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2Charité – Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, 10117, Berlin, Germany6

3Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany7

*Correspondence addressed to keijser@tu-berlin.de8

Acknowledgements9

J.K. was supported by a PhD scholarship from the Einstein Center for Neurosciences Berlin. We thank10
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Abstract18

Cortical circuits process information by rich recurrent interactions between excitatory neurons and inhibitory19

interneurons. One of the prime functions of interneurons is to stabilize the circuit by feedback inhibition,20

but the level of specificity on which inhibitory feedback operates is not fully resolved. We hypothesized that21

inhibitory circuits could enable separate feedback control loops for different synaptic input streams, by means22

of specific feedback inhibition to different neuronal compartments. To investigate this hypothesis, we adopted23

an optimization approach. Leveraging recent advances in training spiking network models, we optimized the24

connectivity and short-term plasticity of interneuron circuits for compartment-specific feedback inhibition25

onto pyramidal neurons. Over the course of the optimization, the interneurons diversified into two classes26

that resembled parvalbumin (PV) and somatostatin (SST) expressing interneurons. The resulting circuit can27

be understood as a neural decoder that inverts the nonlinear biophysical computations performed within the28

pyramidal cells. Our model provides a proof of concept for studying structure-function relations in cortical29

circuits by a combination of gradient-based optimization and biologically plausible phenomenological models.30
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Introduction31

Cortical inhibitory interneurons vary dramatically in shape, gene expression pattern, electrophysiological32

and synaptic properties and in their downstream targets [1]. Some cell types, e.g., somatostatin (SST)-33

positive interneurons [2] and some neurogliaform cells in layer 1 [3], predominantly project to pyramidal cell34

(PC) dendrites. Others—e.g., parvalbumin positive (PV) basket and chandelier cells—primarily inhibit the35

peri-somatic domain of PCs [4]. Some interneurons receive depressing synapses from PCs, others facilitating36

synapses [5, 6]. But what is the function of these differences?37

One of inhibition’s core functions is to prevent run-away excitation [7] by means of feedback inhibition38

that tracks excitatory inputs. This has led to the concept of excitation-inhibition (E/I) balance [8], i.e., the39

idea that strong excitatory currents are compensated by inhibitory currents of comparable size. E/I balance40

is thought to shape cortical dynamics [8, 9] and computations [10, 11] and can be established by means of41

inhibitory forms of plasticity [12, 13, 14]. Selective disruptions of E/I balance are thought to play a key role42

during learning [15], while chronic disturbances have been implicated with psychiatric diseases, including43

autism [16, 17] and schizophrenia [18, 19].44

Originally conceived as a balance on average [8], E/I balance turned out to be specific to sensory stimuli45

[20, 21], in time [22, 23], across neurons [24] and to neural activation patterns [25]. The number of excitatory46

and inhibitory synapses could even be balanced at the subcellular level[26], in a cell-type specific way [27]).47

Given this high specificity, we hypothesized that excitation and inhibition also balance individually in dif-48

ferent neuronal compartments, and that this could be mediated at least in part by compartment-specific49

feedback inhibition.50

Different neuronal compartments often receive input from different sources [28] and integrate these inputs51

nonlinearly by means of complex cellular dynamics [29, 30]. For example, the apical dendrites of L5 pyramidal52

cells (PCs) can generate nonlinear calcium events in response to coincident somatic and dendritic inputs53

[31]. Hence, neuronal output spike trains can have a complex nonlinear dependence on the inputs arriving in54

different compartments. This poses a challenge for compartment-specific feedback inhibition, which would55

require interneurons to invert the nonlinear dependence by recovering local dendritic input from pyramidal56

output. It is therefore far from clear that a compartment-specific feedback inhibition can be achieved at all57

by means of biologically plausible circuits. If it can, however, it would have to rely on an interneuron circuit58

that is closely matched to the electrophysiological properties of the cells it inhibits. Parts of the complexity59

of cortical interneuron circuits could then be interpreted in light of the intrinsic properties of PCs.60

Unfortunately, the nature of such a correspondence between the electrophysiology of inhibited cells and61

suitable interneuron circuits is far from obvious. We reasoned that we could gain insights by means of a62
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model-based optimization approach, in which interneuron circuits are optimized for feedback inhibition onto63

pyramidal cells with given biophysical properties. Here, we illustrate this ansatz by optimizing interneuron64

circuits for a nonlinear two-compartment model of L5 pyramidal cells [32]. We show that over the course of65

the optimization, an initially homogeneous interneuron population diversifies into two classes, which share66

many features of cortical PV and SST interneurons. One class primarily inhibits the somatic compartment67

of the PCs and receives depressing synaptic inputs. The other class primarily inhibits PC dendrites and68

received facilitating inputs. We show how this diversification can be understood from an encoding-decoding69

perspective, in which the biophysics of the PCs encode two different input streams in a multiplexed code70

[33], which is in turn decoded by the interneuron circuit. These findings support the idea that parts of the71

complexity of cortical interneuron circuits could be interpreted in light of the intrinsic properties of PCs and72

illustrate how modeling could provide a means of unravelling these interdependencies between the cellular73

and the circuit level.74

Results75

To investigate which aspects of cortical interneuron circuits can be understood from the perspective of76

compartment-specific inhibition, we studied a spiking network model comprising pyramidal cells (PCs) and77

interneurons (INs) (see Methods). PCs were described by a two-compartment model consisting of a soma78

and an apical dendrite. The parameters of this model were previously fitted to capture dendrite-dependent79

bursting [32]. PCs received time-varying inputs in both the somatic and the dendritic compartment, and80

inhibitory inputs from INs. INs were described by an integrate-and-fire model. They received excitatory81

inputs from the PCs, and inhibitory inputs from other INs.82

We optimized the interneuron circuit for a compartment-specific feedback inhibition. In the presence83

of time-varying external input, feedback inhibition tracks excitatory inputs in time [8, 23]. We therefore84

enforced compartment-specific feedback inhibition by minimizing the mean squared error between excitatory85

and inhibitory inputs in both compartments, by means of gradient descent with surrogate gradients [34].86

Importantly, we optimized not only the strength of all synaptic connections in the network, but also the87

short-term plasticity of the PC → IN connections (see Methods).88

Interneuron diversity emerges during optimization89

Before the optimization, interneurons formed a single, homogeneous group (Fig. 1a, top). Most inhibited90

both somatic and dendritic compartments (Fig. 1b, top) and PC → IN connections showed non-specific91

synaptic dynamics (Fig. 1c, top). Moreover, excitation and inhibition were poorly correlated, particularly92

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2021. ; https://doi.org/10.1101/2020.11.17.386920doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.17.386920
http://creativecommons.org/licenses/by-nc-nd/4.0/


IN

PC
PV

SST

IN

PC

Figure 1: Interneuron diversity emerges in networks optimized for compartment-specific inhibition
(a) Network structure before (top) and after optimization (bottom). PC, pyramidal cell; IN, interneuron; PV,
parvalbumin-positive IN; SST, somatostatin-positive IN. Recurrent inhibitory connections among INs omitted for
clarity. (b) Strength of somatic and dendritic inhibition from individual INs. Dashed lines: 95% density of a
Gaussian distribution (top) and mixture of two Gaussian distributions (bottom) fitted to the connectivity and Paired
Pulse Ratio (PPR) data of 5 networks (marginalized over PPR). (c) PPR distribution (data from 5 networks). Mean
PPR before optimization: 1.00; after optimization: 0.73 (PV cluster, n = 133) and 1.45 (SST cluster, n = 113). (d)
Excitatory (red) and inhibitory (top: gray, bottom: blue) currents onto PC compartments (average across NE = 400
PCs). Inset: correlation between compartment-specific excitation and inhibition.

in the dendrite (Pearson correlation coefficients 0.49 (soma) & 0.08 (dendrite)), suggesting that the network93

did not generate compartment-specific feedback inhibition (Fig. 1d, top).94

During optimization, the interneurons split into two groups (Fig. 1a, bottom) with distinct connectivity95

(Fig. 1b, bottom; see also Connectivity among interneurons) and short-term plasticity (Fig. 1c, bottom). One96

group received short-term depressing inputs from PCs and preferentially targeted their somatic compartment,97

akin to PV interneurons. The other group received short-term facilitating inputs from PCs and targeted98

their dendritic compartment, akin to SST interneurons. For simplicity, we will henceforth denote the two99

interneuron groups as PV and SST interneurons. After the optimization, excitation and inhibition were100

positively correlated in both compartments (Pearson correlation coefficients 0.79 (soma) & 0.63 (dendrite);101

Fig. 1d, bottom). Note that the E/I balance is slightly less tight in time in the dendrites than in the somata102

(Fig. 1d), because synaptic short-term facilitation causes a delay in the signal transmission between PCs103

and SST interneurons [35, more details below].104

To confirm the benefit of two non-overlapping interneuron classes, we performed control simulations in105

which each interneuron was pre-assigned to target either the soma or the dendrite, while synaptic strengths106

and short-term plasticity were optimized. Consistent with a benefit of a specialization, the correlation of107

excitation and inhibition in the two compartments was as high as in fully self-organized networks (Fig. 2).108

Optimized networks with pre-assigned interneuron classes also showed the same diversification in their short-109

term plasticity, resembling that of PV and SST neurons (Figs. 2, A.1).110
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Figure 2: Compartment-assigned interneurons develop into PV- and SST-like populations. (a) Circuit
before learning. Top, interneurons (INs) can inhibit both compartments of principal cells (PCs) and need to self-
organize, as in Fig. 1. Bottom, INs are pre-assigned to inhibit a single PC compartment. (b) IN→PC weights
before (top) and after (bottom) optimization. Interneurons self-organize into a population that preferentially inhibits
the soma, and a population that preferentially inhibits the dendrites. Data differs from Fig. 1 due to random
parameter initialization and sampling of training data. (c) As (b), but with interneurons randomly assigned to
inhibit a single compartment (soma or dendrite). Mean PPR: 0.72 (soma-inhibiting population), 1.17 (dendrite-
inhibiting population). (d) Correlation between compartment-specific excitation and inhibition over the course of
the optimization. Solid line: INs were not assigned to a single compartment (Self-organized). Dashed line: INs were
assigned to a single compartment (Pre-assigned). Data is smoothed with a Gaussian kernel (width: 2).

Feedback inhibition decodes compartment-specific inputs111

For compartment-specific feedback inhibition, the interneuron circuit has to retrieve the somatic and dendritic112

input to PCs from the spiking activity of the PCs. This amounts to inverting the nonlinear integration113

performed in the PCs (Fig. 3a). How does the circuit achieve this? Recently, it was proposed that the114

electrophysiological properties of PCs support a multiplexed neural code that simultaneously represents115

somatic and dendritic inputs in temporal spike patterns ([33], Fig. 3b). In this code, somatic input increases116

the number of events, where events can either be single spikes or bursts (see Methods). Dendritic input in turn117

increases the probability that a somatic spike is converted into a burst (burst probability). Providing soma-118

or dendrite-specific inhibition then amounts to decoding the event rate or burst probability, respectively.119

Such a decoding can be achieved in circuits with short-term plasticity and feedforward inhibition [33], and120

we expected that our network arrived at a similar decoding scheme.121

We tested this hypothesis by injecting current pulses to PC somata and dendrites (see Methods). Stronger122

dendritic input increased the burst probability, which increased the firing rate of SST interneurons via123

facilitating synapses. The increased SST rate increased dendritic inhibition (Fig. 3c-e, top). Analogously,124

stronger somatic input increased the event rate, which increased the firing rate of PV interneurons via125

depressing synapses. The increased PV rate increased somatic inhibition (Fig. 3c-e, bottom). Importantly,126

inhibition was specific to each compartment (shaded lines indicate input strength to the other compartment):127
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Because PV interneurons were selectively activated by PC events, somatic inhibition was largely unaffected128

by dendritic excitation. Similarly, SST interneurons were selectively activated by PC bursts, such that129

dendritic inhibition was largely unaffected by somatic excitation. In the model, interneurons therefore130

provide compartment-specific inhibition by demultiplexing the neural code used by the PCs.131

Figure 3: The interneuron circuit decodes somatic and dendritic inputs to PCs. (a) PC somata and
dendrites receive uncorrelated input streams (yellow and blue) that, from PC output spikes (green), have to be
separated into compartment-specific inhibition (yellow and blue). (b) PCs use a multiplexed neural code. Somatic
input leads to events (singlets or bursts). Dendritic input converts singlets into bursts. (c) Top: Excitatory input
to PC dendrites increases burst probability. In this and other top panels (d,e), the shading indicates strength of
background somatic input, and error bars indicate sd over 10 stimulus repetitions. Bottom: Excitatory input to PC
somata increases event rate. In this and other bottom panels (d,e), the shading indicates strength of background
dendritic input. (d) Top: SST rate increases with bursts probability. Bottom: PV rate increases with PC events.
(e) Top: dendritic inhibition increases with dendritic excitation, but is only weakly modulated by somatic excitation.
Positions on x-axis are shifted by 10 pA for visual clarity, error bars indicate sd during 10 stimulus repetitions.
Bottom: somatic inhibition increases with somatic excitation, but is invariant to dendritic excitation.

Effect of correlations between somatic and dendritic input132

So far we assumed that PC somata and dendrites receive uncorrelated input. Recent work, however, suggests133

that somatic and dendritic activity are correlated [36, 37], potentially reducing the need for compartment-134

specific inhibition. We therefore tested how correlated inputs affect interneuron specialization by optimizing135

separate networks for different input correlations. We found that increasing correlation between somatic136

and dendritic inputs gradually reduced the separation between the interneuron classes (Fig. 4a,b). For high137

input correlation, optimized networks contained a continuum in their connectivity and short-term plasticity138

(Fig. 4a,b). However, the presence of short-term plasticity was necessary for a dendritic E/I balance for a139

range of input correlations (Fig. 4c). At high correlations, somatic and dendritic inputs are sufficiently similar140

to make the effect of short-term facilitation negligible. Note that although in this case, distinct interneuron141

populations were not necessary, the presence of IN classes was also not harmful for E/I balance. A pre-142
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assignment of the interneurons into classes maintained the E/I correlation in both compartments and for143

any correlation level (Fig. A.1). Finally, we found that interneuron specialization degraded with increasing144

baseline activity of the INs (Fig. A.2), because high firing rates allow non-specialized inhibition to cancel145

out (see mathematical analysis in Supplementary Materials. However, a pre-assignment of interneurons into146

classes again maintained the E/I correlation for different baseline activity levels (Fig. A.1).147

Figure 4: Correlations between dendritic and somatic input reduce interneuron specialization. (a)
Examples for synaptic traces corresponding to different correlation levels. Dark red, somatic current; light red,
dendritic input. (b) Strength of somatic vs. dendritic inhibition from all INs. Left, middle, right: input correlation
coefficient 0 (low), 0.5 (medium), and 1 (high), respectively. (c) Specialization of IN → E weights. If each IN targets
either soma or dendrites, the specialization is 1 (see Methods). Gray: specialization of initial random network; black:
specialization after optimization. (d) Left: In the soma, excitation and inhibition are balanced across a broad range
of input correlations, with or without short-term plasticity (STP). Right: In the dendrites, excitation and inhibition
are balanced only with STP when input correlations are small.

Connectivity among interneurons148

Because interneurons subtypes also differ in their connectivity to other interneurons [38, 39], we included IN149

→ IN synapses in our optimization. After classifying INs as putative PV and SST neurons using a binary150

Gaussian mixture model, we found that the connections between the interneuron classes varied systematically151

in strength. While PV↔ PV connections, PV→ SST connections and SST↔ SST connections were similar152

in strength on average, SST → PV were consistently stronger (Fig. 5a), presumably to compensate for the153

relatively low SST rates (Fig. 3d).154

To investigate which connections were necessary, we simulated knockout experiments in networks with155

pre-assigned interneuron classes, in which we removed individual connections types. We found that only PV156

→ SST connections were necessary for a dendritic E/I balance (Fig. 5b). Note that although earlier work157

did not find PV→ SST connectivity in the primary visual cortex of young mice [38], these connections seem158

to be present in primary visual and somatosensory cortex of older animals [39, 40].159
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PV
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PC

PV

SST

PV
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Figure 5: Recurrent inhibitory connectivity after learning. (a) Connectivity between IN populations.
From left to right: PV↔PV, PV→SST, SST→PV, SST↔SST. Bars indicate mean over all networks, dots indicate
individual networks. (b) Performance as measured by the correlation between excitation and inhibition to PC soma
(left) and dendrites (right) of networks optimized lacking specific connections. Data at the very right: EI correlation
in network with unconstrained connectivity. Only loss of PV → SST connectivity has a clear effect on dendritic EI
correlations. Open circles, mean over 5 batches of 8 stimuli with random amplitudes. Small filled circles, individual
batches.

To understand the role of the different IN→IN connections, we performed a mathematical analysis of a160

simplified network model. The model also contains a population of principal cells (PC) and two populations161

of interneurons corresponding to PV and SST interneurons, but in contrast to the spiking model, neural162

activities are represented by continuously-varying rates. The population rates of PV and SST interneurons163

are denoted by p and s, respectively. The activity of PCs is described by two rates: an event rate e that is164

driven by somatic input and a burst rate b that is driven by dendritic input. The short-term plasticity of a165

given synapse type is characterized by a single, static parameter, which characterizes the relative efficiency166

at which events and bursts are transmitted. Synapses for which this parameter is 1 transmit events but not167

bursts, i.e., they are ”perfectly depressing”. Synapses for which this parameter is 0 transmit only bursts, i.e.,168

they are ”perfectly facilitating”. These assumptions allowed us to mathematically analyze the interneuron169

connectivity required for compartment-specific feedback inhibition. We will only summarize the results, the170

full analysis is described in Supplementary Materials.171

Let us first consider the case of dendritic feedback inhibition. The model states that the activity s of the

SST neurons is given by a linear combination of the event and burst rate: s = Ae+ B b, with factors A,B

that depend on the connectivity and short-term plasticity in the circuit in a complicated way. If we assume

that SST interneurons target exclusively the PC dendrites, compartment-specific feedback inhibition requires

that the activity of SST interneurons depends on dendritic but not somatic input to PCs. Because those two

inputs drive the event rate and burst rate, respectively, this condition reduces to the mathematical condition

that A = 0. Using the dependence of A on the circuit parameters (see Supplementary Materials), we get the
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condition

βWSST←PC − αWSST←PVWPV←PC = 0 , (1)

where WY←X denotes the strength of the synaptic connection between population X and Y . The two172

parameters α, β are the short-term plasticity parameters and quantify how well events are transmitted via173

the PC→PV and PC→SST connections, respectively.174

Condition [1] has an intuitive interpretation. The first term describes how much somatic PC input175

influences SST activity via the monosynaptic pathway PC → SST. The second term corresponds to the176

disynaptic pathway PC → PV → SST. The condition therefore states that unless PC→ SST connections177

are ”perfectly facilitating” (β = 0), the disynaptic PC → PV → SST pathway is necessary (Fig. 5) to avoid178

that somatic input generates dendritic inhibition. The observation that a knock-out of these connections179

reduces the dendritic E/I correlation in the spiking network (Fig. 5b) can therefore be understood as a result180

of an imperfect facilitation in the PC→SST connection. Indeed, we observed that the Tsodyks-Markram181

model [41] we used to describe the short-term plasticity in the spiking network cannot achieve a perfectly182

facilitating synapse in the presence of ongoing activity, even for an initial release probability U = 0, because183

preceding spikes always leave behind a residual level of synaptic facilitation.184

An analogous analysis suggests that disynaptic PC → SST→ PV inhibition is necessary to prevent den-185

dritic inputs from generating somatic inhibition (Supplementary Materials), providing a possible function of186

experimentally observed SST→ PV connectivity. At first sight, this appears in conflict with the observation187

that a knock-out of this connection did not reduce the E/I balance in the soma. However, because bursts188

are comparatively rare [33], event rate and overall firing (including additional spikes in bursts) are highly189

correlated. Therefore, the overall firing rate is a good proxy for somatic input and imperfections in synaptic190

depression in the PC→PV connection do not introduce a sufficiently large problem to necessitate feedforward191

inhibition via the PC→SST→PV pathway.192

Discussion193

Feedback inhibition ensures the stability of cortical circuits [42, 43, 11, 44]. Our model indicates that this194

feedback could operate on a level as fine-grained as different cellular compartments receiving different input195

streams, and that the required circuitry bears similarity to the one observed in cortex. In particular, we found196

that an optimization for feedback inhibition led to the emergence of two inhibitory cell classes that resemble197

PV and SST interneurons in their connectivity and short-term plasticity. This diversification was robust to198
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correlations between somatic and dendritic input, although increasing correlations prompted the SST-like199

model neurons to contact not only the dendritic, but also the somatic compartment. This is consistent with200

the extensive branching of cortical SST neurons within the layer that contains their cell body [2]. Even in201

cases in which the gradient-based optimization did not drive a clear division into cell classes, an artificial202

pre-assignment of the interneurons did not impair the feedback inhibition.203

We would like to emphasize that while we optimized for feedback inhibition in different neuronal com-204

partments, the model operates on an ensemble level in the sense that all neurons in the network received205

the two same time-varying signals in their soma and dendrite. This allows the interneurons to use event206

or burst rates of the whole ensemble to infer somatic and dendritic inputs with high temporal fidelity [33].207

The question of the specificity of feedback inhibition on the population level is an orthogonal one and not208

fully resolved. The dense and seemingly unspecific connectivity of many interneurons [45, 46] suggests that209

feedback inhibition operates on the level of the local population, blissfully ignoring the functional identity210

of the neurons it targets [47]. More recent results have indicated a correlation between the sensory tuning211

and the synaptic efficacy of interneuron-pyramidal cell connections, however, suggesting that feedback in-212

hibition could operate on the level of functionally identified ensembles [48, 13]. A natural extension of this213

work would be to endow the pyramidal cells with a tuning to different somatic and dendritic input streams214

and thereby define functional ensembles. Notably, the ensemble affiliation of a given neuron may differ for215

soma and dendrite, e.g., two populations of neurons could receive distinct somatic, but identical dendritic216

inputs. How this would be reflected in the associated feedback-optimized interneuron circuit is an interesting217

question, but beyond the scope of the present work.218

A natural question for optimization-based approaches is how the optimization can be performed by219

biologically plausible mechanisms. The gradient-based optimization we performed relies on surrogate gradi-220

ents [34, 49] and a highly non-local backpropagation of errors both through the network and through time221

[50, 51], mechanisms that are unlikely implemented verbatim in the circuit [52]. We think of the suggested222

optimization approach rather as a means to understanding functional relations between different features of223

neural circuits, i.e., the relation between the biophysics of pyramidal cells and the surrounding interneuron224

circuits. At this point, we prefer to remain agnostic as to the mechanisms that establish these relations.225

While an activity-dependent refinement of the circuit is likely, the diversification of the interneurons into PV226

and SST neurons is clearly not driven by activity-dependent mechanisms alone [53]. SST Martinotti cells227

migrate to the embryonic cortex via the marginal zone, while PV basket cells migrate via the subventricular228

zone [54]. Their identity is hence determined long before they are integrated into functional circuits. These229

developmental programs are likely old on evolutionary time scales given that interneuron diversity seems230

highly conserved [55, 56]. Yet, even when interpreted as an evolutionary optimization, interneuron circuits231
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probably did not evolve to perform feedback inhibition for pre-existing biophysical properties of pyramidal232

neurons. Such systematic relations between different circuit features are more likely a result of co-evolution,233

where the different features mutually enabled the successful selection of the others.234

Given these considerations, we refrain from predictions regarding the optimization process. Still, the235

model can make predictions regarding the nature of the optimized state. First, it predicts that PV and236

SST rates correlate primarily with somatic and dendritic activity, respectively. Second, inhibiting SST237

neurons should increase PC bursting, as observed in hippocampus [57] and cortex [58]. The role of short-238

term facilitation could be tested by silencing the necessary gene Elfn1 [59, 60]. On a higher level, the model239

suggests a relation between the biophysical properties of excitatory neurons and the surrounding interneuron240

circuit. This is consistent, e.g., with the finding that the prevalence of pyramidal cells and dendrite-targeting241

Martinotti cells seems to be correlated across brain regions [61].242

While the synaptic targets and the incoming short-term plasticity of the two emerging interneuron classes243

are similar to those of PV and SST interneurons, the optimized inhibitory circuitry is not a perfect image of244

cortex. Aside from the obvious incompleteness in terms of other interneuron types, other features, such as the245

often observed weak connectivity from PV to SST neurons [38] did not result from the optimization (Fig. 5).246

However, even if our assumption that the interneuron circuit performs compartment-specific feedback in-247

hibition was correct, a perfect match to cortex is probably not to be expected. Firstly, the pyramidal cell248

model we used is clearly a very reduced depiction of a real pyramidal cell. Because the inhibitory circuitry is249

optimized for the nonlinear processing performed by these cells, anything that is wrong in the pyramidal cell250

model will also be wrong in the optimized circuit. It will be interesting to see how the suggested optimization251

framework generalizes to computations performed by more complex neuronal morphologies [30]. Secondly,252

the optimized circuitry is also sensitive to other modelling choices. For example, the circuit separates spikes253

and bursts by a synergy between short-term plasticity and interneuron connectivity. A wrong short-term254

plasticity model will therefore lead to a wrong connectivity in the circuit. Here, it will be interesting to see255

how a more expressive model of short-term plasticity [62] influences the optimal circuit structure. Finally, of256

course, our optimality assumption could be wrong to different degrees. We could be wrong in detail: Even257

if the idea of compartment-specific feedback inhibition was correct, our mathematical representation thereof258

– matching excitation and inhibition in time – could be wrong, with corresponding repercussions in the259

optimized circuit. Or we could be wrong altogether: PV and SST interneurons serve an altogether different260

function, and feedback inhibition is merely a means to a completely different end, such as behavioral circuit261

modulation [58, 63] or the control of plasticity [15, 64].262

Notwithstanding the dependence of the final circuit on specific model choices, we believe that the sug-263

gested optimization approach provides a broadly applicable schema for analyses of structure-function rela-264

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2021. ; https://doi.org/10.1101/2020.11.17.386920doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.17.386920
http://creativecommons.org/licenses/by-nc-nd/4.0/


tions of interneuron circuits. On a coarser level of biological detail, optimization approaches have recently265

been quite successful at linking abstract computations to the neural network level [65, 66, 67]. While similar266

in spirit, our approach takes this optimization ansatz from the level of dynamical systems analyses of rate-267

based recurrent neural networks to the detailed level of spiking circuits with multi-compartment neurons268

and short-term plasticity. It will be exciting to see how biological mechanisms on this level of detail support269

more advanced computations than the mere stabilization of the circuit considered here, but that is clearly a270

larger research program that extends well beyond the proof of concept presented here.271
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Methods426

Network Model427

We simulated a spiking network model consisting of NE pyramidal cells (PCs) and NI interneurons (INs),

as in earlier work [33]. PCs are described by a two-compartment model [32]. The membrane potential vs in

the somatic compartment is modeled as a leaky integrate-and-fire unit with spike-triggered adaptation:

dvs

dt
= −v

s − EL

τs
+
gsf(vd) + ws + Is

Cs
(2)

dws

dt
= − ws

τs,w
+ bsS(t) . (3)

Here, EL denotes the resting potential, τs the membrane time constant and Cs the capacitance of the soma. Is

is the external input, and ws the adaptation variable, which follows leaky dynamics with time constant τs,w,

driven by the spike train S emitted by the soma. bs controls the strength of the spike-triggered adaptation.

vd is the dendritic membrane potential, the conductance gs controls how strongly the dendrite drives the

soma, and f the nonlinear activation of the dendrite:

f(v) = 1/(1 + exp(−(v − Ed)/Dd)) . (4)

The half-point Ed and slope D of the transfer function f control the excitability of the dendrite. When the

membrane potential reaches the spiking threshold ϑ, it is reset to the resting potential and the PC emits a

spike. Every spike is followed by an absolute refractory period of τr.

The dynamics of the dendritic compartment are given by:

dvd

dt
= −v

d − EL

τd
+
gdf(vd) + cdK(t− t̂) + wd + Id

Cd
(5)

dwd

dt
= − wd

τd,w
+
ad(vd − EL)

τd,w
. (6)

In addition to leaky membrane potential dynamics with time constant τd, the dendrite shows a voltage-

dependent nonlinear activation f , the strength of which is controlled by gd. This nonlinearity allows the

generation of dendritic plateau potentials (”calcium spikes”). Somatic spikes trigger backpropagating action

potentials in the dendrite, modeled in the form of a boxcar kernel K, which starts 1ms after the spike and

lasts 2ms. The amplitude of the backpropagating action potential is controlled by the parameter cd. The

dendrite is subject to a voltage-activated adaptation current wd, which limits the duration of the plateau
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potential. This adaptation follows leaky dynamics with time constant τd,w. The strength of the adaptation

is given by the parameter ad. Note that the model excludes sub-threshold coupling from the soma to the

dendrite.

The interneurons are modeled as leaky integrate-and-fire neurons:

dvi

dt
= −v

i − EL

τi
+
Ii

Ci
, (7)

with time constant τi. Spike threshold, resting and reset potential, and refractory period are the same as for

the PCs.

All neurons receive an external background current to ensure uncorrelated activity, which follows Ornstein-

Uhlenbeck dynamics

dIx,bg

dt
= −I

x,bg − µx

τbg
+ σxε. (8)

Here, x ∈ {s, d, i} refers to the soma, dendrite, or interneuron, respectively, and ε is standard Gaussian white

noise with zero mean and correlation 〈ε(t)ε(t′)〉 = δ(t− t′).

In addition, the somatic and dendritic compartments received step currents mimicking external signals (see

Optimization), as well as recurrent inhibitory inputs. The recurrent input to compartment x ∈ {s, d} of the

ith principal cell was given by

Ix,inhi (t) = −
NI∑
j=1

|W I→x
ij | sj(t). (9)

where sj is the synaptic trace that is increased at each presynaptic spike and decays with time constant τsyn

otherwise:

ds

dt
= − s

τsyn
+ S.

The compartment-specific inhibitory weight matrices W I→x, x ∈ {s, d} were optimized; the absolute value

in Eq. 9 ensured positive weights.
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The recurrent input to the ith interneuron was given by:

Ireci =

NE∑
j=1

|WE→I
ij | µij(t) s

j(t)−
∑
k=1

|W I→I
ik |sk(t). (10)

The function µij(t) implements short-term plasticity according to the Tsodyks-Markram model [41]. µ(t) is

the product of a utilization variable u and a recovery variable R that obey the dynamics

du

dt
= −u− U

τu
+ (1− u) · F · S, (11)

dR

dt
= −R− 1

τR
− u ·R · S. (12)

U is the initial release probability, which is optimized by gradient descent. F is the facilitation fraction, and428

τR, τu are the time constants of facilitation and depression, respectively. All parameter values are listed in429

Table 1 (Supplementary Materials)430

431

Finally, the network parameters were scaled so that the membrane voltages ranged between EL = 0432

and ϑ = 1. The scaling allowed weights of order 1/
√
N , mitigating vanishing or exploding gradients during433

optimization. All optimization parameters are listed in Table 2 (Supplementary Materials).434

Optimization435

We used gradient descent to find weights W and initial release probabilities U that minimize the difference

between excitation and inhibition in both compartments:

L =

T∑
t=1

NE∑
i=1

(Es(t) + Isi (t))
2

+
(
Ed(t) + Idi (t)

)2
. (13)

Ex
i and Ixi are the total excitatory and inhibitory input to compartment x ∈ {s, d} of PC i. To speed up the436

optimization process, all output synapses from a given neuron to a given compartment type had the same437

strength, i.e., the optimization of the output synapses is performed for NI × 2 parameters. For the input438

synapses onto the INs, weight and initial release probability were optimized independent for all NE × NI439

synapses.440

441

To achieve small interneuron rates necessary for interneuron specialization (Fig. A2), we subtracted the
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mean background input from Ex
i :

Ixi (t) = Ex
i (t)− µx (14)

To propagate gradients through the spiking non-linearity, we replaced its derivative with the derivative

of a smooth approximation [34]

σ(v) =
1

(1 + β|v − ϑ|)2
. (15)

We used the machine learning framework PyTorch [68] to simulate the differential equations (forward Euler442

with step size 1 ms), compute the gradients of the objective L using automatic differentiation, and update443

the network parameters using Adam [69]. The optimized parameters were initialized according to the dis-444

tributions listed in Table 2 (Supplementary Materials). 2. We simulated the network response to batches of445

8 trials of 600 ms, consisting of 100 ms pulses given at 2.5 Hz. The pulse amplitudes were drawn uniformly446

and independently for soma and dendrites from the set {100, 200, 300, 400}. Training converged within 200447

batches (parameter updates). Before each parameter update, the gradient values were clipped between −1448

and 1 to mitigate exploding gradients [70]. After each update, the initial release probability was clipped449

between 0 and 1 to avoid unphysiological values.450

Methods for Figures451

Figure 1452

We measured the short-term plasticity of PC → IN synapses by simulating their response to two EPSPs453

given 10 ms apart, a typical interspike interval within a burst. The PPR was computed as the ratio of454

the two EPSP amplitudes, such that a PPR > 1 indicates short-term facilitation and a PPR < 1 indicates455

short-term depression. The PPR of a single IN was defined as the mean PPR of all its excitatory afferents.456

Clustering of interneurons was done by fitting a single Gaussian (before optimization) or a mixture of two457

Gaussians (after optimization) to the three-dimensional distribution of inhibitory weights to the PC soma,458

to PC dendrites, and the PC→IN Paired Pulse Ratio (PPR). Both models were fitted using Scikit-learn [71]459

on pooled data from five networks, trained from different random initializations. The density models where460

fitted on 246 interneurons that were active (firing rate higher than 1 spk/s) and had a medium to strong461

projection to either soma or dendrites (weight bigger than 0.01). The dashed lines in Fig. 1b illustrate the462

two-dimensional marginal distributions of the somatic and dendritic inhibition. All PCs received the same463

time-varying input currents, consisting of 100 ms pulses of 300 pA, given at a rate of 2.5 Hz. Correlations464
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between compartment-specific excitation and inhibition were computed between the the currents to the PC465

compartments, averaged across all PCs in the network.466

Figure 2467

Before optimization, we assigned interneurons to inhibit either PC somata or dendrites by fixing their weights468

onto the other compartment to zero. Half of the interneurons was assigned to inhibit the soma, the other469

half was assigned to inhibit the dendrites. Otherwise, weights and initial release probabilities were optimized470

as before.471

Figure 3472

The definitions of burst rate, burst probability and event rate were taken from Naud & Sprekeler [33]: A

burst was defined as multiple spikes occurring within 16 ms. The time of the first spike was taken as the

time of the burst. An event was defined as a burst or a single spike. The instantaneous burst rate and event

rate were computed by counting the number of bursts and events, respectively, in bins of 1ms and among

the population of PCs, and smoothing the result with a Gaussian filter (width: 2ms). The burst probability

was defined as

Burst Probability =
Burst Rate

Event Rate
× 100%. (16)

We injected current pulses of 100 ms duration to either soma or dendrite while injecting a constant current to473

the other compartment. Currents where varied in amplitude between 100 and 400 pA; the constant current474

was 0 pA. The figure shows the mean and standard deviation of the total network activity during 10 current475

pulses. For Fig. 3e, we injected simultaneous pulses to the other compartment of amplitude 0, 200 or 400476

pA.477

Figure 4478

We varied the correlation between the inputs to soma and dendrites by generating repeating current pulses

with different temporal offsets and optimized a network for each offset. The interneuron specialization was

defined as

specialization = 1− xT y

‖x‖‖y‖
, (17)
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where x and y are NI -dimensional vectors containing the inhibitory weights onto soma and dendrites and479

‖ · ‖ the L2 norm. If each neuron inhibits either somata or dendrites, but not both, the specialization will be480

1. If the weights are perfectly aligned (i.e., interneurons with a strong dendritic projection also have a strong481

somatic projection), the specialization will be 0. Here and in all figures, the EI correlation was computed as482

the correlation between the time series of the compartment-specific excitation and inhibition, after averaging483

across all PCs. Shown is the mean over 5 batches of 600 ms, where each batch consisted of 8 trials with484

amplitudes from {100, 200, 300, 400} pA, sampled independently for soma and dendrites.485

Figure 5486

Figure 5a shows the connectivity strength over five networks. We first used the Gaussian mixture models to487

assign INs to PV or SST clusters, and then computed the mean connectivity between and within clusters for488

each network. For 5b, we trained networks with predefined interneuron populations to control the interneuron489

connectivity. Connections between populations were knocked out by fixing them to zero during and after490

optimization. EI correlations are computed for 5 batches of 600 ms, where each batch consisted of 8 trials491

with amplitudes from {100, 200, 300, 400} pA, sampled independently for soma and dendrites.492

Figure A.2493

The minimum rate of PV neurons was controlled indirectly, by varying the baseline inhibitory target current

to the soma—A larger baseline requires a higher minimum PV rate. We varied the minimum inhibitory

current by subtracting only a fraction α of the baseline excitatory current:

Ix(t) = Ex(t)− α · µx, (18)

cf. Eq. (14). In the simulations, we varied α between 1 and 0.8, leading to a minimum PV rate between 1494

spk/s, and 9 spk/s.495
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A Supplementary Materials496

Supplementary Figures497

Figure A.1: Non-overlapping interneuron populations achieve compartment-specific inhibition
for a range of input statistics. (a) Top, performance as measured by compartment-specific correlation
between excitation and inhibition of networks trained on different correlations between compartment-specific
excitatory inputs. Open circles, mean over 5 batches of 8 stimuli with random amplitudes (see Methods).
Small filled circles, individual batches. Here and in the other panels, the interneurons were assigned to
inhibit only the soma or only the dendrites. Bottom, interneuron specialization as measured by Paired Pulse
Ratio (PPR) decreases with input correlations. Error bars denote sd over IN populations. (b) Strength of
somatic and dendritic inhibition from individual INs. Top, medium input correlation (0.47); bottom, high
input correlation (1.00). Color indicates PPR. c) Top, as a but as function of minimum PV rate. Bottom,
interneuron specialization as measured by Paired Pulse Ratio (PPR) is not influenced by minimum PV rate.
(d) Strength of somatic and dendritic inhibition from individual INs. Top, medium PV rate (4 spk/s);
bottom, high PV rate (9 spk/s).
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Figure A.2: Higher baseline PV rates decrease the need for interneuron specialization. (a)
Strength of somatic and dendritic inhibition from individual INs. Left, middle, right: network optimized
with a baseline PV rate of 1 (low), 5 (medium), and 9 spk/s (high), respectively. (b) Specialization of
IN→E weights. If each IN targets either soma or dendrites, the specialization is 1 (see Methods). Gray:
specialization of initial, random network; black: specialization after optimization. (c) Left, correlation
between excitation and inhibition as function of minimum PV rate. Red: networks with optimized short-
term plasticity. Gray: Networks without short-term plasticity. Open circles, mean over 5 batches of 8 stimuli
with random amplitudes. Small filled circles, individual batches.
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Mathematical Analysis of a Simplified Network Model498

We performed a mathematical analysis of a simplified network to better understand the following results of499

our spiking network simulations:500

1. A compartment-specific balance requires PV → SST inhibition, but no other IN → IN connectivity501

(Fig. 5).502

2. Higher interneuron rates require less IN specialization, i.e., individual interneurons often inhibit both503

PC compartments (Fig A.2).504

The simplified model consists of a population of principal cells (PC) and two populations of interneurons505

that we will refer to as parvalbumin (PV)-positive and as somatostatin (SST)-positive cells. The population506

activity of the PCs is represented by somatic activity e and dendritic activity b. The interneuron activities507

are represented by firing rates p and s. The four activity variables e, b, p, s are best thought of as deviations508

of the respective activity from baseline. The activity variables can hence be both positive and negative509

(ignoring saturation effects that arise when the baseline is very low, see below).510

For our analysis, we make the following assumptions: (1) somatic input linearly increases somatic activ-

ity e, (2) dendritic input linearly increases dendritic activity b, which is in turn assumed to be independent

of somatic input/activity (note that the latter assumption deviates from a BAC-firing mechanism [31], but

is necessary to obtain a linear model), (3) the activities p, s of the interneuron populations increase linearly

with their input, and (4) short-term plasticity is characterized by a single, static parameter (see below).

Because we are interested only in qualitative statements, the analysis is done in terms of unitless variables.

The model describes the dynamics of the four activity variables e, b, p, s:

ė = −e− wepp+ Ee(t), (A.1)

ḃ = −b− wbss+ Eb(t), (A.2)

ṗ = −p+ αwpee+ (1− α)wpeb− wpss, (A.3)

ṡ = −s+ βwsee+ (1− β)wseb− wspp. (A.4)

Here, the synaptic weight from population y to x is modeled with a non-negative weight wxy (x, y ∈ {e, p, s};

e: PCs, p: PV INs, s: SST INs). The central tenet of this simplified model is that somatic and dendritic

activity both generate characteristic spike patterns in PCs—such as events and bursts—which are selectively

transmitted by synapses because of short-term plasticity. The parameters α, β ∈ [0, 1] describe the short-

term plasticity of the PC→PV and PC→SST synapses, respectively. α, β = 1 corresponds to synapses that
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only transmit somatic activity. If somatic activity generates events and dendritic activity generates bursts,

this would require ”perfectly depressing” synapses, i.e., synapses that transmit only the first spike of a burst.

α, β = 0 corresponds to synapses that only transmit dendritic activity. For the case where dendritic activity

generates bursts, this requires ”perfectly facilitating” synapses that ignore individual spikes and transmit

only bursts. We assumed that the projections of the interneurons are specialized, i.e., that PV interneurons

inhibit the soma and SST interneurons inhibit the dendrite. We will abandon this assumption in Section

A.1. We also excluded inhibitory recurrence within the two populations (PV → PV, SST → SST), because

these connections would only change the effective time constant of the respective activation variable. The

somata and dendrites of the PCs receive time-varying external inputs Ee(t) and Eb(t), respectively. All

activity variables follow leaky dynamics.

The dynamical system can be written as ṙ = Wr + I, where the vector r contains the activation vari-

ables r = (e, b, p, s)T , I contains the external inputs I = (Ee, Eb, 0, 0)T , and W is the matrix of effective

connectivity strengths

W =



−1 0 −wep 0

0 −1 0 −wbs

αwpe (1− α)wpe −1 −wps

βwse (1− β)wse −wsp −1


. (A.5)

Assuming that the time constant of the network is sufficiently short to adiabatically follow the input currents,

we can consider the steady state by setting ṙ = 0 and solving for r:

Wr + I = 0 =⇒ r = −W−1I. (A.6)

Influence of IN→IN connections on compartment-specific E/I balance511

In the steady state Eq. (A.6), the IN rates are equal to

p = −[W−1]31E
e − [W−1]32E

b, (A.7)

s = −[W−1]41E
e − [W−1]42E

b. (A.8)

Here, [W−1]ij refers to the element in row i and column j of the matrix W−1. Assuming that the interneurons

specialize by inhibiting a single compartment, a necessary (and, up to scaling, sufficient) condition for
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compartment-specific balance is that the PV rate p is proportional to the external input targeting the soma

and independent of the input targeting the dendrite. Similarly, the SST rate should be proportional to the

external input targeting the dendrite and independent of the input targeting the soma. By Eq. (A.7), a

compartment-specific balance hence requires [W−1]32 = 0 and [W−1]41 = 0. Computing these matrix entries

yields:

[W−1]32 ∝ wpe(1− α)− wpswse(1− β)) = 0 (A.9)

[W−1]41 ∝ −wpewspα+ wseβ = 0 . (A.10)

These equations have a simple interpretation. Each of the two terms in [W−1]32 represents a pathway by512

which dendritic activity reaches the PV interneurons. The first term quantifies how much dendritic activity513

reaches PV interneurons via the direct excitatory PC→PV projection, the second represents corresponding514

feedforward inhibition via the PC→SST→PV pathway. If these two pathways cancel, PV activity is inde-515

pendent of dendritic activity. Similarly, the two pathways in [W−1]41 that transmit somatic activity to the516

SST need to cancel.517

What is the role of short-term plasticity? For illustration, let us first consider the limiting case of

”perfect” synaptic depression (α = 1). Perfectly depressing PC → PV synapses would imply that the PV

interneurons only receive somatic activity from the PCs via the direct PC→PV pathway. The condition

(A.9) then reduces to

[W−1]32 ∝ −wpswse(1− β) = 0 , (A.11)

i.e., dendritic activity should not reach PV interneurons via the indirect PC→SST→PV pathway, because this518

would render PV activity dependent on dendritic activity. Because dendritic activity need to be transmitted519

to the SST interneurons to reach an E/I balance in the dendrite, this implies that the SST→PV connection520

should be absent.521

”Perfect” synaptic depression (α, β = 1) or facilitation (α, β = 0) are hard to implement, certainly by a522

Markram-Tsodyks model in the presence of background activity. However, the effect of imperfect depression523

in the PC→PV connection (α < 1) can be compensated by feedforward inhibition along the PC→SST→PV524

pathway. Similarly, imperfect PC→SST facilitation picks up somatic activity, which can then be canceled525

by feedforward inhibition via the PC→PV→SST pathway. The role of IN→IN synapses is therefore to526

complement ”imperfect” short-term plasticity in decoding compartment-specific inputs.527

The observation that PV→SST connections are the most important IN→IN connections in our model528
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results from ”imperfect” facilitation in the excitatory synapses onto SST interneurons. Because events occur529

more frequently than bursts, the excess excitation they trigger in SST interneurons needs to be actively530

cancelled via the PV→SST pathway. The converse SST→PV connection is less critical, because bursts are531

comparatively rare, such that their transmission via PC→PV synapses causes only minor disturbances of532

the compartment-specific E/I balance.533

A.1 Influence of IN baseline firing rates on interneuron specialization534

The previous analysis assumed that interneurons were specialized to inhibit a single compartment. When

should we expect specialization in the first place? We can investigate this question by extending the simplified

model by inhibition from all INs onto all PC compartments:

W =



−1 0 −wep −wes

0 −1 −wbp −wbs

αwpe (1− α)wpe −1 −wps

βwse (1− β)wse −wsp −1


. (A.12)

A compartment-specific balance now requires external input to be canceled by the inhibition from both

interneurons:

Ee = wepp+ wess, (A.13)

Eb = wdpp+ wdss. (A.14)

Without additional constraints, this system has an infinite number of solutions, i.e., weight configurations535

that achieve a compartment-specific balance. However, the simple constraint of low baseline firing rates of536

the interneurons collapses the solution space to the specialized one (wes = wdp = 0), for the following reason.537

The activity variables p, s represent deviations of the interneurons firing rates from baseline. If the538

baseline is sufficiently high, these deviations can be both positive and negative. In that case, inhibition539

from one interneuron class can be cancelled by disinhibition from the other interneuron class. PV and SST540

interneurons are then both free to respond to both somatic and dendritic activity, as long as the weighted541

sums of the inhibition and disinhibition they provide to PC somata and dendrites mirrors the excitatory542

input to those compartments. There are many ways of doing so.543

For low baseline firing rates, disinhibition is no longer available, because negative deviations from baseline544

are limited by the fact that activities cannot be negative. For illustration, let us consider the case where545
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Table 1: Parameter values related to network simulation

Symbol Value Unit Description
NE 400 - Number of exc. neurons
NI 100 - Number of inh. neurons
EL -70 mV reversal and reset potential
ϑ -50 mV spiking threshold

τs/d/i 16 / 7 / 10 ms time const. soma/ dend./inh. membrane
τr 3 ms refractory time soma and inh.
gs/d 1300 / 1200 pA Coupling from dend to soma
Cs/d/i 370 /170/100 pF Conductance of soma/dend./inh.
τs/d,w 100 / 30 ms Time const. adaptation soma/dend.
bs -200 pA Spike-triggered adaptation (soma)
ad -13 nS Voltage-driven adaptation (dend)
cd 2600 pA Coupling soma to dend.
Ed -38 mV position dend. nonlinearity
Dd 6 mV steepness of dend. nonlinearity
µs/d/i 400 / -300 /-100 pA mean background input soma/dend./inh.
σs/d/i 450 / 450 / 400 pA sd background input
τbg 2 ms time const. background input
τsyn 5 ms time const. synapses
τu 100 ms time const. facilitation
τR 100 ms time const. depression
F 0.1 - facilitation jump

both PV and SST neurons have zero baseline activity. By definition, the excitatory signals Ee/b are zero546

for baseline activity, because they represent deviations from baseline. Therefore, we can assume that there547

exists a moment where the input to one PC compartment is zero, while the input to the other compartment548

is positive (e.g., Ee = 0, Eb > 0). By Eq. (A.13) and because all weights and rates must be positive,549

wepp+wess = 0 implies that wep = 0 or p = 0 and wes = 0 or s = 0. At least one weight has to be non-zero550

(otherwise balancing the soma is impossible), and at least one rate has to be non-zero (otherwise balancing551

the dendrite is impossible). Without loss of generality we can conclude that wep > 0, p = 0, wes = 0, and552

s > 0: The PC soma is only inhibited by the PV neuron. Analogously, the existence of a moment when553

Eb = 0 but Ee > 0 implies that wds > 0, wdp = 0, meaning that the PC dendrite is only inhibited by the554

SST neuron. If the baseline activity is low, but not strictly zero, this saturation arguments still hold, if555

the variations in the firing rates that are required to balance the external input are larger than the baseline556

activity. Low baseline firing rates therefore imply interneuron specialization, because they prevent inhibition557

and disinhibition from non-specialized neurons to cancel.558
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Table 2: Parameter values related to optimization

Symbol Value / Init. Distribution Dimensions Description
U U(0.1, .25) NE ×NI Initial release prob.

WE→I N (0, 1/NE) NE ×NI Exc. to Inh. weight
W I→I N (0, 1/NI) NI ×NI Inh. to Inh. weight
W I→D N (0, 0.2/NI) NI × 1 Inh. to Exc. Dend. weight
W I→S N (0, 0.2/NI) NI × 1 Inh. to Exc. Soma weight

- 1e-3 - learning rate for weights
- 4e-3 - learning rate for U
β 10 - Slope spiking derivative
- 1.0 - Gradient (absolute value) clipping
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