Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

The impact of identity-by-descent on fitness and disease in natural and domesticated Canid populations

View ORCID ProfileJazlyn A. Mooney, Abigail Yohannes, View ORCID ProfileKirk E. Lohmueller
doi: https://doi.org/10.1101/2020.11.16.385443
Jazlyn A. Mooney
1Department of Human Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jazlyn A. Mooney
Abigail Yohannes
2Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kirk E. Lohmueller
1Department of Human Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
3Department of Ecology & Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kirk E. Lohmueller
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

Domestic dogs have experienced population bottlenecks, recent inbreeding, and strong artificial selection. These processes have simplified the genetic architecture of complex traits, allowed deleterious variation to persist, and increased both identity-by-descent (IBD) segments and runs of homozygosity (ROH). As such, dogs provide an excellent model for examining how these evolutionary processes influence disease. We assembled a dataset containing 4,414 breed dogs, 327 village dogs, and 380 wolves genotyped at 117,288 markers and phenotype data for clinical and morphological phenotypes. Breed dogs have an enrichment of IBD and ROH, relative to both village dogs and wolves and we use these patterns to show that breed dogs have experienced differing severities of bottlenecks in their recent past. We then found that ROH burden is associated with phenotypes in breed dogs, such as lymphoma. We next test the prediction that breeds with greater ROH have more disease alleles reported in Online Mendelian Inheritance in Animals (OMIA). Surprisingly, the number of causal variants identified correlates with the popularity of that breed rather than the ROH or IBD burden, suggesting an ascertainment bias in OMIA. Lastly, we use the distribution of ROH across the genome to identify genes with depletions of ROH as potential hotspots for inbreeding depression and find multiple exons where ROH are never observed. Our results suggest that inbreeding has played a large role in shaping genetic and phenotypic variation in dogs, and that there remains an excess of understudied breeds that can reveal new disease-causing variation.

Significance Statement Dogs and humans have coexisted together for thousands of years, but it was not until the Victorian Era that humans practiced selective breeding to produce the modern standards we see today. Strong artificial selection during the breed formation period has simplified the genetic architecture of complex traits and caused an enrichment of identity-by-descent (IBD) segments in the dog genome. This study demonstrates the value of IBD segments and utilizes them to infer the recent demography of canids, predict case-control status for complex traits, locate regions of the genome potentially linked to inbreeding depression, and to identify understudied breeds where there is potential to discover new disease-associated variants.

Competing Interest Statement

The authors have declared no competing interest.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.
Back to top
PreviousNext
Posted November 17, 2020.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
The impact of identity-by-descent on fitness and disease in natural and domesticated Canid populations
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
The impact of identity-by-descent on fitness and disease in natural and domesticated Canid populations
Jazlyn A. Mooney, Abigail Yohannes, Kirk E. Lohmueller
bioRxiv 2020.11.16.385443; doi: https://doi.org/10.1101/2020.11.16.385443
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
The impact of identity-by-descent on fitness and disease in natural and domesticated Canid populations
Jazlyn A. Mooney, Abigail Yohannes, Kirk E. Lohmueller
bioRxiv 2020.11.16.385443; doi: https://doi.org/10.1101/2020.11.16.385443

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Genetics
Subject Areas
All Articles
  • Animal Behavior and Cognition (4235)
  • Biochemistry (9136)
  • Bioengineering (6784)
  • Bioinformatics (24001)
  • Biophysics (12129)
  • Cancer Biology (9534)
  • Cell Biology (13778)
  • Clinical Trials (138)
  • Developmental Biology (7636)
  • Ecology (11702)
  • Epidemiology (2066)
  • Evolutionary Biology (15513)
  • Genetics (10644)
  • Genomics (14326)
  • Immunology (9483)
  • Microbiology (22840)
  • Molecular Biology (9090)
  • Neuroscience (48995)
  • Paleontology (355)
  • Pathology (1482)
  • Pharmacology and Toxicology (2570)
  • Physiology (3846)
  • Plant Biology (8331)
  • Scientific Communication and Education (1471)
  • Synthetic Biology (2296)
  • Systems Biology (6192)
  • Zoology (1301)