number of Relate 748 

selected variants at CoV-VIPs that fall in the sliding 200 generations window, and the number of 749 

Relate selected variants at all other genes that are not CoV-VIPs, weighted by the percentage 750 

of variants found at CoV-VIPs, to correct for the different size of the two sets of variants. Using 751 

this sliding window approach, the top of the peak is found at 870 generations, with a difference 752 

of 19.5 additional Relate selected variants between 770 and 970 (870 plus or minus 100) at 753 

CoV-VIPs compared to the null expectation. 754 

We then repeat the sliding of a 200 generations window to identify the maximum peak and 755 

measure the same difference, but this time for random sets of Relate selected variants of the 756 

same size (152 selected variants out of the 1,771 selected variants). To estimate p-values, we 757 

then compare the actual observed difference with the distribution of differences generated with 758 

one million random samples. 759 

As mentioned in the Results, one potential issue is that we run the peak significance test after 760 

we already know that CoV-VIPs are enriched for iHS and nSL top sweeps, and especially 761 

enriched for nSL top sweeps. This enrichment may skew the null expectation for the distribution 762 

of Relate times at CoV-VIPs. In other words, there is a risk that any set of genes with the same 763 

sweep enrichment might exhibit the same peak as CoV-VIP. As a result, comparing CoV-VIPs 764 

with randomly chosen non-CoV-VIPs may not be appropriate. To test this, we repeat the peak 765 

significance test, but this time comparing the peak at CoV-VIPs with the peaks at random sets 766 

of non-CoV-VIPs that we build to have the same distribution of nSL ranks as CoV-VIPs. To do 767 
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this, we define nSL bins between ranks 1 and the highest rank with a rank step of 100 between 768 

each bin, and we count how many Relate selected variants fall in each bin (each gene has one 769 

nSL rank and one Relate selected variant). To build the random set, we then fill each of the 100 770 

bins with the same number of random non-CoV-VIPs, as long as their nSL rank falls within that 771 

bin. We use the average nSL rank over the five East Asian populations, and the lower 772 

population-averaged rank of either 1 Mb or 2Mb window sizes (where we observe the strongest 773 

enrichment at CoV-VIPs, see Results). The results of the peak significance test are unchanged 774 

when using the matching nSL distribution (peak significance test P=1.10-4 vs. P=2.3.10-4 775 

without matching nSL distribution).  776 

In further agreement with the fact that the sweep enrichment does not confound the peak 777 

significance test, the peak at CoV-VIPs stands out more when repeating the peak significance 778 

test using a smaller nSL top rank limit (Figure S6). In this case, we compare sets of CoV-VIPs 779 

and sets of controls both enriched in stronger sweep signals. Thus, if stronger sweep signals at 780 

CoV-VIPs biased the peak significance test, we would expect the peak to fade away when 781 

comparing only CoV-VIPs and controls both with stronger nSL signals. Conversely, we observe 782 

that half of the CoV-VIPs with the weaker nSL signals (population-averaged nSL rank higher 783 

than 7,200 for both 1Mb and 2Mb windows) do not show a significant peak (peak significance 784 

test P=0.53). 785 

The iSAFE peaks/eQTL proximity test 786 

Adaptation in the human genome was likely mostly regulatory adaptation through gene 787 

expression changes (Enard et al., 2014; Kudaravalli et al., 2009; Nédélec et al., 2016; Quach et 788 

al., 2016). To test if positive selection at CoV-VIPs likely involved regulatory changes, we ask 789 

whether the signals of adaptation around CoV-VIPs are localized closer than expected by 790 

chance to GTEx eQTLs that affect the expression of CoV-VIPs in present human populations. 791 

Indeed, the genomic regions at or close to CoV-VIP GTEx eQTLs are likely enriched for CoV-792 

VIP regulatory elements, and therefore the most likely place to find CoV-VIP-related adaptations 793 

in the genome. To localize where adaptation occurred, we use the iSAFE method that was 794 

specifically designed for this purpose (Akbari et al., 2018). iSAFE scans the genome and 795 

estimates a score that increases together with proximity to the actual selected mutation. The 796 

higher the score, the higher the odds that the scored variant is itself the selected one, or close 797 

to the selected one. An important caveat is that iSAFE is designed to localize where selection 798 

happened right after it happened, or as selection is still ongoing. In our case, we have evidence 799 
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that selection was strong at CoV-VIPs only more than 500 generations (~14,000 years) ago, 800 

and then much weaker more recently (Figure 5). This could be an issue, because we expect 801 

that recombination events that occurred after the strong selection might have deteriorated the 802 

iSAFE signal that relies on haplotype structure. This is because recombination mixes together 803 

the haplotypes that hitchhiked with the selected mutation, with those that did not. In line with 804 

this, we often do not observe simple, clean iSAFE score peaks, but instead, iSAFE score 805 

plateaus and more rugged peaks (Figure S5). For this reason, we designed an approach to not 806 

only identify the top of simple iSAFE peaks, but also more rugged peaks or plateaus. First, to 807 

measure iSAFE scores, we combine all the haplotypes from the five East Asian populations 808 

together as input, since we found that the selection signal at CoV-VIPs is common to all these 809 

populations (iSAFE parameters: --IgnoreGaps --MaxRegionSize 250000000 --window 300 --810 

step 100 --MaxFreq .95 --MaxRank 15). We then use a 500kb window sliding every 10kb to 811 

identify the highest local iSAFE value in the 500kb window (Figure S8). Once we have the 812 

highest local iSAFE value and coordinate, we define a broader iSAFE peak as the region both 813 

upstream and downstream where the iSAFE values are still within 80% of the maximum value 814 

(Figure S8). This way, we can better annotate iSAFE plateaus and rugged peaks, and take into 815 

account the fact that they can span more than just a narrow local maximum (Figure S5). 816 

Once the local iSAFE peaks are identified, we can ask how close GTEx eQTLs are to these 817 

peaks compared to random expectations. We first measure the distance of each CoV-VIP GTEx 818 

eQTL to the closest iSAFE peak. To avoid redundancy, we merge eQTLs closer than 1kb to 819 

each other into one test eQTL at the closest, lower multiple of 1,000 genomic coordinates (for 820 

example 3,230 and 3,950 would both become 3,000). We then measure the average of the log 821 

of the distance between all CoV-VIPs and their closest iSAFE peak. We use the log (base 10) of 822 

the distance, because it matters if the eQTL/iSAFE peak distance is 100 bases instead of 823 

200kb, but it does not really matter if the distance is 200kb or 600kb, because the iSAFE peak 824 

at 300kb is likely not related to the eQTL more than the peak at 600kb. Once we have the 825 

average of log-distances, we compare it to its random expected distribution. To get this random 826 

distribution, we measure the log-distance between each CoV-VIP eQTL and the iSAFE peaks, 827 

but after shifting the iSAFE scores left or right by a random value between 1Mb and 2Mb (Figure 828 

S8; less, or no shift at all if this falls within telomeres or centromeres). We shift by at least 1Mb 829 

to make sure that we do not rebuild the original overlap of iSAFE peaks with eQTLs again and 830 

again (some iSAFE peaks, or more precisely rugged peaks and plateaus can be wide and 831 

include several hundred kilobases; see Figure S5). The random shifting effectively breaks the 832 
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relationship between eQTLs and iSAFE peaks, while maintaining the same overall eQTL and 833 

peak structure (and thus variance for the test). The random log-distance distribution then 834 

provides an overall random average log-distance to compare the observed average long-835 

distance with, as well as estimate a p-value. 836 

Then, to more specifically ask if lung eQTLs at CoV-VIPs or the eqTLs of other specific tissues 837 

are closer to iSAFE peaks than expected by chance, we can do the same but only using the 838 

eQTLs of that specific tissue. The analysis represented in figure 6 is however more complicated 839 

than just testing if CoV-VIP eQTLs for a specific tissue are closer to iSAFE peaks than expected 840 

by chance by randomly sliding iSAFE values. Instead, what we ask is whether the 42 peak-VIPs 841 

have eQTLs for a given tissue that are even closer to iSAFE peaks than the eQTLs of all CoV-842 

VIPs in general. To test this, for example with lung eQTLs, we first estimate how close lung 843 

eQTLs are to iSAFE peaks at peak-VIPs, compared to random expectations, by measuring the 844 

difference between the observed and the average random log-distance, just as described 845 

before. We then count the number of peak-VIPs with lung eQTLs (19 out of 25 peak-VIPs with 846 

GTEx eQTLs), and we randomly select the same number of any CoV-VIP (which may randomly 847 

include peak-VIPs) as long as the random set of CoV-VIPs has the same number of lung eQTLs 848 

(plus or minus 10%) as the set of peak VIPs with lung eQTLs (the same gene can have multiple 849 

eQTLs for one tissue). We make sure that the tested and the random sets have similar numbers 850 

of genes and eQTLs so that the test has the appropriate null variance. We then measure the 851 

difference between the observed log-distance, and the randomly expected average log-distance 852 

for the random set of CoV-VIPs, exactly the same way we did before for the actual set of peak-853 

VIPs. We then measure the ratio of the observed difference in log-distance between peak-VIPs 854 

and the random expectation after many random shiftings (1,000), divided by the average of the 855 

same difference measured over many random sets of CoV-VIPs. The final ratio tells us how 856 

much closer lung eQTLs are to iSAFE peaks at peak-VIPs compared to CoV-VIPs in general, 857 

and still takes the specific eQTLs and iSAFE peak structures at each locus into account, since 858 

we compare differences in log-distances expected while preserving the same eQTL and iSAFE 859 

peak structure (see above the description of the random coordinate shifting). One important last 860 

detail about the test is that because we already found that the 50% of loci with the lowest nSL 861 

signals do not show a peak of selection at CoV-VIPs around 900 generations ago (see Results), 862 

we do not use these loci in this test since any iSAFE peak there is much more likely to represent 863 

random noise, not actual selection locations, and thus likely to dilute genuine signals. Using this 864 

test, we find that lung and other tissues’ eQTLs at peak-VIPs are much closer to iSAFE peaks 865 
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than they are at CoV-VIPs in general. This test thus specifically tells that adaptation happened 866 

closer to lung eQTLs, specifically around 900 generations ago compared to other evolutionary 867 

times. By estimating the same ratio for 24 other tissues with at least 10 peak-VIPs with the 868 

specific tested tissue eQTLs, we can finally rank each tissue for its more pronounced 869 

involvement in adaptation ~900 generations ago, as done in figure 6. It is particularly interesting 870 

in this respect that the tissue with least evidence for being more involved in adaptation at that 871 

time more than other evolutionary times is spleen. Spleen indeed likely represents a good 872 

negative control as a tissue strongly enriched in immune cell types and likely to have evolved 873 

adaptively for most of evolution. 874 

UK Biobank GWAS analysis 875 

To compare the UK Biobank GWAS p-values at different loci, we assigned one p-value for each 876 

gene, either CoV-VIPs, peak-VIPs or other genes, even though each gene locus can have many 877 

variants with associated GWAS p-values. To assign just one single GWAS p-value to each 878 

gene, we selected the variant with the lowest p-value at or very close (<1kb) to GTEx eQTLs for 879 

a specific gene, in line with the fact that GWAS hits tend to overlap eQTLs (Hormozdiari et al., 880 

2016), and to remain consistent with the rest of our manuscript. We then compared the average 881 

p-value between different sets of genes using classic permutations (one billion iterations). 882 

Drug targets identification 883 

We queried the databases DGIdb (Cotto et al., 2017), and PanDrugs (Piñeiro-Yáñez et al., 884 

2018) for drugs targeting CoV-VIPs and peak-VIPs. For hits from PanDrugs we limited the 885 

results to only genes that are in direct interaction with the designated drug. Drugs targeting 886 

peak-VIPs are presented in Table S7. In addition, we present a list of peak-VIPs that are not 887 

currently drug targets, but have been previously identified in (Finan et al., 2017) as viable drug 888 

targets (druggable genome).  889 
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