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Abstract9

Cortical inhibitory interneurons consist of many subtypes that have been associated with different functions.10

Here we use an optimization approach to show that two classes of interneurons are necessary to implement11

compartment-specific feedback inhibition to pyramidal cells. The two classes resemble PV-expressing and12

SST-expressing interneurons in their connectivity and short-term plasticity, suggesting a functional role for13

their diverse characteristics.14

1 Main Text15

Cortical inhibitory interneurons are very diverse [1]. The two most common interneuron classes—parvalbumin16

(PV) positive and somatostatin (SST) positive cells—differ prominently in their connectivity and synaptic17

dynamics: whereas PV basket cells typically receive short-term depressing input from excitatory pyramidal18

cells and in turn inhibit their soma and proximal dendrites, SST Martinotti cells receive short-term facili-19

tating input and inhibit distal dendrites [2]. But what is the function of these differences between PV and20

SST interneurons?21

22

One of inhibition’s core functions is to prevent run-away excitation [3] by means of feedback inhibition23

that tracks excitatory inputs. This has led to the concept of excitation-inhibition (E/I) balance [4]. E/I24

balance is thought to shape cortical dynamics [4] and computations [5, 6] and can be established by means of25

inhibitory forms of plasticity [7]. Selective disruptions of E/I balance are thought to play a key role during26

learning [8].27

28

Originally conceived as a balance on average [4], E/I balance turned out to be specific to sensory stimuli29

[9], in time [10, 11], across neurons [12] and to neural activation patterns [13]. Given the high specificity of E/I30

balance, we hypothesized that excitation and inhibition also balance across different neuronal compartments31

[14], and that this could be mediated at least in part by compartment-specific feedback inhibition. Different32

neuronal compartments often receive input from different sources [15] and display complex nonlinear dy-33

namics [16, 17] that shape how these inputs are integrated [18]. We hypothesized that compartment-specific34

feedback inhibition requires a reflection of this intracellular complexity in the surrounding inhibitory cir-35

cuitry. In particular, we hypothesized that it creates a need for different interneuron classes. If this were36

true, interneuron classes should emerge in a recurrent network model that is optimized for a compartment-37

specific E/I balance.38
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39

To test this idea, we simulated spiking networks comprising pyramidal cells (PCs) and interneurons (INs)40

(see Methods). The PCs were described by a two-compartment model consisting of a soma and an apical41

dendrite. The parameters of this model were previously fitted to capture dendrite-dependent bursting [19].42

PCs received time-varying inputs in both the somatic and the dendritic compartment. INs were described by43

point neurons that receive excitatory inputs from the PCs and return feedback inhibition to the PCs. The44

strength of all synaptic connections in the network and the short-term plasticity of the PC→ IN connections45

were optimized to balance excitation and inhibition across PC compartments, by means of gradient descent46

([20], see Methods).47

48

Before optimization, interneurons formed a single, homogeneous group (Fig. 1a, top). Most inhibited49

both somatic and dendritic compartments (Fig. 1b, top) and PC → IN connections showed non-specific50

synaptic dynamics (Fig. 1c, top). Moreover, excitation and inhibition were poorly correlated, particularly51

in the dendrite (Pearson correlation coefficients 0.55 (soma) & 0.04 (dendrite)), suggesting that the network52

did not generate compartment-specific feedback inhibition (Fig. 1d, top).53

54

During optimization, the interneurons robustly split into two groups (Fig. 1a, bottom) with different55

connectivity (Fig. 1b, bottom) and short-term plasticity (Fig. 1c, bottom). One group received short-term56

depressing inputs from PCs and preferentially targeted their somatic compartment, akin to PV interneurons.57

The other group received short-term facilitating inputs from PCs and targeted their dendritic compartment,58

akin to SST interneurons. Excitation and inhibition were now positively correlated in both compartments59

(Pearson correlation coefficients 0.77 (soma) & 0.61 (dendrite); Fig. 1d, bottom).60

61

To confirm the benefit of non-overlapping interneuron classes, we performed control simulations in which62

each interneuron was pre-assigned to target either the soma or the dendrite, while synaptic strengths and63

short-term plasticity were optimized. Consistent with a benefit of a specialization, the correlation of exci-64

tation and inhibition in the two compartments was as high as in fully self-organized networks (Fig. A.1).65

Optimized networks with pre-assigned interneuron classes also showed the same diversification in their short-66

term plasticity, resembling that of PV and SST neurons (Figs. A.1, A.2).67

68

Because interneurons subtypes also differ in their connectivity to other interneurons [21, 22], we included69

IN→ IN synapses in our optimization. After classifying INs as putative PV and SST neurons using a binary70

Gaussian mixture model, we found that the connections between the interneuron classes varied systematically71
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in strength. While PV↔PV connections, PV→SST connections and SST↔SST connections were similar in72

strength on average, SST→PV were consistently stronger (Fig. A.3a). To investigate which connections were73

necessary, we performed simulated knockout experiments in networks with pre-assigned interneuron classes,74

in which we removed individual connections types. We found that only PV→SST connections were neces-75

sary for a dendritic E/I balance (Fig. A.3b). This was confirmed by a mathematical analysis of a simplified76

network model, which suggests that disynaptic PC→PV→SST inhibition is necessary to prevent somatic77

inputs from generating dendritic inhibition (Section B.1). Although earlier work did not find PV→SST78

connectivity in the primary visual cortex of young mice [21], these connections are present in primary visual79

and somatosensory cortex of older animals [22].80

81

For compartment-specific feedback inhibition, interneurons have to retrieve the somatic and dendritic82

input to PCs from the spiking activity of the PCs (Fig. 2a). By which mechanism is this decoding achieved?83

Recently, it was proposed that the electrophysiological properties of PCs support a multiplexed neural code84

that simultaneously represents somatic and dendritic inputs in temporal spike patterns ([23], Fig. 2b). In85

this code, somatic input increases the number of spikes (event rate, see Methods), whereas dendritic in-86

put increases the probability that a spike is converted to a burst (burst probability). Providing soma- or87

dendrite-specific inhibition then amounts to decoding the event rate or burst probability, respectively. Such88

a decoding can be achieved in circuits with short-term plasticity and feedforward inhibition [23], and we89

expected that our network arrived at a similar decoding scheme.90

91

We tested this hypothesis by injecting current pulses to PC somata and dendrites (see Methods). Stronger92

dendritic input increased the burst probability, which increased the SST rate, which increased dendritic in-93

hibition (Fig. 2c-e, top). Analogously, stronger somatic input increased the event rate, which increased the94

PV rate, which increased somatic inhibition (Fig. 2c-e, bottom). Importantly, inhibition was specific to each95

compartment: Because PV neurons were selectively activated by PC events, somatic inhibition was largely96

unaffected by dendritic excitation. Similarly, SST neurons were selectively activated by PC bursts, such97

that dendritic inhibition was largely unaffected by somatic excitation (Fig. A.4). In the model, interneurons98

therefore provide compartment-specific inhibition by demultiplexing the neural code used by the PCs. Note99

that the balance is less tight in time in the dendrites than in the somata (cf. Fig. 2e top and bottom), a100

consequence of the delay between burst onset and SST activation [24].101

102

So far we assumed that PC somata and dendrites receive uncorrelated input. Recent work, however,103

suggests that somatic and dendritic activity are correlated [25, 26], potentially reducing the need for104
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compartment-specific inhibition. We therefore tested how correlated inputs affect interneuron specializa-105

tion by optimizing separate networks for different input correlations. We found that increasing correlation106

between somatic and dendritic inputs gradually reduced the separation between the interneuron classes107

(Fig 3a,b). For high input correlation, optimized networks contained a continuum in their connectivity and108

short-term plasticity (Fig. 3a,b). However, the presence of short-term plasticity was necessary for a dendritic109

E/I balance for a range of input correlations (Fig. 3c). Note that although distinct interneuron populations110

were not necessary for the case of high input correlation, the presence of IN classes was not harmful for E/I111

balance. A pre-assignment of the interneurons into classes maintained the E/I correlation in both compart-112

ments and for any correlation level (Fig A.2a). Finally, we found that interneuron specialization degraded113

with increasing baseline activity of the INs (Fig A.5), because high firing rates allow non-specialized inhi-114

bition to cancel out (see mathematical analysis in Section B.2). However, a pre-assignment of interneurons115

into classes again maintained the E/I correlation for different baseline activity levels (Fig A.2c).116

117

The model predicts that, first, PV and SST rates should correlate with somatic and dendritic activity,118

respectively (Fig. 2). Second, inhibiting SST neurons [27] or manipulating PC→ SST facilitation [28] should119

increase PC bursting. On a higher level, the model suggests a relation between the biophysical properties of120

excitatory neurons and the surrounding interneuron circuity. This is consistent, e.g., with the finding that121

the prevalence of pyramidal cells and dendrite-targeting Martinotti cells seems to be correlated across brain122

regions [29]. Combined with more complex biophysical models, the suggested optimization approach could123

hence provide an inroad to understanding further properties of interneuron classes and their circuitry.124
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3 Figures212

IN

PC
PV

SST

IN

PC

Figure 1: Interneuron diversity emerges in networks optimized for compartment-specific inhibition
(a) Network structure before (top) and after optimization (bottom). PC, pyramidal cell; IN, interneuron; PV,
parvalbumin-positive IN; SST, somatostatin-positive IN. Recurrent inhibitory connections among INs omitted for
clarity. (b) Strength of somatic and dendritic inhibition from individual INs. Dashed lines: 95% density of a
Gaussian distribution (top) and mixture of two Gaussian distributions (bottom) fitted to the connectivity and Paired
Pulse Ratio (PPR) data of 5 networks (marginalized over PPR). (c) PPR distribution (data from 5 networks). Mean
PPR before optimization: 1.00; after optimization: 0.73 (PV cluster, n = 133) and 1.45 (SST cluster, n = 113). (d)
Excitatory (red) and inhibitory (top: gray, bottom: blue) currents onto PC compartments (average across NE = 400
PCs). Correlation between excitation and inhibition before optimization: 0.55 (soma) and 0.04 (dendrites). After
optimization: 0.77 (soma) and 0.61 (dendrites).
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Figure 2: The interneuron circuit decodes somatic and dendritic inputs to PCs. (a) PC somata and
dendrites receive uncorrelated input streams (yellow and blue) that, from PC output spikes (green), have to be
separated into compartment-specific inhibition (yellow and blue). (b) PCs use a multiplexed neural code. Somatic
input leads to events (singlets or bursts). Dendritic input converts singlets into bursts. (c) Top: Excitatory input
to PC dendrites increases burst probability. Bottom: Excitatory input to PC somata increases event rate. Error
bars indicate sd over 10 stimulus repetitions. (d) Top: SST rate increases with bursts probability. Bottom: PV rate
increases with PC events. (e) Dendritic and somatic inhibition in PCs increase with dendritic and somatic excitation,
respectively.

Figure 3: Correlations between dendritic and somatic input reduce interneuron specialization. (a)
Strength of somatic vs. dendritic inhibition from all INs. Left, middle, right: input correlation coefficient 0 (low),
0.5 (medium), and 1 (high), respectively. (b) Specialization of IN→E weights. If each IN targets either soma or
dendrites, the specialization is 1 (see Methods). Gray: specialization of initial random network; black: specialization
after optimization. (c) Left: In the soma, excitation and inhibition are balanced across a broad range of input
correlations, with or without short-term plasticity (STP). Right: In the dendrites, excitation and inhibition are
balanced only with STP. Open circles, mean over 5 batches of 8 stimuli with random amplitudes (see Methods).
Small filled circles, individual batches. (d) Examples for synaptic traces corresponding to correlation levels in a.
Dark red, somatic current; light red, dendritic input.
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4 Methods213

4.1 Network Model214

We simulated a fully connected spiking network model consisting of NE pyramidal cells (PCs) and NI in-

terneurons (INs), as in earlier work [23]. PCs are described by a two-compartment model [19]. The membrane

potential vs in the somatic compartment is modeled as a leaky integrate-and-fire unit with spike-triggered

adaptation:

dvs

dt
= −v

s − EL

τs
+
gsf(vd) + ws + Is

Cs
(1)

dws

dt
= − ws

τs,w
+ bsS(t) . (2)

Here, EL denotes the resting potential, τs the membrane time constant and Cs the capacitance of the soma. Is

is the external input, and ws the adaptation variable, which follows leaky dynamics with time constant τs,w,

driven by the spike train S emitted by the soma. bs controls the strength of the spike-triggered adaptation.

vd is the dendritic membrane potential, the conductance gs controls how strongly the dendrite drives the

soma, and f the nonlinear activation of the dendrite:

f(v) = 1/(1 + exp(−(v − Ed)/Dd)) . (3)

The half-point Ed and slope D of the transfer function f control the excitability of the dendrite. When the

membrane potential reaches the spiking threshold ϑ, it is reset to the resting potential and the PC emits a

spike. Every spike is followed by an absolute refractory period of τr.

The dynamics of the dendritic compartment are given by:

dvd

dt
= −v

d − EL

τd
+
gdf(vd) + cdK(t− t̂) + wd + Id

Cd
(4)

dwd

dt
= − wd

τd,w
+
ad(vd − EL)

τd,w
. (5)

In addition to leaky membrane potential dynamics with time constant τd, the dendrite shows a voltage-

dependent nonlinear activation f , the strength of which is controlled by gd. This nonlinearity allows the

generation of dendritic plateau potentials (”calcium spikes”). Somatic spikes trigger backpropagating action

potentials in the dendrite, modeled in the form of a boxcar kernel K, which starts 1ms after the spike and

lasts 2ms. The amplitude of the backpropagating action potential is controlled by the parameter cd. The
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dendrite is subject to a voltage-activated adaptation current wd, which limits the duration of the plateau

potential. This adaptation follows leaky dynamics with time constant τd,w. The strength of the adaptation

is given by the parameter ad. Note that the model excludes sub-threshold coupling from the soma to the

dendrite.

The interneurons are modeled as leaky integrate-and-fire neurons:

dvi

dt
= −v

i − EL

τi
+
Ii

Ci
, (6)

with time constant τi. Spike threshold, resting and reset potential, and refractory period are the same as for

the PCs.

All neurons receive an external background current to ensure uncorrelated activity, which follows Ornstein-

Uhlenbeck dynamics

dIx,bg

dt
= −I

x,bg − µx

τbg
+ σxε. (7)

Here, x ∈ {s, d, i} refers to the soma, dendrite, or interneuron, respectively, and ε is standard Gaussian white

noise with zero mean and correlation 〈ε(t)ε(t′)〉 = δ(t− t′).

In addition, the somatic and dendritic compartments received step currents mimicking external signals (see

Section 4.2), as well as recurrent inhibitory inputs. The recurrent input to compartment x ∈ {s, d} of the

ith principal cell was given by

Ix,inhi (t) = −
NI∑
j=1

|W I→x
ij | sj(t). (8)

where sj is the synaptic trace that is increased at each presynaptic spike and decays with time constant τsyn

otherwise:

ds

dt
= − s

τsyn
+ S.

The compartment-specific inhibitory weight matrices W I→x, x ∈ {s, d} were optimized; the absolute value

in Eq. 8 ensured positive weights.
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The recurrent input to the ith interneuron was given by:

Ireci =

NE∑
j=1

|WE→I
ij | µij(t) s

j(t)−
∑
k=1

|W I→I
ik |sk(t). (9)

The function µij(t) implements short-term plasticity according to the Tsodyks-Markram model [30]. µ(t) is

the product of a utilization variable u and a recovery variable R that obey the dynamics

du

dt
= −u− U

τu
+ (1− u) · F · S, (10)

dR

dt
= −R− 1

τR
− u ·R · S. (11)

U is the initial release probability, which is optimized by gradient descent. F is the facilitation fraction, and215

τR, τu are the time constants of facilitation and depression, respectively. All parameter values are listed in216

Table 1.217

218

Finally, the network parameters were scaled so that the membrane voltages ranged between EL = 0219

and ϑ = 1. The scaling allowed weights of order 1/
√
N , mitigating vanishing or exploding gradients during220

optimization. All optimization parameters are listed in Table 2.221

4.2 Optimization222

We used gradient descent to find weights W and initial release probabilities U that minimize the difference

between excitation and inhibition in both compartments:

L =

T∑
t=1

NE∑
i=1

(Es(t) + Isi (t))
2

+
(
Ed(t) + Idi (t)

)2
. (12)

Ex
i and Ixi are the total excitatory and inhibitory input to compartment x ∈ {s, d} of PC i. To speed up the223

optimization process, all output synapses from a given neuron to a given compartment type had the same224

strength, i.e., the optimization of the output synapses is performed for NI × 2 parameters. For the input225

synapses onto the INs, weight and initial release probability were optimized independent for all NE × NI226

synapses.227

228

To achieve small interneuron rates necessary for interneuron specialization (Fig. A.5), we subtracted the
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mean background input from Ex
i :

Ixi (t) = Ex
i (t)− µx (13)

To propagate gradients through the spiking non-linearity, we replaced its derivative with the derivative

of a smooth approximation [20]

σ(v) =
1

(1 + β|v − ϑ|)2
. (14)

We used the machine learning framework PyTorch [31] to simulate the differential equations (forward Euler229

with step size 1 ms), compute the gradients of the objective L using automatic differentiation, and update230

the network parameters using Adam [32]. The optimized parameters were initialized according to the dis-231

tributions listed in Table 2. We simulated the network response to batches of 8 trials of 600 ms, consisting232

of 100 ms pulses given at 2.5 Hz. The pulse amplitudes were drawn uniformly and independently for soma233

and dendrites from the set {100, 200, 300, 400}. Training converged within 200 batches (parameter updates).234

Before each parameter update, the gradient values were clipped between −1 and 1 to mitigate exploding235

gradients [33]. After each update, the initial release probability was clipped between 0 and 1 to avoid236

unphysiological values.237

Symbol Value Unit Description
NE 400 - Number of exc. neurons
NI 100 - Number of inh. neurons
EL -70 mV reversal and reset potential
ϑ -50 mV spiking threshold

τs/d/i 16 / 7 / 10 ms time const. soma/ dend./inh. membrane
τr 3 ms refractory time soma and inh.
gs/d 1300 / 1200 pA Coupling from dend to soma
Cs/d/i 370 /170/100 pF Conductance of soma/dend./inh.
τs/d,w 100 / 30 ms Time const. adaptation soma/dend.
bs -200 pA Spike-triggered adaptation (soma)
ad -13 nS Voltage-driven adaptation (dend)
cd 2600 pA Coupling soma to dend.
Ed -38 mV position dend. nonlinearity
Dd 6 mV steepness of dend. nonlinearity
µs/d/i 400 / -300 /-100 pA mean background input soma/dend./inh.
σs/d/i 450 / 450 / 400 pA sd background input
τbg 2 ms time const. background input
τsyn 5 ms time const. synapses
τu 100 ms time const. facilitation
τR 100 ms time const. depression
F 0.1 - facilitation jump

Table 1: Parameter values for network simulation.
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Symbol Value / Init. Distribution Dimensions Description
U U(0.1, .25) NE ×NI Initial release prob.

WE→I N (0, 1/NE) NE ×NI Exc. to Inh. weight
W I→I N (0, 1/NI) NI ×NI Inh. to Inh. weight
W I→D N (0, 0.2/NI) NI × 1 Inh. to Exc. Dend. weight
W I→S N (0, 0.2/NI) NI × 1 Inh. to Exc. Soma weight

- 1e-3 - learning rate for weights
- 4e-3 - learning rate for U
β 10 - Slope spiking derivative
- 1.0 - Gradient (absolute value) clipping

Table 2: Optimization parameters. U(a, b), uniform distribution on the interval (a, b]; N (0, σ2), normal
distribution with mean 0 and variance σ2.

4.3 Methods for Figures238

4.3.1 Figure 1239

We measured the short-term plasticity of PC → IN synapses by simulating their response to two EPSPs240

given 10 ms apart, a typical interspike interval within a burst. The PPR was computed as the ratio of241

the two EPSP amplitudes, such that a PPR > 1 indicates short-term facilitation and a PPR < 1 indicates242

short-term depression. The PPR of a single IN was defined as the mean PPR of all its excitatory afferents.243

Clustering of interneurons was done by fitting a single Gaussian (before optimization) or a mixture of two244

Gaussians (after optimization) to the three-dimensional distribution of inhibitory weights to the PC soma,245

to PC dendrites, and the PC→IN Paired Pulse Ratio (PPR). Both models were fitted using Scikit-learn [34]246

on pooled data from five networks, trained from different random initializations. The density models where247

fitted on 246 interneurons that were active (firing rate higher than 1 spk/s) and had a medium to strong248

projection to either soma or dendrites (weight bigger than 0.01). The dashed lines in Fig. 1b illustrate the249

two-dimensional marginal distributions of the somatic and dendritic inhibition. All PCs received the same250

time-varying input currents, consisting of 100 ms pulses of 300 pA, given at a rate of 2.5 Hz. Correlations251

between compartment-specific excitation and inhibition were computed between the the currents to the PC252

compartments, averaged across all PCs in the network.253

4.3.2 Figure 2254

The definitions of burst rate, burst probability and event rate were taken from Naud & Sprekeler [23]: A

burst was defined as multiple spikes occurring within 16 ms. The time of the first spike was taken as the

time of the burst. An event was defined as a burst or a single spike. The instantaneous burst rate and event

rate were computed by counting the number of bursts and events, respectively, in bins of 1ms and among
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the population of PCs, and smoothing the result with a Gaussian filter (width: 2ms). The burst probability

was defined as

Burst Probability =
Burst Rate

Event Rate
× 100%. (15)

We injected current pulses of 100 ms duration to either soma or dendrite while injecting a constant current to255

the other compartment. Currents where varied in amplitude between 100 and 400 pA; the constant current256

was 0 pA. The figure shows the mean and standard deviation of the total network activity during 10 current257

pulses.258

4.3.3 Figure 3259

We varied the correlation between the inputs to soma and dendrites by generating repeating current pulses

with different temporal offsets and optimized a network for each offset. The interneuron specialization was

defined as

specialization = 1− xT y

‖x‖‖y‖
, (16)

where x and y are NI -dimensional vectors containing the inhibitory weights onto soma and dendrites and260

‖ · ‖ the L2 norm. If each neuron inhibits either somata or dendrites, but not both, the specialization will be261

1. If the weights are perfectly aligned (i.e., interneurons with a strong dendritic projection also have a strong262

somatic projection), the specialization will be 0. Here and in all figures, the EI correlation was computed as263

the correlation between the time series of the compartment-specific excitation and inhibition, after averaging264

across all PCs. Shown is the mean over 5 batches of 600 ms, where each batch consisted of 8 trials with265

amplitudes from {100, 200, 300, 400} pA, sampled independently for soma and dendrites.266

4.3.4 Figure A.1267

Before optimization, we assigned interneurons to inhibit either PC somata or dendrites by fixing their weights268

onto the other compartment to zero. Half of the interneurons was assigned to inhibit the soma, the other269

half was assigned to inhibit the dendrites. Otherwise, weights and initial release probabilities were optimized270

as before.271
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4.3.5 Figure A.2272

As for Fig. A.1, we assigned interneurons to inhibit either PC somata or dendrites. Here, we trained networks273

for different correlations between compartment-specific external inputs (cf. Fig. 3), and baseline activity274

levels (cf. Fig. A.5). We used the 10th percentile as a robust measure of minimum PV rate. The mean and275

sd PPR of the PV and SST populations computed over all INs that were active (rate larger than 1 spk/s)276

and provided a medium to strong inhibition to one PC compartment (weight bigger than 0.01).277

4.3.6 Figure A.3278

Figure A.3a shows the connectivity strength over five networks. We first used the Gaussian mixture models279

to assign INs to PV or SST clusters, and then computed the mean connectivity between and within clusters280

for each network. For A.3b, we trained networks with predefined interneuron populations to control the281

interneuron connectivity. Connections between populations were knocked out by fixing them to zero during282

and after optimization. EI correlations are computed for 5 batches of 600 ms, where each batch consisted of283

8 trials with amplitudes from {100, 200, 300, 400} pA, sampled independently for soma and dendrites.284

4.3.7 Figure A.4285

As in Fig. 2, we injected current pulses of 100ms duration to either soma or dendrite. Here, we injected a286

simultaneous pulses to the other compartment of amplitude 0, 200 or 400 pA.287

4.3.8 Figure A.5288

The minimum rate of PV neurons was controlled indirectly, by varying the baseline inhibitory target current

to the soma—A larger baseline requires a higher minimum PV rate. We varied the minimum inhibitory

current by subtracting only a fraction α of the baseline excitatory current:

Ix(t) = Ex(t)− α · µx, (17)

cf. Eq. (13). In the simulations, we varied α between 1 and 0.8, leading to a minimum PV rate between 1289

spk/s, and 9 spk/s.290
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A Supplementary Figures291
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Figure A.1: Non-overlapping interneuron populations achieve compartment-specific inhibition. (a)
Before optimization, interneurons are assigned to inhibit a single compartment. The optimization determines the
synaptic strengths and the short-term plasticity. (b) Compartment-specific inhibition from active INs after opti-
mization. Mean PPR: 0.78 (PV), 1.21 (SST). (c) Correlation between excitation and inhibition over the course of
the optimization. Solid line: INs were not assigned to a single compartment (Self-organized). Dashed line: INs
were assigned to a single compartment (Pre-assigned). Data is smoothed with a Gaussian kernel (width: 5). (d) EI
correlation of pre-assigned networks for different correlation levels between compartment-specific external inputs.
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Figure A.2: Non-overlapping interneuron populations achieve compartment-specific inhibition for
a range of input statistics. (a) Top, performance as measured by compartment-specific correlation between
excitation and inhibition of networks trained on different correlations between compartment-specific excitatory inputs.
Open circles, mean over 5 batches of 8 stimuli with random amplitudes (see Methods). Small filled circles, individual
batches. Here and in the other panels, the interneurons were assigned to inhibit only the soma or only the dendrites.
Bottom, interneuron specialization as measured by Paired Pulse Ratio (PPR) decreases with input correlations.
Error bars denote sd over IN populations. (b) Strength of somatic and dendritic inhibition from individual INs. Top,
medium input correlation (0.47); bottom, high input correlation (1.00). Color indicates PPR. c) Top, as a but as
function of minimum PV rate. Bottom, interneuron specialization as measured by Paired Pulse Ratio (PPR) is not
influenced by minimum PV rate. (d) Strength of somatic and dendritic inhibition from individual INs. Top, medium
PV rate (4 spk/s); bottom, high PV rate (9 spk/s).
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PV

SST
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PV

SST

PV
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Figure A.3: Recurrent inhibitory connectivity after learning. (a) Connectivity between IN populations.
From left to right: PV↔PV, PV→SST, SST→PV, SST↔SST. Bars indicate mean over all networks, dots indicate
individual networks. (b) Performance as measured by the correlation between excitation and inhibition to PC soma
(left) and dendrites (right) of networks optimized lacking specific connections. Data at the very right: EI correlation
in network with unconstrained connectivity. Only loss of PV → SST connectivity has a clear effect on dendritic EI
correlations. Open circles, mean over 5 batches of 8 stimuli with random amplitudes. Small filled circles, individual
batches.

Figure A.4: Inhibition to one PC compartment is largely independent of excitation to the other
compartment. (a) Somatic inhibition increases with somatic excitation, but is invariant to dendritic excitation.
Shading indicates strength of somatic input; bright, medium, dark: 0, 200, and 400 pA, respectively. Positions on
x-axis are shifted by 10 pA for visual clarity, error bars indicate sd during 10 stimulus repetitions. (b) Dendritic
inhibition increases with dendritic excitation, but is only weakly modulated by somatic excitation. Shading indicates
strength of dendritic input (0, 200, and 400 pA).
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Figure A.5: Higher baseline PV rates decrease the need for interneuron specialization. (a) Strength
of somatic and dendritic inhibition from individual INs. Left, middle, right: network optimized with a baseline PV
rate of 1 (low), 5 (medium), and 9 spk/s (high), respectively. (b) Specialization of IN→E weights. If each IN targets
either soma or dendrites, the specialization is 1 (see Methods). Gray: specialization of initial, random network; black:
specialization after optimization. (c) Left, correlation between excitation and inhibition as function of minimum PV
rate. Red: networks with optimized short-term plasticity. Gray: Networks without short-term plasticity. Open
circles, mean over 5 batches of 8 stimuli with random amplitudes. Small filled circles, individual batches.

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 18, 2020. ; https://doi.org/10.1101/2020.11.17.386920doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.17.386920
http://creativecommons.org/licenses/by-nc-nd/4.0/


B Mathematical Analysis of a Simplified Network Model292

We performed a mathematical analysis of a simplified network to better understand the following results of293

our spiking network simulations:294

1. A compartment-specific balance requires PV → SST inhibition, but no other IN → IN connectivity295

(Fig. A.3).296

2. Higher interneuron rates require less IN specialization, i.e., individual interneurons often inhibit both297

PC compartments (Fig A.5).298

The simplified model consists of a population of principal cells (PC) and two populations of interneurons299

that we will refer to as parvalbumin (PV)-positive and as somatostatin (SST)-positive cells. The population300

activity of the PCs is represented by somatic activity e and dendritic activity b. The interneuron activities301

are represented by firing rates p and s. The four activity variables e, b, p, s are best thought of as deviations302

of the respective activity from baseline. The activity variables can hence be both positive and negative303

(ignoring saturation effects that arise when the baseline is very low, see below).304

For our analysis, we make the following assumptions: (1) somatic input linearly increases somatic activ-

ity e, (2) dendritic input linearly increases dendritic activity b, which is in turn assumed to be independent

of somatic input/activity (note that the latter assumption deviates from a BAC-firing mechanism [35], but

is necessary to obtain a linear model), (3) the activities p, s of the interneuron populations increase linearly

with their input, and (4) short-term plasticity is characterized by a single, static parameter (see below).

Because we are interested only in qualitative statements, the analysis is done in terms of unitless variables.

The model describes the dynamics of the four activity variables e, b, p, s:

ė = −e− wepp+ Ee(t), (B.1)

ḃ = −b− wbss+ Eb(t), (B.2)

ṗ = −p+ αwpee+ (1− α)wpeb− wpss, (B.3)

ṡ = −s+ βwsee+ (1− β)wseb− wspp. (B.4)

Here, the synaptic weight from population y to x is modeled with a non-negative weight wxy (x, y ∈ {e, p, s};

e: PCs, p: PV INs, s: SST INs). The central tenet of this simplified model is that somatic and dendritic

activity both generate characteristic spike patterns in PCs—such as events and bursts—which are selectively

transmitted by synapses because of short-term plasticity. The parameters α, β ∈ [0, 1] describe the short-

term plasticity of the PC→PV and PC→SST synapses, respectively. α, β = 1 corresponds to synapses that
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only transmit somatic activity. If somatic activity generates events and dendritic activity generates bursts,

this would require ”perfectly depressing” synapses, i.e., synapses that transmit only the first spike of a burst.

α, β = 0 corresponds to synapses that only transmit dendritic activity. For the case where dendritic activity

generates bursts, this requires ”perfectly facilitating” synapses that ignore individual spikes and transmit

only bursts. We assumed that the projections of the interneurons are specialized, i.e., that PV interneurons

inhibit the soma and SST interneurons inhibit the dendrite. We will abandon this assumption in Section

B.2. We also excluded inhibitory recurrence within the two populations (PV → PV, SST → SST), because

these connections would only change the effective time constant of the respective activation variable. The

somata and dendrites of the PCs receive time-varying external inputs Ee(t) and Eb(t), respectively. All

activity variables follow leaky dynamics.

The dynamical system can be written as ṙ = Wr + I, where the vector r contains the activation vari-

ables r = (e, b, p, s)T , I contains the external inputs I = (Ee, Eb, 0, 0)T , and W is the matrix of effective

connectivity strengths

W =



−1 0 −wep 0

0 −1 0 −wbs

αwpe (1− α)wpe −1 −wps

βwse (1− β)wse −wsp −1


. (B.5)

Assuming that the time constant of the network is sufficiently short to adiabatically follow the input currents,

we can consider the steady state by setting ṙ = 0 and solving for r:

Wr + I = 0 =⇒ r = −W−1I. (B.6)

B.1 Influence of IN→IN connections on compartment-specific E/I balance305

In the steady state Eq. (B.6), the IN rates are equal to

p = −[W−1]31E
e − [W−1]32E

b, (B.7)

s = −[W−1]41E
e − [W−1]42E

b. (B.8)

Here, [W−1]ij refers to the element in row i and column j of the matrix W−1. Assuming that the interneurons

specialize by inhibiting a single compartment, a necessary (and, up to scaling, sufficient) condition for
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compartment-specific balance is that the PV rate p is proportional to the external input targeting the soma

and independent of the input targeting the dendrite. Similarly, the SST rate should be proportional to the

external input targeting the dendrite and independent of the input targeting the soma. By Eq. (B.7), a

compartment-specific balance hence requires [W−1]32 = 0 and [W−1]41 = 0. Computing these matrix entries

yields:

[W−1]32 ∝ wpe(1− α)− wpswse(1− β)) = 0 (B.9)

[W−1]41 ∝ −wpewspα+ wseβ = 0 . (B.10)

These equations have a simple interpretation. Each of the two terms in [W−1]32 represents a pathway by306

which dendritic activity reaches the PV interneurons. The first term quantifies how much dendritic activity307

reaches PV interneurons via the direct excitatory PC→PV projection, the second represents corresponding308

feedforward inhibition via the PC→SST→PV pathway. If these two pathways cancel, PV activity is inde-309

pendent of dendritic activity. Similarly, the two pathways in [W−1]41 that transmit somatic activity to the310

SST need to cancel.311

What is the role of short-term plasticity? For illustration, let us first consider the limiting case of

”perfect” synaptic depression (α = 1). Perfectly depressing PC → PV synapses would imply that the PV

interneurons only receive somatic activity from the PCs via the direct PC→PV pathway. The condition

(B.9) then reduces to

[W−1]32 ∝ −wpswse(1− β) = 0 , (B.11)

i.e., dendritic activity should not reach PV interneurons via the indirect PC→SST→PV pathway, because this312

would render PV activity dependent on dendritic activity. Because dendritic activity need to be transmitted313

to the SST interneurons to reach an E/I balance in the dendrite, this implies that the SST→PV connection314

should be absent.315

”Perfect” synaptic depression (α, β = 1) or facilitation (α, β = 0) are hard to implement, certainly by a316

Markram-Tsodyks model in the presence of background activity. However, the effect of imperfect depression317

in the PC→PV connection (α < 1) can be compensated by feedforward inhibition along the PC→SST→PV318

pathway. Similarly, imperfect PC→SST facilitation picks up somatic activity, which can then be canceled319

by feedforward inhibition via the PC→PV→SST pathway. The role of IN→IN synapses is therefore to320

complement ”imperfect” short-term plasticity in decoding compartment-specific inputs.321

The observation that PV→SST connections are the most important IN→IN connections in our model322
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results from ”imperfect” facilitation in the excitatory synapses onto SST interneurons. Because events occur323

more frequently than bursts, the excess excitation they trigger in SST interneurons needs to be actively324

cancelled via the PV→SST pathway. The converse SST→PV connection is less critical, because bursts are325

comparatively rare, such that their transmission via PC→PV synapses causes only minor disturbances of326

the compartment-specific E/I balance.327

B.2 Influence of IN baseline firing rates on interneuron specialization328

The previous analysis assumed that interneurons were specialized to inhibit a single compartment. When

should we expect specialization in the first place? We can investigate this question by extending the simplified

model by inhibition from all INs onto all PC compartments:

W =



−1 0 −wep −wes

0 −1 −wbp −wbs

αwpe (1− α)wpe −1 −wps

βwse (1− β)wse −wsp −1


. (B.12)

A compartment-specific balance now requires external input to be canceled by the inhibition from both

interneurons:

Ee = wepp+ wess, (B.13)

Eb = wdpp+ wdss. (B.14)

Without additional constraints, this system has an infinite number of solutions, i.e., weight configurations329

that achieve a compartment-specific balance. However, the simple constraint of low baseline firing rates of330

the interneurons collapses the solution space to the specialized one (wes = wdp = 0), for the following reason.331

The activity variables p, s represent deviations of the interneurons firing rates from baseline. If the332

baseline is sufficiently high, these deviations can be both positive and negative. In that case, inhibition333

from one interneuron class can be cancelled by disinhibition from the other interneuron class. PV and SST334

interneurons are then both free to respond to both somatic and dendritic activity, as long as the weighted335

sums of the inhibition and disinhibition they provide to PC somata and dendrites mirrors the excitatory336

input to those compartments. There are many ways of doing so.337

For low baseline firing rates, disinhibition is no longer available, because negative deviations from baseline338

are limited by the fact that activities cannot be negative. For illustration, let us consider the case where339
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both PV and SST neurons have zero baseline activity. By definition, the excitatory signals Ee/b are zero340

for baseline activity, because they represent deviations from baseline. Therefore, we can assume that there341

exists a moment where the input to one PC compartment is zero, while the input to the other compartment342

is positive (e.g., Ee = 0, Eb > 0). By Eq. (B.13) and because all weights and rates must be positive,343

wepp+wess = 0 implies that wep = 0 or p = 0 and wes = 0 or s = 0. At least one weight has to be non-zero344

(otherwise balancing the soma is impossible), and at least one rate has to be non-zero (otherwise balancing345

the dendrite is impossible). Without loss of generality we can conclude that wep > 0, p = 0, wes = 0, and346

s > 0: The PC soma is only inhibited by the PV neuron. Analogously, the existence of a moment when347

Eb = 0 but Ee > 0 implies that wds > 0, wdp = 0, meaning that the PC dendrite is only inhibited by the348

SST neuron. If the baseline activity is low, but not strictly zero, this saturation arguments still hold, if349

the variations in the firing rates that are required to balance the external input are larger than the baseline350

activity. Low baseline firing rates therefore imply interneuron specialization, because they prevent inhibition351

and disinhibition from non-specialized neurons to cancel.352
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