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Abstract20

Over the past decades, different types of auditory models have been developed to study the function-21

ing of normal and impaired auditory processing. Several models can simulate frequency-dependent22

sensorineural hearing loss (SNHL), and can in this way be used to develop personalized audio-signal23

processing for hearing aids. However, to determine individualized SNHL profiles, we rely on indirect24

and non-invasive markers of cochlear and auditory-nerve (AN) damage. Our progressive knowledge25

of the functional aspects of different SNHL subtypes stresses the importance of incorporating them26

into the simulated SNHL profile, but has at the same time complicated the task of accomplishing27

this on the basis of non-invasive markers. In particular, different auditory evoked potential (AEP)28

types can show a different sensitivity to outer-hair-cell (OHC), inner-hair-cell (IHC) or AN dam-29

age, but it is not clear which AEP-derived metric is best suited to develop personalized auditory30

models. This study investigates how simulated and recorded AEPs can be used to derive individual31

AN- or OHC-damage patterns and personalize auditory processing models. First, we individualized32

the cochlear-model parameters using common methods of frequency-specific OHC-damage quantifi-33

cation, after which we simulated AEPs for different degrees of AN-damage. Using a classification34

technique, we determined the recorded AEP metric that best predicted the simulated individualized35

CS profiles. We cross-validated our method using the dataset at hand, but also applied the trained36

classifier to recorded AEPs from a new cohort to illustrate the generalisability of the method.37

Keywords38

individualized hearing-loss profile; envelope following response; cochlear synaptopathy; sensorineu-39

ral hearing-loss; auditory modelling; electrophysiology; auditory evoked potentials40
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Introduction41

Auditory Evoked Potentials (AEPs) are widely adopted as markers of sensorineural hearing loss42

(SNHL) in clinical and research settings. In research animals, auditory brainstem response (ABR)43

or envelope-following response (EFR) amplitudes can be used to quantify auditory-nerve (AN)44

fiber damage, i.e. cochlear synaptopathy (CS), (Kujawa and Liberman, 2009; Furman et al., 2013;45

Sergeyenko et al., 2013; Shaheen et al., 2015). However, applying the same AEP markers for CS46

diagnosis in humans has yielded mixed success, since AEP amplitudes can be affected by (i) other47

coexisting SNHL aspects such as outer-hair-cell (OHC) damage (Don and Eggermont, 1978; Gorga48

et al., 1985; Herdman and Stapells, 2003; Verhulst et al., 2016; Chen et al., 2008; Garrett and49

Verhulst, 2019; Keshishzadeh et al., 2020) and (ii) subject-specific factors such as age, gender, and50

head-size (Trune et al., 1988; Mitchell et al., 1989; Hickox et al., 2017). Moreover, the sensitivity51

of AEPs to different degrees of OHC-loss and CS is unclear, and a direct quantification of AN52

fiber damage through histopathology is impossible in live humans (Bharadwaj et al., 2014). These53

problems hinder the study of the specific impact of OHC-damage and CS on recorded AEPs, and54

render an AEP-based quantification of AN fiber damage difficult in listeners with mixed hearing55

pathologies. However, this last step is crucial when developing personalized models of auditory56

processing for use within numerical closed-loop hearing restoration systems.57

Even though several auditory models incorporate sources of SNHL (e.g., Ewert and Dau 2000; Heinz58

et al. 2001; Rohdenburg et al. 2005; Zilany and Bruce 2006; Jepsen et al. 2008; Jepsen and Dau59

2011; Ewert et al. 2013; Verhulst et al. 2018), methods to individualize the AN-damage pattern on60

the basis of recorded AEP metrics are non-existent. Here, we investigate the potential of common61

AEP markers to individualize the frequency-specific AN damage profile of personalized auditory62

models with or without other co-occurring aspects of SNHL. Specifically, we present a combined63

experimental-modeling method in which (i) individual cochlear-gain-loss (CGL) parameters are64
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extracted from either the audiogram or distortion-product otoacoustic emissions (DPOAEs), and65

(ii) a feature set of recorded AEP metrics is compared to simulated AEP metrics to derive periphery66

models with different CS profiles. Using a classifier that was trained on simulated AEPs for different67

SNHL profiles, we selected the individual AN profile, that best explained the recorded AEP features68

from a test subject. We tested this method on 35 participants, which were separated into groups69

of young normal-hearing (yNH), older normal-hearing (oNH) and older hearing-impaired (oHI)70

listeners (Garrett et al., 2020). Validation of our method to predict individual AN-damage profile71

from recorded AEPs was performed on data from a new cohort.72

Before we describe the classification method in detail, we summarize which AEP markers are73

promising to include. Among the hitherto proposed AEP-derived metrics of AN damage, the ABR74

wave-I is known to degrade as a consequence of CS in subjects with intact sensory hair cells (Kujawa75

and Liberman, 2009; Parthasarathy and Kujawa, 2018), however this metric is highly variable in76

humans (Stamper and Johnson, 2015; Plack et al., 2016) when the contribution of between-subject77

variability sources such as head-size or tissue resistance are not considered (Prendergast et al., 2018).78

Even though we can assume that any hearing deficit reflecting on the ABR wave-I would travel79

through the auditory pathway to reflect on the ABR wave-V as well, homeostatic gain changes80

between AN fibers and inferior colliculus (IC) may affect the wave-V amplitude (Schaette and81

McAlpine, 2011; Chambers et al., 2016; Möhrle et al., 2016; Henry and Abrams, 2018) and hence82

its diagnostic power for CS diagnosis. Another AEP marker, the EFR amplitude, which reflects the83

strength of a phase-locked AEP response to an amplitude-modulated (AM) stimulus, was shown to84

degrade as a consequence of CS in mice histological studies (Shaheen et al., 2015; Parthasarathy and85

Kujawa, 2018) and as a consequence of age in human listeners (Goossens et al., 2016; Vasilkov et al.,86

2020). EFRs offer a more robust measure of the AN fiber population than the ABR wave-I, when87

recorded in the same animals (Shaheen et al., 2015; Plack et al., 2016; Parthasarathy and Kujawa,88

2018). However, similar to the ABR wave-V, EFR generators have latencies associated with IC89
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processing (Purcell et al., 2004), thus differences in central auditory processing may reflect on the90

EFR magnitude to mask individual synaptopathy differences (Chambers et al., 2016; Möhrle et al.,91

2016; Parthasarathy et al., 2019a,b). To address these issues, relative EFR and ABR metrics were92

proposed in several studies to cancel out subject-specific factors and isolate the CS component93

of SNHL in listeners with coexisting OHC-loss: ABR wave-I amplitude growth as a function of94

stimulus intensity (Furman et al., 2013), ABR wave-I - V latency difference (Coats and Martin,95

1977; Elberling and Parbo, 1987; Watson, 1996), the wave-V and I amplitude ratio (Gu et al., 2012;96

Schaette and McAlpine, 2011; Hickox and Liberman, 2014), EFR amplitude slope as a function of97

modulation depth (Bharadwaj and Shinn-Cunningham, 2014; Guest et al., 2018), the derived-band98

EFR (Keshishzadeh et al., 2020), or the combined use of the ABR wave-V and EFR (Vasilkov and99

Verhulst, 2019). While these relative metrics are promising, it is not known how OHC-loss and100

CS differentially impact AEPs. Recent modelling approaches have shown promise to design EFR101

stimuli which are maximally sensitive to CS in the presence of OHC damage (Vasilkov et al., 2020),102

but conclusive histopathological evidence is to date not available. To make use of the listed metrics103

to build personalized hearing profiles for a broad population with various SNHL etiologies, two104

requirements need to be fulfilled. We need to (i) use AEP markers that are maximally sensitive105

to the CS aspect of SNHL and (ii) combine them with a sensitive marker of OHC deficits to106

individualize the OHC and CS aspects of SNHL. We thus considered various AEP markers (a107

total of 13) encompassing spectral magnitudes, time-domain peaks, latencies and relative metrics,108

and combinations thereof, to identify which markers best predict the simulated individualized CS109

profiles and can be used for reliable auditory profiling.110

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 19, 2020. ; https://doi.org/10.1101/2020.11.17.387001doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.17.387001
http://creativecommons.org/licenses/by-nc-nd/4.0/


Experimental Design111

ABR, EFR and OHC-damage markers were derived from recordings of two experimental setups112

in different locations. These recordings were used for development and validation of the proposed113

method, respectively.114

Participants115

The dataset that was used to develop the auditory profiling method included recordings from116

a total of 43 subjects. They were recruited into three groups: 15 young normal-hearing (yNH:117

24.53±2.26 years, 8 female), 16 older normal-hearing (oNH: 64.25±1.88 years, 8 female) and 12118

older hearing-impaired (oHI: 65.33±1.87 years, 7 female) groups. Two oNH subjects were omitted119

from our study due to non-identifiable ABR waveforms. The hearing thresholds of the participants120

were assessed at 12 standard audiometric frequencies between 0.125 and 10 kHz (Auritec AT900,121

Hamburg, Germany audiometer). AEP stimuli were presented monaurally to the ear with the best122

4 kHz threshold. Audiometric thresholds were below 20 dB-HL at all measured frequencies in the123

yNH group and below 25 dB-HL for frequencies up to 4 kHz in the oNH group. The oHI listeners124

had sloping high-frequency audiograms with 4-kHz thresholds above 25 dB-HL (Fig. 1a). The AEP125

recordings were conducted in an electrically and acoustically shielded booth, while subjects were126

sitting in a comfortable chair and watching silent movies.127

The second experiment, which was used to validate our method on a new cohort, had 19 yNH128

subjects, aged between 18 and 25 years (21.6±2.27 years, 12 female). Volunteers with a history129

of hearing pathology or ear surgery were excluded based on a recruitment questionnaire. Audio-130

grams were measured in a double-wall sound-attenuating booth, using an Interacoustics Equinox131

Interacoustics audiometer. All participants had audiometric thresholds below 25 dB-HL within the132

measured frequency range, i.e. [0.125-10] kHz, and the best ear was determined on the basis of133
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their audiogram and tympanogram. The experiment protocol included AEP measurements with134

a maximum duration of 3 hours and we only considered one AEP metric for validation purposes135

in the present study. AEP recordings were conducted in a quiet room while subjects were seated136

in a comfortable chair and watching muted movies. To minimize the noise intrusion level, both137

ears were covered with earmuffs and all electrical devices other than the measurement equipment138

(Intelligent Hearing Systems) were turned off and unplugged.139

Participants of both experiments were informed about the experimental procedure according to the140

ethical guidelines at Oldenburg University (first experiment) or Ghent University Hospital (UZ-141

Gent, second experiment) and were paid for their participation. A written informed consent was142

obtained from all participants.143

Distortion Product Otoacoustic Emission (DPOAE)144

In the first experiment, DPOAEs were acquired and analyzed using a custom-made MATLAB145

software (Mauermann, 2013). Stimuli were delivered through ER-2 earphones coupled to the ER-146

10B+ microphone system (Etymotic Research) using a primary frequency sweeping procedure at147

a fixed f2/f1 ratio of 1.2. The implemented DPOAE paradigm, continuously swept the primary148

frequencies with a rate of 2s/octave within a 1/3 octave range around the geometric mean of149

f2 ∈ {0.8, 1, 2, 4} kHz (Long et al., 2008). The L2 primary levels ranged between 30-60 dB-SPL for150

the yNH and oNH groups, using a 6-dB step. The level range was different for the oHI group: 30-72151

dB-SPL. L1 levels were determined according to the scissors paradigm (Kummer et al., 1998). For a152

given f2 primary frequency, the DP-component (LDP) growth function was plotted as a function of153

L2 and a cubic curve was fit to the LDP data-points using a bootstrapping procedure to include the154

standard deviation of the individual LDP data-points in the fit (Verhulst et al., 2016). The L2 level155

at which the cubic curve crossed -25 dB-SPL was determined for each bootstrap average to yield156
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Figure 1: (a) Audiograms and (b) DPOAE thresholds (DPTHs) of the participants in the first
experiment.

the DPOAE threshold (DPTH) and its standard deviation at a given f2 (Boege and Janssen, 2002).157

Derived experimental DPTHs of the yNH, oNH and oHI groups are shown in Fig 1b. DPOAEs158

were not available for the subjects of the validation experiment.159

EEG Measurements160

ABR and EFR stimuli were generated in MATLAB and digitized with a sampling rate of 48 kHz161

for the first dataset. Afterwards, they were delivered monaurally through a Fireface UCX external162

sound card (RME) and a TDT-HB7 headphone driver connected to a shielded ER-2 earphone.163

The electroencephalogram (EEG) signals were recorded with a sampling frequency of 16384 Hz164

via a 64-channel Biosemi EEG system using an equidistantly-spaced electrode cap. All active165

electrodes were placed in the cap using highly conductive gel. The common-mode-sense (CMS)166
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and driven-right-leg (DRL) electrodes were attached to the fronto-central midline and the tip of167

the nose, respectively. A comprehensive explanation of the experimental configuration can be found168

in Garrett and Verhulst (2019).169

AEPs of the validation experiment were recorded using the SmartEP continuous acquisition module170

(SEPCAM) of the Universal Smart Box (Intelligent Hearing System, Miami, FL, United States).171

EFR stimuli were generated in MATLAB using a sampling rate of 20-kHz and stored in a “.wav”172

format. These files were loaded in SEPCAM and converted to the “.stm”, SEPCAM compatible173

format. AEP stimuli were presented monaurally through a shielded ER-2 earphone (Etymotic174

Research) and AEPs were recorded at a sampling frequency of 10 kHz via Ambu Neuroline 720175

snap electrodes connected to vertex, nasion and both earlobes. The electrodes were placed after a176

skin preparation procedure using NuPrep gel. The skin-electrode impedance was kept below 3 kΩ177

during the recordings.178

EFR stimuli179

We recorded EFRs in response to a 400-ms-long stimuli consisting of a 4-kHz pure-tone carrier and180

a 120-Hz rectangular-wave modulator with 25% duty cycle (i.e. the RAM25 in Vasilkov et al. 2020).181

The stimulus waveform is visualized in the inset of Fig. 2b and we considered a modulation depth of182

95%. Stimuli were presented 1000 times (500 times in either positive or negative polarity) and had183

a root-mean-square (RMS) of 68.18 dB-SPL. The calibration of the stimulus was performed to have184

the same peak-to-peak amplitude as a 70-dB-SPL sinusoidal amplitude modulated (SAM) 4-kHz185

pure-tone. The Cz channel recording was re-referenced to the average of the ear-lobe electrodes and186

400-ms epochs were extracted relative to the stimulus onset. The mean-amplitude of each epoch187

was subtracted to correct for the baseline-drift. See Vasilkov et al. (2020) for further details on188

the frequency-domain bootstrapping and noise-floor estimation method. The noise-floor corrected189

spectral magnitudes (Mfk) at the modulation frequency f1 = 120Hz and four harmonics, i.e., f2 to190
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Figure 2: Comparison of exemplary NH and HI RAM-EFRs and ABRs. (a) RAM-EFR of a yNH
subject (yNH15) and the corresponding noise-floor (NF). Arrows specified by Mf , show the peak-
to-noisefloor magnitudes at the modulation frequency, i.e., 120 Hz, and the following harmonics.
(b) RAM-EFR of an oHI subject (oHI) and the corresponding NF. (c) ABR of a yNH subject
(yNH15). Arrows show the extracted wave-I and V amplitudes and latencies. (d) ABR of an oHI
subject (oHI12).

f5, were summed up to yield the EFR.191

RAM-EFR =
5∑

k=1

Mfk , fk = 120× (k) (1)

192

Figure 2a depicts a typical NH RAM-EFR spectrum and corresponding noise-floor. The arrows193

show the derived peak-to-noise-floor magnitudes at the modulation frequency and following har-194

monics. The energy of EFR peak is reduced for the oHI subject shown in the panel (b).195
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The RAM-stimulus in the second experiment (i.e. the validation database) was a 110-Hz 95%196

modulated 4-kHz pure-tone. The 500-ms stimulus was presented 1000 times with alternating po-197

larity (500 each) and had a 70 dB-SPL level. The acquired AEPs were initially saved in “.EEG.F”198

format on SEPCAM and were afterwards converted to “.mat” format using the custom-made “sep-199

cam2mat” MATLAB function for offline analysis. EFRs recorded from the vertex electrode were200

re-referenced to the ipsilateral earlobe electrode and filtered between 30 and 1500 Hz using an 800th
201

order Blackman-window based finite-impulse-response (FIR) filter. Epoching was applied to the202

steady state part of the response, i.e. 100 to 500 ms of the response relative to the stimulus onset.203

The baseline drift was corrected by subtracting the mean of each epoch, afterwards 200 epochs with204

the highest peak-to-trough values were rejected. The amplitudes of the remained epochs did not ex-205

ceed 100 µV. A frequency-domain bootstrapping approach was adopted to estimate the noise-floor206

and to remove it from the averaged trials using the method proposed in Zhu et al. (2013). To this207

end, we calculated the fast Fourier Transform (FFT) of 800 epochs to generate 400 mean spectra208

by randomly sampling the 800 epochs with replacement (keeping an equal number of polarities in209

the draw). Averaging the resampled spectra yielded the i-th mean-EFR spectrum (EFRrawi):210

EFRrawi =
2

n
|Xi|, i = 1, ..., 400 (2)

where, Xi stands for the i-th averaged resampled spectra and n is the number of FFT points211

(n=10000). To calculate the spectral noise-floor, we repeated the resampling procedure 1500 times,212

but used phase-flipped odd epochs:213

NFj =
2

n
|Yj|, j = 1, ..., 1500 (3)

In Eq. 3, Yj is the j-th averaged resampled spectra with phase-flipped odd epochs. Lastly, we214

subtracted the NF mean (NF), from each of the 400 bootstrapped mean-EFRs (EFRrawi) to derive215
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400 NF-corrected EFR spectra:216

EFRSpeci = EFRrawi −NF, i = 1, 2, ..., 400 (4)

The peaks of the EFRrawi at the modulation frequency of stimulus (f1=110 Hz), and the next217

four harmonics were identified if they were above the NF. We defined the RAM-EFRi by sum-218

ming the magnitudes of the identified peaks for each EFRSpeci . The RAM-EFR metric mean and219

variability was defined by the mean and standard deviation of RAM-EFRi over 400 samples.220

Auditory Brainstem Responses221

ABRs were recorded to 80-µs-long alternating polarity clicks presented at 70 and 100 dB-peSPL.222

Stimuli were presented through the setup explained in Garrett et al. (2019) and repeated 3000 times223

with a rate of 10 Hz using a uniformly distributed random inter-stimulus interval of 100 ms±10 ms.224

Cz-channel recordings were re-referenced to the contra-lateral earlobe electrode and filtered between225

[100-1500] Hz. 25 ms-long epochs, i.e. -5 to 20-ms relative to the stimulus onset, were extracted and226

corresponding mean values were subtracted to perform a baseline correction. Then, each positive227

polarity epoch was averaged with the following negative epoch and 100 paired-averages with the228

highest peak-to-trough values were rejected. The remaining pair-averaged epochs had amplitudes229

below 25 µV. To include ABR variability in our analysis and to estimate the ABR noise-floor, we230

applied the bootstrapping approach of Zhu et al. (2013), in the time domain. 2000 and 4500 epochs231

were drawn for the signal and noise-floor estimation, respectively. Half of the noise-floor-estimation232

epochs (i.e. 2250 pair-averaged drawn epochs with replacement) were multiplied by -1 before final233

averaging. Finally, the estimated noise-floor mean was subtracted from the 2000 averaged epochs to234

yield mean noie-floor-corrected ABR waveforms. ABR wave-I and -V peak and trough amplitudes235

and corresponding latencies were determined by visual inspection from the mean ABR waveform236
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and were confirmed by an audiologist. Figure 2 (panels c and d) compares ABR waveforms of a237

yNH and oHI subject from the cohort and indicates the identified ABR peaks and latencies. To238

extract peak latencies and amplitudes from the bootstrapped data, wave maxima and minima were239

detected in 1, 1.8, 0.5 and 1.5 ms intervals around the wave-I70, wave-V70, wave-I100, wave-V100240

peaks and troughs identified from the mean ABR waveform. The interval ranges were determined241

based on visual inspection. ABR wave-I and V latencies were shifted by 1.16 ms to compensate for242

the delay introduced by the sound-delivery system.243

We used a total of 13 ABR and EFR markers in the development phase and one EFR marker in244

the validation phase. Table 1 details the definition of each metric and lists the corresponding ab-245

breviations used in this paper. The last column defines the variability metric associated with each246

marker, which were obtained from the earlier described bootstrapping procedure. To determine247

the measurement variability of ABR growth-slopes, we applied error propagation to account for the248

standard deviations of two different measures from the same listener, e.g., ABR-70 and ABR-100.249

In this case, the bootstrapped metrics were drawn from the 95% confidence interval of a normal250

distribution characterized by the mean of the metric and its bootstrapped standard deviation. The251

bootstrapping technique described in this section, provided a tool to estimate the variability of252

AEP-derived metrics and to incorporate them in the proposed classification approach. Obtained253

standard deviations from bootstrapping can be used to measure the CS-profiling prediction robust-254

ness of the study participants.255

256

Individualized Auditory Periphery Model257

To simulate individualized SNHL profiles that would match the histopathology of the study par-258

ticipants, we used a computational model of the auditory periphery (Verhulst et al., 2018; Osses259
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and Verhulst, 2019). In the first step, we personalized the cochlear model parameters on the basis260

of OHC markers of SNHL (audiogram or DPTH). Afterwards, we simulated AEPs for different261

degrees of CS and compared the simulations to the recordings to develop and test our auditory262

profiling method. Figure 3 schematizes the auditory model individualization.263

Cochlear Model Individualization264

Measured audiograms and DPTHs were used independently to determine the individual CGL pa-265

rameters (in dB-HL) of the cochlear transmission-line (TL) model, shown in pink in Fig.3. In our266

approach, CGL determines the double-pole of the cochlear admittance through the gain and tuning267

of the cochlear filters (Verhulst et al., 2012). We thus model the consequence of OHC-damage or268

presbycusis without specifically accounting for damage of the stereocilia or sensory cells.269

From here on, mAudTH and sAudTH refer to measured and simulated audiometric thresholds, re-270

spectively. Likewise, mDPTH and sDPTH stand for measured and simulated DPOAE thresholds.271

Audiogram-based cochlear filter pole-setting272

Here, we translated the frequency-specific audiometric dB-HL (Fig. 1a) into cochlear filter gain loss.273

These values were translated into double-pole values of the cochlear admittance function across CF274

(see Verhulst et al. 2016).275

Specifically, at a CF corresponding to a measured audiometric frequency (CF = faud), the power276

spectrum of the NH basilar membrane (BM) impulse response, HNH(faud), served as reference before277

the gain loss was applied. Among a range of cochlear filter pole-values in [0.036,0.302], the pole-278

value, α∗A(faud), that causes a relative gain-loss equal to mAudTH(faud), was assigned. Thereby,279

the CGL at CF = faud is given by:280
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CGL(faud) = HNH(faud)−Hα∗
A

(faud) (5)

where Hα∗
A

(faud) equals the power spectrum of the BM impulse response at CF = faud with a pole281

value of α∗A that causes a CGL equal to mAudTH(faud). This procedure was repeated for all CF282

channels corresponding to measured audiometric frequencies and individualized cochlear filter pole-283

functions were obtained by interpolating the pole-values across CF (Verhulst et al., 2016).284

We employed the predicted pole functions to simulate individual audiograms and to evaluate the285

prediction error. To this end, individualized AN excitation patterns (ANEP) were simulated in286

response to 500-ms pure-tones presented at audiogram frequencies (faud) using 62 intensity levels287

(L) between -5 and 55 dB-SPL. We defined ANEP as the RMS of the AN firing rate at each CF ∈ faud288

and determined on-CF peaks of the presented level series as ANEP(faud,L). We simulated NH ANEPs289

using NH pole-function at the threshold of audibility in a frequency-specific manner (LNH(faud)), i.e.290

the zero-phon curve of the equal-loudness-contour (ISO 226:1987). From this reference NH curve,291

we calculated the simulated audiometric thresholds (sAudTH) of the experiment participants as292

follows:293

Lmin(faud) = arg min
L∈[−5,55]

[
ANEP(faud,LNH(faud)) −ANEP(faud,L)

]
(6)

sAudTH(faud) = Lmin(faud)− LNH(faud) (7)

Figure 4a shows grand-averaged mAudTHs and sAUDTHs across the yNH, oNH and oHI groups.294

Additionally, Fig. 4c, compares the sAudTH (dashed lines) and mAudTH (solid lines) of an example295

yNH and oHI subject. Note that simulating CGLs greater than 35 dB-HL is impossible in our296

cochlear model, which has a maximal applicable cochlear mechanical gain of 35 dB. In the last297

step, we estimated the absolute prediction error as follows:298
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Table 1: Simulated CS profiles

CS Profile Symbol
Simulated CS-type AN Type

Sloping Flat HSR(%) MSR(%) LSR(%)

Normal N – – 100 100 100

SlopeA A 100 0 0
SlopeB B 76.92 0 0
SlopeC C 1 < CF < 8 CF > 8 53.84 0 0
SlopeD D (kHz) (kHz) 30.76 0 0
SlopeE E 7.69 0 0

i

Individual frequency-specific
audiometric/DPOAE thresholds from Fig.1

Figure 3: Auditory model individualization. The block-diagram on the left depicts the different
stages of the employed auditory periphery model (Verhulst et al., 2018). Experimentally mea-
sured audiometric thresholds were inserted to the transmission-line cochlear model to adjust BM
admittance function poles. The box on top-right corner, shows the non-uniform AN population
distribution across the CF for simulated different degrees of CS profiles. The profile without CS
is shown in dark brown (indicated with N) and higher degrees of CS are shown according to the
color-map.

erraudio(faudio) = |mAudTH(faud)− sAudTH(faud)| (8)

Figure 4e compares the mean absolute errors on a group-level basis. The elevated error of the299

oHI group at high frequencies is due to the model limitation in simulating gain losses greater than300

35 dB-HL.301
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Figure 4: A comparison between the measured and simulated AudTHs and DPTHs. The average
(solid) and standard deviation (shaded area) of the measured (grey) and simulated (red) AudTHs
and DPTHs are shown in panel (a) and (b), respectively. A comparison between sAudTH and
mAudTH of a yNH and oHI listener is shown in panel (c). Panel (d) compares the sDPTH (dotted)
and mDPTH (solid) of the same yNH and oHI listeners (c). Frequency-specific group-averaged
absolute prediction errors of AudTH and DPTH are shown in panels (e) and (f), respectively
(yNH: blue, oNH: black, oHI: orange).

DPTH-based cochlear filter pole-setting302

Implementing DPTH-based cochlear model individualization was complicated by the fewer DPTHs303

we had available, i.e. four frequencies, compared to 12 AudTHs. Hence, a simple interpolation to304

determine poles between the measured frequencies, yielded large prediction errors. Additionally,305

the longitudinal filter coupling and associated gain propagation along the cochlear partition compli-306

cated matters. To tackle these issues, we trained a machine-learning algorithm to map DPTHs via307
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cochlear travelling waves to corresponding cochlear filter pole functions across CF. Once trained,308

we need only a few measured DPTHs to make a relatively accurate prediction of individual pole309

values. Figure 5 illustrates the complete procedure.310

First, we constructed the training data (Fig. 5a) using 26 sets of random cochlear filter pole func-311

tions. Each set contained 1001 CF-dependent poles and random pole-values lay between 0.036312

and 0.302, covering the pole-values associated with both NH and HI profiles. Additionally, three313

reference pole-functions were included as part of the training: NHpoles (NH poles), flatmin with314

across-CF poles of 0.036 (maximally intact cochlea) and flatmax, with across-CF poles of 0.302 (35315

dB-HL across CF). We employed the generated pole functions and simulated DP amplitudes (sLDP:316

the magnitude of 2f1 − f2) to train the mapping function. The considered f2 primary frequencies,317

i.e. 0.8, 1, 2 and 4 kHz (f1 = f2/1.2) corresponded to the recordings we had available and L2 levels318

(-10 to 70 dB-SPL, with a step of 5-dB). We simulated DPOAE input-output (I/O) functions at319

each f2 frequency and determined the sDPTH as the L2 level at which the sLDP growth function320

crossed the L2 of -10 dB-SPL. We chose a -10 dB-SPL threshold for our simulations, given that the321

conventional experimental -25 dB-SPL crossing point yielded inconclusive sDPTH, in particular322

for pole values associated with greater CGLs. sDPTH values for 26 sets of pole-functions at four323

primary frequencies were fed into the neural network after normalization (sDPTHnorm, Fig. 5b)324

to train it to map frequency-specific sDPTHnorm values (input) to CF-dependent pole-functions325

(output).326

The architecture of the designed neural network is shown in Fig. 5b, and consists of an input-layer327

of four neurons, two hidden-layers of 150 neurons and an output layer of 1001 neurons. A standard328

sigmoid activation function (i.e., between 0 and 1), was applied to the hidden layers. A customized329

sigmoid activation function (between 0.036 to 0.302), was employed in the output layer to yield330

the desired range of the cochlear model pole-functions. An ADAM optimizer with a learning rate331

of 0.001 was applied to minimize the mean-square-error (MSE) of the learning algorithm. The332
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method was developed in Python using Keras library and Tensorflow back-end.333

The trained neural network was employed to predict individualized pole-functions given DPTHs of334

the experimental cohort (Fig. 5c). Prior to the prediction, mDPTHs needed to be pre-processed to335

determine a suitable experimental range of DPTHs for the mapping. Among the 41 subjects, six336

subjects (yNH: three, oNH: two and oHI: one) without complete mDPTH values at all measured337

frequencies were dropped. In each of the three recruited groups, the 99% confidence interval around338

the frequency-specific group-means were specified and mDPTH values that either exceeded or fell339

below of those intervals were set to extremum values. Then, mDPTHs were mapped to the range of340

the sDPTH associated with reference flatmin (sDPTHflatmin
) and flatmax (sDPTHflatmax) pole func-341

tions. Afterwards, mapped mDPTHs (mDPTHmap) were normalized (mDPTHnorm) and given to342

the trained neural network to predict personalized pole-functions. To assess the prediction error,343

the predicted pole functions (Polespred in Fig. 5c), were used to simulate individualized sDPTHs344

that were compared to the individual mDPTHs f2 primary frequencies. mDPTHs and sDPTHs345

were referenced to the simulated DPTHs of a model with NHpoles as follows:346

sDPTHref(f2) = sDPTH(f2)− sDPTHNH(f2) (9)

mDPTHref(f2) = mDPTHmap(f2)− sDPTHNH(f2) (10)

sDPTHNH(f2) refers to the frequency-specific sDPTH values simulated using the model with347

NHpoles. Obtained sDPTHref and mDPTHref from Eq. 9 and 10 were mapped back to the experi-348

mental range according to Eq. 11 and 12, and corresponding grand-averages and standard deviations349

are shown in Fig. 4b. More specifically, Fig. 4c compares measured and simulated DPTH-shifts for350

a yNH and oHI subject.351
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sDPTHshift(f2) = sDPTHref(f2)
max[mDPTH(f2)]−min[mDPTH(f2)]

sDPTHflatmax(f2)− sDPTHflatmin
(f2)

(11)

mDPTHshift(f2) = mDPTHref(f2)
max[mDPTH(f2))]−min[mDPTH(f2)]

sDPTHflatmax(f2)− sDPTHflatmin
(f2)

(12)

Lastly, the prediction error was calculated as in Eq. 13 and the absolute mean error for each352

group is shown in Fig 4f.353

errdpth(f2) = |mDPTHshift(f2)− sDPTHshift(f2)| (13)

The developed machine-learning approach can be used to personalize cochlear model parameters354

based on an objective measure of OHC damage (DPTH) and predict individual CS profiles. CS-355

profiling can be compared for either the DPTH or AudTH-based cochlear model individualization356

method, and when no DPTHs are available the standard audiogram-based method can be adopted.357

Simulating Cochlear Synaptopathy Profiles358

We employed the AudTH- and DPTH-based individualized CGL models to simulate EFRs and359

ABRs for different CS profiles. To introduce CS, the simulated normal-hearing AN fiber popu-360

lations, (the N CS profile in Fig. 3) was reduced in a CF-specific manner. Five additional CS361

profiles were simulated by proportionally lowering the number of different AN types, starting from362

low- and medium-spontaneous-rate (LSR and MSR) fibers in profile A to the most severe AN-loss363

in E that only kept 7.69% of the high-spontaneous-rate (HSR) fiber population. The table in364

Fig. 3 details the AN fiber numbers and types considered for each of the six simulated CS pro-365

files. IHC-related dysfunctions were not considered in this study, given that low degrees of CS do366

not cause IHC damage (Kujawa and Liberman, 2009; Furman et al., 2013; Shaheen et al., 2015).367
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Figure 5: Neural network-based cochlear model individualization using measured and simulated
DPTHs. (a) Random cochlear filter poles are generated and corresponding DPTHs are simulated
using TL model (sDPTH). (b) The normalized sDPTH (sDPTHnorm)at four frequencies are in-
troduced to the neural-network as input. The random pole values generated in (a) are served as
training target for sDPTHnorm. (c) Measured DPTHs (mDPTHs) are fed into the trained neural
network after pre-processing and individualized cochlear filter pole-functions are predicted.

However, removing all AN fibers from an IHC in the model would functionally correspond to IHC368

damage. The CF dependence of the AN population was considered in two steps: (1) Following369

the CF-dependent AN distribution observed in rhesus monkey (Valero et al., 2017; Keshishzadeh370

et al., 2020), we applied a non-uniform NH AN fiber population. (2) CF-specific AN-damage pro-371

files were simulated. The former was achieved by mapping the counted CF-dependent AN fibers372

population in the rhesus monkey (Valero et al., 2017) to the human cochlea, using a distribution373

of NHSR = 68%, NMSR = 16% and NLSR = 16% at each CF (Liberman, 1978). Then, sloping high-374
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frequency AN-fiber loss was applied across CF with the assumption that CS starts from the higher375

frequencies first (Wu et al., 2020). We ran EFR/ABR simulations for different AN fiber damage376

profiles, which were characterized by a sloping loss of between 1 and 8-kHz. Above 8 kHz, we377

applied a frequency-independent loss.378

For every subject we simulated AEPs for each CS profile, after we personalized the cochlear models379

using either the AudTH-or DPTH-based method. The stimuli adopted for these simulations were380

identical to those adopted experimentally, but were digitized using a sampling rate of 100 kHz,381

rather than 48 kHz. Simulated instantaneous firing rates from the AN, cochlear nucleus (CN) and382

IC model stages, namely ABR wave-I, III and V, respectively, were added up to simulate EFRs383

(Fig.3). RAM-EFR magnitudes were calculated using Eq. 1.384

To simulate ABRs, 80-µs clicks were presented to the model with a continuous sequence of 50 repe-385

titions of alternating polarities (100 in total) and a rate of 10 Hz. Sequential stimulus presentation386

was adopted to account for the adaptation properties of AN fibers. Individual ABR wave-I and387

V latencies and amplitudes were extracted by averaging the peak-to-trough values of the response388

to the last, i.e. 50th, positive and negative clicks. The simulated ABR wave-I and V latencies389

were respectively shifted by one and three ms to match latencies of recorded ABRs. These values390

were determined to match the measured yNH group-mean ABR wave-I and V latencies (at 100391

dB-peSPL) with the grand-average individualized ABR simulations across the yNH group. Given392

that simulated ABR latencies were not impacted by CS, the applied latency shifts will not confound393

the CS prediction.394

Individual Synaptopathy Profile Predictions395

In previous sections, cochlear model parameters of the subjects were determined using either396

AudTH- or DPTH-based methods and 13 personalized AEP-derived metrics were simulated for397
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six CS profiles of each experiment participant. Here, we develop a classification approach, forward-398

backward classification, to predict the simulated CS profile that best matches recorded individual399

AEP metrics and determine the AEP metric that gives the most accurate segregation of simulated400

individualized CS profiles. This step was implemented separately for either of the cochlear individ-401

ualization methods. After excluding eight subjects from the cohort (six without complete DPTHs402

and two with undetectable ABRs), we developed our individual SNHL-profiling method on data403

from 35 subjects (yNH: 12, oNH: 12 and oHI: 11).404

Before classification, we first normalized the 13 AEP metrics (Table 1) derived from measured (M)405

and simulated six CS profiles per individual (S). The normalized S and M were calculated using406

Eq. 14 and 15.407

Snorm =
S− S̄

σS
(14)

S is the matrix of simulated AEP metrics and contains 210 rows (35 subjects with six CS profiles)408

and 13 columns, the number of derived AEP metrics. S̄ and σS refer to the mean and standard409

deviation of S, respectively.410

Mnorm =
M− S̄

σS
(15)

In Eq. 15, M refers to the matrix of measured AEP metrics with a dimension of 35×13. We created411

8191 feature-sets using all possible combinations of 13 metrics (
∑13

i=1

(
13
i

)
= 8191). Metrics combi-412

nation was performed separately for Mnorm and Snorm. The number of metrics in each feature-set413

varied between one and 13. From here on, F refers to the constructed 8191 feature-sets of AEP-414

derived metrics and Fi with i ∈ {1, ..., 13} indicates a subset of F that has
(

13
i

)
feature-sets and415

each feature-set contains a combination of i metrics. In the following paragraphs we explain the416

classification approach for an exemplary feature-set, fe, selected from F. The train and test datasets417
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required for classification were constructed by choosing fe of all participants from Snorm and Mnorm418

and we called them Strain and Mtest, respectively. The proposed forward-backward classification419

method, comprised of two identical k-nearest-neighbor (kNN: k=1, Euclidean distance) classifiers.420

Classifier(1) in forward classification was trained by Strain in six classes with known class labels from421

the model simulations (LS), i.e. the six simulated CS profiles previously described in Fig. 3. Then,422

individual CS profiles were predicted by testing the trained classifier with the Mtest. Figure. 6a423

visualizes the different steps in forward classification. In this step, the evaluation of classification424

performance is unfeasible, since the actual CS degree of experiment participants are unknown. To425

address this issue, we interchanged the train-test datasets of the forward classification and imple-426

mented a second classification approach, called backward classification to assess the performance427

of the classifier(1) based on a second classifier (Fig. 6b). In this regard, we took the output of428

forward classification, i.e. the predicted CS degrees of experiment participants (LM in Fig. 6),429

and corresponding measured AEP metrics (Mtest) to train the classifier(2) of Fig. 6b. Afterwards,430

Strain, with known CS labels (LS) from the simulated individualized CS profiles, was used to test431

the trained classifier(2). The vector of predicted CS labels by classifier(2) (LSPred
) was compared432

to LS and correspondig prediction accuracy was calculated as follows:433

acc =

n∑
q=1

[LS(q) == LSPred
(q)]

n
(16)

where n is equal to 210 (35 subjects with six CS profiles). Thus, the backward classification offers the434

possibility to calculate the accuracy of predicted CS profiles of study participants based on model435

simulations. We then repeated the forward-backward classification over all possible combinations of436

the derived metrics, i.e. 8191 feature-sets, and calculated the prediction accuracy of each feature-set437

according to Eq. 16. In this respect, the backward classification method gives the insight that to438

which degree classifier(1) was accurate in predicting CS degrees of experimental participants. Our439
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Strain

(known CS labels (LS))

Mtest

(unknown CS labels )

TRAIN
Classifier (1)

TEST
Classifier (1)

Predicted labels of
the experimental
subjects M ′ (LM )

Mtest

(unknown CS labels )

Strain

(known CS labels (LS))

TRAIN
Classifier (2)

TEST
Classifier (2)

(a) Forward Classification

Evaluate the
accuracy:

n∑
q=1

[LS(q) == LSPred
(q)]

n
;

(b) Backward Classification

LSpred

Strain

LM

LS

Figure 6: The forward-backward classification method. (a) Forward classification: Classifier(1)
is trained with individualized simulated AEP-derived metrics (Strain) for six CS profiles (LS) and
tested with measured AEP-derived metrics (Mtest). The predicted labels (LM) for the study par-
ticipants are entered to block (b). The backward-classification in (b) trains classifier(2) using
measured AEP-derived metrics, i.e., M(test), and labels predicted by the forward classification i.e.,
LM. Classifier(2) is tested by Strain and corresponding labels (LS) are used to assess the classifier
performance.

classification approach makes use of combined simulated and recorded data to predict CS-profiles440

and can test the accuracy of these methods, even though a direct and actual validation of the CS441

histopathology still remains hidden due to experimental difficulties.442

Results443

We applied forward-backward classification for each of the cochlear model individualization methods444

(AudTH and DPTH) and calculated the prediction accuracy of all feature-sets in F. For each445
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AudTH-based DPTH-based

yNH:

oNH:

oHI:

    All
Groups

Groups
∑

Diagonal

Total × 

yNH 93.06%
oNH 81.94%
oHI 69.44%
All 83.81%

1

Groups
∑

Diagonal

Total × 

yNH 86.11%
oNH 75.00%
oHI 42.42%
All 68.57%

1

Figure 7: Confusion tables at subgroup and group-levels for both AudTH and DPTH-based
cochlear model individualization methods. The tables summarize the accuracy of classifier(2) in
Fig. 6b for subgroups, as well as all groups together.

cochlear profiling method, first, we determined the feature-set in each Fi (i ∈ {1, ..., 13}), that446

had the highest classification accuracy. Fi consisted of feature-sets with i AEP-derived metrics.447

Then, the prediction variability was estimated using forward-backward classification by including448

the standard deviations of selected feature-sets. Lastly, we report individually predicted CS profiles449

belonging to those feature-sets.450
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Combination of AEP-derived Metrics451

To determine the best combination of metrics for CS profiling, the forward-backward classification452

was performed on the mean AEP-derived metrics of experiment participants and corresponding453

classification accuracy was reported as accmean. Thus, we calculated accmean values of the predic-454

tions for 8191 feature-sets in F and determined the feature-set that yielded the highest accmean455

among all feature-sets in Fi, with i combined metrics (i ∈ {1, ..., 13}). Accordingly, 13 feature-sets456

were selected among 8191 in F. Table 2 and 3 list those feature-sets and corresponding accmean val-457

ues for AudTH and DPTH-based methods, respectively. The RAM-EFR metric yielded the highest458

accmean values for both cochlear model individualization methods. The obtained 83.81% accmean459

of DPTH-based method, was higher than that of the AudTH-based method (68.57%), suggesting460

that methods which assess OHC damage more directly (i.e. DPTH vs. AudTH) yield a better461

classification accuracy in predicting simulated individualized CS profiles.462

Prediction Variability463

The impact of subject-specific factors and measurement noise reflect on inter- and within-subject464

variability of the AEP recordings and can have an impact on the accuracy of the classification465

method. To measure this effect, the forward-backward classification was repeated, this time by466

extracting metrics from the bootstrapped average trials, rather than from the mean of trials. This467

resulted in distributions for each specific metric and each subject, with standard deviations as given468

by the last column of Table 1. Then, 100 samples were randomly drawn from the distribution of469

each metric. Thus, for every feature-set in Table 2 and 3, the corresponding metrics samples were470

combined to yield 100 variations of each feature-set. Afterwards, the CS profile prediction was471

repeated 100 times with each feature-set for each subject, and prediction accuracy was assessed in472

every repetition. Lastly, the standard deviation of the calculated accuracies (accSD) was determined473
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over the 100 repetitions of each feature-set and listed in the last column of Table 2 and 3.474

For the best predictor metric (RAM-EFR), accSD values of 2.95% and 2.66% were obtained for475

the AudTH- and DPTH-based methods, respectively. The lowest accSD was obtained when com-476

bining the RAM-EFR with the w-Vlat100 metric in both cochlear model individualization methods477

(AudTH: 1.73% and DPTH: 1.34%). However, the respective accmean values were considerably478

lower than those of the RAM-EFR by itself, particularly in DPTH-based method. To assess the479

performance of the RAM-EFR based CS profile prediction in sub-groups, we show confusion tables480

in Fig. 7 for AudTH- and DPTH-based cochlear model individualization methods. The diagonals481

of each table reflect how often the classifier assigned a CS profile (LSPred
: predicted class) that482

matched with that of in simulated individualized CS profiles (LS: true class). Off-diagonal values483

show the number of instances that LSPred
and LSPred

were not identical. Detailed prediction ac-484

curacy values of each sub-group are summarized in the tables in Fig. 7. The highest and lowest485

prediction accuracy values relate to the yNH and oHI group, respectively for both AudTH- and486

DPTH-based methods. Comparing the cochlear model individualization methods, it is seen that487

the DPTH-based approach outperforms the AudTH-based method on both group- and sub-group488

levels.489

Cochlear synaptopathy profile prediction based on individualized490

classifiers491

Table 4 lists the predicted individual CS profiles from the RAM-EFR metric (best prediction492

accuracy) for both AudTH- and DPTH-based cochlear individualization methods. The reported493

profiles are the output of the forward classification step, i.e. LM shown in Fig. 6. Considering the494

AudTH and DPTH columns of Table 4, lower degrees of AN-damage were predicted for the yNH495

group than for the oNH and oHI groups. Additionally, the range of predicted CS profiles in the496
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yNH group shows that yNH listeners might also suffer from different degrees of CS. The oHI group,497

which was assumed to suffer from mixed OHC-damage and CS pathologies, were predicted to have498

the highest degree of CS among the cohort.499

Thus far, the reported individualized CS profiles for RAM-EFR were predicted by training a single500

classifier with simulated individualized CS profiles of the whole experimental cohort. This has501

drawbacks for individual profiling in a clinical context, because it would be ideal if the profiling could502

be performed using only recordings from the tested individual. Hence, to establish more accurate503

predictions of the individual CS degrees, we took one step further and designed individualized504

classifiers, which were trained and tested with the RAM-EFR metric of the same listener. If RAMs505

stands for the six simulated CS profiles of a nominal subject and RAMm for the measured RAM-EFR506

metric, we first normalized RAMs and RAMm values by the RAMs and σRAMs (mean and standard507

deviation of RAMs). Then we trained and tested the classifier, with the same characteristics as508

classifier(1) and (2), using normalized RAMs and RAMm values, respectively. This procedure was509

repeated for all listeners in the cohort and for both AudTH and DPTH-based cochlear model510

pole-setting methods. The predicted individualized CS profiles were listed in Table 4 (columns:511

AudTHind and DPTHind). Considering either of the AudTH- or DPTH-based methods, designing512

individualized classifiers revealed only minor differences in the predicted CS profiles of individual513

listeners compared to those predicted by a single classifier trained with simulated individualized514

RAM-EFRs. However, the CS profiles reported in AudTHind and DPTHind columns might be515

more reliable than the group-based predictions, since the former were predicted by individualized516

classifiers that were trained on the basis of personalized cochlear simulations.517

To provide a demonstration of the implemented method, and to show to which extent the model518

simulations imitate the experimental measurements, we compare simulated and measured AEPs of a519

yNH subject in Fig. 8. Panel (a) depicts simulated RAM-EFR spectra for the different considered520

CS profiles. Based on the experimental RAM-EFR (panel (d)) and forward classification, we521
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predicted that this subject had a “N” CS profile, i.e., no AN-damage. The CGL parameters of the522

individualized model were adjusted based on DPTHs of the same yNH listener. Panels (b) and (c),523

depict the simulated personalized ABR waveforms for the predicted “N” CS degree. Experimental524

ABR waveforms to 70 and 100 dB-peSPL clicks are shown in panels (e) and (f), respectively. Details525

regarding the value of extracted metrics from the measurements and simulations are provided in a526

table at the bottom of the Fig. 8. Even though our classifier did not consider ABR metrics, the527

applied personalized OHC and AN profiles predicted w-Ilat100, w-I70, w-V70 and w-I100 markers that528

fell the standard deviation of the corresponding recorded values. The remaining simulated ABR529

metrics, i.e., w-Ilat70, w-Vlat100 and w-V100, only minimally deviated from the range of respective530

measurements, showing that our method accurately predicts AEP features to stimuli which were531

not included in the classifier.532

Method Validation533

To validate the proposed method and its generalizability to other cohorts and other measure-534

ment equipment, we applied the developed classifier in backward classification step to RAM-EFRs535

recorded in a second experiment. Figure 9 schematizes the implementation of the validation method.536

Considering the different experimental setup and recording location of the second experiment, the537

measured RAM-EFRs of both experiments were scaled between zero and one, prior to classification.538

Given that only yNH listeners participated in the second experiment, we employed the smallest539

RAM-EFR magnitude recorded from oHI listeners (as part of another study) recorded with the540

same setup as the second experiment to scale the RAM-EFRs. The scaled RAM-EFRs of the first541

experiment were used to train the classifier(1) in Fig. 6 and afterwards, the trained classifier was542

tested with the scaled RAM-EFRs of the second experiment. The predicted CS profiles are illus-543

trated as a bar-plot in Fig. 9. 84.21% of the 19 yNH participants of the second experiment were544
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Measured value 0.1838±0.007 2.3800±0.241 6.347±0.128 1.5255±0.111 5.3097±0.123 0.1378±0.135 0.3747±0.158 0.2259±0.128 0.4036±0.132

Simulated
individualized value

0.1896 1.7500 5.9500 1.5500 5.7500 0.0727 0.3127 0.1469 0.5895

1

Figure 8: A comparison between simulated and measured AEPs for a yNH subject (yNH15).
This subject was predicted to have a normal (N) CS profile, i.e., without CS. (a) Simulated RAM-
EFR spectra for six CS profiles. The sum of the drawn arrows yields the RAM-EFR magnitude
metric. (b) Simulated ABR wave-I to 70 and 100 dB-peSPL clicks. Waveforms were shifted by
1ms to match the experimental data. (c) Simulated ABR wave-V to 70 and 100 dB-peSPL clicks.
Waveforms were shifted by 3ms to match the experimental data. The specified arrows in (b) and
(c) indicate the extracted metrics. (d) Measured RAM-EFR of the same listener (yNH15). Shown
arrows, indicate the peak-to-noisefloor values. Akin to (a), the measured RAM-EFR metric was
calculated by summing the of arrow amplitudes. (e) Measured ABR waveform to 70 dB-peSPL
clicks. (f) Measured ABR waveform to 100 dB-peSPL clicks. Arrows in (e) and (f), determine
the extracted metrics. The shown simulated waveforms were predicted based on the DPTH-based
cochlear individualization method. The table shows the exact value of EFR and ABR metrics
derived from recordings and predicted CS-profile, “N”, of the same listener.

classified as N, i.e. without CS, and the rest were predicted to have mild CS. These predictions545

show that a classifier designed on our cohort can be applied to other cohorts to predict individual546

CS degrees based on the RAM-EFR. In line with expectations, the classifier predicted that most547

yNH subjects were synaptopathy free.548
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Figure 9: Implementation of the validation method. Measured RAM-EFRs (M) with predicted
labels in Fig. 6 (LM) are scaled between zero and one to train a kNN classifier. The trained classifier
is tested with scaled RAM-EFRs recorded from the second cohort comprised of yNH listeners. The
bar-plot shows the predicted CS profiles for the second cohort listeners. The CS profiles labels in
the bar-plot are similar to those defined in Fig. 3.

Discussion549

By combining experimental ABR and EFR measurements with a modelling approach, we were able550

to develop a classifier that can assign one out of six CS profiles to listeners with mixed SNHL551

pathologies. The classifier considered 8191 feature-sets, of which our forward-backward classifica-552

tion method identified that the RAM-EFR metric yielded the best performance in both AudTH-553

and DPTH-based cochlear individualization methods. We tested both a group and individually554

based method and showed that our method can generalize to other cohorts and measurement se-555

tups. Taken together, we have high hopes that this method can find its way to clinical hearing556

diagnostics, since a single AEP metric is required to yield a CS-profile prediction, given the audio-557

gram or at least four DPTHs.558
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Implications for RAM-EFR-based synaptopathy profiling predic-559

tion560

On the one hand, predicting the CS degree from AEP metrics is controversial in listeners with561

coexisting OHC deficits and on the other, validation of the predicted CS profiles with temporal562

bone histology is impossible in humans. Without these means, models of the human auditory563

periphery an AEP generators can provide a tool to bridge this experimental gap. The similarity564

between predicted AEP degradations for a known CS profile and experimental AEP degradations565

can be used to predict the CS profile of individuals. In a previous study, we tested the potential of566

the derived-band EFR as a CS predictor in NH listeners using a fuzzy c-means clustering method,567

and validated our CS predictions using an another AEP-derived metric (wave-V amplitude growth568

slope) recorded from the same listener. We evaluated the method based on the percent of subjects569

that were predicted and validated to have the same CS profile, i.e. 61% (Keshishzadeh and Verhulst,570

2019). However, the performance of this method is easily impacted by the characteristics of the571

adopted predictor and validation metrics, e.g. different generator sources, degree of sensitivity to572

subtypes of SNHL and tonotopic susceptibility.573

The interdisciplinary approach we took in this study tackled this validation issue by proposing574

a forward-backward classification approach and applying the trained classifier to AEPs from a575

new cohort to test its generalizability. Moreover, we were able to determine the most accurate576

AEP-derived metric for CS degree prediction, given a range of 13 possible AEP-derived metrics.577

Among the considered AEP-based metrics and combinations thereof, we found that the RAM-EFR578

magnitude showed the best performance in segregating simulated individual CS profiles. At the579

same time, RAM-EFR metric was involved in all feature-sets that yielded the highest accmean among580

feature-sets that had equal number of combined metrics (Table 2 and 3). This finding is consistent581

with the outcome of Parthasarathy and Kujawa (2018) and Vasilkov et al. (2020), showing that582
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EFRs to SAM or RAM are sensitive to CS. Moreover, the combined modelling and experimental583

study of Vasilkov et al. (2020) showed that the adopted RAM-EFR marker (RAM with a 25% duty-584

cycle), is minimally impacted by OHC damage. The sharp envelope combined with the long silence585

intervals between stimulus peaks generates more synchronized AN fiber responses compared to586

conventional SAM stimulus to yield a stronger EFR with extended dynamic range across subjects.587

Lastly, the RAM-EFR is a more sensitive marker of CS than ABR (Parthasarathy and Kujawa,588

2018). Taken together, our results indicate that the RAM-EFR magnitude is an appropriate AEP-589

based metric to predict individual CS degree of listeners in the presence of OHC-loss.590

The effect of cochlear model individualization method on predicting591

cochlear synaptopathy profiles592

In this study, we determined the CGL model parameters using either measured audiometric or593

DPOAE thresholds, and assessed the classifier performance of each method in the backward clas-594

sification step. Comparing the resulting accmean values for each cochlear individualization method595

can inform which of the two methods yielded the most accurate AEP simulations for a given CS596

profile. The accmean values of RAM-EFR metric showed that setting cochlear filter pole functions on597

the basis of measured DPTHs outperforms the AudTH method for all experimental groups (Fig. 7,598

Tables 2 and 3). This outcome is consistent with literature studies showing that OAEs are a more599

sensitive measure of noise-induced cochlear dysfunction in humans (Engdahl et al., 1996; Konopka600

et al., 2005; Seixas et al., 2005; Marshall et al., 2009). Moreover, OAEs are not influenced by inner-601

hair-cell/AN damage (Trautwein, 2002), whereas behaviourally measured audiometric thresholds,602

particularly extended high-frequency thresholds, could be affected by extreme neural degeneration603

(Lobarinas et al., 2013; Liberman et al., 2016; Bramhall et al., 2019). Consequently, given the var-604

ied susceptibility of AudTHs and DPOAEs to different aspects of SNHL, it was expected that we605
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would obtain non-identical predictions of CS profiles for a nominal subject (Table 4). Comparing606

the AudTH and DPTH columns in Table 4, we found a mismatch between individually predicted607

CS profiles for 14.28% of subjects (yNH: two, oNH: three). The mismatch degree increased to608

20% (yNH: three, oNH: two and oHI: two) when the individual CS profiles were predicted using609

personalized classifiers (AudTHind and DPTHind columns).610

It is noteworthy that the DPTH-based cochlear individualization was implemented using DPTHs611

from only four frequencies (0.8 to 4 kHz), whereas the AudTH-based method considered audiomet-612

ric thresholds measured at 12 frequencies (0.125 to 10 kHz). This difference may have resulted in613

less accurate CGL model parameters for the DPTH-based method, despite a better performance614

of forward-backward classification. In future implementations of this method, we intend to in-615

corporate more frequencies in the DPTH measurements, especially at higher frequency regions.616

Employing DP-grams instead of DPTHs is another option, as these require a shorter measurement617

time. In both cases, we suggest to include lower stimulus levels as well, given that noise-induced618

OHC deficits can be identified earlier at lower stimulus levels (Bramhall et al., 2019).619

Method Limitations620

The proposed method for AEP-based CS-profiling, relies on the interactive use of recordings and621

model simulations. Hence, shortcomings in either aspect could have caused performance limitations622

of the method. The following sections summarize a number of these limitations:623

Experimental Limitations624

(1) ABRs in humans are recorded using vertex electrodes placed on the scalp, which yields smaller625

and more variable wave-I amplitudes than when they are recorded in animals using subdermal626

electrodes. The measured ABR w-I70 amplitude in our measurement produced a mean standard627
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deviation of 0.198µV across the cohort, which is fairly large with respect to the mean amplitude628

of 0.146µV (yNH: 0.1964±0.1436µV , oNH: 0.1304±0.203µV , oHI: 0.1071±0.243µV ). Compared to629

w-I70, w-I100 amplitudes showed less variability, i.e., 0.2503±0.2056µV . Variability of the w-I100630

was considerably lower only for yNH group (0.350±0.143µV ). Per subgroup, variability increased631

for older groups (oNH: 0.205±0.247µV , oHI: 0.180±0.235µV ). Given these variabilities, adding632

the w-I100 metric to the second feature-set (RAM-EFR, w-Vlat100), suddenly increased the accSD633

(Tables 2 and 3). (2) Although adopting relative ABR metrics, such as growth functions might634

factor out individual differences, the standard deviation of the derived relative metric is influenced635

by the propagated error of the absolute metric. (3) ABRs to clicks presented at 100 dB-peSPL636

should yield higher wave-I and V amplitudes, than when the stimulus was presented at 80 dB-637

peSPL. Nevertheless, the opposite was observed in a few subjects.638

Model Limitations639

(1) The adopted computational model of the auditory periphery allows for OHC deficit simulation640

on a CF-dependent basis, but not for CGLs above 35 dB, since the maximum possible BM filter gain641

is 35 dB in the model (Verhulst et al., 2018). This constraint led to elevated absolute prediction642

errors for high-frequency audiometric thresholds in the oHI (above 4 kHz) and oNH (above 8 kHz)643

groups (Fig. 4e). The increased absolute errors were mainly observed for the audiometric threshold644

predictions, since DPTHs were only measured for frequencies up to 4 kHz. Thus, the individualized645

hard-coded OHC-loss component for the oHI group might lead to similar and less accurate CS646

profile prediction for oHI participants with audiometric losses greater than 35 dB-HL. (2) In the647

adopted method, we hard-coded the CGL using the individual hearing thresholds and related the648

remaining AEP alterations to CS. An alternative way would be to run the model iteratively and649

simultaneously optimize both CGL and CS profile parameters on the basis of the experimental data650

to obtain the best OHC-loss and CS profiles. However, we did not further explore this route due to651

36

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 19, 2020. ; https://doi.org/10.1101/2020.11.17.387001doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.17.387001
http://creativecommons.org/licenses/by-nc-nd/4.0/


the high computational cost of running the adopted TL cochlear model in an iterative optimization652

procedure.653

Conclusion654

In this study, we proposed an integrated modelling and experimental approach to build person-655

alized auditory models and predict the AN-damage profile of listeners with mixed SNHL profiles.656

To develop individualized cochlear models, we implemented two different methods on the basis of657

measured AudTHs and DPTHs. Next, we developed a classification-based approach to predict indi-658

vidual CS profiles and determined which AEP metric (or combinations thereof) yielded the highest659

prediction accuracy. Afterwards, we evaluated the implemented CGL and CS-profile individualiza-660

tion methods on the development dataset, as well as on a new cohort. Our study suggests that661

a DPTH-based cochlear model individualization approach combined with a RAM-EFR recording662

predicts individual CS profiles most accurately among the 8191 possible combinations of 13 AEP663

markers. Additionally, we tested the applicability of the proposed method by applying the trained664

classifier to the recorded RAM-EFRs of a new cohort of yNH listeners. The classifier predicted665

that these listeners mostly had mild forms of CS, which supports that our method is generalizable666

to other recording setups and cohorts. Training the classifier again on larger cohorts may further667

increase the generalizability of the method. We hope that this method, or variations thereof, can be668

used in a clinical diagnostic context, as the number of needed AEP recordings to yield an individual669

CS-profile is small (i.e. 10-15 minutes). Individualized models of SNHL are an important step for670

the development of hearing aid algorithms that compensate for both the OHC- and AN-damage671

aspects of SNHL.672
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Tables849

Table 1: Extracted AEP-metrics definitions and corresponding standard deviations. In the last
column, σ represents the standard deviation. σboot is the standard deviation of the bootstrapped
metric.

Metric Symbol Definition Measure of Variability

rectangular-wave
RAM-EFR Eq.1 σboot(RAM−EFR)amplitude-modulated EFR

ABR-70 wave-I amplitude w-I70 w-I70(peak)−w-I70(trough−after)
ABR-100 wave-I amplitude w-I100 w-I100(peak)−w-I100(trough−after) σboot(peak−to−trough)
ABR-70 wave-V amplitude w-V70 w-V70(peak)−w-V70(trough−after)
ABR-100 wave-V amplitude w-V100 w-V100(peak)−w-V100(trough−after)

ABR-70 wave-I latency w-Ilat70 w-I70(peak)latency
ABR-100 wave-I latency w-Ilat100 w-I100(peak)latency σboot(latency)
ABR-70 wave-V latency w-Vlat70 w-V70(peak)latency
ABR-100 wave-V latency w-Vlat100 w-V100(peak)latency

ABR wave-I amplitude growth w-I-growth w−I100−w−I70
100−70

1
N

√
σ2
boot(w−I100) + σ2

boot(w−I70)

ABR wave-V amplitude growth w-V-growth w-V100−w-V70

100−70
1
N

√
σ2
boot(w-V100)

+ σ2
boot(w-V70)

ABR wave-I latency growth w-Ilat-growth |w-Ilat100−w-Ilat70|
100−70

1
N

√
σ2
boot(w-Ilat100)

+ σ2
boot(w-Ilat70)

ABR wave-V latency growth w-Vlat-growth |w-Vlat100−w-Vlat70|
100−70

1
N

√
σ2
boot(w-Vlat100)

+ σ2
boot(w-Vlat70)
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Table 2: Combination of metrics with the highest mean accuracy (accmean) values in each Fi, with
i combined metrics. The standard deviation of obtained accuracies are shown in accsd column. The
reported results are based on AudTH-based cochlear model individualization method.

Involved
Metrics

Involved
Subjects

Best Combination of Metrics
acc (%)

accmean accsd

1 35 RAM-EFR 68.57 2.95
2 35 RAM-EFR, w-Vlat100 64.76 1.73
3 35 RAM-EFR, w-Ilat100, w-I100 53.33 7.86
4 35 RAM-EFR, w-Vlat100, w-Ilat100, w-I100 51.90 9.28
5 35 RAM-EFR, w-Vlat100, w-Ilat100, w-I100, w-V70 52.86 8.69
6 35 RAM-EFR, w-Ilat100, w-I100, w-V70, w-I70, w-V-growth 51.43 6.97
7 35 RAM-EFR, w-Vlat-growth, w-V-growth, w-Vlat100, w-I70, w-V70, w-V100 45.24 6.79
8 35 RAM-EFR, w-Vlat-growth, w-V-growth, w-Vlat100, w-Vlat70, w-I70, w-V70,w-V100 45.24 6.59
9 35 RAM-EFR, w-V-growth, w-I-growth, w-Ilat100, w-Vlat100, w-I70, w-V70, w-I100, w-V100 36.19 7.11
10 35 RAM-EFR, w-V-growth, w-I-growth, w-Vlat-growth, w-Vlat100, w-Vlat70, w-I70, w-V70, w-I100, w-V100 32.86 6.67
11 35 RAM-EFR, w-V-growth, w-I-growth, w-Vlat-growth, w-Ilat-growth, w-Vlat100, w-Vlat70, w-I70, w-V70, w-I100, w-V100 27.62 6.49
12 35 RAM-EFR, w-V-growth, w-I-growth, w-Vlat-growth, w-Ilat-growth, w-Vlat100, w-Vlat70, w-I70, w-V70, w-I100, w-V100, w-Ilat70 18.10 6.65
13 35 RAM-EFR, w-V-growth, w-I-growth, w-Vlat-growth, w-Ilat-growth, w-Vlat100, w-Vlat70, w-I70, w-V70, w-I100, w-V100, w-Ilat70, w-Ilat100 17.14 6.75

Table 3: Combination of metrics with the highest mean accuracy (accmean) values in each Fi, with
i combined metrics. The standard deviation of obtained accuracies are shown in accsd column. The
reported results are based on DPTH-based cochlear model individualization method.

Involved
Metrics

Involved
Subjects

Best Combination of Metrics
acc (%)

accmean accsd

1 35 RAM-EFR 83.81 2.66
2 35 RAM-EFR, w-Vlat100 58.57 1.34
3 35 RAM-EFR, w-Ilat100, w-I100 54.29 8.34
4 35 RAM-EFR, w-Vlat100, w-Ilat100, w-I100 61.90 8.22
5 35 RAM-EFR, w-Vlat100, w-Ilat100, w-I100, w-V70 58.10 8.90
6 35 RAM-EFR, w-Vlat100, w-Ilat100, w-I100, w-V70, w-I-growth 48.10 7.40
7 35 RAM-EFR, w-Vlat100, w-Ilat100, w-V100, w-V70, w-V-growth, w-I70 40.95 6.96
8 35 RAM-EFR, w-Vlat100, w-Ilat100, w-V100, w-V70, w-I-growth, w-I70, w-V100 35.71 7.12
9 35 RAM-EFR, w-I-growth, w-V-growth, w-Vlat-growth, w-Ilat70, w-I70, w-V70, w-I100, w-V100 34.29 7.30
10 35 RAM-EFR, w-I-growth, w-V-growth, w-Vlat-growth, w-Ilat70, w-Vlat70, w-Vlat100, w-I70, w-I100, w-V100 29.52 6.53
11 35 RAM-EFR, w-I-growth, w-V-growth, w-Vlat-growth, w-Vlat70, w-Ilat100, w-Vlat100, w-I70, w-I100, w-V70, w-V100 17.14 6.13
12 35 RAM-EFR, w-I-growth, w-V-growth, w-Vlat-growth, w-Ilat-growth, w-Ilat70, w-Vlat70, w-Vlat100, w-Ilat100, w-I70, w-V70, w-I100 16.67 2.63
13 35 RAM-EFR, w-V-growth, w-I-growth, w-Vlat-growth, w-Ilat-growth, w-Vlat100, w-Vlat70, w-I70, w-V70, w-I100, w-V100, w-Ilat70, w-Ilat100 16.67 2.93
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Table 4: Predicted individuals CS profiles obtained from AudTH and DPTH based cochlear
individualization methods, based on RAM-EFR metric. Columns AudTHind and DPTHind, list the
predicted CS profiles by desinging individualized classifiers based on RAM-EFR metric.

Group No. AudTH AudTHind DPTH DPTHind

1 C B B B
2 A A A B
5 N N N N
7 N N N N

yNH 8 N N N N
9 N N N N
10 N N N A
11 A B B B
12 N N N A
13 A A A A
14 N N N N
15 N N N N

1 D D C D
3 E E E E
4 D E D D
6 D D D D

oNH 7 C D D D
8 E E E E
9 N A N A
10 B B B B
11 C D D D
12 N N N N
13 E E E E
14 C D C C

1 E E E E
2 E D E D
3 E E E E
4 E E E E
5 E D E E

oHI 7 E D E E
8 E E E E
9 E E E E
10 E E E E
11 E E E E
12 E E E E
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