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fever group rickettsial infection. 4 

Abstract 5 

Spotted fever group rickettsioses (SFRs) are devastating human infections. Vascular 6 

endothelial cells (ECs) are the primary targets of infection. Edema resulting from EC barrier 7 

dysfunction occurs in the brain and lungs in most cases of lethal SFR, but the underlying 8 

mechanisms remain unclear. The aim of the study is to explore the potential role of Rickettsia 9 

(R)-infected, EC-derived exosomes (Exos) during infection. Using size-exclusion 10 

chromatography (SEC), we purified Exos from conditioned, filtered, bacteria-free media 11 

collected from R-infected human umbilical vein ECs (HUVECs) (R-ECExos) and plasma of R-12 

infected mice (R-plsExos). We observed that rickettsial infection increases the release of 13 

heterogeneous plsExos, but endothelial exosomal size, morphology, and production were not 14 

significantly altered following infection. Compared to normal plsExos and ECExos, both R-15 

plsExos and R-ECExos induced dysfunction of recipient normal brain microvascular ECs 16 

(BMECs). The effect of R-plsExos on mouse recipient BMEC barrier function is dose-dependent. 17 

The effect of R-ECExos on human recipient BMEC barrier function is dependent on exosomal 18 

RNA cargo. Next-generation sequencing analysis and stem-loop quantitative reverse 19 

transcription PCR (RT-qPCR) validation revealed that R infection triggered the selective 20 

enrichment of endothelial exosomal mir-23a and mir-30b, which target the endothelial barrier. 21 
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To our knowledge, this is the first report on the functional role of extracellular vesicles following 1 

infection by obligately intracellular bacteria. 2 

Importance 3 

Spotted fever group rickettsioses are devastating human infections. Vascular endothelial cells 4 

are the primary targets of infection. Edema resulting from endothelial barrier dysfunction occurs 5 

in the brain and lungs in most cases of lethal rickettsioses, but the underlying mechanisms 6 

remain unclear. The aim of the study is to explore the potential role of Rickettsia-infected, 7 

endothelial cell-derived exosomes during infection. We observed that rickettsial infection 8 

increases the release of heterogeneous plasma Exos, but endothelial exosomal size, morphology, 9 

and production were not significantly altered following infection. Rickettsia-infected, endothelial 10 

cell-derived exosomes induced dysfunction of recipient normal brain microvascular endothelial 11 

cells. The effect is dependent on exosomal RNA cargo. Next-generation sequencing analysis 12 

revealed that rickettsial infection triggered the selective enrichment of endothelial exosomal mir-13 

23a and mir-30b, which target the endothelial barrier. To our knowledge, this is the first report 14 

on the functional role of extracellular vesicles following infection by obligately intracellular 15 

bacteria. 16 

Introduction  17 

Spotted fever group rickettsioses (SFRs) are devastating human infections (1). A licensed 18 

vaccine is not available. It forecasted that increased ambient temperatures under conditions of 19 

global climate change will lead to more widespread distribution of rickettsioses (2). These 20 

arthropod-borne diseases are caused by obligately intracellular bacteria of the genus Rickettsia 21 
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(R), including R. rickettsii (3, 4) and R. parkeri (5-7) that cause Rocky Mountain spotted fever 1 

and R. parkeri rickettsiosis (8), respectively, in the United States and Latin America; R. conorii, 2 

the causative agent of Mediterranean spotted fever endemic to southern Europe, North Africa, 3 

and India (9); and R. australis, which causes Queensland tick typhus in Australia (10). Vascular 4 

endothelial cells (ECs) are the primary targets of infection, and EC tropism plays a central role 5 

during pathogenesis (1, 3, 11). Edema resulting from EC barrier dysfunction occurs in the brain 6 

and lungs in most cases of lethal SFR. Typically, R infection is controlled by appropriate broad-7 

spectrum antibiotic therapy if diagnosed early (3, 4). However, R infections can cause 8 

nonspecific signs and symptoms, rendering early clinical diagnosis difficult (12, 13). Untreated 9 

or misdiagnosed R infections are frequently associated with severe morbidity and mortality (1, 10 

14-17). A fatality rate as high as 32% has been reported in hospitalized patients with 11 

Mediterranean spotted fever (17). Although doxycycline is the antibiotic of choice for R 12 

infections, it only stops bacteria from reproducing, but does not kill the rickettsiae. 13 

Comprehensive understanding of rickettsial pathogenesis is urgently needed for the development 14 

of novel therapeutics (7, 16, 18-22). 15 

Eukaryotic cell-to-cell communication is critical for maintaining homeostasis and responding 16 

quickly to environmental stimuli (23-51). Besides direct intercellular contact, this 17 

communication is often mediated by soluble factors that can convey signals to a large repertoire 18 

of responding cells, either locally or remotely. Extracellular vesicles (EVs) transfer functional 19 

mediators to neighboring and distant recipient cells (33). EVs are broadly classified into two 20 

categories, exosomes (Exos)(50-150 nm) and microvesicles (100-1000 nm), owing to their 21 

endocytic or plasma  membrane origin (38, 52-66). Exos and microvesicles are also termed as 22 

small and large EVs, respectively (55). Exo biogenesis begins with the formation of intraluminal 23 
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vesicles, the intracellular precursors of Exos, after the inward budding of the membranes of late 1 

endosomes (37, 54). Intraluminal vesicles are internalized into a multivesicular body, which 2 

transits towards and fuses with the plasma membrane, before releasing intraluminal vesicle into 3 

the extracellular environment as Exos (53). An Exo contains many types of biomolecules, 4 

including proteins, nucleic acids, and lipids (67). Once bound to the plasma membrane of the 5 

recipient cell, Exos can induce functional responses by multiple mechanisms, e.g., activating 6 

receptors on recipient cells or releasing their bioactive cargos after internalization (67, 68). In 7 

infectious biology, EVs from infected donor cells contain cargos that are associated with the 8 

virulence of the pathogen or the activation of host self-defense mechanisms (33-38, 69-71). EVs 9 

released from macrophages infected by intracellular bacteria, such as Mycobacterium 10 

tuberculosis and Salmonella typhimurium, have been shown to stimulate a pro-inflammatory 11 

response in non-infected macrophages in toll-like receptor-dependent manner (70). 12 

Unfortunately, the role(s) of EVs in the pathogenesis of obligately intracellular bacterial 13 

infections remains unknown. 14 

Although small noncoding RNA (sncRNA) species (<150�nucleotides) are relatively stable 15 

when compared with other RNA molecules, they remain vulnerable to ribonuclease (RNase)-16 

mediated digestion (72). The discovery of extracellular sncRNAs in the blood, despite the 17 

abundant presence of RNases, led to the proposal of a scenario in which sncRNAs are 18 

encapsulated in EVs (55, 72-74) or form circulating ribonucleoproteins (75, 76). Extracellular 19 

RNAs are enriched in sncRNAs (77). A growing number of reports have established that many, 20 

if not all, the effects of EVs are mediated by microRNA (52, 55-60, 63) or tRNA fragment (61, 21 

78) cargos, which remain functional to regulate cellular behaviors of the recipient cells (79). 22 

Recent studies provide emerging evidence that microRNAs are selectively sorted into EVs 23 
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independently of their cellular levels (52, 55-62). We reported that R infection induces 1 

significant upregulation of specific tRNA-derived RNA fragments in host cell, but no global 2 

changes of microRNAs in perfusion-rinsed mouse lung tissues was observed (80). Information 3 

regarding the potential role of extracellular RNAs during R infection is still lacking.  4 

The aim of this study is to explore the potential role of R-infected, EC-derived Exos 5 

following infection. Using size-exclusion chromatography (SEC), we purified Exos from 6 

conditioned, filtered, bacteria-free media collected from R-infected human umbilical vein ECs 7 

(HUVECs) (R-ECExos) and plasma of R-infected mice (R-plsExos). We observed that, 8 

compared to noninfectious normal mouse plsExos and normal HUVEC-derived Exos, both R-9 

plsExos and R-ECExos induced dysfunction of normal brain microvascular ECs (BMECs). The 10 

effect of R-plsExos on mouse recipient BMEC barrier function is dose-dependent. The effect of 11 

R-ECExos on human recipient BMEC barrier function is dependent upon exosomal RNA cargos. 12 

Saponin-assisted active exosomal permeabilization pretreatment (81-83) of R-ECExos with 13 

RNase mitigated the effect of R-ECExos on recipient BMEC barrier function. Next-generation 14 

sequencing analysis and stem-loop quantitative reverse transcription PCR (RT-qPCR) validation 15 

revealed that R infection triggered the selective enrichment of endothelial exosomal mir-23a and 16 

mir-30b, which target the endothelial barrier. 17 
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Results 1 

1. Quality assessment of bacteria-free Exos from the plasma of R. australis-infected 2 

mice (R-plsExos) and the media of R. parkeri-infected HUVECs (R-ECExos) 3 

Using SEC, we isolated small EVs (50-150 nm) from R-infected mouse plasma and HUVECs 4 

from culture media; both were passed through two 0.2 µm filters. Quantitative real-time PCR 5 

validated that no rickettsial DNA copies were detected in either R-plsExos isolated R. australis-6 

infected mice infected with 2 LD50 of bacteria (80, 84-87) on day 4 post-infection (p.i.), or the R-7 

ECExos that were purified 72 hrs p.i. from R. parkeri-infected HUVECs (6) using a multiplicity 8 

of infection (MOI) of 10 (Fig. Suppl 1). 9 

Sizes and morphologies of isolated EVs from mouse plasma and EC culture media, 10 

respectively, were initially evaluated using transmission electron microscopy (TEM) (52, 88), or 11 

atomic force microscopy (AFM) (89). The images captured using TEM and AFM show particles 12 

with typical exosomal morphology (arrowheads in Fig. 1a), as published previously (52, 88, 90). 13 

Using nanoparticle tracking analysis (NTA), the size distribution of isolated EVs was also 14 

confirmed to be in the range of 50 to 150 nm, which is the expected size of Exos (Figs. 1b and 15 

c). We also verified the purity of isolated Exos using western immunoblotting to detect 16 

traditional exosomal markers as shown in Fig. 1d (64, 73, 90).  17 

These data demonstrate that purified EVs from R-infected mouse plasma or culture media 18 

used in these studies was free of bacteria or bacterial DNA, were intact and did not aggregate, 19 

and fell within the expected size the range of Exos.  20 
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2. Exos are differentially induced and detected in mouse plasma and EC culture media 1 

in response to R infection 2 

Serum Exos have been identified as being heterogeneous and derived from multiple cell 3 

types, including ECs. Using western immunoblotting, we detected EC markers [CD31 and VE-4 

cadherin (91, 92)] in mouse plsExos, as well as markers of other cells (CD45) (Fig. 2a), 5 

suggesting that the mouse plsExos used in these studies was derived from different types of cells, 6 

including ECs. 7 

Exosomal particle counts were measured using NTA, and showed that similar numbers of 8 

endothelial Exos are produced by mock and R infection groups in vitro (Fig. 2b). However, the 9 

number of mouse R-plsExos was upregulated on day 4 p.i. (p=0.02) in vivo (Fig. 2c). Exos were 10 

also assessed using exosomal total protein content (88). As shown in Figs. 2d and 2e, the 11 

generation of R-plsExos was significantly upregulated on day 4 p.i. (p=0.005). Furthermore, we 12 

also compared the morphology of EC-derived Exos using TEM and AFM, and demonstrated no 13 

significant differences between normal ECExos and R-ECExos (Fig. 1a). 14 

Collectively, these data suggest that R infection increases heterogeneous plsExo release. 15 

However, endothelial Exo size, morphology, and production were not significantly altered after 16 

infection in vitro. 17 

3. Recipient cells efficiently take up Exos 18 

ECs are directly exposed to circulating substances and Exos, which are abundant in blood 19 

and are taken up by ECs (93, 94). To confirm that ECs take up Exos in vivo, we intravenously 20 

delivered fluorescent PKH26-labeled plsExos (1 x 1011 particles per mouse in 100 µl PBS) to 21 
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normal mice as described (90). As in Fig 3a, co-localization between PKH26 (red) and CD31 1 

(green, a marker of EC lineage) (arrowheads) were identified in multiple organs in mice, which 2 

were extensively perfused with PBS at 6 hrs post-injection, prior to fixation. These data suggest 3 

that plsExos directly interact with ECs in vivo. 4 

Next, we examined HUVEC-derived ECExo uptake using normal recipient cells (i.e., human 5 

BMECs) in vitro. PKH26-labeled ECExos and non-labeled controls were added to the cultured 6 

human BMECs. As early as 2 hrs after incubation, the uptake of PKH26-labeled ECExos by 7 

BMECs was visualized using fluorescence microscopy (Fig. 3b).  8 

These data suggest that vascular ECs efficiently take up Exos in our models. 9 

4. Effect of mouse R-plsExos on normal mouse recipient ECs 10 

We next sought to evaluate the potential effect of R-plsExo on normal recipient ECs during R 11 

infection. Using SEC, R-plsExos from a mouse that was intravenously infected with a 2 LD50 12 

dose of R. australis (86, 87) were isolated. Normal mouse recipient BMECs were treated with 13 

normal plsExos or R-plsExos at different doses (i.e., 8, 40, or 160 pg Exos/per cell) for 72 hrs 14 

before measuring the transendothelial electrical resistance (TEER), an indicator for endothelial 15 

paracellular barrier function (95). We found that, compared to normal mouse plsExos, mouse R-16 

plsExos derived on day 4 p.i. reduced the TEER in normal recipient ECs in a dose-dependent 17 

manner (Fig. 4a). 18 

This evidence suggests that mouse R-plsExos induce dysfunction in normal recipient ECs in 19 

a dose-dependent manner. 20 
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5. Human R-ECExos induced dysfunction of normal human recipient ECs in an 1 

exosomal RNA-dependent manner 2 

Endothelial markers were detected in plsExos (Fig. 2a). Given that ECs are the major target 3 

cells during R infection, HUVEC-derived ECExos were used to explore their effect on normal 4 

human recipient BMEC function.  5 

It was first found that, compared with normal (mock) ECExos (40 pg vesicle particles), R-6 

ECExos (40 pg  vesicle particles) reduced TEER in normal recipient BMECs (Fig. 4b). 7 

Furthermore, R-ECExos (40 pg particles/cell) weakened the tight junctional protein ZO-1 8 

(arrowheads in Fig. 4c) of normal recipient BMECs. However, we did not observe remarkable 9 

alteration of adherens junctional protein VE-cadherin (Fig. 4c). 10 

Exos contain many types of biomolecules, including proteins and nucleic acids, which 11 

contribute to disease pathogenesis (68). Active encapsulation techniques have been widely 12 

employed in the field of EV research, showing no significant impairment of exosomal 13 

constitution, integrity, and functionality (81-83). To identify the functional exosomal cargos 14 

during R infection, we employed saponin-assisted active permeabilization (81-83) to pretreat 15 

exosomal cargos with 20 µg/mL RNase in the presence of 0.1 mg/ml saponin. Such pretreatment 16 

of R-ECExos mitigated the effect on TEER in normal recipient BMECs, compared to RNase in 17 

the absence of permeabilization or heat-treated RNase in the presence of saponin (Fig. 4b). 18 

Similar pretreatment of R-ECExos with RNase in the presence of saponin also impaired the tight 19 

junctional protein ZO-1 in recipient BMECs (Fig. 4c). 20 
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These data suggest that R-ECExos can induce normal recipient EC barrier dysfunction in an 1 

exosomal RNA cargo-dependent manner.  2 

6. R infection upregulates exosomal mir-23a and mir-30b 3 

EV RNA cargo mostly consists of sncRNAs, mainly microRNAs and tRNA-derived 4 

fragments (61, 77, 78). A growing number of reports have established that many effects of EVs 5 

are mediated by microRNAs (52, 55-60, 63). We characterized the exosomal microRNA cargo 6 

using next-generation sequencing (Fig. 5a). RNAs were isolated from Exos released from 7 

HUVECs infected with R. parkeri (at 10 MOI) for 72 hrs or mock-infected. R. parkeri is a BSL-8 

2 pathogen, facilitating us to do mechanism studies.  There were no differences in total sncRNAs 9 

(<150 nucleotides) obtained per Exo between normal ECExo and R-ECExo. Seventy-two hours 10 

after R infection, mir-23a and mir-30b exhibited the greatest induction of expression in R-11 

ECExos, reaching 7.69-fold and 3.04-fold increases compared to controls, respectively (Fig. 5b).  12 

We next validated the enhanced expression of mir-23a and mir-30b in Exos using stem-loop 13 

RT-qPCR, which is a common method for detecting sncRNAs in EVs (52, 61, 96, 97). In Fig. 5c, 14 

exosomal mir-23a was up-regulated after R infection with a 3-fold increase in expression 15 

compared to the mock group (P < 0.01). Similarly, mir-30b had a near 3-fold increase (P < 0.05). 16 

However, the levels of mir-127 (98), mir-451, and mir-92a were stable between mock ECExos 17 

and R-ECExos (Fig. 5c). Furthermore, we did not detect different levels of these miRNAs in cell 18 

samples between groups (Fig. 5d).  19 

Collectively, our data suggest that miR30b and miR23a are selectively sorted into R-ECExos 20 

following R infection.  21 
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Discussion 1 

ECs are the primary mammalian host target cells of SFR infection (2,5,6). The most 2 

prominent pathophysiological effect during SFR infections is increased microvascular 3 

permeability, followed by vasogenic cerebral edema and non-cardiogenic pulmonary edema with 4 

potentially fatal outcomes (2,5). Cellular and molecular mechanisms underlying endothelial 5 

barrier dysfunction in rickettsiosis remains largely unknown (7-9). The novel findings in the 6 

present study are that R infection increases heterogeneous plsExos release, but endothelial Exo 7 

size, morphology, and production are not significantly altered following infection. Mouse R-8 

plsExos induced dysfunction of normal mouse recipient BMECs in a dose-dependent manner, 9 

and human R-ECExos induced dysfunction of normal human recipient BMECs in an exosomal 10 

RNA cargo-dependent manner. Next-generation sequencing and stem loop RT-qPCR analyses 11 

suggest that mir-23a and mir-30b are selectively sorted into R-ECExos after R infection. To our 12 

knowledge, this is the first report of studying EVs in the context of obligately intracellular 13 

bacterial infections. 14 

Exos are in a similar size range as viruses (33, 94) and contain many types of biomolecules, 15 

including proteins and nucleic acids that contribute to diseases pathogenesis, and are being 16 

actively investigated in cancers, as biomarkers, and as potential therapeutics (33-38, 68, 70). 17 

Exos have been studied in the context of different infections (33-38, 70, 71). During infection, 18 

EVs released from the host can be derived from the pathogen or the host. It has been reported 19 

that pathogens can utilize different mechanisms to hijack host Exos to maintain their survival and 20 

increase their pathogenicity (33). Mycobacterium tuberculosis releases lipoarabinomannan into 21 

Exos to decrease the interferon response of the recipient macrophage (33). Exosomal gp63 from 22 
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leishmania has been shown to downregulate the proinflammatory genes in dendritic cells and 1 

macrophages (99). Exos released from Leishmania donovani-infected macrophages block the 2 

formation of microRNA-122 in recipient hepatocytes, resulting in a higher pathogen burden 3 

(100). However, most enveloped virions are the same size as Exos, and major exosomal surface 4 

markers CD63 and CD81 are enriched in enveloped viruses (54). Such similarities make the 5 

separation of virions and Exos in infected samples particularly challenging (54). Rickettsia are 6 

strictly intracellular bacteria whose size is about 2.0 µm in length (22, 101, 102). Taking 7 

advantage of the SEC technology, we succeeded in isolating and purifying bacteria-free plsExos 8 

and ECExos from R-infected mouse plasma and cell culture media, respectively, having laid the 9 

technical foundation for studying the potential role of Exos in the pathogenesis of rickettsiosis.  10 

Differential centrifugation has been employed for Exo isolation for many years, but the 11 

technique suffers from aggregation and decreased integrity of Exos (38, 53, 64-66). Recently, 12 

single-step SEC was employed successfully for Exo purification with improved integrity, yield, 13 

and no aggregation (38, 53, 64-66). In the present study, using SEC technology, we have 14 

successfully isolated Exos from plasma and culture media in BSL-2/3 facilities and validated 15 

Exo quality using multiple EV-specific assays (Fig. 1), demonstrating size-purity and 16 

morphologic integrity without aggregation. Exo size and morphology were not significantly 17 

changed after R infection (Fig. 1). The generation of plsExos was significantly upregulated after 18 

R infection, while no difference was detected in plasma protein concentrations. However, our in 19 

vitro endothelial R infection model demonstrated no significant difference in exosomal 20 

generation between normal and R-infected ECs. Circulating Exos have been identified as 21 

heterogeneous and derived from multiple different types of cells, including ECs, epithelial cells, 22 
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leukocytes, erythrocytes, and platelets (90). Our data suggest that endothelial Exo size, 1 

morphology, and production were not significantly altered after infection. 2 

Exos can induce functional responses by multiple mechanisms, including releasing bioactive 3 

components after internalization (67, 68). In infectious disease biology, EVs from infected donor 4 

cells are associated with virulence of the pathogens in recipient cells (33-38, 69-71). In the 5 

present study, both R-plsExos and R-ECExos weakened the barrier function of the normal mouse 6 

ECs. Concomitantly, human R-ECExos induced disruption of the tight junctional protein ZO-1 in 7 

recipient human BMECs in an exosomal RNA-dependent manner. However, the underlying 8 

mechanism remains unclear.  9 

The discovery of extracellular sncRNAs in the blood, despite the abundant presence of 10 

RNases, led to the proposal of a scenario in which sncRNAs are encapsulated in EVs (55, 72-74) 11 

or in the form of circulating ribonucleoproteins (75, 76). EV-enclosed messenger RNAs are 12 

mostly fragmented, and extracellular RNAs are enriched in sncRNAs (77). Despite a previous 13 

report that the average copy number of miRNAs in each EV is low (103), accumulating evidence 14 

suggests a critical function of EV-containing miRNAs. EV RNA cargo mostly consists of 15 

sncRNAs (77). A growing number of reports have established that many, if not all, the effects of 16 

EVs are mediated by microRNAs (52, 55-60, 63), which remain functional to regulate cellular 17 

behaviors of the recipient cell (79). Exosomal microRNAs are of particular interest due to their 18 

participation in posttranslational regulation of gene expression. A single microRNA can regulate 19 

many target genes to affect biological function (104). Recent studies provide emerging evidence 20 

that microRNAs are selectively sorted into EVs, independent of their cellular levels (52, 55-62). 21 

We observed no significant differences in total sncRNAs (<150 nucleotides) per Exo between 22 
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normal ECExo and R-ECExo. Seventy-two hours after R infection, expression levels of mir-23a 1 

and mir-30b were remarkably upregulated in R-ECExos, but no change was observed in the 2 

mock-infected cells. These data suggest that miR30b and miR23a are selectively sorted into R-3 

ECExos during R infection. The underlying mechanism is yet to be elucidated. 4 

Analysis of the interactions among enriched exosomal microRNAs and potential mRNA 5 

targets will provide putative mRNA candidates for future studies. Given that the molecular and 6 

functional effects of mir-23a (105-108) and mir-30b (108, 109) have been documented to target 7 

endothelial barrier functions, further research into the selective sorting mechanism(s) and 8 

functional roles of exosomal mir-23a and mir-30b may provide new insights into the 9 

pathogeneses of SFR. Furthermore, additional research may validate specific exosomal 10 

microRNAs as impactful druggable targets for the prevention and treatment of fatal human 11 

diseases caused by Rickettisia and other pathogens.  12 

 13 

Materials and Methods 14 

Mouse model of R. australis infection 15 

All animal experiments were performed according to protocols approved by the Institutional 16 

Animal Care and Use Committee of the University of Texas Medical Branch (UTMB). Wild-17 

type (WT) mice (C57BL/6J) were obtained from Jackson Laboratory (Bar Harbor, ME). All 18 

mice used in this study were 8 to 12 week-old males. C57BL/6J mice are highly susceptible to R. 19 

australis. Therefore, this organism was chosen as the SFG rickettsial agent of choice (10). The 20 

male C57BL/6 mouse–R. australis model is an established animal model of human SFG 21 
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rickettsiosis because the pathology involves disseminated endothelial infection and pathological 1 

lesions, including vasculitis in multiple organs, similar to what is observed in human SFG 2 

rickettsiosis (10, 87). After an ordinarily lethal dose of 2 LD50 R. australis (the LD50 is 1 x 106 
3 

PFU) was injected through the tail vein (87), blood samples were collect on day 4 p.i. for plasma 4 

samples.  5 

Nanoparticle tracking analysis (NTA) 6 

NTA was performed to determine the size and concentration of EVs at Nanomedicines 7 

Characterization Core Facility (The University of North Carolina at Chapel Hill, Chapel Hill, 8 

NC). Briefly, isolated Exo samples were diluted to a concentration of 5x109 to 1x1011 9 

particles/ml in filtered PBS. The samples were then run on a NanoSight NS500 (NanoSight, 10 

Malvern Instruments, Westborough, MA) to capture particles moving by way of Brownian 11 

motion (camera type, sCMOS; camera level, 16; detection threshold, 5). The hydrodynamic 12 

diameters were calculated using the Stokes-Einstein equation. The 100-nm standard particles and 13 

the diluent PBS alone were used for reference. 14 

microRNA quantification in HUVEC Exos 15 

As previously reported (52), RNAs were extracted from purified HUVEC Exos. Small RNAs 16 

(6–150 nucleotides) and microRNA fractions (10–40 nucleotides) were quantified using high-17 

resolution small RNA analysis (Agilent 2100 Bioanalyzer system, Santa Clara, CA) at the 18 

Biopolymer Facility (Harvard Medical School, Cambridge, MA). To determine the concentration 19 

of small RNAs and microRNAs per Exo, the quantified sncRNA/microRNA value was 20 

normalized to the Exo count, which was evaluated using NTA. 21 
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Bioinformatic analysis of sequencing data 1 

Sequencing was done using an Illumina NextSeq as single-end 75 base pair reads 2 

generating between 4.8 and 40.9 million reads per sample. Quality control of the samples was 3 

performed using QIAGEN CLC Genomics Workbench 20.0. Raw sequencing reads were 4 

trimmed to remove QIAGEN 3′-AACTGTAGGCACCATCAAT and 5′-5 

GTTCAGAGTTCTACAGTCCGACGATC adapters, as well as filtered based on initial quality 6 

assessment. Reads dominated by low-quality base calls, and longer than 55 nucleotides, were 7 

excluded from the downstream analyses. Filtered data undergo further RNA-seq analysis using 8 

the CLC Genomics Workbench 20.0 RNA-Seq Analysis 2.2 module with RNAcentral noncoding 9 

Human RNA (110, 111)(downloaded April 16, 2020), miRbase 22.1, and the ENSMBL GRCh38 10 

noncoding RNA gene collection (112)(downloaded November 20, 2019). Differential expression 11 

analysis was performed using the “Differential Expression in Two Groups 1.1” module. The 12 

differential expression module uses multi-factorial statistics based on a negative binomial 13 

generalized linear model (GLM) to correct for differences in library size between the samples 14 

and the effects of confounding factors. The Wald test was used to compare the expression of 15 

noncoding RNA between the groups. 16 

Atomic force microscopy (AFM)  17 

The purified and concentrated EV sample was diluted at 1:10, 1:100, and 1:1000 with 18 

molecular grade water. Glass coverslip were cleaned three times with ethanol and acetone, then 19 

three times with molecular grade water. The coverslip was correctly labeled and placed in the 20 

hood to dry under laminar flow for an hr and subjected to coating with the diluted EV samples on 21 
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the designated area for 30 minutes. EV samples were washed away gently with molecular grade 1 

water, and the coverslip was dried for one hr. 2 

The coverslip coated with EV samples was examined using an AFM (CoreAFM, Nanosurf 3 

AG, Liestal, Switzerland) using contact mode in the air. A PPP-FMR-50 probe (0.5-9.5N/m, 4 

225µm in length and 28µm in width, Nanosensors) was used. The parameters of the cantilever 5 

were calibrated using the default script from the CoreAFM program using the Sader et al. 6 

method. (113) The cantilever was approached to the sample under the setpoint of 20 (113)nN, 7 

and topography scanning was done using the following parameters: 256 points per line, 1.5 8 

seconds per line in a 5-µm x 5-µm image. 9 

Rickettsiae, cell culture, and R. parkeri infection 10 

R. australis (Cutlack strain) (87) and R. australis (Atlantic rainforest strain)(114) were 11 

prepared as described. Uninfected Vero cells were processed as mock control material using the 12 

same procedure. All biosafety level (BSL)-3 or ABSL-3 experiments were performed in CDC-13 

certified facilities in the Galveston National Laboratory at UTMB, Galveston, TX, using 14 

established procedures.  15 

A standard protocol to isolate brain microvascular endothelial cells (BMECs) from wild-type 16 

mice (115) was used. Human umbilical vein endothelial cells (HUVECs) (Cell Applications, Inc.) 17 

or BMECs were cultivated in 5% CO2 at 37°C on type I rat-tail collagen-coated round glass 18 

coverslips (12 mm diameter, Ted Pella, Redding, CA) until 90% confluence. HUVECs were 19 

infected with R. parkeri at an MOI of 10. Uninfected ECs were used as mock controls and were 20 
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subjected to the same procedure. All experiments were performed in triplicate. Normal mouse or 1 

rabbit IgGs were used as negative controls.  2 

ECExos and plsExos isolation, concentration, and permeabilization 3 

ECExos isolation and concentration: Donor HUVECs in T75 flasks were infected using 10 4 

MOI of R. parkeri or mock-infected for 72 hours, and 11 mL of media was collected. The media 5 

were passed through 0.2-µm syringe filters twice. Following the instruction of the manufacturer, 6 

10 mL of filtered media was subjected to the qEV10 column (Izon, New Zealand) for SEC 7 

isolation. The number 7 to 10 fractions were collected as the Exo-enriched fractions, which were 8 

concentrated using 100,000 MWCO PES Vivaspin centrifugal filters (Thermo Fisher Scientific). 9 

Exo samples (in 200 µl PBS) were stored at -80� prior to use in downstream assays. 10 

plsExos isolation and concentration: Blood samples were collected in anticoagulation tubes 11 

on day 4 p.i. for plasma isolation. The plasma sample (200 µl) was passed through 0.2µm 12 

syringe filters twice. Following the instruction of the manufacturer, filtered plasma was subjected 13 

to the qEV10 (Izon, New Zealand)for SEC isolation. The number 7 to 10 fractions were 14 

collected as the Exo-enriched fractions, which were concentrated using 100,000 MWCO PES 15 

Vivaspin centrifugal filters (Thermo Fisher Scientific). Exo samples (in 200 µl PBS) were stored 16 

at -80� prior to use in downstream assays. 17 

For saponin-assisted active exosomal permeabilization pretreatment (81-83) of Exos using 18 

RNase, Exo samples (1 x 109 particles/mL) and RNase (20 µg/mL) (Thermo Fisher Scientific) 19 

were incubated with 0.1 mg/ml saponin (Thermo Fisher Scientific) at room temperature for 15 20 
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min. After rinsing using phosphate-buffered saline (PBS), Exo samples were concentrated using 1 

100,000 MWCO PES Vivaspin centrifugal filters.  2 

The distribution of Exos in vivo and in vitro 3 

Using a published approach, recipient cell uptake of Exos was assessed in vivo and in vitro 4 

(90). Briefly, following incubation using materials from the PKH26 Red Fluorescent Cell Linker 5 

Kit (Millipore Sigma, St. Louis, MO), the Exos were washed three times with PBS before 6 

ultracentrifugation at 100,000�x�g for 20�min at 4�°C using Beckman L7-80 and rotor SW41 7 

(Beckman Coulter, Indianapolis, IN) to remove unbound stain. PBS without Exo was processed 8 

with same steps as the mock PKH26-labeled tracer. A single injection of PKH26-labelled 9 

exosomes (about 1�x�1011 particles in 100�µL of PBS) via the tail vein of a normal mouse 10 

was done to observe the distribution of Exos in the lungs, liver, and brain 6�hr after injection. 11 

Immunofluorescence staining was done using frozen sections with rabbit antibodies to CD31. 12 

For in vitro assessment, PKH26-labeled ECExos (2000 particles/cell) were added in the culture 13 

media of normal human BMECs. After 2 hrs, cells were fixed. All solutions of PKH26-labeled 14 

ECExos were filtered with a 0.2 µm filter. Fluorescent images were analyzed using Olympus 15 

BX51 epifluorescence and Nikon A1R MP ECLIPSE Ti confocal microscope with NIS-Elements 16 

imaging software version 4.50.00 (Nikon, Tokyo, Japan). 17 

Stem-loop real time PCR 18 

Total RNA was extracted from EVs by using Trizol (Invitrogen). An exogenous synthetic 19 

microRNA, namely cel-mir-39, was diluted in TRIzol before extraction to act as a normalizer. 20 

The concentration of total RNA was measured by NanoDrop (ND-2000). TaqMan MicroRNA 21 
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Reverse Transcription kit (Applied Biosystems) was used for reverse transcription reactions. The 1 

15 ul RT reactions contained 5 ng total RNA template, 3 ul RT Primer (5×), 0.15 ul dNTPs (100 2 

mM), 1 ul MultiScribe reverse transcriptase (50 U/µL), 1.5 ul Reverse Transcription Buffer 3 

(10×), 0.19 ul RNase inhibitor (20 U/µL), and 4.16 ul nuclease-free water. Reverse transcription 4 

conditions were 16� for 30 min, 42� for 30 min, and 85� for 5 min. For PCR amplification, the 5 

10 ul PCR reactions included 0.7 ul cDNA template acquired above, 0.5 ul TaqMan Small RNA 6 

Assay Mix (20X), 5 ul PCR Master Mix, and 3.8 ul nuclease-free water. qPCR reaction 7 

conditions were 50� for 2 min, 95� for 30 sec, followed by 40 cycles of 95� for 5 sec, and 65� 8 

for 30 sec. The relative expression of each miRNA was expressed as 2-(
△△

CT) by the CFX 9 

Connect Real-Time System (Bio-Rad, Hercules, CA). 10 

Statistics 11 

Statistical significance was determined using Student’s t-test or one-way analysis of variance. 12 

Results were regarded as significant if two-tailed P values were < 0.05. All data are expressed as 13 

mean ± standard error of the mean. 14 
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 Figure legends 20 

Figure 1: Characterization of plsExos and ECExos after SEC isolation. (a) plsExos and 21 

ECExos morphologies were verified using atomic force microscopy (AFM)(left panels; scale 22 
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bars, 200 nm) and transmission electronic microscopy (TEM)(right panels; scale bars, 100 nm). 1 

(b) and (c), the vesicle size distribution of isolated EVs was analyzed using nanoparticle tracking 2 

analysis (NTA) (n=5 per group). d, Expressions of indicated protein markers in 100 μg proteins 3 

of plsExos (upper panel) and ECExos (lower panel) were examined using western 4 

immunoblotting. 5 

Figure 2: Exos are differentially induced and detected in mouse plasma and EC culture 6 

media in response to R infection. (a) Expression of indicated protein markers (i.e., 30, 60, and 7 

90 μg of plsExos proteins) was examined using western immunoblotting. (b) and (c), the 8 

concentration of plasExos and ECExos was analyzed using NTA (n=5 per group). (d) and (e), 9 

the concentration of exosomal total protein was determined using the microBCA protein assay 10 

(n=5 per group). 11 

Figure 3: Recipient cells take up Exos. (a) Purified plsExos (5 x 1010 particles in 50 μL PBS) 12 

labeled with PKH26 were administrated to wild-type mice intravenously (n=3). After 4 hrs, 13 

organs were dissected for frozen sectioning after euthanasia and perfusion via the right ventricle. 14 

Representative immunofluorescent staining of ECs from liver, brain, and lung using an antibody 15 

against CD31(an EC marker) is shown. The nuclei were stained with DAPI. Cells with red 16 

fluorescence indicate the uptake of PKH26 labeled Exos. Scale bars, 20 µm. (b) Purified ECExos 17 

were labeled with PKH26 (red) and added to the culture medium of human BMECs (2000 18 

particles per cell) as indicated. Pictures were taken using fluorescence microscopy after 2 hrs of 19 

ECExo incubation. Scale bars, 20 µm. 20 

Figure 4: Effect of R-plsExos or R-ECExos on normal recipient ECs. (a) The transendothelial 21 

electrical resistance (TEER) values of normal mouse recipient BMECs was measured after 22 
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treatment with normal plsExos (mock) or R-plsExos at 8, 40, or 160 pg Exos per cell for 72 hrs. 1 

*, P < 0.05. (b) The TEER values of normal mouse recipient BMECs was measured after a 72 2 

hr-treatment with normal plsExos (mock) or R-plsExos, which were pretreated with 20 µg/mL 3 

ribonuclease (RNase) in the presence or absence of 0.1% saponin. **, P < 0.01. (c) 4 

Immunofluorescence staining of tight junctional protein ZO-1 and adherens junctional protein 5 

VE-cadherin in normal human recipient BMECs that were treated with different Exos for 72 hrs. 6 

Scale bars, 20 μm. 7 

Figure 5: Rickettsial infection alters microRNA expression in ECExos. (a) Heatmap 8 

clustering of microRNAs in normal ECExos vs. R-ECExos (n=3). (b) microRNA expression in 9 

R-ECExos vs. normal ECExos (n=3). (c) Stem-loop RT-qPCR analysis of microRNAs obtained 10 

from normal ECExos (mock) and R-ECExos (rickettsial). ** P < 0.01, * P < 0.05. (d) Stem-loop 11 

RT-qPCR analysis of microRNAs obtained from normal (mock) and R-infected donor HUVECs. 12 

 13 
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