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Highlights 14 

• Neural networks with sensory feedback generate rotational dynamics during simulated 15 

posture and reaching tasks 16 

• Rotational dynamics are observed even without recurrent connections in the network 17 

• Similar dynamics are observed not only in motor cortex, but also in somatosensory cortex 18 

of non-human primates as well as sensory feedback signals 19 

• Results highlight rotational dynamics may reflect internal dynamics, external inputs or 20 

any combination of the two.  21 

  22 
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Summary (150/150 words) 23 

 Recent studies hypothesize that motor cortical (MC) dynamics are generated largely 24 

through its recurrent connections based on observations that MC activity exhibits rotational 25 

structure.  However, behavioural and neurophysiological studies suggest that MC behaves like a 26 

feedback controller where continuous sensory feedback and interactions with other brain areas 27 

contribute substantially to MC processing. We investigated these apparently conflicting theories 28 

by building recurrent neural networks that controlled a model arm and received sensory feedback 29 

about the limb.  Networks were trained to counteract perturbations to the limb and to reach 30 

towards spatial targets.  Network activities and sensory feedback signals to the network exhibited 31 

rotational structure even when the recurrent connections were removed.  Furthermore, neural 32 

recordings in monkeys performing similar tasks also exhibited rotational structure not only in 33 

MC but also in somatosensory cortex.  Our results argue that rotational structure may reflect 34 

dynamics throughout voluntary motor circuits involved in online control of motor actions. 35 

 36 
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Introduction 37 

Motor cortex (MC) plays an important role in our ability to make goal-directed motor 38 

actions such as to reach and grasp objects of interest in the environment. A key approach to 39 

explore MC’s contribution to movement has been to record the patterns of neural activity during 40 

tasks such as reaching. In the last part of the 20th century, research emphasized the representation 41 

of movement parameters by cortical networks (Fetz, 1992; Scott, 2008; Vyas et al., 2020).  This 42 

approach assumed that activity of individual neurons or at the population level could be directly 43 

related to explicit features of motor action such as movement speed or muscle activity patterns. 44 

 However, there has been a recent transition towards interpreting neural processing using 45 

dynamical systems techniques (Machens et al., 2010; Michaels et al., 2016; Pandarinath et al., 46 

2018b, 2018a; Remington et al., 2018; Russo et al., 2018; Sauerbrei et al., 2020; Shenoy et al., 47 

2013; Suresh et al., 2020).  Churchland et al., (2012) recorded from MC while monkeys 48 

performed goal-directed reaches and fit the population activity to an autonomous dynamical 49 

system where future activity was predicted based solely on the past population activity in MC.  50 

They found this relationship could account for a significant amount of the neural activity and 51 

revealed rotational dynamics that could provide a basis set for generating muscle activity 52 

patterns.  However, these rotational dynamics are absent in supplementary motor cortex 53 

suggesting that they are not trivial properties of cortical processing (Lara et al., 2018).  54 

This view of MC as a pattern generator during reaching was further bolstered by 55 

recurrent neural network models (RNN) (Hennequin et al., 2014; Michaels et al., 2016; Sussillo 56 

et al., 2015).  RNNs trained to generate patterns of muscle activity while constrained to generate 57 

simple dynamics also displayed rotational dynamics that resembled MC activity (Sussillo et al., 58 

2015).  Importantly, these networks only received external inputs that were stationary with the 59 

exception of a non-selective GO cue to initiate the pattern generation.  Thus, activity was 60 

generated solely by the connections between neurons and online feedback about the generated 61 

muscle patterns was not necessary after training.  Collectively, these results have led to the 62 

interpretation that the function of MC is to generate patterns of muscle activity and that this real-63 

time process is done largely autonomously from other brain structures.  64 
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Another class of dynamical systems is also commonly used in motor control to interpret 65 

the behavioural aspects of motor actions. Specifically, a growing body of literature has 66 

highlighted how optimal feedback control (OFC) can capture how we move and interact in the 67 

world (Franklin and Wolpert, 2011; Scott, 2004, 2016; Shadmehr and Krakauer, 2008; Todorov 68 

and Jordan, 2002). OFC highlights the importance of feedback processes, both external sensory 69 

feedback (e.g. proprioception and vision) as well as internal feedback from efference copies, for 70 

generating motor commands for movement.  A large number of studies inspired by OFC 71 

highlight how humans are capable of generating fast, goal-directed motor corrections (Cluff and 72 

Scott, 2015; Cross et al., 2019; Dimitriou et al., 2012; Kurtzer et al., 2008; Nashed et al., 2014; 73 

Scott, 2016) even for very small disturbances (Crevecoeur et al., 2012) and OFC can capture 74 

features of unperturbed movements (Knill et al., 2011; Lillicrap and Scott, 2013; Liu and 75 

Todorov, 2007; Nashed et al., 2012; Todorov and Jordan, 2002; Trommershäuser et al., 2005). 76 

Further studies highlight how feedback responses to a mechanical disturbance are distributed 77 

throughout somatosensory, parietal, frontal and cerebellar motor circuits in ~20ms and display 78 

goal-directed responses in as little as 60ms (Chapman et al., 1984; Conrad et al., 1975; Evarts 79 

and Tanji, 1976; Herter et al., 2009; Lemon, 1979; Omrani et al., 2016; Phillips et al., 1971; 80 

Pruszynski et al., 2011, 2014; Strick, 1983; Wolpaw, 1980). This interpretation of motor control 81 

emphasizes that the objective of the motor system is to attain the behavioural goal and this 82 

requires feedback processed by a distributed network. Further, MC is generally viewed as part of 83 

the control policy that uses information on the system state to generate muscle activity patterns 84 

to attain the behavioural goal.  85 

These two views of MC, one as an autonomous dynamical system and the other as a 86 

flexible feedback controller, appear to conflict on how to interpret the role of MC and its 87 

interactions with the rest of the motor circuits involved in goal-directed motor actions.  This 88 

apparent conflict seems to hinge on the observation that the rotational dynamics observed in MC 89 

can be generated through purely local recurrent connections.  However, it is unclear if a feedback 90 

control network would also exhibit similar rotational dynamics and whether these dynamics are 91 

exclusively in MC or also in other brain regions such as somatosensory cortex.  We investigated 92 

this question by first developing a multi-layer RNN that controlled and received sensory 93 

feedback from a two-segment limb. The network was trained to counter disturbances to the limb 94 

and perform reaching movements.  After training, rotational dynamics were observed in the 95 
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network activities as well as in sensory feedback from the limb, but not in muscle activity. 96 

Critically, rotational dynamics could also be generated with or without recurrent connections in 97 

the trained networks. Monkeys trained in a similar task exhibited rotational dynamics in MC and 98 

also in somatosensory and posterior parietal cortices including during reaching where sensory 99 

feedback is not required a priori. Taken together, these results illustrate rotational dynamics can 100 

be observed across frontoparietal networks and can be generated by intrinsic dynamics in MC 101 

and/or through dynamics of the entire motor system.  102 

Results 103 

RNN exhibit rotational dynamics in the activities and sensory feedback signals during 104 

posture task 105 

Rotational dynamics in MC have been interpreted as a signature of an autonomous 106 

dynamical system (Churchland et al., 2012; Pandarinath et al., 2018a; Shenoy et al., 2013).  In 107 

contrast, rotational dynamics appear to be absent in systems that are dominated by external 108 

inputs, such as muscle activity driven by neural inputs (Churchland et al., 2012), or MC activity 109 

during grasping driven by sensory inputs (Suresh et al., 2020). Here, we examined the dynamics 110 

of a network performing a posture perturbation task, where the network had to respond to 111 

sensory feedback about the periphery to generate an appropriate motor correction (Cross et al., 112 

2020; Heming et al., 2019; Omrani et al., 2014, 2016; Pruszynski et al., 2014).  Sensory input 113 

plays an important role for correctly performing the task and thus the hypothesis is that rotational 114 

dynamics should be absent in the network.  115 

We built an artificial neural network that controlled a two-link model of the upper limb 116 

(Figure 1).  Previous neural network models (Hennequin et al., 2014; Michaels et al., 2016; 117 

Sussillo et al., 2015) focused on network activities (r) that evolved according to 𝑟̇(𝑡) =118 

𝑓(𝑟(𝑡), 𝑠∗) where 𝑓[∙]is a nonlinear function and 𝑠∗is vector of static inputs about the GO cue 119 

and the current target.  Here, we generated a model where network activities also incorporated 120 

delayed (Δ) continuous sensory feedback about the limb (s(t-Δ)) and thus activities evolved 121 

according to 𝑟̇(𝑡) = 𝑓(𝑟(𝑡), 𝑠∗, 𝑠(𝑡 − Δ)). The neural network contained an input layer that had 122 

recurrent connections between neurons and received delayed (50ms) sensory feedback about the 123 

limb state (i.e. joint position, velocity, muscle activities).  This layer projected to an output layer 124 

that also had recurrent connections between neurons.  The output layer directly controlled the 125 
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activities of six muscles (two sets of monoarticular muscles at the shoulder and elbow joints and 126 

two biarticular muscles) that generated limb movements.  The network was trained to perform a 127 

posture perturbation task where the goal was to keep the limb within a specified target location, 128 

while countering randomly applied loads to the limb.  We optimized the network by minimizing 129 

a cost function that penalizes the kinematic error between the target location and current limb 130 

position over the duration of the task. 131 

After optimization we applied loads that displaced the limb by ~3cm.  The network 132 

generated corrections to the displacements with the hand reversing direction within 300-400ms 133 

from the time of the applied load (Figure 2A-C).  The network also maintained steady-state 134 

motor output for the remainder of the trial to counter the applied loads. Figure 2D shows the 135 

activity of the shoulder extensor muscle aligned to the load onset.  An increase in muscle activity 136 

started 50ms after the applied load, consistent with the delay in sensory feedback from the limb. 137 

Muscle activity peaked at ~200ms after the applied load and stabilized to a steady state within 138 

~750ms.  Figures 2E and F show the activity of two example neurons from the output layer of 139 

the network.   140 

We examined the population dynamics of the output layer of the network by applying 141 

jPCA analysis (Churchland et al., 2012). Briefly, jPCA constructs a multi-dimensional matrix 142 

(𝑋(𝑡),  dimensions n x ct) which is composed of each unit’s (n) activity patterns across time (t) 143 

and condition (c) (e.g. load combination or reach target).  The matrix is reduced (𝑋𝑅𝑒𝑑)to a 6 x ct 144 

dimensional matrix using principal component analysis (PCA) to examine the dynamics 145 

exhibited by the dominant signals.  This matrix is then fit to a constrained dynamical system 146 

𝑋̇𝑅𝑒𝑑(𝑡) = 𝑀𝑆𝑘𝑒𝑤𝑋𝑅𝑒𝑑(𝑡) where 𝑋̇𝑅𝑒𝑑(𝑡) is the temporal derivative of 𝑋𝑅𝑒𝑑(𝑡), and 𝑀𝑆𝑘𝑒𝑤  is the 147 

weight matrix constrained to be skew symmetric.  The skew-symmetric constraint ensures that 148 

only rotational dynamics are fit to the population activity and 𝑀𝑆𝑘𝑒𝑤 can then be decomposed 149 

into a set of three jPC planes.   150 

We found the top-2 jPC planes exhibited clear rotational dynamics with rotation 151 

frequencies of 2.0Hz and 0.7Hz (Figure 3A, left and middle panels).  Combined, these two 152 

planes captured 60% of the variance of the output-layer activities. In contrast, the third jPC plane 153 

exhibited a more expansion-like property (Figure 3A, right) and captured 38% of the variance.  154 

Examining the goodness of fit (R2) to the constrained dynamical system provides a measure of 155 
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how well the activities in the network activities are approximated by rotational dynamics.  We 156 

compared our results to a null distribution that tested whether the rotational structure was an 157 

emergent property of the population activity or simply reflected known properties of single-158 

neuron responses (i.e. broad tuning for loads, smooth time-varying activity patterns, shared 159 

patterns of activity across neurons).  We used tensor maximum entropy (TME, Elsayed and 160 

Cunningham, 2017) to generate surrogate datasets that were constrained to have the same 161 

covariances as the observed data and applied the same jPCA analysis to the datasets. We found 162 

the constrained dynamical system had an R2 of 0.55 and was significantly greater than expected 163 

from the null distributions (Figure 3B left; TME: median R2=0.27, p=0.001).  Further, when we 164 

did not constrain the weight matrix to be skew-symmetric (i.e. unconstrained dynamical system, 165 

MBest), we found an increase in the R2 to 0.83 that was also significant (Figure 3B right; median 166 

R2=0.49, p<0.001).  The ratio between the R2 for the constrained and unconstrained fits was 0.66 167 

indicating that the majority of the output layer’s dynamics displayed rotational dynamics. 168 

Next, we examined if rotational dynamics were present in the input layer of the network 169 

which directly receives sensory feedback. Similar to the output layer, we observed rotational 170 

dynamics in the top-2 jPC planes with frequencies of 1.8Hz and 0.95Hz (Figure 3C). Combined, 171 

these two planes captured 74% of the variance of the input-layer activity. The fit to a constrained 172 

dynamical system had an R2 = 0.51 (Figure 3D left) and was also significantly greater than the 173 

null distributions (median R2=0.29, p<0.01). When fit with an unconstrained dynamical system, 174 

we also found an increase in the R2 to 0.88 that was significant (Figure 3D right; median 175 

R2=0.48, p < 0.001).  Thus, rotational dynamics are present in the input layer that directly 176 

received sensory feedback as well the output layer that formed the muscle signals.  177 

Next, we explored if rotational dynamics were present in the motor outputs (i.e. muscle 178 

activities) and sensory inputs (i.e. muscle activities and joint kinematics) of the network.  We 179 

applied jPCA analysis to the muscle activities and did not observe clear rotations in any of the 180 

jPC planes (Figure 3E). We found the muscle activities were poorly fit to the constrained (Figure 181 

3F; R2 = 0.01) and unconstrained dynamical systems (R2 = 0.11).  One explanation for this lower 182 

fit quality is that muscle activity has substantially fewer signals (6) than the network activities 183 

(500).  We tested this by down-sampling neural units to match the number of muscles.  Note, we 184 

did not compute a null distribution using TME as we found hypothesis testing using TME was 185 
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unreliable when the number of signals were small (<30).  We found the goodness of fits for 186 

muscle activities were significantly smaller than the down-sampled neural activities (Figure 3F, 187 

constrained p<0.001; unconstrained p=0.002) indicating that the down-sampled neural activity 188 

exhibited greater dynamical properties than muscle activity.  189 

Next, we applied jPCA analysis to the kinematic signals (angle and angular velocity of 190 

the joints).  We observed clear rotational dynamics in the top jPC plane (Figure 3G) with a 191 

rotational frequency of 1.3Hz.  We found the constrained and unconstrained dynamical systems 192 

had an R2 = 0.56 and 0.59, respectively, which were significantly larger than the null 193 

distributions (Figure 3H; down sampled neural population: constrained and unconstrained 194 

p<0.001).   195 

These results indicate kinematic signals exhibit substantial rotational dynamics; however, 196 

their rotational frequencies are lower than observed in the output layer activities. Here we asked 197 

whether these higher frequencies could be explained by combining all available sensory 198 

feedback (i.e. muscle and kinematics).  We fit a linear model that decoded the output layer’s 199 

activity in each jPC plane using the sensory feedback signals composed of kinematic and muscle 200 

signals.  We found the predicted activities were highly similar to the output layer activities 201 

(R2=0.99) with virtually identical frequencies of rotation (Figure Supplementary 1A).  This 202 

indicates sensory feedback provided rich signals that could exhibit rotational dynamics identical 203 

to the network’s dynamics.  204 

Motor and somatosensory cortex exhibit rotational dynamics while monkeys performed 205 

posture perturbation task 206 

 Next, we examined if rotational dynamics exist in MC activity.  We trained five monkeys 207 

to perform a similar posture perturbation task. The limb kinematics were qualitatively similar to 208 

the network with limb displacements of ~3cm and hand reversal starting in 300-400ms (Figure 209 

4A-C).  Muscle activity tended to be multi-phasic within the first 500ms after the applied load 210 

and reached a steady state within 800ms (Figure 4D).  We also examined data from two 211 

previously collected monkeys performing a similar task using an endpoint manipulandum (data 212 

from Chowdhury et al., 2020). These monkeys also exhibited fast corrective movements to the 213 

load applied to the manipulandum (Figure S2A-C). 214 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.17.387043doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.17.387043
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

 Neural activities were recorded using single electrodes (Monkeys P, A, X) and chronic 215 

multi-electrode arrays (Monkeys Pu, M, H and C).  We observed motor cortex (MC) responses 216 

tended to peak in <200ms after the applied load and also exhibited steady-state activity (Figure 217 

4E-F).   218 

 We pooled MC neurons across monkeys and then applied jPCA analysis.  We found clear 219 

rotational dynamics in the top-2 jPC planes with frequencies of 1.3Hz and 1.1Hz for the first and 220 

second planes, respectively (Figure 5A). These planes also captured 63% of the variance from 221 

the neural population.  In the third plane, we observed expansion-like dynamics similar to the 222 

third plane of the neural network (data not shown, 12% of variance).  When we examined the fit 223 

qualities, we found the constrained and unconstrained dynamical systems had significant fits 224 

with an R2 of 0.41 (p<0.001) and 0.50 (p<0.001), respectively (Figure 5B blue lines, “Group 225 

Pop.”). Similar results were found when we applied jPCA for each monkey. For Monkeys P, A, 226 

X and Pu we found population activities exhibited rotational dynamics in the top-2 jPC planes 227 

(Figure S3A-D, rotation frequency range: plane 1=2.4-1.6Hz, plane 2=1.4-1.2Hz).  Significant 228 

fits were found for the constrained (Figure 5B; mean across monkeys R2= 0.45, p<0.01) and 229 

unconstrained dynamical systems (mean R2= 0.56, p<0.05).  However, for Monkey M we 230 

observed less rotational structure and more tangled trajectories in the top-2 jPC planes (Figure 231 

S3E).  Fits for the constrained and unconstrained dynamical systems were still significant 232 

(constrained: p=0.003, unconstrained: p=0.002) but notably lower than for the other monkeys 233 

(constrained R2=0.21, unconstrained R2=0.32). 234 

We also examined the population dynamics in cortical areas associated with sensory 235 

processing (areas S1, A2 and A5). When neurons were pooled across monkeys, we observed 236 

clear rotational dynamics in the top-2 jPC planes with rotational frequencies of 1.7Hz and 1.1Hz 237 

(Figure 5C).  Significant fits were found for the constrained (Figure 5D; R2=0.49, p<0.001) and 238 

unconstrained (R2=0.56, p<0.001) dynamical systems that were comparable to MC.  Similar 239 

results were found when we applied jPCA for each monkey and cortical area separately (Figure 240 

5D, S1D-E, S4). 241 

 Next, we examined the dynamics of the muscle activities and kinematic signals.  We 242 

observed no rotational dynamics in the muscle activities for any of the monkeys (Figure 5E).  243 

We found the fits for the constrained and unconstrained dynamical systems were poor (Monkey 244 
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P/A/Pu/X: constrained: R2=0.05/0.02/0.04/0.04, unconstrained: R2=0.11/0.06/0.06/0.06) and 245 

were significantly worse than the down-sampled neural activity (probability values plotted in 246 

Figure 5F).  In contrast, for the joint kinematics we observed clear rotational dynamics with a 247 

rotation frequency of 1.3±0.1Hz (across monkeys mean and SD; Figure 5G, Figure S2F).  We 248 

found the fits for the constrained and unconstrained dynamical systems were good (constrained: 249 

R2=0.45±0.03, unconstrained: R2=0.50±0.04) and significantly better than the down-sampled 250 

neural activity (probability values plotted in Figure 5H and Figure S2G).  Lastly, for each 251 

monkey, we also decoded M1’s activity in each jPC plane using the joint kinematics and muscle 252 

activity and found the decoded activity was similar to M1’s activity (Figure S5). 253 

RNN exhibit rotational dynamics in the activities and sensory feedback signals during 254 

delayed reach task 255 

Rotational dynamics were first described in MC during a delayed reaching task and 256 

inspired the interpretation of MC as an autonomous dynamical system (Churchland et al., 2012; 257 

Hennequin et al., 2014; Michaels et al., 2016; Sussillo et al., 2015). We explored if our network 258 

also exhibited similar rotational dynamics by training it on a delayed center-out reaching task. 259 

The plant dynamics and network architecture were the same as the posture task.  However, the 260 

network was trained to maintain the limb at the starting location while a target was presented 261 

(“delay period”). Following a variable time delay, a ‘GO’ cue was provided requiring the 262 

network to move the limb to the target location within ~500ms.  263 

After optimization, the REC network was able to generate limb reaches towards radially 264 

located targets at displacements of 2cm and 5cm from the initial location (Figure 6A).  Reaches 265 

had bell-shaped velocity profiles, that peaked roughly during the middle of the movement 266 

(Figure 6B-C). Figure 6D shows the activity of the shoulder extensor muscle during reaches to 267 

different target locations. Figure 6E-F show the diverse temporal profiles exhibited by units in 268 

the output layer of the network. The unit in Figure 6E has a stable response during the delay 269 

period when the target was present.  After the ‘GO’ signal, the unit exhibits oscillatory activity 270 

with a change in the unit’s preferred direction. The unit in Figure 6F largely maintains its 271 

preferred direction during the delay and movement periods.  272 

We applied jPCA analysis to the output layer of the network and found clear rotational 273 

dynamics with rotational frequencies of 2.1Hz and 1.1Hz for the first and second planes, 274 
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respectively (Figure 7A). These planes also captured 83% of the variance of the output-layer 275 

activity. When we examined the fit qualities, we found significant fits for the constrained and 276 

unconstrained dynamical systems with an R2 of 0.70 (p<0.001) and 0.83 (p<0.001), respectively 277 

(Figure 7B). Note, the ratio between the R2 for the constrained and unconstrained dynamical fits 278 

was 0.84, which is comparable to previous studies during reaching (Churchland et al., 2012) and 279 

indicate that the majority of the output layer’s dynamics displayed rotational dynamics. 280 

 We also examined the input layer of the network and found essentially the same results as 281 

the output layer (Figure 7C, D).  Clear rotational dynamics were present rotating at 2.1 and 0.9 282 

Hz in the top-2 planes, with significant fits for the constrained (R2=0.54, p=0.01) and 283 

unconstrained (R2=0.72, p=0.006) dynamical systems. 284 

Next, we examined the dynamics of the muscle and kinematic signals.  Similar to 285 

Churchland et al., (2012), we observed no rotational dynamics in the muscle activities (Figure 286 

7E, F) and the fit for either dynamical system was significantly worse than the down-sampled 287 

network activity (constrained R2=0.02, p<0.001; unconstrained R2=0.24, p=0.01).  In contrast, 288 

we observed rotational dynamics in the kinematic signals with a rotation frequency of 0.6Hz 289 

(Figure 7G, H). We found the kinematic signals were better fit by both dynamical systems and 290 

were comparable to the down-sampled neural activity (constrained R2=0.24 p=0.3; R2=0.62 291 

p=0.06).  Further, when we predicted the output layer’s activities using the combined sensory 292 

feedback (muscle, kinematics, GO cue, static inputs), we again found the predicted activities 293 

were highly similar (R2=0.99) to the output layer activities with virtually identical frequencies of 294 

rotation (Figure Supplementary 1B). 295 

 296 

Somatosensory cortex exhibits rotational dynamics while monkeys performed delayed 297 

reaching task. 298 

 We explored if these dynamics were also present in somatosensory cortex during 299 

reaching, as previously observed in MC (Churchland et al., 2012). Monkeys H and C also 300 

completed a center-out reaching task using a manipulandum and data was recorded from area 2 301 

(data from Chowdhury et al., 2020; Figure S6A).  Note, these monkeys made slightly slower 302 
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reaches (~400ms Figure S6B, C) than the reaches performed by the monkeys in Churchland et 303 

al., (2012) as well as our model simulations (both ~300ms).  304 

 We found clear rotational dynamics in area 2 with the top jPC plane having rotational 305 

frequencies of 1.0Hz and 1.7Hz for Monkeys H and C, respectively (Figure S6D).  We also 306 

found significant fits for the constrained (Figure  S6E, mean across monkeys R2=0.51, p<0.001 307 

both monkeys) and unconstrained (R2=0.66, p<0.001) dynamical systems.  308 

 Next, examining the kinematics, we observed clear rotational dynamics in the top jPC 309 

plane with rotational frequencies of 1.3Hz and 1.2Hz for Monkeys H and C, respectively (Figure 310 

S6F).  We also found significant fits for the constrained (Figure S6G, R2=0.39, Monkey H 311 

p<0.001, Monkey C p=0.02) and unconstrained (R2=0.51, Monkey H p<0.001, Monkey C 312 

p=0.01) dynamical systems.  313 

Neural networks without recurrent connections still exhibit rotational dynamics while 314 

performing posture and reaching tasks 315 

Churchland et al., (2012) have suggested that these rotational dynamics emerge from the 316 

recurrent connections between neurons in MC.  However, in our model, the sensory feedback 317 

into the network exhibited clear rotational dynamics that could contribute to the network’s 318 

dynamics. Thus, we explored if networks trained to perform the posture perturbation task 319 

without the recurrent connections (input and output layers) also exhibit rotational dynamics (i.e. 320 

𝑟̇(𝑡) = 𝑓(𝑠∗, 𝑠(𝑡 − Δ)).  We removed the recurrent connections in both the input and output 321 

layers of the network and optimized the network to perform the same posture task (NO-REC 322 

network).  The network learned to bring the arm back to the central target when the external load 323 

was applied with similar kinematics as the REC network (data not shown). 324 

Examining the output-layer activity, we still observed clear rotational dynamics with 325 

rotational frequencies of 1.0 and 0.74 Hz for the first and second planes, respectively (Figure 326 

8A). These planes captured 92% of the variance of the network activity. When we examined the 327 

fit qualities, we found significant fits for the constrained dynamical system with an R2 of 0.43  328 

(Figure 8B left; p=0.02), whereas for the unconstrained dynamical system we found a fit with an  329 

R2 of 0.54 but was not significant (Figure 8B right; p=0.3). As expected, output layer activities 330 

could be predicted from the sensory inputs with high accuracy (Figure S1C). 331 
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Finally, we examined if the rotational dynamics would also occur in a network without 332 

recurrent connections for the center-out reaching task (NO-REC).  We found this network 333 

exhibited good control of the limb with qualitatively similar hand paths to the targets as the REC 334 

network during reaching (data not shown). Examining the output layer’s dynamics, we observed 335 

rotational dynamics with rotational frequencies of 1.4 and 0.85Hz for the first and second planes, 336 

respectively (Figure 8C). These planes captured 82% of the variance of the network activity. 337 

When we examined the fit qualities, we found significant fits for the constrained dynamical 338 

system with an R2 of 0.46 (Figure 8D left; p=0.01), whereas for the unconstrained dynamical 339 

system we found a fit with an R2 of 0.56 but was not significant (Figure 8D right; p=0.15). 340 

Again, output layer activities could be predicted from the sensory inputs with high accuracy 341 

(Figure S1D).  342 
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Discussion 343 

The present study highlights how neural network models with sensory feedback and 344 

recurrent connections exhibit rotational dynamics in the network activities and in the sensory 345 

feedback from the limb, but not in muscle activities. These rotational dynamics were observed 346 

for a postural perturbation and a delayed reaching task, and critically, even without recurrent 347 

connections in the model. Similar tasks performed by monkeys also illustrate rotational 348 

dynamics not only in MC, but also in somatosensory areas and likely in sensory feedback signals 349 

related to joint motion. Thus, rotational dynamics are a characteristic that is present throughout 350 

the sensorimotor system, just not for muscles. 351 

The standard equation to describe a linear dynamical system (𝑋̇ = 𝑀 ∙ 𝑋 + 𝑈) assumes 352 

the system evolves in time based on its own intrinsic dynamics (𝑀 ∙ 𝑋) and from inputs into the 353 

system (𝑈) (Vyas et al., 2020). However, previous studies have argued that motor cortical 354 

dynamics are largely generated from intrinsic dynamics with inputs providing static information 355 

about the desired output and a nonselective GO cue to initiate movement (Churchland et al., 356 

2012; Sussillo et al., 2015).  This is supported by jPCA which fits neural activity using a linear 357 

dynamical system that only includes the term related to the intrinsic dynamics.  This model 358 

captures rotational structure at the population level and can account for a substantial amount of 359 

neural variance. In contrast, limb muscle activity during reaching does not show these rotational 360 

dynamics. Furthermore, Sussillo and colleagues (2015) also found similar rotational dynamics in 361 

recurrent neural networks trained to generate the same patterns of muscle activity observed 362 

during reaching. Critically, these networks exhibited rotations despite only receiving relatively 363 

simple inputs (step function) and no sensory feedback. Thus, the dynamics were generated solely 364 

through recurrent connections in the model. Collectively, this leads to the interpretation that MC 365 

possesses a strongly interconnected network that generates patterns of muscle activity, and that 366 

this process is predominantly generated within MC. 367 

The present study cannot directly refute that possibility, but it does provide several 368 

observations that clearly do not fit with this interpretation. Most critical is that our neural 369 

network model displayed rotational dynamics even when there were no recurrent connections 370 

and thus no intrinsic dynamics. Instead, rotational dynamics were generated by inputs to the 371 

network but could be inappropriately assessed as intrinsic dynamics. This suggests that rotational 372 
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dynamics in MC may reflect internal dynamics, system inputs or any weighted combination of 373 

the two. 374 

A second important observation is that we observed rotational dynamics in sensory 375 

feedback from the limb.  Previous recurrent neural networks models of MC only used EMG-like 376 

signals for sensory feedback (Sussillo et al., 2015). However, primary and secondary afferents 377 

are critical sources of sensory feedback for limb control and their activity correlates with muscle 378 

length and change in that length (Cheney and Preston, 1976; Edin and Vallbo, 1990; Loeb, 379 

1984). Our model and analysis of experimental data quantified joint angular position and 380 

velocity as a proxy of these sensory signals and found that they displayed rotational dynamics, 381 

similar to previous network models of control using kinematic variables (DeWolf et al., 2016; 382 

Susilaradeya et al., 2019). Furthermore, combined sensory feedback about kinematics and 383 

muscle activity could capture the high frequency rotations observed in the network activities 384 

indicating sensory feedback could provide rich dynamical signals for MC.  385 

Another important observation in the present study is that rotational dynamics were 386 

observed not only in MC, but also in somatosensory cortex during the perturbation and reaching 387 

tasks. Rotational dynamics were observed in S1 (areas 3a and 1), A2 and A5, important 388 

components of frontoparietal circuits involved in the planning and execution of arm motor 389 

function (Chowdhury et al., 2020; Kalaska, 1996; Kalaska et al., 1990; Omrani et al., 2016; 390 

Takei et al., 2020). Thus, rotational dynamics are observed throughout frontoparietal circuits and 391 

likely in sensory feedback from the limb. 392 

Although MC could still, in theory, generate the rotational dynamics exclusively through 393 

its recurrent connection, there are several reasons why inputs to MC are likely substantial during 394 

motor actions and contribute to its dynamics. Most notable is that behavioural level models of 395 

the motor system emphasize a dynamical systems perspective where various sources of 396 

information are rapidly processed to help guide and control ongoing motor actions.  Optimal 397 

feedback control models have been influential as a normative model of voluntary control for 398 

almost 20 years (Scott, 2004; Todorov and Jordan, 2002). These types of controllers include two 399 

basic processes. First, state estimation where the present state of the body is optimally calculated 400 

from various sensory signals as well as from internal feedback generated using forward models. 401 

Second, a control policy uses this state estimate to generate motor commands to move the limb 402 
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to a behavioural goal. These models predict many features of our motor system including that it 403 

is highly variable but also successful, and the ability to exploit redundancy while attaining a goal 404 

reflecting an interplay between kinematic errors and goal-directed corrections (Diedrichsen, 405 

2007; Knill et al., 2011; Liu and Todorov, 2007; Nashed et al., 2012, 2014; Scott, 2016; 406 

Trommershäuser et al., 2005). A large body of literature highlights that goal-directed motor 407 

corrections to mechanical disturbances can occur in ~60ms and involve a transcortical pathway 408 

through MC (Matthews, 1991; Scott, 2004, 2012). These observations point to the importance of 409 

sensory feedback processing as a continuous rather than an intermittent process providing a 410 

continuous stream of input to brain circuits to guide and control motor actions (Crevecoeur and 411 

Kurtzer, 2018). 412 

The dynamical systems view of MC activity developed from an attempt to understand the 413 

complex patterns of activity in M1, and how those dynamics lead to movement. This 414 

interpretation has tended to isolate processing by MC from the rest of the brain (but see Michaels 415 

et al., 2020) and that the objective of this processing is to generate patterns of muscle activity.  416 

However, this interpretation does not predict or explain behaviour – such as what the constraints 417 

or optimality criteria are that shape behavior or what computational problem the brain is trying to 418 

solve? These are exactly the problems addressed by optimal control models. Optimal control 419 

theory focusses on the importance of the entire circuit including sensory feedback for goal-420 

directed control and has good explanatory power at the level of behaviour. Critically, it is the 421 

behavioural goal that is the fundamental objective as muscle activity can vary from trial-to-trial 422 

reflecting necessary corrective responses to deal with noise and errors.  However, optimal 423 

control theory will need additional assumptions and structure to explain the nature of neural 424 

processing. Thus, the two classes of models have the potential to be complementary and work 425 

together. 426 

One feature not captured by our model is that complex multi-phasic activity patterns 427 

precede movement onset by 100-150ms, and this observation has been used as evidence for 428 

autonomous MC dynamics (Churchland et al., 2012; Schroeder et al., 2019; Sussillo et al., 2015). 429 

Obviously sensory feedback of the movement cannot play a role in generating these early 430 

responses, which must instead occur through internal processing, including inputs from other 431 

brain regions (Sauerbrei et al., 2020).  Though of course these inputs can include sensory 432 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.17.387043doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.17.387043
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

feedback about the state of the limb and the movement goal (Ahmadi-Pajouh et al., 2012; Ames 433 

et al., 2019; Pruszynski et al., 2008, 2014).  In any case, even if the pre-movement dynamics in 434 

MC were autonomous, this would not imply that MC continues to behave as an autonomous 435 

system during movement.  Instead, our results show that sensory feedback is likely to contribute 436 

heavily to MC dynamics during movement. 437 

How inputs conveying sensory and internal feedback are processed by MC remains an 438 

important and poorly understood problem in motor control. Recent studies have suggested that 439 

MC uses an initial planning stage when processing visual feedback during movement. Stavisky 440 

et al., (2017) showed that the initial visual feedback response to a shift in hand position during 441 

reaching may be transiently isolated from the activity associated with generating motor output. 442 

However, as we show here, this latter activity may still reflect sensory and internal feedback.  443 

Similarly, Ames et al., (2019) showed that jumping the location of the goal during reaching to a 444 

new location generated activity patterns that were similar to the patterns generated when 445 

planning a separate reach to the new goal’s location. This planning stage may reflect an update to 446 

the control policy given the visual error, resembling model predictive control (Dimitriou et al., 447 

2013) and it remains an open question if these feedback responses to systematic errors (visual 448 

shift or mechanical load) evoke the same activity patterns in MC as motor noise (Crevecoeur et 449 

al., 2012).  450 

However, new techniques will be required to better explore how inputs are processed by 451 

MC.  Recent methods that exploit simultaneous recordings from multiple brain areas provide a 452 

promising tool to identify input signals to a given circuit (Kohn et al., 2020; Perich et al., 2018; 453 

Semedo et al., 2019).  Using these techniques, Perich et al., (2020) provides evidence of a 454 

communication subspace between the somatosensory and motor cortices that contributes to a 455 

substantial amount of the variance in MC, consistent with inputs playing a key role in motor 456 

cortical dynamics.  Studies that perturb neural circuits through stimulation, cooling probes or 457 

optogenetics will also provide valuable insight into how inputs are transformed by MC (Guo et 458 

al., 2020; Hore et al., 1977; Li et al., 2016; Nashef et al., 2018, 2019; Perich et al., 2020; 459 

Svoboda and Li, 2018; Takei et al., 2020). For example, deactivating cerebellar output can 460 

substantially impact preparatory activity in the MC and feedback responses to mechanical loads 461 

(Chabrol et al., 2019; Conrad et al., 1974; Gao et al., 2018; Meyer-Lohmann et al., 1975). 462 
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Sauerbrei et al., (2020) also recently uncovered how the sudden loss of input from motor 463 

thalamus results in a collapse of motor cortical dynamics.  These techniques and future 464 

advancements will be needed to tease apart dynamics generated internally versus dynamics 465 

generated from external sources.  466 

 467 
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Figure Legends 480 

Figure 1. Simulation setup. Schematic of the two-link model of the arm and the neural network.  481 

The arm had two joints mimicking the shoulder and elbow (Arm Dynamics: joints are white 482 

circles) and was actuated using 6 muscles (pink banded structures).  Muscle activity was 483 

generated by the neural network (Muscle Command).  The network was composed of two layers 484 

(Input and Output layers) with recurrent connections between units within each layer.  The 485 

network received delayed (ΔT) sensory feedback from the limb in the form of joint angles and 486 

velocities (Joint Feedback, blue line), and muscle activities (Muscle Feedback, red line).  Delays 487 

were set to 50ms to match physiological delays.  The network also received input about the 488 

desired location of the limb (Task Goal).  489 

Figure 2. Posture perturbation task performed by neural network. A. Hand paths when 490 

mechanical loads were applied to the model’s arm. Due to the anisotropy in the biomechanics the 491 

trajectories across the different loads are asymmetric. Black dots denote the hand’s location 492 

300ms after the load onset.  B-C) Shoulder angle and angular velocity aligned to the load onset. 493 

D) Activity of the shoulder extensor aligned to load onset. E-F) The activities of two example 494 

units from the output layer of the network. The colors in A-F correspond to different directions 495 

of load. 496 

Figure 3. Population dynamics of the network during posture. A) The top-3 jPC planes from 497 

the activity in the output layer of the network.  Dynamics were computed from 70ms to 370ms 498 

after the load onset.  Different colours denote different load directions. VAF =variance 499 

accounted for. B) The goodness of fit (black horizontal line) of the network activity to the 500 

constrained (MSkew left) and unconstrained (MBest right) dynamical systems.  Null distributions 501 

were computed using tensor maximum entropy (TME).  Grey bars denote the median, the boxes 502 

denote the interquartile ranges and the whiskers denote the 10th and 90th percentiles.  C-D) Same 503 

as A-B) except for the input layer of the network. E-F) and G-H) Same as A-B) except for the 504 

muscle activities and kinematic inputs into the network, respectively. Null distributions were 505 

computed from the down-sampled neural activity for F and H.  506 

Figure 4. Posture perturbation task performed by monkeys. A) Hand paths for Monkey P 507 

when mechanical loads were applied to its arm.  B-C) Shoulder angle and angular velocity 508 
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aligned to the onset of the mechanical loads.  D) Recording from the lateral head of the triceps 509 

(elbow extensor) during the posture perturbation task.  E-F) Example neurons from motor cortex 510 

aligned to perturbation onset. 511 

Figure 5. Population dynamics across motor and somatosensory cortex. A) The top-2 jPC 512 

planes from activity recorded in motor cortex pooled across all monkeys. B) Goodness of fits to 513 

the constrained (MSkew left) and unconstrained (MBest right) dynamical systems for motor cortex 514 

activity for the pooled activity across monkeys (Group Pop.) and for each individual monkey.  515 

Null distributions were computed using tensor maximum entropy (TME). C-D) Same as A-B) for 516 

somatosensory recordings. E) The top jPC plane from muscle activity from Monkey P.  F) 517 

Goodness of fits to the muscle activity for the constrained and unconstrained dynamical systems 518 

for each monkey. G-H) Same as E-F) for kinematic signals.  B,D, F, H) Grey bars denote the 519 

medians, the boxes denote the interquartile ranges and the whiskers denote the 10th and 90th 520 

percentiles.  * p<0.05, **p<0.01, ***p<0.001. 521 

Figure 6. Delayed reach task by the network. A) The hand paths by the model’s arm from the 522 

starting position (center) to the different goal locations (black dots). Goals were placed 2cm and 523 

5cm from the center location. B-C) Shoulder angle and angular velocity aligned to movement 524 

onset. D) Activity of the shoulder extensor aligned to Go cue onset. E-F) The activities of two 525 

example units from the output layer of the network. 526 

Figure 7. Population dynamics of the network during reaching. A) The top-2 jPC planes 527 

from the output layer of the network during reaching.  B) Goodness of fits for the network 528 

activity to the constrained (MSkew left) and unconstrained (MBest right) dynamical systems.  Null 529 

distributions were computed using tensor maximum entropy (TME). C-D) Same as A-B) for the 530 

input layer of the network. E-F) and G-H) Same as A-B) except for the muscle activities and 531 

kinematic inputs into the network, respectively. Null distributions were computed from the 532 

down-sampled neural activity.  B, D, F, H) Grey bars denote the medians, the boxes denote the 533 

interquartile ranges and the whiskers denote the 10th and 90th percentiles.  * p<0.05, **p<0.01, 534 

***p<0.001. 535 

Figure 8. Population dynamics when trained without recurrent connections. Networks were 536 

trained to perform the posture and reaching tasks without the recurrent connections within the 537 
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MC and input layers. A) The top-2 jPC planes from the output layer of the network during the 538 

posture task.  B) Goodness of fits for the network activity to the constrained (MSkew left) and 539 

unconstrained (MBest right) dynamical systems.  Null distributions were computed using tensor 540 

maximum entropy (TME). C-D) Same as A-B) for the output layer of the network during the 541 

reaching task. C, D) Grey bars denote the medians, the boxes denote the interquartile ranges and 542 

the whiskers denote the 10th and 90th percentiles.  * p<0.05, **p<0.01. 543 

Supplementary Figure 1. Predicting output layer trajectories using sensory input. A) The 544 

top jPC plane from the output layer activities (left) and the predicted activity using only sensory 545 

feedback (right) during the perturbation posture task.  R2 reflects the fit quality across all 6 jPC 546 

planes.  B) Same as A) for the center-out reaching task.  C-D) Same as A-B) except for the NO-547 

REC networks.  548 

Supplementary Figure 2. Population dynamics in somatosensory cortex during posture 549 

task from Chowdhury et al., (2020). A) Hand paths for Monkey H using an endpoint 550 

manipulandum where loads were applied that displaced the hand from the starting position. B, C) 551 

The shoulder flexion angle and angular velocity across the load directions.  D) The top jPC plane 552 

from activity recorded in somatosensory area 2. E) Goodness of fits to the constrained (MSkew 553 

left) and unconstrained (MBest right) dynamical systems.  Null distributions were computed using 554 

tensor maximum entropy. F-G) Same as D-E) except for the kinematic signals. Null distributions 555 

were computed from the down-sampled neural activity.  Data from Chowdhury et al., (2020). * 556 

p<0.05, ** p<0.01, *** p<0.001. 557 

Supplementary Figure 3. Population dynamics in motor cortex for individual monkeys. A) 558 

The top-2 jPC planes from activity recorded in motor cortex in Monkey P. B) The top jPC plane 559 

from activity recorded in motor cortex in Monkey A. C-E) Same as B) for Monkeys X, Pu, and 560 

M.  561 

Supplementary Figure 4. Population dynamics in somatosensory cortex for individual 562 

monkeys. Data are presented the same as Supplementary Figure 3 for S1 in Monkey P (A), A2 563 

in Monkey A (B), A5 in Monkey P (C) and A5 in Monkey A (D). 564 

Supplementary Figure 5. Predicting M1 activity using kinematic and muscle activities. Data 565 

presented the same as in Figure Supplementary 1 except for individual monkeys.  566 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.17.387043doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.17.387043
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

 567 

Supplementary Figure 6. Population dynamics in somatosensory cortex during reaching 568 

from Chowdhury et al., (2020). A) Hand paths for Monkey H using an endpoint manipulandum 569 

to reach to different targets located in a center-out pattern.  Targets were placed 12cm from the 570 

starting position. B-C) The shoulder flexion angle and angular velocity across the different reach 571 

directions (shoulder flexion angle defined in Chan and Moran, 2006).  D) The top jPC plane 572 

from activity recorded in somatosensory area 2. E) Goodness of fits to the constrained (MSkew 573 

left) and unconstrained (MBest right) dynamical systems.  Null distributions were computed using 574 

tensor maximum entropy (TME). F-G) Same as D-E) except for the kinematic signals. Null 575 

distributions were computed from the down-sampled neural activity.  * p<0.05, ***p<0.001. 576 

 577 
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Materials and Methods: 578 

Two-link arm model. We constructed a two-link model of the upper arm as detailed in Lillicrap 579 

and Scott, (2013). The model was constrained to move in a horizontal two-dimensional plane and 580 

incorporated arm geometry and inter-segmental dynamics. The dynamics of the limb were 581 

governed by  582 

𝐱t+1 = f(𝐱t, 𝛕t)  [1] 583 

Where, ‘𝐱t’ is the vector state of the arm at time ‘t’ and was composed of the angular positions 584 

and velocities of the elbow and shoulder joints [θelb, θsho, θ̇elb, θ̇sho]. ‘𝛕t’ is the two-dimensional 585 

vector of torques applied to the shoulder and elbow joints at time ‘t’. We incorporated 6-lumped 586 

muscle actuators that moved the arm, which included 4 mono-articular and 2 bi-articular 587 

muscles. These muscles received input from the neural network and exhibited force-length and 588 

force-velocity dependent activation properties  (Brown et al., 1999).  Muscle forces (mt) were 589 

converted to joint torques by computing the product between each muscle’s force output with 590 

their respective moment arm. The parameters for the arm dynamics, moment-arm matrix and the 591 

muscle force-length/velocity (F-L/V) properties were drawn from the literature (Brown et al., 592 

1999; Cheng et al., 2000; Graham and Scott, 2003). The continuous arm dynamics were 593 

discretized and solved using Euler’s integration with a time step (dt) of 10ms. 594 

Network description. We used a recurrent neural network (RNN) composed of two layers to 595 

control the arm model. Both layers had recurrent connections between units within each layer 596 

and all units had leaky-integration properties and a standard sigmoid activation function.   597 

The first layer received inputs (𝐬t) composed of a step signal representing the desired joint state 598 

(𝐱t
∗), delayed (∆=50ms) state feedback from the arm (𝐱t−∆, joint angles and angular velocities) 599 

and delayed muscle activations (𝐦t−∆).  For the reaching task we also included a condition-600 

independent binary ‘GO’ cue to indicate when the network should initiate movement. This signal 601 

was applied as a step function smoothed with a 20ms s.d. Gaussian kernel (high indicates hold 602 

command, low indicates move command).  The dynamics of the first layer (referred to as input 603 

layer) were governed by 604 

𝐡t+1 =  (1 −  ln)𝐡t +  lntanh (𝐖sh𝐬t +  𝐖hh𝐡t + 𝐛h)  [2] 605 
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Where, 𝐡t is the vector of unit activities for the input layer, ‘ln’ is the ratio between the 606 

simulation time-step (dt) and the time-constant of the network units (τn), hence ln =  dt τn⁄ . 607 

𝐖sh is the weight matrix that maps the inputs to the activities of the input layer, 𝐖hh is the 608 

weight matrix for the recurrent connections between units in the input layer, and 𝐛h is the bias 609 

(or baseline) for the first layer activities.  610 

 The second layer (output layer) received input from the input layer and its dynamics were 611 

governed by 612 

𝐨t+1 =  (1 −  ln)𝐨t +  lntanh (𝐖ho𝐡t +  𝐖oo𝐨t + 𝐛o)  [3] 613 

Where, 𝐨t+1is the vector of unit activities for the output layer,  𝐖ho is the weight matrix that 614 

maps the input layer activities to the output layer activities, 𝐖oo is the weight matrix for the 615 

recurrent connections between units in the output layer, and 𝐛o is the bias (or baseline) for the 616 

outputlayer activities.  617 

The output layer provides inputs to the 6 muscles used to control the limb. The muscle 618 

activities (𝐦t) were governed by, 619 

𝐦t+1 =  (1 −  lm) ∙ 𝐦t +  lm ∙ [𝐖ou𝐨t]+     [4] 620 

𝐖ou is the weight matrix that maps the activities in the output layer to the lumped muscle 621 

actuators, and lmis the leak time constant for the muscle given by, lm =  dt τm⁄ . 622 

 We also examined networks where we removed the recurrent connections from each 623 

layer by effectively setting  𝐖hh, 𝐖oo to zero for the entire simulation and optimization (NO-624 

REC networks).   625 

 For all simulations, the input and output layers were composed of N = 500 units each and 626 

the time constants of network units (τn) and muscle units (τm)  were 20ms and 50ms, 627 

respectively. The weight matrices were initialized from a gaussian distribution centered on zero 628 

with a standard deviation of ± 1 √N⁄ . All the bias vectors [𝐛h, 𝐛o ] were initialized to 0. 629 

Choice of sensory inputs into network. Our model receives delayed sensory feedback from the 630 

periphery composed of the angles and angular velocities of the joints as well as the muscle 631 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.17.387043doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.17.387043
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 
 

activities.  We think these are reasonable inputs into the network based on known properties of 632 

proprioceptors.  Activity of muscle spindles are known to signal muscle length and velocity 633 

(Cheney and Preston, 1976; Edin and Vallbo, 1990; Loeb, 1984), which could be used to form an 634 

estimate of joint angle and angular velocity (Scott and Loeb, 1994).  Activity of Golgi tendon 635 

organs signal muscle tension and correlate with muscle activity (Houk and Henneman, 1967; 636 

Nichols, 2017; Prochazka and Wand, 1980). 637 

Task descriptions. We trained the network to perform a posture perturbation task similar to our 638 

previous studies (Heming et al., 2019; Omrani et al., 2014; Pruszynski et al., 2014).  The 639 

network was required to keep the arm at a desired position while the limb was displaced by loads 640 

applied to the shoulder and elbow joints. Eight torques (of magnitude 0.2Nm) were used 641 

consisting of elbow flexion (EF), elbow extension (EE), shoulder flexion (SF), shoulder 642 

extension (SE), and the four multi-joint torques (SF+EF, SF+EE, SE+EF, SE+EE). Importantly 643 

the network did not receive any explicit information on the direction of the applied load and has 644 

to use the delayed sensory feedback to produce appropriate compensation.  645 

We also trained separate instances of the network to perform a delayed center-out reach 646 

task that required the network to hold the arm at a starting position for 500ms. Afterwards, a GO 647 

cue appeared signaling the network to move to the target within 500ms.  We had the network 648 

reach to 32 different targets spaced radially around the starting position with half of the targets 649 

located 2cm away from the starting position, and the remaining half were placed 5cm away from 650 

the starting position.  The network then had to hold at the reach target for the remainder of the 651 

trial (~500ms).  Note, for our simulations we used a fixed time delay (represented by the GO 652 

signal) for when the network should initiate a reach to decrease optimization time. Simulations 653 

with a variable delay yielded virtually the same results.  654 

Network optimization. For optimizing the networks, we defined the loss function (‘l’) over a 655 

given trial (i) as  656 

li = ∑ ‖𝐱t
i − 𝐱t

∗i‖
2

+ α‖𝐦t
i‖

2
+𝑇

𝑡=0 β‖𝐡t
i‖

2
+ γ‖𝐨t

i‖
2
 [5] 657 

Where 𝛼, 𝛽, 𝛾 are penalization weights. The first term of the loss function is the vector 658 

norm between the desired limb kinematic state (𝐱t
∗i) and the current limb kinematic state (𝐱t

i). 659 
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The second term penalizes the total muscle activity, and the third and fourth terms penalize high 660 

network activities for the first and second layers, respectively.  661 

In the posture perturbation task, the desired limb state was static irrespective of the 662 

direction of external torques, and the kinematic term considered the norm of the difference 663 

between the desired state of the arm and the actual state 1000ms after the time of load 664 

application.  In the reach task, the desired limb state was defined as the location of the reach 665 

target on that trial and the kinematic error was penalized 500ms after the GO cue was presented. 666 

Similar to the posture task, the muscle and network activities were penalized during the entire 667 

reach task. 668 

The network parameters were determined by minimizing the total cost ‘J’ from summing 669 

the individual trial loss functions across different movement types (i.e. the 9 load combinations 670 

in the posture task or 32 target locations in the reach task). 671 

J =  
1

2∙M∙𝑇
∑ liM

i=1  [6] 672 

We optimized the network by applying back-propagation through time (Werbos, 1990). 673 

This requires us to compute the cost-gradient ( 
𝜕𝐽

𝜕𝑊
 ) with respect to the adjustable network 674 

parameters 𝑾 = [𝑾𝑠ℎ , 𝑾ℎℎ, 𝑾ℎ𝑜 , 𝑾𝑜𝑜 , 𝑾𝑜𝑢, 𝒃ℎ, 𝒃𝑜 ]. Since, the total cost depends upon the 675 

kinematic state of the arm (𝒙𝑡), the optimization problem involves calculating the Jacobian of the 676 

arm dynamics ( 
𝜕𝒙𝑡

𝜕𝒖𝑡
 ) at each time-step, as presented in Stroeve, (1998). Our simulations were 677 

implemented in Python and PyTorch machine learning library (Paszke et al., 2017). Optimization 678 

was performed using the Adam algorithm (Kingma and Ba, 2017) and performed until the 679 

network generated successful limb trajectories and the error had decreased to a small, constant 680 

valuer (approx. 1e-4) for at least 500 epochs. For all the simulations, the hyper-parameters were 681 

fixed at 𝛼=1e-4/1e-3, 𝛽 = 1e-5/1e-6 and 𝛾 = 1e-5/1e-6; although comparable network solutions 682 

were obtained for a broad range of these hyper-parameter values. Note, in the posture task, 683 

during a delayed period before the application of any load, the muscle activities were penalized 684 

with a higher 𝛼 = 1e-2 to ensure that the muscles were not active by default at a higher baseline 685 

to counter-act the upcoming load. 686 
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Neural recordings. We analyzed neural activity from fronto-parietal areas when monkeys 687 

performed a posture perturbation task that had been previously collected (Chowdhury et al., 688 

2020; Heming et al., 2019; Omrani et al., 2014, 2016; Pruszynski et al., 2014).  Briefly, Monkeys 689 

P, A, X, Pu, and M had their arms placed in a robotic exoskeleton that restricted the animal’s 690 

movements to motion of the shoulder and elbow joints in a 2-d horizontal plane.  These animals 691 

performed almost the exact same posture perturbation task as the network. However, different 692 

load magnitudes were used for each monkey depending on their physical capabilities (Monkeys 693 

P, X =0.2Nm, A=0.4Nm, Pu=0.2Nm, M=0.34Nm). Also, for some recordings in Monkey P, X 694 

and M the load was removed 300ms after it was applied. Given that we were interested in the 695 

earliest feedback response, we included these recordings.  Data for Monkeys H and C were from 696 

Chowdhury et al., (2020) where the monkeys performed a similar task using a robotic 697 

manipulandum and where 2N forces were applied to the manipulandum that lasted 125ms 698 

(London and Miller, 2012). 699 

Monkeys H and C also performed a delayed center-out reaching task (Chowdhury et al., 700 

2020; London and Miller, 2012).  Goal targets were arranged radially around the starting position 701 

at a distance of 12.5cm.  For Monkeys H and C, eight and four different goal locations were 702 

used, respectively. After the delay period, the monkeys had to reach for the goal location within 703 

~2seconds for a successful reach. 704 

Single tungsten electrodes were used to record cortical activity from Monkeys P, A and X 705 

and floating micro-electrode arrays were used to record from Monkeys M, Pu, H and C.  Primary 706 

motor cortex activity was recorded from Monkeys P, A, X, Pu and M.  Premotor cortex activity 707 

was also recorded from Monkeys P and A, which were pooled with the primary motor cortex 708 

neurons.  Primary somatosensory area 1 (areas 3a and 1) and parietal area 5 were recorded from 709 

Monkey P. Primary somatosensory area 2 and parietal area 5 were recorded from Monkey A.  710 

Primary somatosensory area 2 was recorded from Monkeys H and C. 711 

Spike timestamps were convolved with a gaussian kernel with a standard deviation of 712 

30ms.  For displaying the single neuron responses only, timestamps were convolved with a half-713 

gaussian kernel (SD 30ms) that only estimated the instantaneous firing rate using spikes from the 714 

past.  This prevented the appearance during the posture perturbation task that changes in firing 715 

rates preceded the onset of the load.  716 
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Muscle recordings. Muscle activity was recorded percutaneously by inserting two single-717 

stranded wires into the muscle belly (Scott and Kalaska, 1997).  Stimulation was used to confirm 718 

the penetrated muscles.  We recorded from the main extensor and flexor muscles of the shoulder 719 

and elbow including triceps (lateral and long), biceps (long and short), deltoids (anterior, medial 720 

and posterior heads), brachioradialis, supraspinatus and pectoralis major.  From each monkey we 721 

recorded a subset of these muscles that included a mixture of flexor and extensor muscles for 722 

both the shoulder and elbow joints. 723 

 jPCA analysis.  We performed jPCA analysis on the neural network similar to Churchland et al., 724 

(2012) using code available at https://churchland.zuckermaninstitute.columbia.edu/content/code.  725 

We constructed matrices X that contained the activities of all neurons in the network for every 726 

time point and condition (i.e. load combinations or reach directions).  These matrices had NxCT 727 

dimensions, where N is the number of neurons in the network, C is the number of conditions, and 728 

T is the number of timepoints.  The mean signal across conditions was subtracted at each time 729 

point and activity was soft normalized by the activity range plus a small constant (5e-4). 730 

Principle components analysis (PCA) was applied to X and the top-6 principle 731 

components were used to reduce X to 𝑋𝑅𝑒𝑑 (6xCT dimensions).  We numerically calculated the 732 

derivative of 𝑋𝑅𝑒𝑑 yielding 𝑋̇𝑅𝑒𝑑, and fit a linear dynamical model which found a relationship 733 

between 𝑋𝑅𝑒𝑑 and 𝑋̇𝑅𝑒𝑑 734 

𝑋̇𝑅𝑒𝑑 = 𝑀𝑋𝑅𝑒𝑑  [7]  735 

Where M is a 6x6 weight matrix.  We assessed the model’s fit by calculating the coefficient of 736 

determination (𝑅2).  737 

With no constraint on M, any linear dynamical system could be captured by this equation 738 

including oscillators, point and line attractors, etc. We compared how an unconstrained M 739 

performed with a fit where we constrained M to be skew symmetric (𝑀𝑆𝑘𝑒𝑤).  This restricted the 740 

possible dynamical systems to systems with oscillatory dynamics. Skew-symmetric matrices 741 

have pairs of eigenvectors with eigenvalues that are complex conjugates of each other.  These 742 

eigenvector pairs were found from 𝑀𝑆𝑘𝑒𝑤 and the corresponding activity generated 2-743 

dimensional jPCA planes.  𝑀𝑆𝑘𝑒𝑤 generates 3 jPCA planes and the planes were ranked by their 744 
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eigenvalues (i.e. the speed of the rotational dynamics) from highest to lowest.  The amount of 745 

variance each plane captured of the original matrix X (VAF) was calculated and normalized by 746 

the total amount of variance in the original matrix X. 747 

 jPCA analysis was also applied to the kinematic feedback signals from the plant 748 

(normalization constant 0), the muscle activity produced by the network (0), the recorded neural 749 

activity (5sp/s) and the recorded EMG activity (0).  Since there are fewer kinematic and muscle 750 

signals than neural signals, we only examined activity in the top-two kinematic components, and 751 

the top-four muscle components.  For the posture task, jPCA analysis was applied for the first 752 

300ms after the load onset for the neural recordings.  For the network, jPCA analysis was applied 753 

from 70-370ms after the load onset to reflect the 50ms delay in sensory feedback processing.  754 

Similar results were obtained using 0-300ms epoch. For the reaching data, jPCA analysis was 755 

applied for the first 300ms after the start of movement.  756 

Tensor maximum entropy.  We tested our findings against the hypothesis that rotational 757 

dynamics are a byproduct of the tuning and smoothness properties of neurons.  We employed 758 

tensor maximum entropy to generate surrogate datasets (Elsayed and Cunningham, 2017) using 759 

code available at https://github.com/gamaleldin/TME.  This method generates surrogate data sets 760 

that preserve the covariances across neurons, conditions and time but not their interactions as 761 

required for rotational dynamics.  Surrogate data sets were then sampled from this distribution 762 

and the jPCA analysis was applied to each data set (1000 iterations).   763 

Down-sampling neuron activity. For the muscle and kinematics, assessing whether the observed 764 

rotational dynamics were significant or not was complicated by the fact that there were fewer 765 

muscle and kinematics signals.  Indeed, neural population dynamics deemed significant using 766 

TME were no longer significant after down sampling the neural population to match the number 767 

of kinematic and muscle samples.  Instead, we assessed whether the rotational dynamics in the 768 

muscle or kinematic signals were more dynamical than neural activity after correcting for the 769 

number of signals. We randomly sampled neurons from the neural population to match the 770 

number of muscles or kinematic signals and applied jPCA analysis to the resulting population 771 

activity. This was repeated 1000 times. 772 
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