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Abstract 24 

Understanding the relationship between natural selection and phenotypic 25 

variation has been a long-standing challenge in human population genetics. With the 26 

emergence of biobank-scale datasets, along with new statistical metrics to approximate 27 

strength of purifying selection at the variant level, it is now possible to correlate a proxy 28 

of individual relative fitness with a range of medical phenotypes. We calculated a per-29 

individual deleterious load score by summing the total number of derived alleles per 30 

individual after incorporating a weight that approximates strength of purifying selection. 31 

We assessed four methods for the weight, including GERP, phyloP, CADD, and fitcons. 32 

By quantitatively tracking each of these scores with the site frequency spectrum, we 33 

identified phyloP as the most appropriate weight. The phyloP-weighted load score was 34 

then calculated across 15,129,142 variants in 335,161 individuals from the UK Biobank 35 

and tested for association on 1,380 medical phenotypes. After accounting for multiple 36 

test correction, we observed a strong association of the load score amongst coding 37 

sites only on 27 traits including body mass, adiposity and metabolic rate. We further 38 

observed that the association signals were driven by common variants (derived allele 39 

frequency > 5%) with high phyloP score (phyloP > 2). Finally, through permutation 40 

analyses, we showed that the load score amongst coding sites had an excess of 41 

nominally significant associations on many medical phenotypes. These results suggest 42 

a broad impact of deleterious load on medical phenotypes and highlight the deleterious 43 

load score as a tool to disentangle the complex relationship between natural selection 44 

and medical phenotypes.  45 

 46 
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Author summary 47 

 This study aims to augment our understanding between the complex relation 48 

between natural selection and human phenotypic variation. We developed a load score 49 

to approximate the relative fitness of an individual and correlate it with a set of medical 50 

phenotypes. Association tests between the load score amongst coding sites and 1,380 51 

phenotypes in a sample of 335,161 individuals from the UK Biobank showed a strong 52 

association with 27 traits including body mass, adiposity and metabolic rate. 53 

Furthermore, an excess of nominal associations at suggestive levels was observed 54 

between the load score amongst coding sites and medical phenotypes than would be 55 

expected under a null model. These results suggest that the aggregate effect of 56 

deleterious mutations as measured by the load score has a broad effect on human 57 

phenotypes. 58 

 59 

Introduction 60 

One of the primary questions of interest in the study of human population 61 

genetics is the relation between natural selection and the evolution of human 62 

phenotypes, from quantitative traits to complex disease.  With the emergence of 63 

biobank-scale datasets, along with new statistical metrics to approximate strength of 64 

purifying selection at the variant level, it is now possible to both estimate the net impact 65 

of deleterious mutations for each individual in a large population sample and correlate it 66 

to a range of medical phenotypes exhibited by that individual. This provides an 67 

opportunity to simultaneously study the genetics of individuals within a relatively 68 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 5, 2021. ; https://doi.org/10.1101/2020.11.16.385724doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.16.385724
http://creativecommons.org/licenses/by-nc-nd/4.0/


homogenous population and the potential impact of natural selection on annotated 69 

phenotypes.  70 

A large body of literature exists on evolution and estimation of the deleterious 71 

mutation load from human population samples, with particular emphasis on cross-72 

ancestry comparisons [1-6]. Rather than a comparison between human populations, we 73 

aimed to assess the distribution of deleterious loads—the sum of all purifying selective 74 

effects in each individual’s genome—within a single human population. While the 75 

mutation load generally represents a population-wide average of this quantity, we 76 

estimated the same object for each individual in the population to produce a “load 77 

score” that counts the net effect of deleterious variation in each individual’s genome, a 78 

count of derived alleles weighted by an estimate of the selective disadvantage for each 79 

variant. When compared to the mean of the population, this per-individual load score 80 

can be interpreted as a component of the relative fitness of each individual.   81 

 In this study, we aim to augment our understanding of the relation between 82 

natural selection and human phenotypes by focusing on the net impact of purifying 83 

selection on the fitness of each individual, and correlating this quantity to the set of 84 

phenotypes acting on that individual.  Previously this has been difficult for two reasons: 85 

first, we do not have a direct measure of the fitness of individual humans that can be 86 

estimated from genetic information, and second, there were no large databases 87 

available to quantify the wide range of phenotypes possessed by each individual.  88 

Biobank-scale datasets that contain both individual genotypes and phenotypes, such as 89 

the UK Biobank [7, 8], finally provides access to both large-scale phenotypic 90 

descriptions of each individual and some part of their genetic sequence.   91 
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We ventured to apply computational tools that predict aspects of purifying 92 

selection for individual alleles to published genotypes of 335,161 white British 93 

individuals from the UK Biobank to estimate the fitness impact of derived variation 94 

present in each imputed genome in this sample. Most of the variation in the sample 95 

exists at appreciable frequencies, and is likely under relatively small selective 96 

disadvantage, but in aggregate the fitness impact can be substantial. Using this 97 

representation of each individual’s relative fitness, we probed correlations between the 98 

impact of common deleterious variation in an individual’s genome and their personal 99 

phenotypic makeup.  This provides a different lens into questions about the relation 100 

between fitness vis-à-vis mutation load and human traits by looking at a per-individual 101 

measure correlated to fitness, rather than focusing on the distribution of selective effects 102 

in the population as a whole.  This allows us to ask which phenotypes, if any, are highly 103 

correlated to the aggregation of deleterious variation, and probe the relation between 104 

the ensemble of phenotypes and fitness loss due to common variation in individuals.  105 

 106 

Results 107 

Comparison of four deleteriousness prediction scoring methods 108 

The additive effects of deleterious variation can be quantified in aggregate by a 109 

genome-wide score representing the net action of purifying selection on an individual 110 

under the assumption that effects of individual variants can be summed additively. 111 

Multiple methods have been developed to characterize purifying selection, including 112 

methods that predict deleterious selection acting on the level of a single allele (fitCons 113 

[9], FATHMM-MKL [10], deltaSVM [11], Funseq2 [12]), methods that measure 114 
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evolutionary conservation (phyloP [13], phastCons [14], GERP++ [15], SiPhy [16]) and 115 

methods that predict the effect of an allele on molecular function (CADD [17], DANN 116 

[18], GenoCanyon [19], Eigen and EigenPC [20]). Although these scores are formulated 117 

as tests for strong selection or for molecular function, rather than as estimates of the 118 

strength of selection, they are also correlated to the strength of selection, and are often 119 

used as proxies for strength of selection [4, 21, 22]. In this study, we compared the 120 

predicted deleteriousness of alleles for four widely used scoring methods that 121 

approximate deleteriousness of a variant-- GERP++, phyloP, CADD, and fitCons-- with 122 

their effects on allelic frequency in human population genetic data to select the most 123 

appropriate measure for computation of the additive load.  124 

Under negative or purifying selection, natural selection acts to reduce the 125 

population frequency of deleterious mutations. This effect is more able to overcome 126 

genetic drift as the strength of selection increases. As a result, we expect to observe a 127 

higher number of rare alleles and a lower number of common alleles in regions of the 128 

genome that are under negative selection, relative to putatively neutral regions. This 129 

can be seen as a shift of the allele frequency spectrum (AFS) towards rare alleles, with 130 

a steeper slope of the AFS indicating stronger purifying selection. We evaluated the 131 

extent to which each scoring method captures the deleteriousness of an allele by 132 

grouping alleles by the scores provided by each method and measuring the slope of the 133 

resulting AFS. The more strongly a score is related to the strength of selection, the 134 

more marked the increase in slope will be for high-scoring alleles relative to lower 135 

scoring alleles.  136 

 137 
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Figure 1. Derived allele frequency spectra of different score categories for each deleteriousness 138 

prediction scoring method.  139 

For each scoring method, polymorphic sites are grouped into score intervals by the value of the score 140 

annotated at the sites. Each solid line represents derived allele frequency spectrum of polymorphic sites 141 

belonging to one score interval and three dashed lines represent derived allele frequency spectra of three 142 

control categories: synonymous (syn), missense (mis), and loss of function (LOF) variants. 143 

 144 

We evaluated this correlation using whole genome sequencing data from a non-145 

Finnish European population in the Genome Aggregation Database (gnomAD) [23]. For 146 

each scoring method, we grouped alleles by score and compared the non-normalized 147 

derived allele frequency spectra for each group (see Methods). Fig 1 plots the log of the 148 

derived allele frequency (DAF), and shows a consistent pattern across all scores: the 149 

higher the score, the steeper the slope of the log DAF (S1 Table). This indicates that, 150 

for all scores shown, higher scores are associated with sites under stronger negative 151 

selection, as expected. While all four scores show this pattern, CADD and phyloP show 152 

clearer separations between DAF spectra than fitCons and GERP++. In the case of 153 

fitCons, this underperformance is likely due to its incorporation of functional genomic 154 

signatures that may increase its performance at identifying functional regions, but 155 

detract from its performance at identifying sites under purifying selection. In the case of 156 

GERP++, the underperformance is more surprising, since GERP++ and phyloP are very 157 

similar methods. The difference in performance may be explained by differences in how 158 

the final scores computed by the two methods are defined, or by the fact that the scores 159 

were calculated using two different multiple sequence alignments: the phyloP scores 160 

were calculated from UCSC’s alignment of 100 vertebrate sequences generated using 161 
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the MultiZ method [24], while the GERP++ scores were calculated from the Ensembl 162 

alignment of 111 mammalian sequences generated using the EPO-Extended method 163 

[25]. For comparison, we also calculated DAF spectra for synonymous sites, missense 164 

sites, and loss of function sites (LOF). Based on this comparison, phyloP scores 165 

between 5 and 7.5 appear to be similarly deleterious to missense sites (nearly the same 166 

DAF slope) and phyloP scores greater than 7.5 appear to be under similar purifying 167 

selection to LOF sites. The equivalent numbers for CADD are 20 to 25 for missense and 168 

greater than 30 for LOF.  169 

To further compare between CADD and phyloP, we examined the DAF 170 

distribution for protein coding variants and noncoding variants separately. Both scores 171 

performed similarly for coding variants, but phyloP showed better separation in 172 

noncoding variants (S1 Fig). This is as expected, since CADD uses more features when 173 

scoring coding variants than noncoding variants, while the phyloP method is identical for 174 

coding and noncoding sites. For this reason, we concluded that phyloP has the most 175 

consistent relationship between score and strength of negative selection, and selected 176 

phyloP as our weight for our load score computation. 177 

 178 

Per-individual load scores in UK Biobank  179 

We calculated a per-individual deleterious load score by summing the total 180 

number of derived alleles per individual, weighting each derived allele by its phyloP 181 

score to account for the strength of purifying selection. We considered three load 182 

scores: a genome-wide load score, a coding-specific load score, and a non-coding-183 

specific load score. Each score was computed for 335,161 unrelated, white-British 184 
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ancestry individuals in the UK Biobank using 6,774,062 variants from imputed 185 

genotypes (95,850 coding and 6,678,212 non-coding) with positive phyloP scores 186 

(positive scores denote uniform purifying selection, while negative scores denote clade-187 

specific selection). The observed population distribution across all sampled individuals 188 

appear very close to normal for each of our three scores (Kolmogorov-Smirnov Tests P-189 

values = 0.32; 0.55; 0.20 for all variants, non-coding, and coding, respectively, Fig 2). 190 

This is the expected result if the phyloP scores of derived alleles are identically 191 

distributed across the entire population, due to the Central Limit Theorem. By contrast, if 192 

the white-British population contained distinct subpopulations with dramatically different 193 

distributions of phyloP scores among derived alleles, we would expect to see a sum of 194 

multiple normal distributions with different means, resulting in a skewed or multi-modal 195 

distribution. 196 

 197 

Figure 2. Distribution of load score. 198 

Histogram of three load scores computed from three sets of variants: coding variants (coding load score), 199 

non-coding variants (non-coding load score), and both coding and non-coding variants (genome-wide 200 

load score). Each load score was computed for 335,161 unrelated, white-British ancestry individuals. 201 

 202 

Significant association between load score of coding variants and 203 

anthropometric and metabolic traits 204 

To explore the overall effect of deleterious mutations on specific clinically 205 

measured phenotypes, we tested the association of each of the three load scores 206 

(genome-wide, coding and non-coding) with 1,380 traits, after adjusting for age, sex, 207 

genotyping chip, and assessment center. To account for potential confounders, we 208 
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further included a set of geographical and socioeconomic variables available in the UK 209 

Biobank data as additional covariates (S2 Table). We note that many of these variables 210 

are significantly associated with the load score but the effects are small. Nonetheless, 211 

careful consideration was taken to add these as covariates in our association tests (S2 212 

Table). 213 

We discovered no phenotype significantly associated with either the genome-214 

wide load score or non-coding load score (Bonferroni P value threshold = 1.2x10-5). 215 

However, 27 traits were significantly associated with the load score calculated from 216 

coding SNPs; these included body mass, metabolic rate, and several adiposity traits 217 

such as body mass index and waist circumference (Table 1). Some of these traits have 218 

been found under directional selection in contemporary populations [26-28].  219 

 220 

 221 
 222 
Table 1. Association between coding load score and 27 traits. 223 
 224 

Trait Sample size beta SE P-value 

Arm fat-free mass (right) 329238 -0.0073 0.0012 6.6110-10 

Arm fat-free mass (left) 329182 -0.0074 0.0012 7.9310-10 

Arm predicted mass (left) 329170 -0.0073 0.0012 1.1210-9 

Leg fat mass (left) 329295 -0.0090 0.0015 1.3910-9 

Basal metabolic rate 329326 -0.0074 0.0012 2.8310-9 

Arm predicted mass (right) 329235 -0.0069 0.0012 3.7610-9 

Weight 334221 -0.0098 0.0017 3.9810-9 

Whole body water mass 329333 -0.0068 0.0012 8.6810-9 

Leg fat mass (right) 329311 -0.0086 0.0015 1.0210-8 

Whole body fat-free mass 329306 -0.0067 0.0012 1.2410-8 

Whole body fat mass 328780 -0.0103 0.0018 1.8010-8 

Leg fat percentage (left) 329297 -0.0064 0.0011 2.6610-8 

Trunk fat-free mass 329057 -0.0065 0.0012 3.5510-8 

Trunk predicted mass 329019 -0.0064 0.0012 5.0710-8 

Trunk fat mass 329118 -0.0100 0.0019 1.2110-7 
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Leg predicted mass (right) 329303 -0.0063 0.0012 1.5410-7 

Leg fat-free mass (right) 329303 -0.0063 0.0012 1.9610-7 

Leg fat-free mass (left) 329280 -0.0062 0.0012 3.1810-7 

Leg predicted mass (left) 329275 -0.0062 0.0012 3.7710-7 

Leg fat percentage (right) 329316 -0.0058 0.0012 5.7410-7 

Arm fat mass (right) 329242 -0.0092 0.0018 6.3810-7 

Body mass index (BMI) 334097 -0.0092 0.0019 7.2510-7 

Arm fat mass (left) 329188 -0.0090 0.0018 1.1510-6 

Waist circumference 334612 -0.0080 0.0016 1.3510-6 

Body fat percentage 329134 -0.0066 0.0014 2.9810-6 

Hip circumference 334579 -0.0088 0.0019 3.2910-6 

Impedance of arm (left) 329313 0.0061 0.0013 5.2510-6 

SE: standard error 225 

Stratification by derived allele frequency showed that these association signals 226 

are more pronounced when limiting to variants that are common (DAF > 5%) but not 227 

close to fixation (DAF < 70%), while stratification by phyloP score shows that they are 228 

more pronounced when limiting to variants with higher phyloP scores (phyloP>2, S3 and 229 

S4 Tables). We therefore performed an additional stratification analysis by both DAF 230 

and phyloP score (S5 Table). We observed that the signals are mostly driven by 231 

common variants (5<=DAF<70%) with higher phyloP score (phyloP>2). This class of 232 

variants notably contributes a large fraction (mean: 0.38 and sd: 0.005 per individual) 233 

towards the per individual coding load score. This analysis necessarily excludes 234 

extremely rare alleles, which are not well captured by the process of genotyping and 235 

imputation. It is not clear how significant the aggregate contribution of these alleles to 236 

the per individual load score would be. 237 

To assess the effect of our weighting procedure, we calculated an unweighted 238 

load score, the per-individual mutation burden, that simply counts derived alleles with no 239 

reference to phyloP or other measures of selection.  When using this score, all 240 

significant association signals observed for the coding load score disappeared and no 241 
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significant association for genome-wide and non-coding unweighted score was detected 242 

(S2 Fig). We further tested the associations with burden scores while restricting to only 243 

rare variants (DAF < 5%) or only common variants (5% < DAF < 70%, S2 Fig), however 244 

no significant association was observed. This is likely due to the domination of the 245 

mutation burden by alleles under effectively no purifying selection, highlighting the need 246 

for a weighting scheme to identify correlations to the relative per-individual fitness. 247 

 To assess whether the observed significant associations are sensitive to 248 

reference bias, we included as a covariate the number of non-reference sites per 249 

individual in our association testing for the top results in Table 2 (S6 Table). Association 250 

results were very consistent, suggesting that reference bias is not likely a confounder. 251 

Similarly, associations between the phenotypes and load score remain significant when 252 

restricted to variants at which reference alleles are the same as predicted ancestral 253 

alleles (S7 Table). We also re-computed load scores using phyloPNH scores, which are 254 

phyloP scores calculated without human reference genome [4], and obtained similar but 255 

slightly less significant results, with all the 27 phenotypes yielded p-value < 6.13x10-4 256 

(S8 Table). 257 

 258 

Associations with coding load score are enriched for nominal associations with 259 

disease 260 

Phenome wide association test results showed that no single disease is significantly 261 

associated with the load score (all P > 0.05 after accounting for multiple tests using 262 

Bonferroni correction). However, rather than the load score having a strong effect on a 263 

single disease, we hypothesized that the load score may have subtle effects on many 264 
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diseases, leading to an excess of weak associations that do not individually reach 265 

statistical significance. To test this hypothesis, we compared the number of phenotypes 266 

nominally associated with the load score (p-value < 0.05 without multiple test correction) 267 

to a null distribution generated by random permutation of individual load score values 268 

(Methods).  For this analysis, we restricted to associations with clinical phenotypes 269 

defined by phecodes. Out of 539 phecodes, 46, 24, and 27 phecodes (S9 Table) were 270 

found to be nominally associated with coding load score, non-coding load score, and 271 

genome-wide load score respectively. The number of nominally significant associations 272 

for coding load score is significantly larger than the expected number under the null 273 

model (P=0.005), supporting this hypothesis (Fig 3). However, this analysis was not 274 

statistically significant for the genome-wide load score and the non-coding load score 275 

(P>0.05) (S3 Fig), suggesting that diseases are largely correlated to the effect of 276 

variants in coding regions. We repeated the permutation analysis for the unweighted 277 

burden score as negative controls. As expected, enrichment of week association 278 

between burden scores and diseases are not statistically significant (S4 Fig). 279 

 280 

Figure 3. Enrichment of clinical phenotypes nominally associated with coding load score. Null 281 

distribution of the number of clinical phenotypes weakly associated with coding load score was obtained 282 

from 2,000 permutations in total. For each permutation, coding load score was shuffled randomly among 283 

335,161 samples and the number of association was the count of phenotypes which yielded a p-value < 284 

0.05 in the association tests between permuted load score and 539 phecodes. Red dashed line indicates 285 

the observed number of clinical phenotypes nominally associated with coding load score (n = 46). 286 

 287 

Discussion 288 
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In this study, we have described a polygenic load score that estimates the deleterious 289 

load carried by an individual, and applied this score to 335,161 white British individuals 290 

from the UK Biobank. Our analysis produced two major results: First, while we found no 291 

significant associations between individual medical phenotypes and the genome-wide 292 

load score, we found that more phenotypes are nominally associated with the coding 293 

load score than would be expected under a null model (Figure 3). This suggests that the 294 

deleterious load has a broad effect on the human phenome, rather than being 295 

specifically associated with a small number of phenotypes. This is consistent with 296 

Fisher’s Geometric Model of fitness, which proposes that the fitness of a population is 297 

determined by overall phenotypic distance from a theoretical optimal point in a 298 

phenotype space that potentially encompasses the organism’s entire phenome [29, 30].  299 

Second, by restricting to protein coding variation, we found significant associations 300 

between the coding-only deleterious load score and a variety of adiposity phenotypes, 301 

along with other anthropometric phenotypes and phenotypes related to metabolic rate. 302 

This suggests that adiposity may be under polygenic selection driven by a large number 303 

of coding variants in humans. This is consistent with previous results obtained from the 304 

UK Biobank using an unrelated methodology [26]. We found no similar associations with 305 

the noncoding deleterious load score, which is in contrast to numerous studies finding 306 

significant genetic associations in noncoding regions, including associations with the 307 

same adiposity traits we found associated with our coding load score. Since our derived 308 

allele frequency spectrum analysis (Fig. 1) suggests that sites with higher phyloP scores 309 

are under purifying selection in noncoding regions as well as coding, the lack of 310 

significance in non-coding regions cannot be interpreted as a lack of purifying selection 311 
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in these regions or poor sensitivity to selection in these regions. It may instead indicate 312 

that selection acts on phenotype associations in noncoding regions in a different way 313 

from how it acts in coding regions, possibly due to the small effect size of individual 314 

noncoding variants. 315 

 316 

There are several limitations to our method. We computed the load score from 317 

imputed genotypes rather than sequenced whole genomes, which gives us little 318 

information about extremely rare variants in the population, masking potentially large 319 

contributions to the load from variants under the strongest selection. As a future topic of 320 

research, the same methodology can be applied to include rare variants, which would 321 

shed light on the relative contribution of common and rare variation to the phenotypic 322 

associations of load. Previous studies have shown that rare variation contributes 323 

substantially to differences in deleterious load between human populations, so we may 324 

expect it to have a significant impact on individual load in this context as well [1, 2]. 325 

Furthermore, the phyloP score used to estimate the deleteriousness of alleles measures 326 

only the likelihood that a site is evolving under constraint in vertebrates, and is not a 327 

direct estimate of the selective effect of a variant in humans. It is possible that the use of 328 

vertebrate-level conservation has reduced our ability to identify recent selection on 329 

human phenotypes, particularly those that are human specific. However, the fact that 330 

selection on adiposity traits was also detected by a method [26, 27] that does not rely 331 

on phyloP suggests that this result is not spurious. This feature of the phyloP score also 332 

makes it difficult to measure the effect of dominant or recessive selection, which may 333 

contain additional important insights. Finally, we did not incorporate any measure of 334 
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positive selection in the computation of the load score. Scores similar to phyloP that 335 

could be used to detect positive selection do exist, but they rely on measures of 336 

nucleotide diversity and haplotype structure within larger regions of the genome, and 337 

are difficult to apply to single nucleotides as would be required to incorporate them into 338 

this analysis [31]. Methods to detect positive selection in the human lineage on finer 339 

scales are an area of ongoing research, and such methods could be incorporated into 340 

this approach in the future. All these methodological constraints limit the range of 341 

variation we identify as contributing to an individual’s burden score, and this limitation 342 

may be biased with respect to trait associations. In particular, we might expect rare 343 

variation or positive selection to reveal a different set of trait associations than the ones 344 

we find here by investigating common variation under purifying selection. This could 345 

potentially expand the scope of associated phenotypes beyond adiposity traits, a 346 

possibility that is also supported by the presence of nominal associations with many 347 

phenotypes unrelated to adiposity (S9 Table). Nevertheless, we do expect common 348 

variation under purifying selection to underlie a large fraction of common disease 349 

phenotypes, and therefore to provide valuable insights about the action of natural 350 

selection in humans. 351 

One potentially exciting application for this approach is applying it to different 352 

populations to discover of population-specific insights into phenotypic associations with 353 

deleterious load. Since PhyloP scores can be calculated without any reference to 354 

specific human populations [4], there is no reason in principle that this method could not 355 

be applied to biobank data from other populations, given a sufficient number of 356 

samples. However, a few cautions are necessary. First, it is well known that 357 
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comparisons of genetic associations and polygenic risk are unreliable across different 358 

ancestries [32], that signals of polygenic selection can easily be confounded by 359 

population structure or admixture [33, 34], and that mutation load specifically differs 360 

substantially between populations based on their demographic history [1, 2]. This 361 

makes it difficult to compare load scores directly between individuals of different 362 

ancestry, and also would likely make it difficult to apply this approach to admixed 363 

populations or populations with heterogeneous ancestry. Second, the approach of 364 

genotyping and imputation is entirely dependent on the availability of appropriate 365 

genotyping arrays and imputation panels, neither of which is necessarily available for all 366 

populations. It will be essential to use sequencing data for any population that is not well 367 

represented in these resources. Finally, many traits are strongly influenced by social, 368 

cultural, and environmental factors which may differ dramatically across populations, 369 

resulting in differences between populations that are not necessarily related to natural 370 

selection in a straightforward way. This is certainly true of the adiposity traits we identify 371 

in this study. Results of such studies should therefore be interpreted with caution. 372 

The deleterious load score presented here provides a new approach to 373 

investigate the complex relationship between natural selection acting on individuals, 374 

individual medical phenotypes, and the human phenome at large. We expect that as the 375 

available biobank data continues to grow in size and scope, this method can be applied 376 

to larger and more diverse populations to gain additional insights into how load varies 377 

between different populations, possibly empowering population-specific medical 378 

discoveries with deleterious load. 379 

 380 
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Material and Methods 381 

The dependence of derived allele frequency on deleteriousness score 382 

We evaluated the dependence of derived allele frequency of single nucleotide 383 

polymorphisms (SNPs) discovered in the whole genome sequences of 7,509 non-384 

Finnish European individuals in the GnomAD data set [23] on each of the four candidate 385 

annotations for the presence of purifying selection: GERP++ [15], phyloP [13], CADD 386 

[17], and fitcons [9]. 88,060,485 SNPs with less than one percent of missing data were 387 

considered. Functional effects and deleterious scores at each SNP were annotated 388 

using Whole Genome Sequence Annotator (WGSA) v0.7 [35]. We used functional 389 

effects annotated by Variant Effect Predictor (VEP) and determined derived and 390 

ancestral allele status based on the six-way EPO (Enredo, Pecan, Ortheus) multiple 391 

alignments of primate species.  392 

For each deleteriousness score, we divided the SNPs into multiple groups with 393 

arbitrarily defined intervals based on the range of each score. The intervals used were: 394 

(0 ~ 0.2, 0.2 ~ 0.4, 0.4 ~ 0.6, 0.6 ~ 0.8) for fitcons, (-10 ~ -7.5, -7.5 ~ -5, -5 ~ -2.5, -2.5 ~ 395 

0, 0 ~ 2.5, 2.5 ~ 5, 5 ~ 7.5, 7.5 ~ 10) for GERP, (0 ~ 5, 5 ~ 10, 10 ~ 15, 15 ~ 20, 20 ~ 396 

25, 25 ~ 30, 30 ~ 35) for CADD, and (-5 ~ -2.5, -2.5 ~ 0, 0 ~ 2.5, 2.5 ~  5.0, 5.0 ~ 7.5, 397 

7.5~ 10) for phyloP. 398 

 399 

Load score calculation  400 

The load score of each individual was calculated by adding up the number 401 

(dosage in case of imputed SNPs) of derived alleles at each SNP, weighted by the 402 

phyloP score at that site, across the entire genome. Derived alleles were determined 403 
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based on the six-way EPO alignment, as described above. Since we are focusing on 404 

the effect of purifying selection, only SNPs with positive phyloP score (positive scores 405 

denote uniform purifying selection, while negative scores denote clade-specific 406 

selection) were included. In this paper, we computed three load scores using three 407 

different SNP sets: the coding load score summed only over coding variants, the non-408 

coding load score summed only over non-coding variants, and the genome-wide load 409 

score computed from both coding and non-coding variants. All load scores were 410 

computed using PRSice-2 software [36] under an additive model. Coding and 411 

noncoding variants were defined based on VEP annotation. 412 

 413 

Genotypic and phenotypic data  414 

The UK Biobank consists of genotype, phenotype, and demographic data of 415 

more than 500,000 individuals recruited across the United Kingdom. Individual 416 

genotypes were generated from either the Affymetrix Axiom UK Biobank array 417 

(~450,000 individuals) or the UK BiLEVE array (~50,000 individuals), each contains 418 

~0.9 million markers. Additional variants were then imputed using the Haplotype 419 

Reference Consortium (HRC) combined with the UK10K haplotype resource, with a 420 

total of ~96 million variants available in the latest released imputed data (version 3). To 421 

compute per-individual load scores, we restricted to variants with imputation quality 422 

INFO score >= 0.9. We excluded samples that were outliers in heterozygosity or 423 

missing rates, samples with putative sex chromosome aneuploidy, and samples with 424 

self-reported non-white British ancestry. We also excluded one individual from each pair 425 

of samples with relatedness up to the third degree. This produced a subsample of 426 
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335,161 individuals. All information used to exclude samples is included in the UK 427 

Biobank resource page.   428 

UK Biobank provides a wide range of medical phenotypes from base line 429 

assessment, biochemical assays, dietary questionnaire, and health records. In the 430 

present study, we focused on 2,419 phenotypes which had been selected for heritability 431 

estimation by the Neale group (http://www.nealelab.is/blog/2017/9/15/heritability-of-432 

2000-traits-and-disorders-in-the-uk-biobank). This subgroup covers phenotypes in most 433 

of the core categories, including early life and reproductive factors, family history, 434 

cognitive function, physical measures, lifestyle and health outcomes. 435 

 436 

Phenotype processing and association tests 437 

Among the 2,419 phenotypes considered in our analysis, 619 phenotypes are 438 

international classification of disease (ICD-10) codes from electric health records. We 439 

converted ICD codes (including ICD-9 and ICD-10 codes) into phecodes using Phecode 440 

Maps 1.2 [37, 38]. This resulted in 1,677 unique phecodes in total. Of these, 539 441 

phecodes with the number of cases greater than 500 were selected for phenome-wide 442 

association testing. 443 

The remaining 1,800 phenotypes (2,419 – 619 ICD codes) were pre-processed 444 

using PHESANT [39], a package designed to process phenotypes and run phenome 445 

scans in UK Biobank. The PHESANT pipeline loads each input phenotype as 446 

continuous, integer, or categorical based on the information in the UK Biobank data 447 

dictionary; preprocesses and re-categorizes the phenotype data based on predefined 448 

rules; and assigns them into one of the four data types: continuous, ordered categorical, 449 
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unordered categorical and binary. Of these 1,800 phenotypes, we only considered 450 

those with a minimum number of cases or controls equal to 500 and a minimum number 451 

of individuals equal to 5,000. This resulted in 841 phenotypes: 75 continuous, 104 452 

ordered categorical, 36 unordered categorical, and 626 binary. In total, 1,380 453 

phenotypes was included in our association analysis.  454 

The association between load score and each phenotype was tested using a 455 

regression test in PHESANT:  linear regression / lm R function for continuous, ordered 456 

logistic regression / polr R function for ordered categorical, multinomial logistic 457 

regression / multinom R function for unordered categorical, and binomial regression / 458 

glm R function with family = binomial for binary. Besides the commonly used covariates 459 

of age, sex, genotype chip, assessment center and 40 principal components, we added 460 

five variables as covariates in all association tests that might denote population 461 

structure: birth location, home area population density, Townsend deprivation index, 462 

and UK deprivation index. 463 

 464 

Association of 27 adiposity traits with coding load scores stratified by phyloP 465 

score and derived allele frequency 466 

To explore which variants drive the association between the 27 adiposity traits 467 

and the coding load score, we stratified variants by derived allele frequency (rare 468 

variants, 0 to 0.05; intermediate frequency variants, 0.05 to 0.3; common variants, 0.3 to 469 

0.7; and variants near fixation, 0.7 to 1) and phyloP score (0 to 2, 2 to 4, 4 to 6, 6 to 8, 470 

and 8 to 10). Simultaneous stratification was performed with four groups of SNPs: 471 
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DAF<0.05 and phyloP2, DAF<0.05 and phyloP>2, DAF0.05 and phyloP2, DAF0.05 472 

and phyloP>2. 473 

 474 

Permutation of phenome-wide association analysis and creation of null 475 

distribution 476 

A null distribution of the number of clinical phenotypes weakly associated with 477 

load score was created by repeatedly running the association test between load scores 478 

and phenotypes after randomly shuffling the load scores of individuals within the tested 479 

sample. The phenotypes included in this permutation analysis were all 539 phecodes. 480 

The same set of covariates used in phenome-wide association study (PHEWAS) tests 481 

above was applied. For each permutation, the number of phenotypes nominally 482 

associated with the load score (p-value<0.05) was then computed. The permutation p-483 

value was calculated as the fraction of permutations for which the number of nominally 484 

associated traits was at least as large as the observed number of nominally associated 485 

traits. 486 

 487 
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Supporting information 647 
 648 

S1 Fig. Derived allele frequency spectra of coding and non-coding variants for 649 

different CADD and phyloP score categories. Top row: Derived allele frequency 650 

spectrum of coding variants. Bottom row: Derived allele frequency spectrum of non-651 

coding variants. Each solid line represents derived allele frequency spectrum of 652 

polymorphic sites belonging to one score category and three dashed lines represent 653 

derived allele frequency spectra of three control categories: synonymous (syn), 654 

missense (mis), and loss of function (LOF) variants. 655 

 656 

S2 Fig. Phenotypic association of load (phyloP-weighted) and burden 657 

(unweighted) scores. Quantile-quantile plot of -log10 p-values for the phenotypic 658 

association of A) load scores (weighted by phyloP); B) burden scores (unweighted); C) 659 

burden scores restricted to rare variants (DAF<5%); and D) burden scores restricted to 660 

common variants (5%<=DAF<70%). 661 

 662 

S3 Fig: Enrichment of clinical phenotypes nominally associated with genome-663 

wide load score and non-coding load score.  Null distribution of the number of 664 

clinical phenotypes weakly associated with genome-wide load score (left) and non-665 

coding load score (right) was obtained from 2,000 permutations each. For each 666 

permutation, the load score was shuffled randomly among 335,161 samples and the 667 

number of associations on the x-axis was the count of phenotypes which yielded  p-668 

value < 0.05 in the association tests between the permuted load score and 539 669 

phecodes. The red dashed lines indicates the observed number of clinical phenotypes 670 
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nominally associated with genome-wide load score (n = 27, left) and non-coding load 671 

score (n = 24, right). 672 

 673 

S4 Fig: Enrichment of clinical phenotypes nominally associated with burden 674 

scores.  Null distributions of the number of clinical phenotypes weakly associated with 675 

burden scores were obtained using the same procedure to obtain the null distributions 676 

for load scores (Figure 3 and Figure S3). The red dashed lines indicates the observed 677 

number of clinical phenotypes nominally associated with genome-wide burden score (n 678 

= 22, left), coding burden score (n=20, middle), and non-coding load score (n = 20, 679 

right). 680 

 681 

 682 

S1 Table. Linear regression between slopes and score categories. 683 

S2 Table. Association between load score and the first 10 principal components. 684 

S3 Table. Derived allele frequency stratification analysis. 685 

S4 Table. phyloP score stratification analysis. 686 

S5 Table. phyloP score and DAF stratification analysis. 687 

S6 Table. Association between coding load score and the 27 phenotypes with number 688 

of non-reference variants included as a covariate. 689 

S7 Table. Association between load scores restricted to sites where the human genome 690 

reference allele is the ancestral allele and 27 phenotypes.  691 

S8 Table. Association between coding load scores computed from phyloPNH and 27 692 

phenotypes. 693 
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S9 Table. Clinical phenotypes weekly associated with load scores. 694 

 695 
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