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Abstract—Visual scanning plays an important role in sampling
visual information from the surrounding environments for a lot of
everyday sensorimotor tasks, such as walking and car driving. In
this paper, we consider the problem of visual scanning mechanism
underpinning sensorimotor tasks in 3D dynamic environments.
We exploit the use of eye tracking data as a biomarker, for
indicating the visuo-motor behavioral measures in the context
of virtual driving. A new metric of visual scanning efficiency
(VSE), which is defined as a mathematical divergence between a
fixation distribution and a distribution of optical flows induced
by fixations, is proposed by making use of a widely-known
information theoretic tool, the square root of Jensen-Shannon
divergence. Based on the proposed efficiency metric, a cognitive
effort measure (CEM) is developed by using the concept of quan-
tity of information. Psychophysical eye tracking studies, in virtual
reality based driving, are conducted to reveal that the new metric
of visual scanning efficiency can be employed very well as a proxy
evaluation for driving performance. In addition, the effectiveness
of the proposed cognitive effort measure is demonstrated by a
strong correlation between this measure and pupil size change.
These results suggest that the exploitation of eye tracking data
provides an effective biomarker for sensorimotor behaviors.

Index Terms—visual scanning efficiency, eye tracking,
biomarker, Jensen-Shannon divergence (JSD), cognitive effort

I. INTRODUCTION

A. Background

Visual scanning, which is controlled by the brain, is critical
for the living of any human in natural surroundings [1].
Visual scanning is indeed the cornerstone for a human to
perform common and everyday sensorimotor tasks, such as
walking and car driving, because the brain manages a lot
of underlying and effective information processing for the
sophisticated cognitive and behavioral coordination between
eye, head and body [2]. Undoubtedly, the understanding of
the mechanism behind visual scanning has been very critical
since late 1970 [3] and, is becoming more and more vitally
crucial from both theoretical [3] and practical [4] perspectives:
actually this is especially helpful and beneficial to making
stark and essential progress in latest research work [5]. It has
been popularly believed that visual scanning in sensorimotor
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tasks is a typical task directed behavior in relevant literature [6]
[7]. As a result, this is the focused consideration in our paper.
Basically, it is significant to make clear how well a human
can achieve for sampling visual information through visual
scanning. In this case, to define an efficiency measure objec-
tively is one of the most fundamental points involved in the
mechanism understanding of visual scanning [8]. It is notably
argued that the measure of efficiency for visual scanning
should be indicative of that for the corresponding sensorimotor
task [9]. This is due to that, for performing the task, visual
scanning is a coordination behavior happened among eye, head
and body rather than an isolated activity only by the eye [6]
and to that, visual scanning covers and processes at least 70%
of all the information required [10]. Therefore, it is highly
demanding to obtain the efficiency measure of visual scanning.
But unfortunately, all the relevant research findings available
do have some issues and challenges, which are described in
Section II. Actually, it is challenging to measure the visual
scanning behavior, due to that the behavior itself, which results
from both the bottom-up influence by visual stimuli and
the top-down modulation impact by human activity, is very
sophisticated, according to the theory of predictive processing
and active inference [5]. Besides, there is no established work
on defining a measure of visual scanning efficiency as a true
metric, and obviously because this remarkable mathemati-
cal property makes the measure more usable in theory and
practice [11]. In order to combat the challenges and issues
mentioned above, a metric of visual scanning efficiency is
proposed in the context of virtual driving. Additionally, a
cognitive effort measure is developed based on a scaling of
the new efficiency metric. The proposed efficiency metric and
cognitive effort measure, based on taking advantage of the
information theoretic tools, behave very well as proxies for
the driving performance and pupil size change, respectively.

B. Contributions

The main contributions of this paper are as follows.

« The optical flow induced by a fixation is introduced,
based on the detection of the motion variation resulted
from a fixated dynamic stimulus.
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e« We propose a methodology to define a mathematical
metric of visual scanning efficiency in an objective and
quantitative way, by the square root of JSD divergence
between fixation distribution and optical flow distribu-
tion.

« Based on an extended exploitation of our proposed visual
scanning efficiency, a cognitive effort measure, in a
perspective of the quantity of information, is developed.

To the best of our knowledge, this is the first time to
effectively define the metric of visual scanning efficiency
and cognitive effort measure, based on the exploitation of
information theoretic tools. This paper paves a novel path for
biomarker discovery by the utilization of eye tracking data.

C. Organization

Firstly, the related works are discussed in Section II. The
philosophy and methodology of our proposed technique are
detailed in Section III. Then the experimental methods are
described in Section IV, followed by the results and discussion
presented in Section V. Finally, conclusions and future works
are given in Section VI.

II. RELATED WORKS

The initial consideration for discussing the efficiency mea-
sure of visual scanning is to select suitable eye tracking indices
naturally associated with cognitive processing. Fixation and
saccade are classic indices for this purpose. But, direct and
indirect usages of these indices (for examples, rate/duration
of them and their simple combinations) are more applicable
in specific application scenarios [12], than in the general
efficiency definition. In addition, pupil dilation and blink rate
are two widely used eye tracking indices for the study of
cognition and psychology [13].

The efficiency evaluation of visual scanning has started from
the study of the complexity of visuo-motor behavior and, this
is the usual manner in relevant field [8]. Information entropy,
which is a good measure of complexity [14], in effect has been
used a lot for the issue of visual scanning complexity [8]. The
so-called entropy rate, originally used for the measurement
of task load [15], is defined as a multiplication between the
normalized entropy of fixation sequence and the sum of inverse
transition durations. Entropy of fixation sequence (called EoF'S
for brevity) defines based on the probability distribution of
fixation sequences, giving the degree of complexity for spatial
patterns of fixation sequence [16]. EoFS has shown its inter-
action to visual content complexity [17] and to human factors
such as expertise skill [16].

Differently from EoFS, gaze transition entropy (GTE), in
which transition between fixations is depicted by the probabil-
ity transition between Markov states (in this paper, meaning
the areas of interest (AOIs)) and, conditional entropy based
on transition probabilities is used for its definition to express
the degree of complexity for temporal patterns of fixation
transition, with respect to overall spatial fixation dispersion.
GTE has demonstrated its relationship with visual content
complexity [18] and also with human factors, such as anxiety

[19]. There exists a closely relevant gaze entropy, called
stationary gaze entropy (SGE) [18], in which the Shannon
entropy, based on an equilibrium probability distribution for
Markov transition matrix, is used to describe the degree of
complexity for spatial patterns of fixation dispersion. SGE has
also exhibited, similar to GTE, its connection to visual content
complexity [18], and also to human factors, such as emotional
valence [20].

Notice specifically that, it is necessary to know the rela-
tionship between entropy based measures discussed above and
the performance of sensorimotor tasks. EoFS has not been
indicated to have correlation with the task performance. It has
been reported that GTE [1] could not predict the performance
of sensorimotor tasks. As for SGE [21] [22], it has been found
that this measure results in contradictory correlation results in
sensorimotor tasks. As a mater of fact, eye tracking has been
considered as a strong estimator for task performance in many
professional fields [9]. Obviously, it is indeed indispensable for
the efficiency measure of visual scanning to take the role as
measure of task performance.

III. METHODOLOGY
A. The Philosophy of the Proposed VSE and CEM

It is well understood that, in a sensorimotor task, visual
scanning is managed by a performer through a series of
fixations, so that meeting the requirement of visual sam-
pling the surrounding environments for fulfilling this task [6].
The probability distribution of fixations, namely the fixation
distribution, which is constructed based on the normalized
histogram of fixation locations in a 3D environment, is used
as a basis for understanding the mechanism of visual scanning
in this paper. In addition, the optical flow, which effectively
reflects a motion variation resulted from a dynamic stimu-
lus [23], always happens in driving situations [24]. In this
paper, the optical flows induced by fixations are detected and
used to establish the optical flow probability distribution. And
then a divergence between fixation distribution and optical
flow distribution is proposed to define the visual scanning effi-
ciency. Notice that, optical flow represents a vector, according
to its original definition [23] [24]; but, for the purpose of this
paper, unless otherwise specified, optical flow is always used
for representing its magnitude.

The rationale behind our proposed divergence comes from
two points. Firstly, optical flow distribution in fact contains the
motion variations that are embedded in fixation distribution,
the divergence between these two distributions represents
motion variations perceived by a performer in visual scan-
ning. Secondly, bear in mind that visuo-motor behavior is
usually influenced by both top-down and bottom-up factors
and that, the combination of these two factors reflects the
visual scanning efficiency [8]. In fact, all the motion variations,
which are essential information due to the dynamic nature of
driving environment, are considered to result from bottom-
up factors [8]. To go further, motion variations perceived by
a performer in the procedure of driving actually indicate an
effective component of all the motion variations necessarily
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used for the purpose of fulfilling the driving task. As a result,
this so-called effective component can be easily considered
to be caused by both top-down modulations and bottom-up
influences. And in this case, we hypothesize that the proposed
divergence takes as an indicator for visual scanning efficiency.

The square root of JSD (SRJSD) is chosen for computing the
divergence and for extracting the motion variations, because it
is largely accepted as a true mathematical metric [25]. Actu-
ally, SRJSD offers a kind of distance between two probability
distributions in a normalized manner [11] [25]. Thus, SRJSD
between fixation distribution and optical flow distribution in
effect indicates a normalized degree to which the motion
variations are perceived. To sum up, SRJSD between fixation
and optical flow distributions should behave as an evaluation
function for visual scanning efficiency (VSE). The larger the
SRJSD, the more motion variations are perceived, the higher
the VSE becomes, and vice versa.

Additionally, the proposed VSE can be studied from the
perspective of probability and information theories. That is,
the VSE, in fact, can be considered as a probability p an
event occurs, because it ranges from O to 1. As a result, the
VSE points out the probability of perception of the motion
variations. According to information theory, the logarithmic
probability of occurrence (— log, p) represents the quantity of
information conveyed by the occurrence [14]. We hypothesize
that the information quantity may indicate the attentional re-
sources needed for the perception of all the motion variations.
Because the amount of attentional resource reflects cognitive
effort [13], and thus the logarithm of VSE may be the central
part of cognitive effort.

A scheme of the calculation of the two proposed measures is
shown in Fig. 1. Firstly, optical flows induced by fixations are
extracted, to construct the optical flow distribution that actually
embeds motion variations into the fixation distribution. Then

i F\xations\> m Fixation
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Fig. 1. The scheme of the calculation of the proposed measures.
the VSE is obtained by SRJSD between these two distributions,

for measuring the perceived motion variations in driving.
Finally, the CEM is obtained by the logarithm of VSE.

B. Optical Flow Induced by Fixation

A fixation f,, (its index is n) with duration 7,, by an observer
O in a 3D environment is shown in Fig. 2; in this figure, p,
is the distance between O and f,, in the direction of the line
of sight, and p,, is the depth of f,, from the perspective of
O. Considering there is a relative displacement u,,, during
Tn, between O and f,, v, is the optical flow vector defined
according to the original concept of optical flow [23] (bold-
type letters are used to denote vectors in this paper). Actually,
Uy, 1s the projection of w,, in the direction of optical flow

vector, and thus perpendicular to the line of sight. The so-

called motion variation perceived by the observer, m,, is

defined as the trajectory segment of the circular motion of f,

centered on O in this paper. Note, m,, acts as an approximated

magnitude of v,,. The central angle I,, subtended by m,,,
s

I, ="", (1)

Pn

is used to approximately define a perceived magnitude of
optical flow, according to the usual practice that angle is
widely used to represent the magnitude in eye tracking [2].
Notice that, the definition of the perceived magnitude of
optical flow explicitly uses the depth, enabling it to convey
an important information in 3D environments. For the sake of
this paper, I, is called as optical flow.

C. Visual Scanning Efficiency

In this paper, fixations are assigned to AOIs, and AOIs are
defined based on 3D objects in virtual environment [26]. There
exists a one-one correspondence between the AOIs and the
objects.

The probability distribution of fixations, which is the nor-
malized fixation histogram, is based on the frequencies of
fixations located at AOIs. There exist a series of fixations
F = <f1,-~- N ,fNF>, (TL e Cp = {1, ,NF}) that
happens in a driving procedure, the AOIs hit by these fixations
are Xp = {x;li =1,--+-,Na}. For an AOI x; € Xp, all the
indices of the fixations {f,|h € Cp} hitting x; constitute a
set,

Lr(xi) = {h}.

Then the fixation distribution Py = {p¢(x;)|x: € Xr} and the
optical flow distribution P, = {p,(x:)|x: € Xr} are obtained
respectively as

_Pr(xa)l
pf(Xi) = W

2

Fig. 2. An illustration of optical flow I,, induced by fixation fy,.
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It is noted that, motion variations, indicated by optical flows,
are embedded into the fixation distribution Py to construct the
optical flow distribution P,.

A special instance of JSD between two distributions P =
{p(z)|z € X} and Q = {q(x)|r € X} with equal weight-
s [11] is defined as

JSD(P||Q)
| Dren, B watwon
? )
The square root of JSD(P||Q)
SRJSD(P||Q) = /JSD(P||Q) 4)
is used to obtain the metric of visual scanning efficiency,
VSE = SRISD(Py||P,), 5)

because SRJSD is a true mathematical metric [25].

D. Cognitive Effort Measure

Because the distributions of fixation and fixation sequence
reflect different aspects of visual scanning, a combination of
both these two distributions should provide a more complete
understanding of visual scanning behavior, as has been pointed
out in relevant work [8]. Therefore, we propose to utilize
the fixation sequence distribution for the sake of a scaling
function, detailed in the following text of this section.

There exist a series of fixations Flyg =
(fis=+ fnr-+ o fn;41), then we have Ny fixation
sequences S = { funi1) = (fus fus1) | (n,n+1) € Cs},
Cs={(1,2) --- ,(Np,Np + 1)}. A set of AOI sequences is
constituted as Xs = {x( ;) = (Xi»xj) | (i,7) € As}, where
Ag contains the indices of all the AOI sequences X ; jy hit by
all the fixation sequences in S, note that a fixation sequence
finnt1y hitting AOI sequence x(; ;) indicates a transition
from f,, on AOI x; to fp41 on AOI x;. This means that
the performer of visual scanning voluntarily exerts some
cognitive efforts to switch the fixations from f,, to f,,+1. And
in this case, the optical flow I,, induced by f,,, which is taken
for representing the cognitive efforts exerted, is considered
lost for the purpose of completing the transition of fixations
from f, to fn+1. So in this paper, for each AOI sequence
X(,;) € Xs, all its corresponding optical flows induced by
finns1y satisfying that f, .41y hits x(; ;) are obtained, here
each optical flow takes I, and is denoted as I(y »41). Then
for all the AOI sequences in Xg, their corresponding optical
flows are embedded into the fixation sequence distribution to
construct the corresponding optical flow distribution. Note,
the SRJSD between these two distributions takes as the
scaling function for defining the cognitive effort measure.

For an AOI sequence x(; jy € Xs, all the indices of the
fixation sequences f ;1) € S hitting x; ;) constitute a set

Ls(xqg) = {1+ 1} (6)

Then the distribution of fixation sequences Py, =
{prs(X@ig))IX,5) € Xs} and its corresponding optical flow
distribution Pos = {pos(X(i,j)|X(i,;) € Xs} are obtained as

ITs(X(i5))]
pfs(X<i7j>) = TS]

(7N
Z(n,n+1>61"5(x<i,]->) I(n,n-&-l)
Pos(X(i.j)) =

Z<m,m+1>ecs L me1)

It is worth pointing out that if an AOI sequence x; ;y is
not hit by any fixation sequence, then this sequence will not
be included in Xg. Therefore, it is easy to see that

Prs(X (i) ) Pos(X(i,j)) > 0, X i) € Xs, (8)

this means that the probability mass functions of fixation
sequence distribution and its corresponding optical flow dis-
tribution are strictly positive.

For a certain AOI x; € Xp, we have the quantitative
relationships that

pr(xi) = Z(i,j)GAs Prs(X(ig)

9)
Po(Xi) = 2o(i jyeas Pos(X (i)

Notice that SRJSD between two probability distributions
P and @ is not smaller than that between the distributions
constructed by the sums of the corresponding subsets of P
and @ respectively, as proved in Theorem 1.

Theorem /: There are two probability distributions P =
{p(z)|]x € ¥} and Q = {q(z)|]x € ¥} containing non-
empty and non-overlapping subsets p; and v; (j = 1,--- , M)
respectively. Here p; = {p(z)lz € ;,¢; C ¥} and
v; = {q¢(x)lx € ;,¢; C ¥} Then two sets can be
constituted as Ps = {erwj p(x)lj = 1,---,M} and

Qs = {er% q(z)|j =1,---,M}. Then we have
SRISD(Ps||Qs) < SRISD(PQ).  (10)

Proof. The log sum inequality [14] says that, for nonnegative
numbers a1, - ,a, and by,--- , by,

n a,L' n Znﬁ ai
(ailog ) > (3 ;) log Z=L

holds, here equality happens if and only if % is a constant.
p(x) +q(x)

(1)

Setting a; = p(x),z € ¢, and b; = 5 T € 1y,
we obtain
p(z) Zm@pj p(z)
Z (p(x)log p(2)+q(z) ) = ( Z p(z))log p(@)+q(=z)
TEY; 2 TEY; TEY; 2
(12)
Similarly,
a(x) S oew, dl®)
Z (q(z)log oy ) = (Z q(x))log W
TEY; 2 rEY; TEY; 2
(13)
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can be obtained. Thus,

Zzew' p(m)
D p@)log ===
Zzewj p( );—q( )

TEY;
Zwew,- Q(m)

M
JSD(Ps||Qs) = > ((
+ (z%;j q(x))log S, o, Mt

TEY;

p(x)
8 Sta@))
2

q(x)
w)Jrq(a:) ))

M
<O ()

Jj=1 z€;

+ 2 (a
TEY;
— JSD(P|Q).

x) log

(14)
Therefore we have

SRJSD(Ps||Qs) < SRISD(P|Q). (15)

O
When the fixation distribution and the optical flow distribu-
tion, as shown in (9), are applied to Theorem 1, we obtain

VSE = SRISD(P¢||P,) > SRJSD(Py||Pos)
and

VSE
SRISD(Py.|[Pos)

Therefore, SRJSD(Py||P,s) is considered as a normaliza-
tion factor for VSE in this paper.

As discussed in Section III-A, the central part of CEM is
—log, VS E. Inspired by (16), we propose the hypothesis that
the cognitive effort measure (CEM) takes a scaled form

—log, VSE
—logy SRISD(Pys||Pos)

We set CEM= 0 when JSD(Pys||Pps) = 0.

Notice that JSD between two probability distributions with
strictly positive probability mass functions is always lower
than 1, and this is proved in Theorem 2.

<1 (16)

CEM = A7)

Theorem 2: There are two probability distributions P =

{p(z)|z € ¥} and Q = {g(z)|z € ¥}, where p(z),q(z) > 0,
then we have JSD(P||Q) < 1.

Proof.
ISD(rI)
p(a) 2()
Z” g sy +a@ 2108 ey
(a0 + Y ale) =
v )
O

Because of the positive property of the two distributions
Py, and P, given by (8), according to Theorem 2, we have
logy SRISD(Pts||Pos) # 0. And thus, CEM always makes
sense.

Fig. 3. A participant is performing the driving task in the VE.

IV. EXPERIMENT

A. Participants

Fourteen Master/Phd students (5 females; age range: 21-29,
Mean = 21.3, SD = 2.37) with driving experience (they hold
their driver license at least one and a half years) from Tianjin
University volunteer to participate in the psychophysical stud-
ies. All of the participants have normal/corrected-to-normal
visual acuity and normal color vision. There is no participant
having adverse reaction to the virtual environment we set up
for the studies.

B. Virtual Reality Environment

In order to deeply understand visuo-motor behavior based
on eye movement and driving data in an effective and con-
trollable way, virtual reality is used in this paper, as has
been done in many works [27]. A virtual environment (VE),
including common straight, curved roads and buildings, is
designed for the experimental study. In this paper, visual
scanning happened for sensorimotor tasks is considered as
a task directed behavior, as has been widely done in many
relevant works [6] [7]. Therefore, there are no visual stimuli
based distractors, such as pedestrians, traffic light signals and
similar, are included in the VE.

C. Apparatus

HTC Vive headset is used to display the VE for participants.
The eye-tracking equipment is 7ZINVENSUN Instrument aGlass
DKII [28], which is embedded into the HTC Vive display to
capture visual scanning data in a frequency of 90 Hz and in
an accuracy of gaze position of 0.5°. The driving device is
a Logitech G29 steering wheel [29]. Participants listen the
ambient traffic and car engine sounds in VE by speakers.
The visual scanning and driving behaviors of participants are
displayed on desktop monitor to observe the experimental
procedure.

D. Driving Task

Driving is taken as the sensorimotor task, because it is
typically happened in everyday life. As discussed in Section
IV-B and, as well as in relevant research [6] [7], the task
directed focus on visual scanning and driving is taken. And
as a result, participants are required to keep driving at a target
speed of 40 km/h, for speed control. This paper takes the
inverse of the mean acceleration of vehicle to denote the
driving performance. The smaller the mean acceleration, the
higher the driving performance becomes, and vice versa. In
fact, this kind of performance measure has been used a lot
in literature [30]. An example of performing driving tasks is
presented in Fig. 3.
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E. Procedure

Each participant completes four test sessions with the same
task requirements and the same driving routes, with an interval
of one week between every two sessions. All the sessions for
each participant begin with a 9-point calibration for the eye
tracker. In this paper, a trial represents a test session, and there
are 14 x4 = 56 valid trials in all. Data for visual scanning and
driving behaviors are recorded during test sessions.

A preparation session is applied to participants before each
test session to let them know the purpose and procedure about
the psychological studies.

V. RESULTS AND DISCUSSIONS
A. Correlation between VSE and Driving Performance

We verify the hypothesis that the proposed VSE takes as an
indicator for visual scanning efficiency, since visual scanning
efficiency is usually expected to reflect the performance of
sensorimotor tasks [8]. Correlation analysis based on three
kinds of widely used correlation coefficients (CC), namely
Pearson linear correlation coefficient (PLCC), Spearman rank
order correlation coefficient (SROCC) and Kendall rank order
correlation coefficient (KROCC), is employed to validate the
correlation between the proposed VSE and the driving perfor-
mance. As listed in Table I, the CC results show a statistically
significant correlation between our proposed efficiency mea-
sure and the task performance. But in contrast, the entropy
based measures and eye tracking indices do not correlate with
the driving performance. These findings suggest that the new
proposed efficiency metric may be a proxy assessment for the
driving performance in virtual environment.

An example of eye tracking and driving performance data
for two trials, Trials A and B, from the second and fourth
test sessions conducted by the 4th and 13th participants,
respectively, are presented in Fig. 4. This figure has upper and
bottom components, the probability distribution histograms
and the fixation-acceleration plot. In the probability distri-
bution histograms of Trials A and B, blue and yellow bars
indicate the fixation distributions and optical flow distributions,
respectively. Almost all of the differences between the corre-
spondence blue and yellow bars in Trial A are larger than those
in Trial B; in particular, for example, this happens for AOIs
2 and 5. Note JSD is calculated as a sum of the differences
between the correspondence probabilities of two distributions.
Obviously, in this case, the divergence between the fixation
and optical flow distributions from Trial A (SR.J.SD=0.23)

TABLE I
CC BETWEEN INDICATORS AND DRIVING PERFORMANCE

Indicators Pearson Kendall Spearman

CcC p-value CcC p-value CcC p-value

VSE 0.49 p<0.0005 0.34 p<0.0005 0.48 p<0.0005

GTE 0.15 p>0.05 0.04 p > 0.05 0.06 p > 0.05

SGE 0.11 p > 0.05 0.05 p > 0.05 0.08 p > 0.05

EoFS 0.14 p > 0.05 0.10 p >0.05 0.12 p > 0.05
Entropy rate 0.05 p > 0.05 0.05 p > 0.05 0.08 p >0.05
Fixation rate -0.14 p > 0.05 -0.05 p > 0.05 -0.06 p > 0.05
Saccade amplitude 0.12 p > 0.05 -0.05 p > 0.05 -0.08 p > 0.05

Trial A (JSD=0.23) Trial B (JSD=0.01)

05 Il Fixation distribution 05 Il Fixation distribution
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2‘04 ‘2‘04
% 03 % 03
3 3
D‘: 0.2 i 0.2
ad Ul
Aol NS (T (Y
01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16
Ol AOI
15
—Trial A
c ——Trial B
SN /N . Jvr |\ | Avg of Trial A
© N
§ Avg of Trial B
Q
3
< 5r
2.4
T4L-
0
0 20 40 60 80 100 120 140 160
Fixation
Fig. 4. Tllustrations of the fixation and optical flow distributions from Trials

A and B, SRJSD = 0.23 of Trial A is much higher than SRJSD = 0.01
of Trial B (upper). The driving performance of Trial A is largely better than
that of Trial B, as shown by their average mean accelerations 1.4 and 2.4,
respectively (bottom). The JSD visual scanning efficiency corresponds very
well to the driving performance.

is largely bigger than that from Trial B (SRJSD=0.01).
In the fixation-acceleration plot, the horizontal and vertical
axes represent the indices of fixations and the accelerations,
respectively. Average accelerations of Trials A and B are 1.4
and 2.4, which are indicated by the blue and orange dashed
lines, respectively. Therefore, task performance of Trials A is
much better than that of Trial B. This means that, a higher
SRJSD corresponds well to a lower acceleration and thus,
to a better driving performance, and vice versa, validating
the effectiveness of the proposed metric of visual scanning
efficiency.

In addition, a linear regression analysis is performed for
the further confirmation of the correlation, as shown in Fig. 5,
where the horizontal and vertical axes represent the proposed
VSE and the driving performance (inverse of mean acceler-
ation) respectively. The regression result shows a significant
linear relationship between the proposed efficiency metric and
driving performance.

B. Correlation between CEM and Pupil Size Change

Pupil size change, as a kind of pupillary response, is an
autonomic and reflexive indicator of cognitive effort [13] [31].
In this paper, we utilize the standard deviation of pupil size
during each trial to represent the pupil size change because of
its simplicity and effectiveness [32]. A correlation is revealed
between the cognitive effort measure and the pupil size change,
as listed in Table II, which validates the hypothesis that the
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Fig. 5. Linear regression analysis between the VSE and driving performance.
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TABLE II
CC BETWEEN CEM AND PUPIL SIZE CHANGE
Pearson Kendall Spearman
CcC p-value CcC p-value CcC p-value

Pupil size change 0.27 p<0.05 0.20 p < 0.05 0.27 p < 0.05

proposed CEM can be an indicator for cognitive effort.

C. Discussions

This paper discovers a biomarker based on the exploitation
of eye tracking data, for investigating and understanding the
efficiency of visual scanning and the cognitive effort, in the
procedure of driving. To examine these findings, participants
are asked to drive at a target speed in a 3D virtual environment.
The psychophysical results have clearly suggested that the
proposed visual scanning efficiency (VSE) and cognitive effort
measure (CEM) can take proxies for driving task performance
and for pupil size change, respectively.

The PLCC, KROCC and SROCC between the proposed
VSE and the driving performance are 0.49, 0.34 and 0.48
respectively, with significant p-values (p < 0.0005), as listed
in Table I. The success of our proposed metric of visual
scanning efficiency benefits from the characterization of how
many optical flows or motion variations are perceived in
driving. The central consideration of this is to place the
most importance on the perceived motion variations employed
for the completion of visual scanning and of driving. That
is, motion variation, which always and naturally happens in
driving environments [24], is taken as a motivation force for
visuo-motor behavior and for driving activity. And, the motion
variation perceived for visual scanning during the task of
driving indicates the top-down modulation exerted by driver
to fulfill the task. As a matter of fact, our idea resides in
that the visual scanning is a behavior directed by the driving
task, as a combination of top-down and bottom-up influences;
this has been widely accepted in literature [7]. As discussed
above and, as commonly known in relevant research [1],
the visual scanning behavior plays a very important role in
performing a sensorimotor task (such as driving), this paper
calculates how much correlation there exists between visual
scanning efficiency and driving performance, for evaluating
the proposed VSE.

The entropy based measures under comparison do not have
significant correlation with the task performance, and the
direct use of eye tracking indices (fixation rate and saccade
amplitude) does not either. Indeed, the entropy based measures
express the concept of complexity, which is essentially differ-
ent from our proposed VSE. Concretely, GTE is a powerful
estimator of the complexity for transition pattern [1] [8], but
not of the efficiency for the whole visual scanning procedure.
Similarly, SGE [18] and EoFS [16] give the complexity for
spatial patterns of fixations and of fixation sequences, respec-
tively. Notice that the complexity of visuo-motor behavior
just plays a marginal role for the efficiency measure of
visual scanning, and this is the reason why the entropy based
measures under comparison cannot relate enough to the driving

task performance. The direct eye tracking indices, which
are generated based on fundamental fixation and saccade,
cannot be a proxy for the driving task performance. This is
because that these indices are basically simple statistics and
only applicable for specific applications, so as not to behave
generally and robustly as an estimator of visual scanning
efficiency.

A significant correlation (p < 0.05) is revealed between the
proposed CEM and the pupil size change by the three cor-
relation analyses, having the PLCC, KROCC and SROCC of
0.27, 0.20, 0.27 respectively, as shown in Table II. This finding
verifies the power of the cognitive effort measure, according to
the close association between cognitive effort and pupil size
change [13] [31]. Considering that we have made progress
on the exploitation of eye tracking data, as a biomarker, for
the measurements of visual scanning efficiency and cognitive
effort, a further investigation into the relationship between
these two proposed measures will be performed in future work.
And actually, this could be a working path illuminated based
on the exploitation of Yerkes-Dodson law [33].

In this paper, visual scanning in sensorimotor tasks is
mainly considered as a task directed behavior, as has been
largely accepted in literature [6] [7]. As a result, two treat-
ments are performed in our psychophysical studies. Firstly,
we especially design the virtual environment not to include
visual stimuli based distractors (such as pedestrians, traffic
light signals and similar). The purpose of this is to use the
motion variation, which is resulted from the dynamic nature
of driving environment, as the single bottom-up contribution.
Secondly, we simply ask participants to travel at a fixed
speed as the requirement of driving task. The objective of
this is to take the speed control as the single contributor of
top-down modulation. As a result of these two treatments,
mean acceleration is taken as the driving task performance.
Note that mean acceleration is a common measure of driving
performance in related research [30]. Obviously, all in all, we
emphasize that the proposed VSE and CEM is investigated
and assessed more easily and more clearly. Complex virtual
environment and more requirements of the driving task will
be our future work.

Notice that the findings of this paper may not be applicable
for all cases, but it does work in the context of our topic.
Due to that visual scanning is exceptional important in virtual
and real-world sensorimotor tasks, what we have achieved on
efficiency metric and on cognitive effort measure in virtual
driving should be potentially helpful for ergonomic evaluation
pragmatically, in many practical and relevant applications.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we take an important step for thorough under-
standing the mechanism of visual scanning in virtual driving.
This paper has established, in an objective and quantitative
way, a new metric for visual scanning efficiency through a
methodology that exploits the perceived motion variations in
a sensorimotor task by the divergence between fixation distri-
bution and optical flow distribution. The efficiency measure
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provides a window into how to evaluate the performance
of visual scanning, and also behaves as a strong proxy for
objectively assessing the performance of driving tasks. As
far as we can know, no research up to now has reported
this kind of finding to shed light on the issue of efficiency
metric for visual scanning and for performing sensorimotor
tasks. Additionally, the proposed cognitive effort measure,
which is significantly correlates with pupil size change, may
offer a new perspective on the inherent relationship between
task directed visual scanning and eye tracking data. The
two measures we have proposed have been verified by the
psychophysical studies conducted in this paper. In summary,
this paper proposes a new methodology to measure visuo-
motor behavior by using eye tracking data, so as to help the
development of biomarker discovery, from both theoretical and
practical perspectives.

In the near future, we will investigate our proposed method-
ology and the corresponding measures for real-life driving
scenarios, for instance, for crash risk problem [34]. In con-
sideration of the critical role of illumination conditions for
driving, we will exploit the manipulation of illumination levels
in a detailed quantitative way, to comprehensively understand
the mechanism of visual scanning efficiency. The association
between the two proposed measures will be studied, by the ex-
ploitation of Yerkes-Dodson law [33], as has been mentioned
in Section V-C. Also, physiological signals such as heartbeat
[35] will be investigated for understanding the relationships
and interplays between these signals and eye tracking data,
for the sake of visual scanning efficiency and cognitive effort.
Last but also important, visual analytics methodology [36] will
be introduced for mechanism issue of visual scanning.
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