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Abstract—Visual scanning plays an important role in sampling
visual information from the surrounding environments for a lot of
everyday sensorimotor tasks, such as walking and car driving. In
this paper, we consider the problem of visual scanning mechanism
underpinning sensorimotor tasks in 3D dynamic environments.
We exploit the use of eye tracking data as a behaviometric, for
indicating the visuo-motor behavioral measures in the context
of virtual driving. A new metric of visual scanning efficiency
(VSE), which is defined as a mathematical divergence between a
fixation distribution and a distribution of optical flows induced
by fixations, is proposed by making use of a widely-known
information theoretic tool, namely the square root of Jensen-
Shannon divergence. Based on the proposed efficiency metric, a
cognitive effort measure (CEM) is developed by using the concept
of quantity of information. Psychophysical eye tracking studies,
in virtual reality based driving, are conducted to reveal that the
new metric of visual scanning efficiency can be employed very
well as a proxy evaluation for driving performance. In addition,
the effectiveness of the proposed cognitive effort measure is
demonstrated by a strong correlation between this measure and
pupil size change. These results suggest that the exploitation
of eye tracking data provides an effective behaviometric for
sensorimotor activity.

Index Terms—visual scanning efficiency, eye tracking, behavio-
metric, Jensen-Shannon divergence (JSD), cognitive effort

I. INTRODUCTION

A. Background

Visual scanning is critical for the living of any human
in natural surroundings [1]. Visual scanning is indeed the
cornerstone for a human to perform common and everyday
sensorimotor tasks, such as walking and car driving. Actually,
the understanding of the mechanism behind visual scanning
has been very critical since late 1970 and, is especially helpful
and beneficial to making stark and essential progress in both
theoretical and practical perspectives [2]. As has been widely
accepted, visual scanning in sensorimotor activities is a typical
task directed behavior contributed by top-down modulation
[3]. And this is the focused consideration in this paper.

Basically, it is significant to make clear how well a human
can achieve for sampling visual information through visual
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scanning. In this case, to define an efficiency measure ob-
jectively is one of the most fundamental points involved in
the understanding of visual scanning mechanism [2]. Also it
is notably argued that the measure of efficiency for visual
scanning should be indicative for the performance of the
corresponding sensorimotor task [4].

But unfortunately, all the relevant research findings available
do have some issues, which will be described in Section II.
Indeed, it is challenging to measure the visual scanning be-
havior, due to that the behavior itself, which results from both
the bottom-up influence by visual stimuli and the top-down
modulation impact by human activity, is very sophisticated,
according to the theory of predictive processing and active
inference [5]. Besides, there is no established work on defining
a measure of visual scanning efficiency as a true math metric,
and obviously this remarkable mathematical property makes
the measure more usable in theory and practice [6]. In order
to combat all the disadvantages mentioned above, a metric of
visual scanning efficiency is proposed based on making use of
the information theoretic tools, behaving very well as a proxy
for the driving performance in the context of virtual driving.

B. Contributions

The main contributions of this paper are as follows.

• The optical flow induced by a fixation is introduced,
based on the detection of the visual motion resulted from
a fixated dynamic stimulus.

• We propose a methodology to define a mathematical
metric of visual scanning efficiency in an objective and
quantitative way, by the square root of JSD divergence
between fixation distribution and optical flow distribu-
tion.

• Based on an extended exploitation of our proposed visual
scanning efficiency, a cognitive effort measure, in a
perspective of the quantity of information, is developed.

To the best of our knowledge, this is the first time to
effectively define the metric of visual scanning efficiency
and cognitive effort measure, based on the exploitation of
information theoretic tools. This paper paves a novel path for
behaviometric discovery by the utilization of eye tracking data.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2021. ; https://doi.org/10.1101/2020.11.17.386185doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.17.386185
http://creativecommons.org/licenses/by-nc-nd/4.0/


C. Organization

Firstly, the related works are discussed in Section II. The
philosophy and methodology of our proposed technique are
detailed in Section III. Then the experimental methods are
described in Section IV, followed by the results and discussion
presented in Section V. Finally, conclusions and future works
are given in Section VI.

II. RELATED WORKS

The initial consideration for discussing the efficiency mea-
sure of visual scanning is to select suitable eye tracking indices
naturally associated with cognitive processing. Fixation and
saccade are classic indices for this purpose. But, direct and
indirect usages of these indices (for examples, rate/duration of
them and their simple combinations) are more applicable in
specific application scenarios [7], than in the general efficiency
definition. In addition, pupil dilation and blink rate are two
widely used eye tracking indices for the study of cognition
and psychology [8].

The efficiency evaluation of visual scanning has started from
the study of the complexity of visuo-motor behavior and, this
is the usual manner in relevant field [2]. Information entropy,
which is a good measure of complexity [9], in effect has been
used a lot for the issue of visual scanning complexity [2]. The
so-called entropy rate, originally used for the measurement
of task load [10], is defined as a multiplication between the
normalized entropy of fixation sequence and the sum of inverse
transition durations. Entropy of fixation sequence (called EoFS
for brevity) defines based on the probability distribution of
fixation sequences, giving the degree of complexity for spatial
patterns of fixation sequence [11]. EoFS has shown its inter-
action to visual content complexity [12] and to human factors
such as expertise skill [11].

Differently from EoFS, gaze transition entropy (GTE), in
which transition between fixations is depicted by the probabil-
ity transition between Markov states (in this paper, meaning
the areas of interest (AOIs)) and, conditional entropy based
on transition probabilities is used for its definition to express
the degree of complexity for temporal patterns of fixation
transition, with respect to overall spatial fixation dispersion.
GTE has demonstrated its relationship with visual content
complexity [13] and also with human factors, such as anxiety
[14]. There exists a closely relevant gaze entropy, called
stationary gaze entropy (SGE) [13], in which the Shannon
entropy, based on an equilibrium probability distribution for
Markov transition matrix, is used to describe the degree of
complexity for spatial patterns of fixation dispersion. SGE has
also exhibited, similar to GTE, its connection to visual content
complexity [13], and also to human factors, such as emotional
valence [15].

Notice specifically that, it is necessary to know the rela-
tionship between entropy based measures discussed above and
the performance of sensorimotor tasks. EoFS has not been
indicated to have correlation with the task performance. It has
been reported that GTE [1] could not predict the performance
of sensorimotor tasks. As for SGE, it relates to the complexity

of visual content, but can not indicate the performance of
task directed sensorimotor activities [3]. As a mater of fact,
eye tracking has been expected as a strong estimator for task
performance in many professional fields [4]. Obviously, it
is indeed indispensable for the efficiency measure of visual
scanning to take the role as measure of task performance.

III. METHODOLOGY

A. The Philosophy of the Proposed VSE and CEM
It is well understood that, in a sensorimotor task, visual

scanning is managed by a performer through a series of
fixations, so that meeting the requirement of visual sampling
the surrounding environments for fulfilling this task [16].
The probability distribution of fixations, namely the fixation
distribution, which is constructed based on the normalized
histogram of fixation locations in a 3D environment, is used
as a basis for understanding the mechanism of visual scanning
in this paper. In addition, the optical flow, which effectively
reflects a visual motion resulted from a dynamic stimulus [17],
always happens in driving situations [18]. In this paper, the
optical flows induced by fixations are detected and used to
establish the optical flow probability distribution. And then
a divergence between fixation distribution and optical flow
distribution is proposed to define the visual scanning efficien-
cy. Notice that, optical flow represents a vector, according to
its original definition [17] [18]; but, for the purpose of this
paper, unless otherwise specified, optical flow is always used
for representing its magnitude.

The rationale behind our proposed divergence comes from
two points. Firstly, optical flow distribution in fact contains
the visual motions that are embedded in fixation distribution,
the divergence between these two distributions represents
visual motions perceived by a performer in visual scan-
ning. Secondly, bear in mind that visuo-motor behavior is
usually influenced by both top-down and bottom-up factors
and that, the combination of these two factors reflects the
visual scanning efficiency [2]. In fact, all the visual motions,
which are essential information due to the dynamic nature of
driving environment, are considered to result from bottom-
up factors [2]. To go further, visual motions perceived by
a performer in the procedure of driving actually indicate an
effective component of all the visual motions necessarily used
for the purpose of fulfilling the driving task. As a result,
this so-called effective component can be easily considered
to be caused by both top-down modulations and bottom-up
influences. And in this case, we hypothesize that the proposed
divergence takes as an indicator for visual scanning efficiency.

The square root of JSD (SRJSD) is chosen for computing the
divergence and for extracting the visual motions, because it is
largely accepted as a true mathematical metric [19]. Actually,
SRJSD offers a kind of distance between two probability
distributions in a normalized manner [6] [19]. Thus, SRJSD
between fixation distribution and optical flow distribution
in effect indicates a normalized degree to which the visual
motions are perceived. To sum up, SRJSD between fixation
and optical flow distributions should behave as an evaluation
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function for visual scanning efficiency (VSE). The larger the
SRJSD, the more visual motions are perceived, the higher the
VSE becomes, and vice versa.

Additionally, the proposed VSE can be studied from the
perspective of probability and information theories. That is,
the VSE, in fact, can be considered as a probability p an event
occurs, because it ranges from 0 to 1. As a result, the VSE
points out the probability of perception of the visual motions.
According to information theory, the logarithmic probability
of occurrence (− log2 p) represents the quantity of information
conveyed by the occurrence [9]. We hypothesize that the
information quantity may indicate the attentional resources
needed for the perception of all the visual motions. Because
the amount of attentional resource reflects cognitive effort [8],
and thus the logarithm of VSE may be the central part of
cognitive effort.

A scheme of the calculation of the two proposed measures is
shown in Fig. 1. Firstly, optical flows induced by fixations are
extracted, to construct the optical flow distribution that actually
embeds visual motions into the fixation distribution. Then the

Fig. 1. The scheme of the calculation of the proposed measures.

VSE is obtained by SRJSD between these two distributions, for
measuring the perceived visual motions in driving. Finally, the
CEM is obtained by the logarithm of VSE.

B. Optical Flow Induced by Fixation

A fixation fn (its index is n) with duration τn by an observer
O in a 3D environment is shown in Fig. 2; in this figure, ρn
is the distance between O and fn in the direction of the line
of sight, and ρn is the depth of fn from the perspective of
O. Considering there is a relative displacement un, during
τn, between O and fn, υn is defined as the optical flow
vector [17] (bold-type letters are used to denote vectors in this
paper). Actually, υn is the projection of un in the direction of
optical flow vector, and thus perpendicular to the line of sight.
The so-called visual motion perceived by the observer, mn, is
defined as the trajectory segment of the circular motion of fn
centered on O in this paper. Note, mn acts as an approximated
magnitude of υn. The central angle In subtended by mn,

In =
mn

ρn
, (1)

is used to approximately define a perceived magnitude of
optical flow, according to the usual practice that angle is
widely used to represent the magnitude in eye tracking [20].
Notice that, the definition of the perceived magnitude of
optical flow explicitly uses the depth, enabling it to convey

an important information in 3D environments. For the sake of
this paper, In is called as optical flow.

C. Visual Scanning Efficiency

In this paper, fixations are assigned to AOIs, and AOIs are
defined based on 3D objects in virtual environment [21]. There
exists a one-one correspondence between the AOIs and the
objects.

The probability distribution of fixations, which is the nor-
malized fixation histogram, is based on the frequencies of
fixations located at AOIs. There exist a series of fixations
F = ⟨f1, · · · , fn, · · · , fNF ⟩, (n ∈ CF = {1, · · · , NF }) that
happens in a driving procedure, the AOIs hit by these fixations
are XF = {χi|i = 1, · · · , NA}. For an AOI χi ∈ XF , all the
indices of the fixations {fh|h ∈ CF } hitting χi constitute a
set,

ΓF (χi) = {h}.

Then the fixation distribution Pf = {pf (χi)|χi ∈ XF } and the
optical flow distribution Po = {po(χi)|χi ∈ XF } are obtained
respectively as 

pf (χi) =
|ΓF (χi)|
|CF |

.

po(χi) =

∑
n∈ΓF (χi)

In∑
m∈CF

Im

(2)

It is noted that, visual motions, indicated by optical flows, are
embedded into the fixation distribution Pf to construct the
optical flow distribution Po.

A special instance of JSD between two distributions P =
{p(x)|x ∈ X} and Q = {q(x)|x ∈ X} with equal weights [6]
is defined as

JSD(P ||Q)

=

∑
x∈X

(p(x) log2
2p(x)

p(x) + q(x)
+ q(x) log2

2q(x)

p(x) + q(x)
)

2
.

(3)

Fig. 2. An illustration of optical flow In induced by fixation fn.
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The square root of JSD(P ||Q)

SRJSD(P ||Q) =
√
JSD(P ||Q) (4)

is used to obtain the metric of visual scanning efficiency,

V SE = SRJSD(Pf ||Po), (5)

because SRJSD is a true mathematical metric [19].

D. Cognitive Effort Measure

Because the distributions of fixation and fixation sequence
reflect different aspects of visual scanning, a combination of
both these two distributions should provide a more complete
understanding of visual scanning behavior, as has been pointed
out in relevant work [2]. Therefore, we propose to utilize
the fixation sequence distribution for the sake of a scaling
function, detailed in the following text of this section.

There exist a series of fixations FS =⟨
f1, · · · , fn, · · · , fNf+1

⟩
, then we have Nf fixation

sequences S = {f⟨n,n+1⟩ = ⟨fn, fn+1⟩ | ⟨n, n+ 1⟩ ∈ CS},
CS = {⟨1, 2⟩ · · · , ⟨NF , NF + 1⟩}. A set of AOI sequences is
constituted as XS = {χ⟨i,j⟩ = ⟨χi, χj⟩ | ⟨i, j⟩ ∈ AS}, where
AS contains the indices of all the AOI sequences χ⟨i,j⟩ hit by
all the fixation sequences in S, note that a fixation sequence
f⟨n,n+1⟩ hitting AOI sequence χ⟨i,j⟩ indicates a transition
from fn on AOI χi to fn+1 on AOI χj . This means that
the performer of visual scanning voluntarily exerts some
cognitive efforts to switch the fixations from fn to fn+1. And
in this case, the optical flow In induced by fn, which is taken
for representing the cognitive efforts exerted, is considered
lost for the purpose of completing the transition of fixations
from fn to fn+1. So in this paper, for each AOI sequence
χ⟨i,j⟩ ∈ XS , all its corresponding optical flows induced by
f⟨n,n+1⟩ satisfying that f⟨n,n+1⟩ hits χ⟨i,j⟩ are obtained, here
each optical flow takes In and is denoted as I⟨n,n+1⟩. Then
for all the AOI sequences in XS , their corresponding optical
flows are embedded into the fixation sequence distribution to
construct the corresponding optical flow distribution. Note,
the SRJSD between these two distributions takes as the
scaling function for defining the cognitive effort measure.

For an AOI sequence χ⟨i,j⟩ ∈ XS , all the indices of the
fixation sequences f⟨l,l+1⟩ ∈ S hitting χ⟨i,j⟩ constitute a set

ΓS(χ⟨i,j⟩) = {⟨l, l + 1⟩}. (6)

Then the distribution of fixation sequences Pfs =
{pfs(χ⟨i,j⟩)|χ⟨i,j⟩ ∈ XS} and its corresponding optical flow
distribution Pos = {pos(χ⟨i,j⟩|χ⟨i,j⟩ ∈ XS} are obtained as

pfs(χ⟨i,j⟩) =
|ΓS(χ⟨i,j⟩)|

|CS |
.

pos(χ⟨i,j⟩) =

∑
⟨n,n+1⟩∈ΓS(χ⟨i,j⟩)

I⟨n,n+1⟩∑
⟨m,m+1⟩∈CS

I⟨m,m+1⟩

(7)

It is worth pointing out that if an AOI sequence χ⟨i,j⟩ is
not hit by any fixation sequence, then this sequence will not

be included in XS . Therefore, it is easy to see that

pfs(χ⟨i,j⟩), pos(χ⟨i,j⟩) > 0, χ⟨i,j⟩ ∈ XS , (8)

this means that the probability mass functions of fixation
sequence distribution and its corresponding optical flow dis-
tribution are strictly positive.

For a certain AOI χi ∈ XF , we have the quantitative
relationships that


pf (χi) =

∑
⟨i,j⟩∈AS

pfs(χ⟨i,j⟩)

.

po(χi) =
∑

⟨i,j⟩∈AS
pos(χ⟨i,j⟩)

(9)

Notice that SRJSD between two probability distributions
P and Q is not smaller than that between the distributions
constructed by the sums of the corresponding subsets of P
and Q respectively, as proved in Theorem 1.

Theorem 1: There are two probability distributions P =
{p(x)|x ∈ Ψ} and Q = {q(x)|x ∈ Ψ} containing non-
empty and non-overlapping subsets µj and νj (j = 1, · · · ,M )
respectively. Here µj = {p(x)|x ∈ ψj , ψj ⊆ Ψ} and
νj = {q(x)|x ∈ ψj , ψj ⊆ Ψ}. Then two sets can be
constituted as PS = {

∑
x∈ψj

p(x)|j = 1, · · · ,M} and
QS = {

∑
x∈ψj

q(x)|j = 1, · · · ,M}. Then we have

SRJSD(PS ||QS) ≤ SRJSD(P ||Q). (10)

Proof. The log sum inequality [9] says that, for nonnegative
numbers a1, · · · , an and b1, · · · , bn,

n∑
i=1

(ai log
ai
bi
) ≥ (

n∑
i=1

ai) log

∑n
i=1 ai∑n
i=1 bi

(11)

holds, here equality happens if and only if ai
bi

is a constant.

Setting ai = p(x), x ∈ ψj and bi =
p(x) + q(x)

2
, x ∈ ψj ,

we obtain

∑
x∈ψj

(p(x) log
p(x)

p(x)+q(x)
2

) ≥ (
∑
x∈ψj

p(x)) log

∑
x∈ψj

p(x)∑
x∈ψj

p(x)+q(x)
2

.

(12)
Similarly,

∑
x∈ψj

(q(x) log
q(x)

p(x)+q(x)
2

) ≥ (
∑
x∈ψj

q(x)) log

∑
x∈ψj

q(x)∑
x∈ψj

p(x)+q(x)
2

(13)
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can be obtained. Thus,

JSD(PS ||QS) =
M∑
j=1

((
∑
x∈ψj

p(x)) log

∑
x∈ψj

p(x)∑
x∈ψj

p(x)+q(x)
2

+ (
∑
x∈ψj

q(x)) log

∑
x∈ψj

q(x)∑
x∈ψj

p(x)+q(x)
2

)

≤
M∑
j=1

(
∑
x∈ψj

(p(x) log
p(x)

p(x)+q(x)
2

)

+
∑
x∈ψj

(q(x) log
q(x)

p(x)+q(x)
2

))

= JSD(P ||Q).
(14)

Therefore we have

SRJSD(PS ||QS) ≤ SRJSD(P ||Q). (15)

�
When the fixation distribution and the optical flow distribu-

tion, as shown in (9), are applied to Theorem 1, we obtain

V SE = SRJSD(Pf ||Po) ≥ SRJSD(Pfs||Pos)

and
V SE

SRJSD(Pfs||Pos)
≤ 1. (16)

Therefore, SRJSD(Pfs||Pos) is considered as a normaliza-
tion factor for VSE in this paper.

As discussed in Section III-A, the central part of CEM is
− log2 V SE. Inspired by (16), we propose the hypothesis that
the cognitive effort measure (CEM) takes a scaled form

CEM =
− log2 V SE

− log2 SRJSD(Pfs||Pos)
. (17)

We set CEM= 0 when JSD(Pfs||Pos) = 0.
Notice that JSD between two probability distributions with

strictly positive probability mass functions is always lower
than 1, and this is proved in Theorem 2.

Theorem 2: There are two probability distributions P =
{p(x)|x ∈ Ψ} and Q = {q(x)|x ∈ Ψ}, where p(x), q(x) > 0,
then we have JSD(P ||Q) < 1.
Proof.

JSD(P ||Q)

=
1

2
(
∑
Ψ

p(x) log2
2p(x)

p(x) + q(x)
+
∑
Ψ

q(x) log2
2q(x)

p(x) + q(x)
)

<
1

2
(
∑
Ψ

p(x) +
∑
Ψ

q(x)) = 1.

�
Because of the positive property of the two distributions

Pfs and Pos given by (8), according to Theorem 2, we have
log2 SRJSD(Pfs||Pos) ̸= 0. And thus, CEM always makes
sense.

Fig. 3. A participant is performing the driving task in the VE.

IV. EXPERIMENT

A. Participants
Fourteen Master/Phd students (5 females; age range: 21-29,

Mean = 21.3, SD = 2.37) with driving experience (they hold
their driver license at least one and a half years) from Tianjin
University volunteer to participate in the psychophysical stud-
ies. All of the participants have normal/corrected-to-normal
visual acuity and normal color vision. There is no participant
having adverse reaction to the virtual environment we set up
for the studies.

B. Virtual Reality Environment
In order to deeply understand visuo-motor behavior based

on eye movement and driving data in an effective and con-
trollable way, virtual reality is used in this paper, as has
been done in many works [22]. A virtual environment (VE),
including common straight, curved roads and buildings, is
designed for the experimental study. In this paper, visual
scanning happened for sensorimotor tasks is considered as
a task directed behavior, as has been widely done in many
relevant works [16] [3]. Therefore, there are no visual stimuli
based distractors, such as pedestrians, traffic light signals and
similar, are included in the VE.

C. Apparatus
HTC Vive headset [23] is used to display the VE for partici-

pants. The eye-tracking equipment is 7INVENSUN Instrument
aGlass DKII [24], which is embedded into the HTC Vive
display to capture visual scanning data in a frequency of 90 Hz
and in an accuracy of gaze position of 0.5◦. The driving device
is a Logitech G29 steering wheel [25]. Participants listen the
ambient traffic and car engine sounds in VE by speakers.
The visual scanning and driving behaviors of participants are
displayed on desktop monitor to observe the experimental
procedure.

D. Driving Task
Driving is taken as the sensorimotor task, because it is

typically happened in everyday life. As discussed in Section
IV-B and, as well as in relevant research [16] [3], the task
directed focus on visual scanning and driving is taken. And
as a result, participants are required to keep driving at a target
speed of 40 km/h, for speed control. This paper takes the
inverse of the mean acceleration of vehicle to denote the
driving performance. The smaller the mean acceleration, the
higher the driving performance becomes, and vice versa. In
fact, this kind of performance measure has been used a lot
in literature [26]. An example of performing driving tasks is
presented in Fig. 3.
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E. Procedure

Each participant completes four test sessions with the same
task requirements and the same driving routes, with an interval
of one week between every two sessions. All the sessions for
each participant begin with a 9-point calibration for the eye
tracker. In this paper, a trial represents a test session, and there
are 14∗4 = 56 valid trials in all. Data for visual scanning and
driving behaviors are recorded during test sessions.

A preparation session is applied to participants before each
test session to let them know the purpose and procedure about
the psychological studies.

V. RESULTS AND DISCUSSIONS

A. Correlation between VSE and Driving Performance

We verify the hypothesis that the proposed VSE takes as an
indicator for visual scanning efficiency. Because visual scan-
ning efficiency is usually expected to reflect the performance
of sensorimotor tasks [2], correlation analysis based on three
kinds of widely used correlation coefficients (CC) [27], namely
Pearson linear correlation coefficient (PLCC), Spearman rank
order correlation coefficient (SROCC) and Kendall rank order
correlation coefficient (KROCC), is employed to validate the
proposed hypothesis. As listed in Table I, the CC results show
a statistically significant correlation between our proposed
efficiency measure and the task performance. But in contrast,
the entropy based measures and eye tracking indices do not
correlate with the driving performance. These findings suggest
that the new proposed efficiency metric may be a proxy
assessment for the driving performance in virtual environment.

An example of eye tracking and driving performance data
for two trials, Trials A and B, from the second and fourth
test sessions conducted by the 4th and 13th participants,
respectively, are presented in Fig. 4. This figure has upper and
bottom components, the probability distribution histograms
and the fixation-acceleration plot. In the probability distri-
bution histograms of Trials A and B, blue and yellow bars
indicate the fixation distributions and optical flow distributions,
respectively. Almost all of the differences between the corre-
spondence blue and yellow bars in Trial A are larger than those
in Trial B; in particular, for example, this happens for AOIs
2 and 5. Note JSD is calculated as a sum of the differences
between the correspondence probabilities of two distributions.
Obviously, in this case, the divergence between the fixation
and optical flow distributions from Trial A (SRJSD=0.23)
is largely bigger than that from Trial B (SRJSD=0.01).

TABLE I
CC BETWEEN INDICATORS AND DRIVING PERFORMANCE

Indicators
Pearson Kendall Spearman

CC p-value CC p-value CC p-value

VSE 0.49 p<0.0005 0.34 p<0.0005 0.48 p<0.0005
GTE 0.15 p>0.05 0.04 p > 0.05 0.06 p > 0.05
SGE 0.11 p > 0.05 0.05 p > 0.05 0.08 p > 0.05
EoFS 0.14 p > 0.05 0.10 p >0.05 0.12 p > 0.05

Entropy rate 0.05 p > 0.05 0.05 p > 0.05 0.08 p >0.05
Fixation rate -0.14 p > 0.05 -0.05 p > 0.05 -0.06 p > 0.05

Saccade amplitude 0.12 p > 0.05 -0.05 p > 0.05 -0.08 p > 0.05

Fig. 4. Illustrations of the fixation and optical flow distributions from Trials
A and B, SRJSD = 0.23 of Trial A is much higher than SRJSD = 0.01
of Trial B (upper). The driving performance of Trial A is largely better than
that of Trial B, as shown by their average mean accelerations 1.4 and 2.4,
respectively (bottom). The JSD visual scanning efficiency corresponds very
well to the driving performance.

In the fixation-acceleration plot, the horizontal and vertical
axes represent the indices of fixations and the accelerations,
respectively. Average accelerations of Trials A and B are 1.4
and 2.4, which are indicated by the blue and orange dashed
lines, respectively. Therefore, task performance of Trials A is
much better than that of Trial B. This means that, a higher
SRJSD corresponds well to a lower acceleration and thus,
to a better driving performance, and vice versa, validating
the effectiveness of the proposed metric of visual scanning
efficiency.

In addition, a linear regression analysis is performed for
the further confirmation of the correlation, as shown in Fig. 5,
where the horizontal and vertical axes represent the proposed
VSE and the driving performance (inverse of mean acceler-
ation) respectively. The regression result shows a significant
linear relationship between the proposed efficiency metric and
driving performance.

B. Correlation between CEM and Pupil Size Change
Pupil size change, as a kind of pupillary response, is an

autonomic and reflexive indicator of cognitive effort [8] [28].
In this paper, we utilize the standard deviation of pupil size
during each trial to represent the pupil size change because of
its simplicity and effectiveness [29]. A correlation is revealed
between the cognitive effort measure and the pupil size change,
as listed in Table II, which validates the hypothesis that the
proposed CEM can be an indicator for cognitive effort.

Fig. 5. Linear regression analysis between the VSE and driving performance.
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TABLE II
CC BETWEEN CEM AND PUPIL SIZE CHANGE

Pearson Kendall Spearman

CC p-value CC p-value CC p-value

Pupil size change 0.27 p<0.05 0.20 p < 0.05 0.27 p < 0.05

C. Discussions
This paper discovers a behaviometric based on the exploita-

tion of eye tracking data, for investigating and understanding
the efficiency of visual scanning and the cognitive effort, in the
procedure of driving. To examine these findings, participants
are asked to drive at a target speed in a 3D virtual environ-
ment. The psychophysical results have clearly suggested that
the proposed visual scanning efficiency (VSE) and cognitive
effort measure (CEM) can take good proxies for driving task
performance and for pupil size change, respectively.

The PLCC, KROCC and SROCC between the proposed VSE
and driving performance are 0.49, 0.34 and 0.48 respectively,
with significant p-values (p < 0.0005), as listed in Table I. The
success of our proposed metric of visual scanning efficiency
benefits from the characterization of how many optical flows
(visual motions) are perceived in driving. The central consid-
eration of this is to place the most importance on the perceived
visual motions employed for the completion of visual scanning
and of driving. That is, visual motion, which always and
naturally happens in driving environments [18], is taken as
a motivation force for visuo-motor behavior and for driving
activity. And, the visual motion perceived for visual scanning
during the task of driving indicates the top-down modulation
exerted by driver to fulfill the task. As a matter of fact, our idea
resides in that the visual scanning is a behavior directed by
the driving task, as a combination of top-down and bottom-up
influences; this has been widely accepted in literature [3]. As
discussed above and, as commonly known in relevant research
[1], the visual scanning behavior plays a very important role in
performing a sensorimotor task (such as driving), this paper
calculates how much correlation there exists between visual
scanning efficiency and driving performance, as an evaluation
of the proposed VSE.

The entropy based measures under comparison do not
have significant correlation with task performance, and the
direct use of eye tracking indices (fixation rate and saccade
amplitude) does not either. Indeed, the entropy based measures
express the concept of complexity, which is essentially differ-
ent from our proposed VSE. Concretely, GTE is a powerful
estimator of the complexity for transition pattern [1] [2], but
not of the efficiency for the whole visual scanning procedure.
Similarly, SGE [13] and EoFS [12] give the complexity for
spatial patterns of fixations and of fixation sequences, respec-
tively. We believe that the complexity of visuo-motor behavior
just plays a marginal role for the efficiency measure of visual
scanning in task directed sensorimotor tasks. In fact, visual
motion, which is critical for performing sensorimotor tasks
like driving, is not explicitly considered by this complexity
measurement. And thus this is the reason why the entropy
based measures under comparison cannot relate enough to

the driving task performance. The direct eye tracking indices,
which are generated based on fundamental fixation and sac-
cade, cannot be a proxy for the driving task performance. This
is because that these indices are basically simple statistics and
only applicable for specific applications, so as not to behave
generally and robustly as an estimator of visual scanning
efficiency [7].

A significant correlation (p < 0.05) is revealed between
the proposed CEM and the pupil size change by the three
correlation analyses, having the PLCC, KROCC and SROCC
of 0.27, 0.20, 0.27 respectively, as shown in Table II. This
finding verifies the power of the cognitive effort measure,
according to the close association between cognitive effort
and pupil size change [8] [28]. Considering that we have
made progress on the exploitation of eye tracking data, as
a behaviometric, for the measurements of visual scanning
efficiency and cognitive effort, a further investigation into
the relationship between these two proposed measures will
be performed in future work. And actually, this could be a
working path illuminated based on the exploitation of Yerkes-
Dodson law [30].

In this paper, visual scanning in sensorimotor tasks is
mainly considered as a task directed behavior, as has been
largely accepted in literature [16] [3]. And in this case, two
corresponding treatments are performed in our psychophysical
studies. Firstly, we especially design the virtual environmen-
t not to include visual stimuli based distractors (such as
pedestrians, traffic light signals and similar). The purpose
of this is to use the visual motion, which is resulted from
the dynamic nature of driving environment, as the single
bottom-up contribution. Secondly, we simply ask participants
to travel at a fixed speed as the requirement of driving
task. The objective of this is to take the speed control as
the single contributor of top-down modulation. As a result
of these two treatments, mean acceleration is taken as the
driving task performance. Note that mean acceleration is a
common measure of driving performance in related research
[26]. Obviously, all in all, we emphasize that the proposed
VSE and CEM are investigated and assessed more easily and
more clearly in the current two treatments. Complex virtual
environment and more requirements of the driving task will
be our future work.

Notice that the findings of this paper may not be applicable
for all cases, but it does work in the context of our topic.
Due to that visual scanning is exceptional important in virtual
and real-world sensorimotor tasks, what we have achieved on
efficiency metric and on cognitive effort measure in virtual
driving should be potentially helpful for ergonomic evaluation
pragmatically, in many practical and relevant applications.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we take an important step for thorough under-
standing the mechanism of visual scanning in virtual driving.
This paper has established, in an objective and quantitative
way, a new metric for visual scanning efficiency through a
methodology that exploits the perceived visual motions in a
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sensorimotor task by the divergence between fixation distri-
bution and optical flow distribution. The efficiency measure
provides a window into how to evaluate the performance
of visual scanning, and also behaves as a strong proxy for
objectively assessing the performance of driving tasks. As
far as we can know, no research up to now has reported
this kind of finding to shed light on the issue of efficiency
metric for visual scanning and for performing sensorimotor
tasks. Additionally, the proposed cognitive effort measure,
which is significantly correlates with pupil size change, may
offer a new perspective on the inherent relationship between
task directed visual scanning and eye tracking data. The
two measures we have proposed have been verified by the
psychophysical studies conducted in this paper. In summary,
this paper proposes a new methodology to measure visuo-
motor behavior by using eye tracking data, so as to help the
development of behaviometric discovery, from both theoretical
and practical perspectives.

In the near future, we will investigate our proposed method-
ology and measures for real-life driving scenarios, for instance,
for crash risk problem [31]. In consideration of the critical
role of illumination conditions for driving, we will exploit the
manipulation of illumination levels in a detailed quantitative
way, to comprehensively understand the mechanism of visual
scanning efficiency. The association between the two proposed
measures will be studied, by the exploitation of Yerkes-
Dodson law [30], as has been mentioned in Section V-C.
Also, physiological signals such as heartbeat [32] will be
investigated for understanding the relationships and interplays
between these signals and eye tracking data, for the sake of
visual scanning efficiency and cognitive effort.
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