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Abstract  

Background: 

Genome-wide maps of chromatin marks such as histone modifications and open chromatin sites provide 

valuable information for annotating the non-coding genome, including identifying regulatory elements. 

Computational approaches such as ChromHMM have been applied to discover and annotate chromatin 

states defined by combinatorial and spatial patterns of chromatin marks within the same cell type. An 

alternative ‘stacked modeling’ approach was previously suggested, where chromatin states are defined 

jointly from datasets of multiple cell types to produce a single universal genome annotation based on all 

datasets. Despite its potential benefits for applications that are not specific to one cell type, such an 

approach was previously applied only for small-scale specialized purposes. Large-scale applications of 

stacked modeling have previously posed scalability challenges. 

Results:  

Using a version of ChromHMM enhanced for large-scale applications, we applied the stacked modeling 

approach to produce a universal chromatin state annotation of the human genome using over 1000 

datasets from more than 100 cell types, with the learned model denoted as the full-stack model. The full-

stack model states show distinct enrichments for external genomic annotations, which we used in 

characterizing each state. Compared to per-cell-type annotations, the full-stack annotations directly 

differentiate constitutive from cell type specific activity and is more predictive of locations of external 

genomic annotations.   

Conclusions:  

The full-stack ChromHMM model provides a universal chromatin state annotation of the genome and a 

unified global view of over 1000 datasets. We expect this to be a useful resource that complements 

existing per-cell-type annotations for studying the non-coding human genome. 
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Introduction 

Genome-wide maps of histone modifications, histone variants and open chromatin provide 

valuable information for annotating the non-coding genome features, including various types of 

regulatory elements [1–5]. These maps -- produced by assays such as chromatin immunoprecipitation 

followed by high-throughput sequencing to map histone modifications or DNase-seq to map open 

chromatin-- can facilitate our understanding of regulatory elements and genetic variants that are 

associated with disease [6–12]. Efforts by large scale consortia as well as many individual labs have 

resulted in these maps for many different human cell and tissue types for multiple different chromatin 

marks [1,8,13–20]. 

The availability of maps for multiple different chromatin marks in the same cell type motivated 

the development of methods such as ChromHMM and Segway that learn ‘chromatin states’ based on the 

combinatorial and spatial patterns of marks in such data [21–23] These methods then annotate genomes in 

a per-cell-type manner based on the learned chromatin states. They have been applied to annotate more 

than a hundred diverse cell and tissue types [3,16,24]. Previously, large collections of per-cell-type 

chromatin state annotations have been generated using either (1) independent models that learn a different 

set of states in each cell type or (2) a single model that is learned across all cell types, resulting in a 

common set of states across cell types, yet generating per-cell-type annotations (in some cases per-tissue-

type annotations are generated, but we will use the terms cell-type and tissue interchangeably for ease of 

presentation). This latter approach is referred to as a ‘concatenated’ approach (Supp. Fig. 1) [22,25]. 

Variants of the concatenated approach attempt to use information from related cell types to reduce the 

effect of noise, but still output per-cell-type annotations [26,27]. These models that produce per-cell-type 

annotations tend to be most appropriate in studies where researchers are interested in studying individual 

cell types. 

A complementary approach to applying ChromHMM to data across multiple different cell types 

referred to as the ‘stacked’ modeling approach was also previously suggested (Supp. Fig. 1) [22,25]. 

Instead of learning per-cell-type annotations based on a limited number of datasets per-cell-type, the 
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stacked modeling approach learns a single universal genome annotation based on the combinatorial and 

spatial patterns in datasets from multiple marks across multiple cell types. This approach differs from the 

concatenated and independent modeling approaches as those approaches only identify combinatorial and 

spatial patterns present among datasets within one cell type.  

Such a universal annotation from stacked modeling provides potential complementary benefits to 

existing per-cell-type chromatin state annotations. First, since the model can learn patterns from signals 

from the same assay across cell types, a stacked model may help differentiate regions with constitutive 

chromatin activities from those with cell-type-specific activities. Previously, subsets of the genome 

assigned to individual chromatin states from ‘concatenated’ per-cell-type annotations were post-hoc 

clustered to analyze chromatin dynamics across cell and tissue types [3,16]. However, such an approach 

does not provide a view of the dynamics of all the data at once, which the stacked modeling provides. 

Second, the stacked modeling approach bypasses the need to pick a specific cell or tissue type when 

analyzing a single partitioning and annotation of the genome. Focusing on a single cell or tissue type may 

not be desirable for many analyses involving other data that are not inherently cell-type-specific, such as 

those involving conserved DNA sequence or genetic variants. For example, when studying the 

relationship between chromatin states and evolutionarily conserved sequences, if one uses per-cell-type 

chromatin state annotations from one cell type, many bases will lack an informative chromatin state 

assignment (e.g. many bases are in a quiescent state), while subsets of those bases will have a more 

informative annotation in other cell types. Third, if one tries to analyze per-cell-type annotations across 

cell types, one would need a post-hoc method to reason about an exponentially large number of possible 

combinations of chromatin states across cell types (if each of � cell types has � states, there are �� 

possible combinations of states for a genomic position) many of which would likely lack biologically 

meaningful distinctions. In contrast, for the stacked model, there will be a single annotation per position 

out of a possibly much smaller fixed number of states (compared to ��). These states are directly 

informative of cross-cell type activity, though the state definitions can be more complex. Finally, 
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annotations by the stacked modeling leverages a larger set of data for annotation, and thus has the 

potential to be able to identify genomic elements with greater sensitivity and specificity.  

Despite the potential complementary advantages of the ‘stacked’ modeling approach, it has only 

been applied on a limited scale to combine data from a small number of cell types for highly specialized 

purposes [28,29]. No large-scale application of the stacked modeling approach to many diverse cell and 

tissue types has been previously demonstrated. This may have in part been due to large-scale applications 

of stacked modeling raising scalability challenges not present in modeling approaches for per-cell-type 

annotations.  

Here, we present a large-scale application of the stacked modeling approach with more than a 

thousand human epigenomic datasets as input, using a version of ChromHMM for which we enhanced the 

scalability. We conduct various enrichment analyses on the states resulting from the stacked modeling 

and give biological interpretations to them. We show that compared to the per-cell-type annotations, the 

stacked model’s annotation shows greater correspondence to various external genomic annotations not 

used in the model learning. We analyze the states in terms of enrichment with different types of variation, 

and highlight specific states of the stacked model that are enriched with phenotypically associated genetic 

variants, cancer-associated somatic mutations, and structural variants. We expect the stacked model 

annotations and detailed characterization of the states that we provide will be a valuable resource for 

studying the epigenome and non-coding genome, complementing existing per-cell-type annotations. 
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Results 

Annotating the human genome into universal chromatin states 

We used the stacked modeling approach of ChromHMM to produce a universal chromatin state 

annotation of the genome based on data from over 100 cell and tissue types from the Roadmap 

Epigenomics and ENCODE projects (Fig. 1) [14,16]. In total we applied ChromHMM to 1032 datasets 

for 30 histone modifications, a histone variant (H2A.Z), and DNase I hypersensitivity (Supp. Fig. 2). The 

set of cell and tissue types were the same as those for which per-cell-type annotations were previously 

generated by applying the ‘concatenated’ modeling approach of ChromHMM [16,22,25]. We note that 

not all chromatin marks were profiled in all cell or tissue types, but the stacked modelling can still be 

applied directly. 

         We focused our analysis on a model with 100 states (Methods). The number of states is larger 

than typically used for models that generate per-cell-type annotations, which reflects the greater 

information available when defining states based on data from many cell types. This number of states was 

large enough to be able to capture some relatively cell-type-specific regulatory activity, while being small 

enough to give distinct biological interpretations to each state (Supp. Fig. 3). We denote the model’s 

output chromatin state annotation the ‘full-stack’ genome annotation.  

   

Major groups of full-stack states 

We characterized each state of the model by analyzing the model parameters (emission 

probabilities and transition probabilities) and state enrichments for other genome annotations (Fig.2, 3A, 

Supp. Fig. 4-7). The other genomic annotations include previous per-cell-type chromatin state 

annotations (Supp. Fig. 8-9), cell-type-specific gene expression data (Supp. Fig. 10-11), and various 

independent existing genomic annotations (Fig. 3A). These independent genomic annotations included 

annotated gene features, evolutionary constrained elements, and assembly gaps, among others (Methods). 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2021. ; https://doi.org/10.1101/2020.11.17.387134doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.17.387134
http://creativecommons.org/licenses/by/4.0/


 

 

These analyses led us to group the 100 full-stack states into 16 groups (Fig. 2A). One group 

includes states associated with assembly gaps (GapArtf1) and alignment artifacts (GapArtf2-3). Some 

other groups are associated with repressive or inactive states, including quiescent states (Quies1-5) (low 

emissions of all experiments, except possibly weak signals in H3K9me3), heterochromatin states 

associated with H3K9me3 (HET1-9), and polycomb repressed states associated with H3K27me3 

(ReprPC1-9). There is an acetylations group marked primarily by high emission of various acetylation 

marks profiled only in IMR90 or ESC derived cells, while having weaker signals for enhancer or 

promoter associated marks such as H3K4me1/2/3, H3K27ac, and H3K9ac (Acet1-8). We also identified 

active and weak candidate enhancers groups (EnhW1-8 and EnhA1-20, respectively) associated with 

H3K4me1, DNase, H2A.Z, and/or H3K27ac. Four groups are associated with transcriptional activities, 

including a group of transcribed enhancers (TxEnh1-8), two groups of weak or strong transcription 

(TxWk1-2, Tx1-8, respectively), and one group associated with exons and transcription (TxEx1-4). These 

transcriptional activities groups are associated with at least one of these marks: H3K36me3, H3K79me1, 

H3K79me2, and H4K20me1. Another group consists of two zinc finger (ZNF) gene states associated with 

H3K36me3 and H3K9me3 (ZNF1-2). A DNase group consists of one state (DNase1) with strong 

emission of only DNase I hypersensitivity in all profiled cell types.  Three groups are associated with 

promoter activities, marked by emission of some promoter marks such as H3K4me3, H3K4me2, and 

H3K9ac. One promoter group was of bivalent states associated with promoter marks and H3K27me3 

(BivProm1-4). The other two promoter groups were flanking promoter states (PromF1-7) and 

transcription start sites (TSS) states (TSS1-2) where the flanking promoter states also show emission of 

H3K4me1.  

Enrichments for external annotations supported these state groupings (Fig. 3A), as well as further 

distinctions or characterizations among states within each group. For example, the state GapArt1 had ~8 

fold enrichment for assembly gaps and contained 99.99% of all assembly gaps in hg19 (Fig. 3A). In 

previous concatenated models based on the Roadmap Epigenomics data [16], no specific state was 

associated with assembly gaps likely due to the limited number of input chromatin mark signals compared 
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to the number of states, leading to assembly gaps being incorporated in the general quiescent state.  The 

states in the zinc finger gene group, ZNF1-2, had 20.8 and 68.6 fold enrichment for zinc finger named 

genes, respectively (Fig. 3A). States in the Acet group had a lower average expression of proximal genes 

compared to states in the enhancer and promoter groups (Fig. 3C) while higher compared to ReprPC and 

HET groups. States in the transcription groups (TxEnh1-8, TxWk1-2, Tx1-8, TxEx1-4) were all at least 

2.1 fold enriched for annotated gene bodies; these gene bodies covered 88.8–97.5% of the states. These 

states are associated with higher expression of genes across different cell types, particularly when 

downstream of their TSS (Fig 3A, C, Supp. Fig. 10-11). Distinctions were seen among these states, for 

example, in terms of their positional enrichments relative to TES (Fig. 3A, D, Supp. Fig. 12). States in 

the flanking promoter group (PromF1-7) showed 6.5-28 fold enrichment for being within 2kb of 

annotated TSS, and genes whose TSS regions overlapped these states had higher average gene expression 

across different cell types (Fig. 3A, C, Supp. Fig. 10-11). These states differed among each other in their 

enrichments with upstream or downstream regions of the TSS (Fig. 3E, Supp. Fig. 12). The states in the 

transcription start site group (TSS1-2) had enrichment values that peaked at the TSS (>= 100 fold 

enrichment) (Fig. 3A, E). States in promoter-associated groups (TSS, PromF, BivProm), along with those 

in other groups, show various enriched gene-ontology (GO) terms based on genes overlapping or 

proximal to each state (Supp. Fig. 13, Supp. Data File 1, Methods). For example, among biological 

process terms, BivProm1 is most enriched for ‘embryonic organ morphogenesis’ genes, while TSS1 is 

most enriched for ‘nucleic acid metabolic process’, consistent with the bivalent [30] and the constitutively 

active nature of the two states, respectively. The DNase-specific state DNase1, showed distinct 

enrichment for CTCF-specific per-cell-type chromatin states defined in six cell types compared to other 

full-stack states [31] (Fig. 3F, Supp. Fig. 14). These CTCF-specific states have previously been 

suggested to be candidate insulators and may have other roles that CTCF has been implicated in such as 

demarcating TAD boundaries [32–35]. The DNase1 state may correspond to similar roles, particularly 

where the CTCF-binding is relatively stable across cell types.  
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Compared to other full-stack state groups, those associated with promoters (TSS, flanking 

promoters, bivalent promoters) and the DNase group showed lower average DNA methylation levels 

across cell types (Supp. Fig 15). Among promoter-associated states, those showing stronger enrichments 

with CpG Islands also show lowest methylation levels (Fig. 3A, Supp. Fig. 15), consistent with previous 

studies [36,37]. Some promoter-associated states (TSS1-2, PromF3-5, BivProm1-2) are most enriched at 

the center of binding regions of polycomb repressed complex 1 and 2 (PRC1 and and PRC2) sub-units. In 

addition, several ReprPC and BivProm states are among the most enriched states in windows surrounding 

binding regions of the EZH2 and SUZ12 subunits of PRC2, consistent with these states’ association with 

H3K27me3 (Supp. Fig. 16-17). A detailed characterization of all states in terms of associated chromatin 

marks, genomic elements and different associated per-cell-type chromatin states across cell groups can be 

found in Supplementary Data File 1-3. We expect it will serve as a resource for future applications 

using the full-stack annotations.  

We verified that enrichments computed based on hg19 were highly similar to those computed for 

full-stack annotations mapped to hg38 (average correlation 0.99; Methods, Supp. Fig. 18), ensuring the 

applicability of state annotations in hg38. We also confirmed that the full-stack annotations were 

generally more predictive of the positions of a variety of external genome annotations considered in Fig. 

3A than two sets of per-cell-type annotations, a previous 18-state per-cell-type chromatin state annotation 

based on concatenated models from 127 cell types [16] and 100-state per-cell-type annotations learned 

independently in each cell type (Methods). As expected, since the full-stack model uses more data 

representing more cell types, the full-stack annotations had greater predictive performance in most cases 

(Supp. Fig. 19-22, Supplementary Data 4). One of the exceptions to this was lambin B1 associated 

domains from Tig3 human lung fibroblasts [38], where six per-cell type annotations were more 

predictive, three of which are annotations for fibroblasts. We note that these evaluations were done under 

the assumption that a chromatin state annotation that is more predictive of well-established external 

genomic elements will also be more informative of less well-established classes of elements. These 

results suggest that the full-stack annotations will, in most cases, have greater information than any single 
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per-cell-type annotations about localization patterns of some target genomic elements, with likely 

exceptions when the target of interest is specific to a certain cell type. In such cases, the corresponding 

per-cell type chromatin state annotation may show better recovery.    

 
Stacked Model Differentiates Cell-Type-Specific from Constitutive Activity 

While the major groups of states outlined above can correspond to states from models producing 

per-cell-type annotations [3,16], the full-stack states provide additional information. For example, the 

states can differentiate cell-type-specific from constitutive activities. This cell type specificity in the full-

stack states is reflected in the emission parameters of cell types from different tissue groups (Fig. 2B,C, 

Supp. Data. File 1) and the overlap of per-cell-type chromatin state annotations from different cell types 

[39]  (Supp. Figure 8-9, Supp. Data 3).  

Consistent with previous findings that enhancers tend to be relatively cell-type-specific while 

promoters tend to be shared across cell types [3,40], enhancer states exhibited clearer cell-type-specific 

associations than those of the promoter states (Figure 2C, Supplementary Data. File 1,3). On 

average, states of enhancer and weak enhancer groups (EnhW1-8, EnhA1-20) show at least two-fold 

higher coefficients of variations, in terms of emission probabilities for various marks, compared to states 

in the TSS, flanking and bivalent promoter groups (Supp. Fig. 23). The enhancer states differed among 

each other in their associations with different cell/tissue types such as brain (EnhA6), blood (EnhA7-9 

and EnhWk6), digestive tissue (EnhA14-15), and embryonic stem cells (EnhA18) (Fig. 1-2, Supp. Fig. 

24-25). These differences in cell-type-specific activities are also associated with different gene expression 

levels of overlapping genes with the states. For example, some blood enhancer states (EnhA8, EnhA9, 

EnhWk6) overlapped genes with higher average gene expression in cell types of the blood group, while 

some enhancer states specific to digestive group or liver tissues (EnhA14, EnhA15) showed higher gene 

expression in the corresponding cell or tissue types (Fig. 3C, Supp. Fig. 10).  

Other groups of states besides enhancers also had individual states with cell-type-specific 

differences. For example, four of the nine states in the heterochromatin group show higher emission 
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probabilities of H3K9me3 in only subsets of cell types (states HET1-2 with IMR90 and Epithelial cells; 

state HET4 with adipose, mesench, neurospheres, ESC, HSC&B-cells). Additionally, state HET9 showed 

strong association as heterochromatin in ESC/iPSC groups, while being mostly quiescent in other cell 

types based on per-cell-type annotations (Fig. 2C, Supp. Fig. 26, Supplementary Data File 1,3). State 

PromF5 is associated with putative bivalent promoter chromatin states in some blood and ESC-related 

cell types, but with flanking promoter states in most other cell types (Supp. Fig. 27, Supplementary 

Data 1,3). In addition, some quiescent states (Quies1-2, Quies4-5) show weak signals of H3K9me3 in 

specific groups of cell types (Supplementary Data File 1). States in the polycomb repressed and bivalent 

promoter groups (ReprPC1-9, BivProm1-4) also show differences in signals across cell groups, such as 

state ReprPC9, which showed H3K27me3 signals in only ESC/iPSC cell types (Supplementary Data). 

The ability of the stacked modeling approach to explicitly annotate both cell-type-specific and 

constitutive patterns for diverse classes of chromatin states highlights a complementary advantage of this 

approach relative to approaches that provide per-cell-type annotations.  

 
  

Full-stack states show distinct enrichments for repeat elements 

As the full-stack model showed greater predictive power for repeat elements than cell-type-

specific models (Supp. Fig. 19-21), we next analyzed which states contributed most to this power. The 

full-stack state enrichments for bases in repeat elements ranged from 10-fold depletion to 2-fold 

enrichment (Fig. 3A). The top ten states most enriched with repeat elements were chromatin states 

associated with H3K9me3 marks and in the heterochromatin, artifact, quiescent, or ZNF genes groups 

(Fig. 4A-B). Repeats being consistently enriched in H3K9me3-marked states is a natural mechanisms of 

cells to reduce the repeats’ risks to genome integrity, since H3K9me3 is characteristic of tightly-packed 

DNA (heterochromatin) that is physically inaccessible [41]. We also observed that individual full-stack 

states had distinct enrichments for different repeat classes (Fig. 4C, Supp. Fig. 28). For example, Acet1, 

a state associated with various acetylation marks and H3K9me3 had a 23-fold enrichment for simple 
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repeats largely driven by (CA)n and (TG)n repeats which were 72 and 76 fold enriched and comprised 

74% of all simple repeats in this state (Supp. Fig. 28). As (CA)n and (TG)n repeats are known to be 

highly polymorphic in humans [42], this suggests the possibility that signal detected in these regions may 

in part be due to technical issues related to deviations from the reference genome. The two states in the 

artifact group, GapArtf2-3, had a particularly high enrichment for satellite (181 and 145 fold, 

respectively) and rRNA repeat classes (75 and 580 fold, respectively) (Fig. 4C, Supp. Fig. 28), likely 

associated with sequence mapping artifacts. States in the transcription start site group, TSS1-2, were most 

strongly enriched with low complexity repeat class (10.5-18 fold) and most notably GC rich repeats (195-

303 fold), consistent with these states being most enriched for windows of high GC content (Supp. Fig. 

28). Moreover, the TSS1-2 states are also most enriched with tRNA class (50-61 fold) (Supp. Fig. 28), 

consistent with tRNAs being short genes [43].  

We also saw specific states associated with the largest repeat classes of the genome, SINEs, 

LINEs, and LTRs. SINE repeats were most enriched in state Tx5 (3.7 fold) (Fig. 5C), which had high 

emission of H3K36me3 (Fig. 2A-B, Supp. Fig. 4-5), consistent with previous studies showing that SINEs 

are more enriched in gene-rich regions and in transcription-related states based on per-cell-type 

annotations [21,44,45]. In contrast, LINEs are depleted in most transcription-related states, reflecting the 

negative selection against long-sequence insertions in or near genes [44]. LINEs are most enriched in 

state HET3 (3.4 folds) (Supp. Fig. 28), and a notable property of this state is it does not show signals of 

H3K27me3 and acetylation marks across cell/tissue types. This property of HET3 is a pattern that would 

be difficult to recognize without stacked-modeling, and was only shared with HET4 and HET9 among 

states in the heterochromatin group. HET4 was also the second most enriched state in the heterochromatin 

group for LTRs (2.0-fold) while HET9 was not enriched, but is distinct in that it identifies regions where 

H3K9me3 is relatively specific to cell types in the embryonic and iPSC groups. LTRs are most enriched 

in state HET5 (4.7 fold), and this state is marked by its highest signals of H3K9me3 compared to other 

states in the heterochromatin group (Fig. 4C, Supp. Fig. 28). LTRs showing strong enrichment with 

states associated with strong presence of H3K9me3 is consistent with per-cell-type chromatin state 
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analyses [21,45]. We also confirmed that the increased predictive power of the full-stack model over per-

cell-type annotations, which was previously seen for repeat elements overall, also held for most of the 

individual repeat classes (Supp. Fig. 29). Overall, results of enrichment of full-stack state annotations for 

repeat classes offer further details in stratifying the states’ characteristics, and concurrently confirm and 

refine existing knowledge about different repeat classes chromatin state associations.  

  

Full-stack states show distinct enrichments for constrained elements and conservation states 

Sequence constrained elements are another class of genomic elements that are not cell-type-specific and 

for which the full-stack annotations showed greater predictive power than per-cell-type annotations 

(Supp. Fig. 19-21). We next sought to better understand the relationship between full-stack states and 

sequence conservation annotations. We observed 10 states that had at least a 3.4 fold enrichment for 

PhastCons elements (Fig. 4A). These states were associated with the TSSs or being proximal to them 

(TSS1-2 and PromF4-5), transcription with strong H3K36me3 signals (TxEx2 and TxEnh4), or enhancers 

associated with mesenchymal, muscle, heart, neurosph, adipose (EnhA2) (Fig. 4A-B). In contrast, seven 

states (HET3-4,6-7,9, Quies4, Gap Artf2) were more than two-fold depleted for PhastCons elements, 

which all had more than a 1.5 fold enrichment for repeat elements (Fig. 4A). 

To gain a more refined understanding of the relationship between the full-stack chromatin states 

and conservation, we analyzed their enrichment using 100 previously defined conservation states by the 

ConsHMM method [46]. These conservation states were defined based on the patterns of other species’ 

genomes aligning to or matching the human reference genome within a 100-way vertebrate alignment. 

We observed 29 different conservation states maximally enriched for at least one full-stack state (Fig. 3B, 

Supp. Fig. 30-31).  

These states included, for example, ConsHMM state 1, a conservation state corresponding to 

bases aligning and matching through all vertebrates and hence most associated with constraint. 

ConsHMM state 1 had >= 10 fold enrichment for exon associated full-stack states TxEx1-4 and TxEnh4 

(Supp. Fig. 30). Another ConsHMM state, state 28, which is associated with moderate aligning and 
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matching through many vertebrates and strongly enriched around TSS and CpG islands, had a 44.5 and 

47.8 fold enrichment for TSS-associated full-stack states TSS1 and TSS2, respectively (Supp. Fig. 30). 

Additionally, this conservation state is consistently the most enriched conservation state for full-stack 

states associated with flanking and bivalent promoters (Fig. 3B, Supp. Fig. 30). ConsHMM state 2, 

which has high aligning and matching frequencies for most mammals and a subset of non-mammalian 

vertebrates and previously associated with conserved enhancer regions [46], showed >2.7 fold enrichment 

for some full-stack enhancer states for Brain (EnhWk4 and EnhA6), ESC & iPSC (EnhA17,19 and 

EnhWk8), neurosph (EnhWk4, EnhA2,17), and mesenchymal, muscle, heart, adipose (EnhA2) (Fig. 3B, 

Supp. Fig. 30). ConsHMM state 100, a conservation state associated with alignment artifacts, was 10.9 

fold and 2.1 fold enriched for full-stack state ZNF2 and ZNF1, respectively (Fig. 3A-B, Supp. Fig. 30). 

This is consistent with previous analysis using per-cell-type annotations showing that ConsHMM state 

100 was most enriched in a ZNF gene-associated chromatin state [46]. State znf2 also showed a 5.4-fold 

enrichment for ConsHMM state 1 which contrasts with state znf1, which showed a 0.8 fold enrichment 

for ConsHMM state 1. This difference is consistent with the znf2 state’s larger fold enrichment for coding 

exons than znf1 (10.4 vs 1.1). The znf2 state also had a greater fold enrichment for ZNF named genes in 

general (68.6 vs. 20.8 fold), with those enrichment stronger and the difference greater when restricting to 

C2H2 annotated genes (86.8 vs. 25.1 fold) (Fig. 3A-B, Supp. Fig 51). Therefore, the full-stack annotation 

helped distinguish two ZNF-gene associated states, which are associated with distinct conservation states. 

As this example illustrates, the full-stack annotation captured conservation state enrichments that were 

generally consistent with those seen in per-cell-type annotations, but could also identify additional refined 

enrichment patterns. 

  

Specific full-stack states show distinct enrichments and depletions for structural variants 

We also analyzed the enrichment of the full-stack states for overlap with structural variants (SVs) mapped 

in 17,795 deeply sequenced human genomes [47], and focused on the two largest classes of SVs, 

deletions and duplications. Abel et al., 2020 [47] analysed the enrichments of these deletions and 
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duplications with per-cell-type chromatin states in 127 reference epigenomes [16], and observed that ZNF 

gene and heterochromatin states were enriched for deletions and duplications, with the enrichments being 

stronger in regions annotated as these states (ZNF or heterochromatin) in larger number of cell or tissue 

types (e.g. more constitutive HET/ZNF regions). 

Consistent with those previous results, using the full-stack model, we observed that of the 13 

states that were in the top 10 maximally enriched states with either deletions or duplications (1.18 fold or 

greater), seven were in the heterochromatin group (HET1-2,4-7,9) and one was the ZNF2 state (Fig. 5A, 

Supp. Fig. 32). The enrichment of structural variation in HET states is consistent with the notion that 

potentially larger effect structural variants would less likely experience negative selection in these regions 

of the genome. As the ZNF2 state is most enriched for a conservation state associated with putative 

alignment artifacts this raises the possibility that technical issues may be contributing to the SV 

enrichments (Supp. Fig. 30). The other five states included two artifact states (GapArtf2-3) and three 

quiescent states (Quies1-2,4) (Fig. 5A). The quiescent states Quies1-2,4, despite the generally low 

frequencies for all marks, did have higher emission probabilities for H3K9me3 compared to other 

chromatin marks (Fig. 5B).  

The full-stack model was also more predictive of SV than per-cell-type annotations (Supp. Fig. 

33-34, Supplementary Data 4). Additionally, we verified that the full-stack model had higher AUROC 

in predicting duplications and deletions compared to annotations obtained by ranking genomic bases 

based on the number of cell or tissue types that a state was observed, as in the approach of [47] (Methods, 

Supp. Fig. 35). These results show that the full-stack annotation can uncover enrichment patterns with 

SVs that are consistent with per-cell-type annotations, yet highlight states with greater predictive power 

and offer a more refined chromatin annotation of the regions enriched with SVs.   

  

Full-stack states gives insights into bases prioritized by different variant prioritization scores 

Various scores have been proposed to prioritize deleterious variants in non-coding regions of the 

genome or genome-wide. These scores are based on either conservation or on integrating diverse sets of 
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genomic annotations. Though the scores all serve to prioritize variants, they can vary substantially from 

each other and it is often not clear the differences among the types of bases that different scores prioritize. 

To better understand the epigenomic contexts of bases that each score tends to prioritize, we analyzed the 

full-stack state enrichment for bases they prioritize. As the scores we considered are not specific to a 

single cell type, the full-stack states have the potential to be more informative for this analysis than per-

cell-type annotations. We considered a set of 14 different variant prioritization scores that were 

previously analyzed in the context of conservation state analysis [46]. The 14 scores for which we 

analyzed prioritized variants  in non-coding regions were CADD(v1.4), CDTS, DANN, Eigen, Eigen-PC, 

FATHMM-XF, FIRE, fitCons, FunSeq2, GERP++, LINSIGHT, PhastCons, PhyloP, and REMM [48–61]. 

For each of these scores, we first analyzed the full-stack state enrichments for the top 1% prioritized non-

coding variants relative to the background of non-coding regions on the genome (Methods). 

In the top 1% prioritized non-coding bases, 19 states were among the top five most enriched 

states ranked by at least one of the 14 scores (Fig. 5C, Supp. Fig. 36-37). These 19 states include nine 

states in promoter-associated groups, five states in enhancers-related groups, three states in the exon-

associated transcription group, one polycomb repressed state, and one DNase state (Fig. 5C). Seven 

scores (DANN, Eigen, Eigen_PC, funSeq2, CDTS, CADD and REMM) had their top five enriched states 

exclusively associated with promoter and TSS states, with enrichments ranging between 8.6 and 70 fold 

(PromF2-5, TSS1-2, BivProm1-2,4) (Fig. 5C). In contrast, the fitCons score showed depletions for three 

of these states and relatively weaker enrichment for the others. This difference might be related to 

fitCons’ approach of prioritizing bases showing depletion of human genetic polymorphisms, potentially 

without sufficiently accounting for the increased mutation rates in regions with high CpG content that are 

observed in promoter-associated states (Supp. Fig. 42) [62]. FIRE’s prioritized variants showed 

depletions in the bivalent promoter states (BivProm) and PromF5, which have generally lower average 

gene expression across cell types (Fig. 3C). This depletion is reflective of the fact that FIRE was trained 

to prioritize variants in cis-expression quantitative trait loci (cis-eQTLs) in one cell type (LCL) [54], and 

few eQTLs are expected to be proximal to genes with limited or no expression in that cell type. Enhancer 
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states EnhA2-3,17 were among the states in the top five most enriched for FATHMM, GERP++, 

LINSIGHT, PhastCons, and PhyloP prioritized non-coding variants. In contrast, FIRE, DANN and CDTS 

were depleted for prioritized variants in all these enhancer states (Fig. 5C). FIRE and fitCons showed 

strong enrichment for exon states (TxEx1-3), which are associated with coding regions, even though 

coding bases were excluded in this analysis (Fig. 5C). FATHMM had the greatest relative enrichment for 

the primary DNase state associated with CTCF cell type-specific chromatin states (DNase1) (~10 fold), 

and was the only score for which this state was among the top five most enriched states (Fig. 5C, Supp. 

Fig. 36). 

We conducted similar analyses based on top 5% and 10% prioritized non-coding variants and 

observed relatively similar patterns of enrichments, though there did exist some differences at these 

thresholds (Supp. Fig. 36, 38-39). One difference was that alignment artifact states GapArtf2-3 were 

among the top two most enriched states with top non-coding bases prioritized by FATHMM-XF, while a 

number of other scores showed depletions with these states (Supp. Fig. 36). In addition, we analyzed top 

1%, 5%, and 10% prioritized variants genome-wide from 12 of the scores (Methods) (Supp. Fig. 37-40). 

Compared to the non-coding analysis, we saw a majority scores that have exon-associated transcription 

states (TxEx1-TxEx4) among the top five enriched states with top 1% variants genome-wide, while we 

saw no enhancer state among the top five enriched states with top 1% variants by any score and only one 

enhancer state among the top five by one score (GERP++) for top 5% and 10% variants.   

Overall, this analysis shows that the scores tend to prioritize bases in different epigenetic 

contexts. As these scores vary in the genomic features selected as input, and the predictive model for 

scoring bases, it is expected that different methods may show higher scores for in different classes of 

genomic contexts. By analyzing the state enrichments, one can gain some expectations for what types of 

evaluation criteria different scores might perform better, but we note that this analysis is not trying to 

directly conclude one method is preferred. Also, while in general it is difficult to conclude confidently 

what enrichments are due to technical or biological biases, by comparing enrichments across scores and 

considering what else is known about the states, one can still gain insights into this. For example, the 
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inconsistent enrichments of different methods for prioritized variants in GapArtf2-3 states (Supp. Fig. 

36), along with these states’ association with sequencing artifacts, is suggestive of technical biases. 

Similarly, DANN’s top 1% non-coding bases showing enrichments in five heterochromatin states, while 

not showing any enrichments in enhancer states, and no other scores showing enrichments in 

heterochromatin states, is also suggestive of technical biases (Supp. Fig. 37).  

We verified that the full-stack annotation showed the highest AUROC in recovering the top 1% 

non-coding variants compared to all 18-state per-cell-type annotations from a concatenated model for all 

14 scores (Supp. Fig. 33). Compared to all 100-state per-cell-type annotations from independent models, 

the full-stack model showed the highest AUROC for 13 out of 14 scores in all 127 cell types (Supp. Fig. 

33).  

 
Full-stack states show distinct enrichments and depletions for human genetic variation 

We next analyzed full-stack states for their enrichment with human genetic sequence variation. 

We calculated enrichments of full-stack states with genetic variants sequenced in 15,708 genomes from 

unrelated individuals in the GNOMAD database stratified by minor allele frequencies (MAFs) [62]. 

Across eleven ranges of MAFs, the state enrichments ranged from a 2-fold enrichment to a 4-fold 

depletion (Supp. Fig. 42). As expected, the state associated with assembly gaps (GapArtf1) is most 

depleted with variants, regardless of the MAF range. At the other extreme, state Acet1, which is 

associated with simple repeats, is the most enriched state with variants for all ten minor allele frequency 

(MAF) ranges that are greater than 0.0001, with fold enrichments between 1.8 and 2.0 (Supp. Fig. 42). 

We verified that the high enrichment for state Acet1 was not specific to GNOMAD’s calling of variants 

as it had a 2.0 fold enriched with common variants from dbSNP (Methods) (Supp. Fig. 42). TSS and 

promoters associated states, PromF4 and TSS1-2, were maximally enriched for variants in the lowest 

range of MAF (0 < MAF <= 0.0001), 1.5-1.7 fold. The enrichment of variants for these states decreased 

as the MAF ranges increased, falling to 0.8-1.2 fold for variants of the highest range of MAF (0.4-0.5) 

(Supp. Fig. 42). The high enrichment for states PromF4 and TSS1-2 for rare variants, despite their being 
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the most enriched states with PhastCons conserved elements, can be explained by these states’ high 

enrichment of CpG dinucleotides, which are associated with higher mutation rates (Fig. 3A, Supp. Fig. 

42) [62]. At the same time, purifying selection can have a weaker effect on large-effect rare variants than 

on large-effect common variants. We also observed the pattern of decreasing enrichments for variants 

with increasing MAF in other states associated with transcriptional activities, enhancers, DNase, or 

promoters (Supp. Fig. 42). This pattern was not observed in most states from other groups such as 

heterochromatin, polycomb repressed, quiescent, and acetylations only (Supp. Fig. 42).  

To better identify states with a depletion of common variants that are more likely due to selection, 

we ranked states based on their ratios of enrichments for the rarest variants (MAF < 0.0001) relative to 

the most common variants (MAF 0.4-0.5) (Fig. 5D). The states with the highest ratio included a number 

of flanking promoter (PromF3-4) and exon-transcription states (TxEx1,2,4) that were also associated with 

strong sequence conservation across species (Fig. 3B, Fig. 5D). These results are consistent with previous 

analyses supporting a depletion of common human genetic variation in evolutionary conserved regions 

(Lindblad-Toh et al., 2011). States associated with assembly gaps and alignment artifacts (GapArtf1-3), 

quiescent (Quies3), or acetylations and simple repeats (Acet1) were most depleted for rare variants 

relative to the common variant enrichment (Fig. 5D).  

 
Full-stack states show enrichment for phenotype-associated genetic variants 

We next analyzed the relationship between the full-stack states and phenotypic associated genetic 

variants. We first evaluated the enrichment of the full-stack state for variants curated into the Genome-

wide Association Study (GWAS) catalog relative to a background of common variation [63]  (Methods). 

This revealed six states with at least a two-fold enrichment (Supp. Fig. 43). Four of these states, TxEx1-

2,4 and TxEnh4, were all transcription associated states that are >= 10-fold enriched with coding 

sequences and >=11 fold for ConsHMM state 1, associated with the most constraint in a sequence 

alignment of 100 vertebrates (Fig. 3B). This observation is consistent with previous results that GWAS 

catalog variants show enrichments for coding sequence and sequence constrained bases [46,64,65]. The 
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other two states with greater than two-fold enrichment for GWAS catalog variants relative to common 

variants were two promoter states, PromF2-3 (Supp. Fig. 43). On the other hand, four states were more 

than two-fold depleted for GWAS catalog variants, and were associated with artifacts (GapArtf2-3), or 

quiescent and polycomb repressed states with weak signals of H3K9me3 (Quies5) or H3K27me3 

(ReprPC8) (Supp. Fig. 43). Both Quies5 and ReprPC8 are highly specific to chrX, 18.3 and 19.1 fold 

enriched respectively (Supp. Fig. 43). 

We also analyzed the full-stack state enrichments for fine-mapped variants previously generated 

from a large collection of GWAS studies from the UK Biobank database and other public databases [66]. 

Specifically, we considered separately the fine mapped variants from two fine-mapping methods, 

CAVIAR [67] and FINEMAP [68], for 3052 traits. For each method and trait, we identified the single 

variants that had the greatest probability of being causal at a set of distinct loci, and computed the 

enrichment of these variants for the full-stack states relative to a background of common variants 

(Methods).  

Fold enrichment results of full-stack states for the most likely causal variants were highly 

consistent between fine-mapping methods (FINEMAP and CAVIAR) (Supp. Fig. 44). The ten states 

maximally enriched with fine-mapped variants relative to common variants, which were the same states 

by both methods, included five states associated with flanking and bivalent promoter activities (PromF2-

5, BivProm4), an enhancer state in blood and thymus (EnhA9) and an enhancer state in most other cell 

types except blood (EnhA1), and three highly conserved transcription-associated states (TxEnh4,6, 

TxEx4) (Fig. 5E). Notably, five of 10 states maximally enriched with fine-mapped variants, PromF2-5, 

and BivProm4, were associated with promoter regions and also among the 19 states most enriched with 

top 1% prioritized variants by at least two of the 14 different variant prioritization scores (Fig. 5E, C). 

These results show that there are agreements in the types of chromatin states preferentially overlapped by 

phenotype-associated fine mapped variants and variants predicted to have greater effects based on variant 

prioritization scores.  We also confirmed that the full-stack model consistently resulted in higher AUROC 
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in predicting locations of fine-mapped variants within a background of common variants, compared to the 

per-cell-type annotations in all cell types (Supp. Fig. 45-46). 

  

Full-stack states show enrichments for cancer-associated variants 

In addition to investigating germline variants, we also investigated the enrichment of full-stack 

states for somatic variants identified from whole genome sequencing of cancer samples. We analyzed 

data of variants from four cancer types that have the largest number of somatic variants in the COSMIC 

database [69]: liver, breast, pancreas and haematopoietic_and_lymphoid_tissue (Methods). Sixteen states 

were among the top 10 most enriched with at least one type of cancer’s associated variants (1.2-1.4 fold in 

breast cancer, 1.2-5.6 fold in lymphoid cancer, 1.2-5.4 in liver cancer, 1.4-4.2 in pancreas cancer) (Fig. 

5F). Among these 16 states, 15 states showed higher signals of H3K9me3 compared to most other 

chromatin marks, including seven states in heterochromatin group (HET1-2, 4-7,9), four states in 

quiescent group with weak emissions of H3K9me3 (Ques1-2,4-5), one state in the polycomb repressed 

group with weak signals of H3K9me3 and H3K27me3 (ReprPC8), one state in the acetylation group with 

signals of H3K9me3 and various acetylation marks (Acet1), two artifact-associated states with higher 

signals of H3K9me3 and DNase relative to other marks (GapArtf2-3) (Fig. 5G). This pattern of 

H3K9me3-associated states being enriched with somatic mutations in cancer is previously confirmed in 

multiple studies where H3K9me3 and other repressive epigenetic features showed positive association 

with mutation density across different types of cancer cells [70–72]. One possible explanation for this 

association is the more limited access of DNA mismatch repair machinery in these regions due to the 

tightly packed nature of the genome in heterochromatin [73,74]. Notably, the GapArtf2-3 states,  which 

had strong satellite repeats enrichments (Fig. 4C, Supp. Fig. 28) were the top two most enriched states 

with somatic variants associated with liver, pancreas and haematopoietic and lymphoid tissue (haem-

lymphoid) cancers (2.0-5.6 folds enriched) (Fig. 5F, Supp. Fig. 47). We suspect that the enrichments in 

these putative alignment artifact states are driven at least in part by false variant calls due to sequence 

mapping errors associated with these regions. Similarly, enrichments of somatic mutations in haem-
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lymphoid cancer in state Acet1 is also suggestive of the possibility of false calls given this state’s 

combination of H3K9me3 and acetylation signal and enrichment for simple repeats (Fig. 2, 4C, Supp. 

Fig. 42). We note that the presence of cancer variants is better recovered by full-stack annotation as 

compared to the per-cell-type chromatin state annotations for all four cancer types (Supp. Fig. 40-41).   

 
Discussion 

We demonstrated a large-scale application of the stacked modeling approach of ChromHMM 

using over a thousand epigenomic datasets to annotate the human genome. In the datasets, 32 chromatin 

marks and 127 reference epigenomes were represented. We note that even though not every chromatin 

mark was profiled in every reference epigenome, we were still able to directly apply the stacked modeling 

to such data. Previously, concatenated models were applied to observed and imputed data [39], however, 

we chose not to use imputed data as input to the full-stack model since imputed data would still be based 

on the same observed input data used in stacked-modeling. We conducted extensive enrichment analyses 

of the states with various other genomic annotations and datasets, including gene features, genetic 

variation, repetitive elements, comparative genomic annotations, and bases prioritized by different variant 

prioritization scores. These analyses highlighted diverse enrichment patterns of the states. Using these 

enrichments along with the model parameters, we provided a detailed characterization of each of the 100 

states in the model. 

We grouped these 100 states into 16 groups that included promoters, enhancers, transcribed 

regions, polycomb repressed regions, zinc finger genes among others. We also highlighted important 

distinctions among states within the groups. In many cases, identifying these distinctions was enabled by 

the full-stack modeling using data from multiple cell types for genome annotation. For example, we 

identified enhancer and repressive states that were active in different subsets of cell types. We also 

highlighted how different states in some of the groups such as those associated with transcribed and ZNF 

genes showed distinct enrichments for conservation states. Overall, the full-stack model showed 

enrichment patterns supporting observations held for per-cell-type annotations, yet it provided more 
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detailed stratification of genomic regions into chromatin states with heterogeneous associations with other 

genomic information. We provide extensive characterizations of full-stack states in Supplementary Data 

Files 1-5 that will be resources in future applications of the full-stack annotations. 

The full-stack modeling has advantages to commonly used per-cell-type chromatin state 

annotations in several respects. First, the full-stack model learns patterns of signals of the same or 

different assays across cell types, hence can provide a unified view of all the data and directly uncover 

states that correspond to constitutive or cell-type-specific activities. For example, a state from the model, 

HET9, was associated with only the mark H3K9me3 specifically in ESCs and iPSCs even though this 

mark is typically associated with constitutive repression. Second, the full-stack annotation consistently 

showed better recovery of various genomic features compared to per-cell-type annotations. This 

improvement is expected since full-stack models can leverage information from multiple cell types for 

genome annotations. Third, in cases where it is not desirable to focus on only one specific cell or tissue 

for analysis, the full-stack modeling can bypass the need to pick one such cell or tissue type or to consider 

a large number of different per-cell-type chromatin state annotations simultaneously. Such cases may 

arise when studying other genomic information that is not inherently cell-type-specific such as genome 

variation and sequence conservation. 

Despite these advantages, there are trade-offs in using the stacked modeling approach, and we 

emphasize that the stacked modeling approach should be considered a complement to and not a 

replacement of the per-cell-type annotations. Compared to typical concatenated models, the full-stack 

model has increased model complexity because of the increased number of parameters from the larger 

number of states and input features, which can make interpreting some model states relatively more 

difficult. Additionally, if one is interested in a specific cell type, then corresponding per-cell-type 

annotations can have advantages in that all the annotations are directly informative about the chromatin 

state in the cell type of interest. An additional trade-off is that with the stacked model, it is not possible to 

incorporate additional data without relearning a model, while for a concatenated-model one can annotate 

a new cell based on an existing model, provided that the set of marks in the new cell type are the same as 
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the existing model. We also note that post-hoc per-cell-type state annotations can also be used for cross-

cell type analyses, particularly on a per-state basis by analyzing the frequency of a specific state across 

cell types. While per-state analyses using per-cell-type concatenated annotations can be relatively 

straightforward and informative, they give only partial and potentially oversimplified views of all the 

data, ignoring distinctions among different per-cell-type states. Whether to use per-cell-type annotations 

or full-stack annotations will depend on the specific application. Per-cell-type annotations may be 

preferable when one is interested in studying a specific cell type, while full-stack annotations can be 

preferred in joint analyses of multiple cell types.  

We expect many applications of the full-stack annotations that we generated here and they have 

already begun to be applied in other work [75–77], which we expect to further elucidate the biological 

significance of different states. The full-stack annotation can be used as a resource to interpret genetic 

variation. A possible avenue for future work is to incorporate the full-stack annotation into scoring 

methods to better predict genetic variants’ phenotypic influences. Given the increasing availability of 

epigenomic datasets [18], future work could also learn new stack-models to incorporate such data. The 

state characterizations (Supplementary Data File 1-5) and analyses introduced through this work will be 

useful in interpreting biological implications of new models’ states. Future work can also include training 

and deriving the full-stack annotations for key model organisms such as mice. This work provides a new 

annotation resource for studying the human genome, non-coding genetic variants, and their association 

with diseases.  
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Figure 1: Illustration of full-stack modeling annotations. The figure illustrates the full-stack modeling 

at two loci. The top track shows chromatin state annotations from the full-stack modeling colored based 

on the legend at right. Below it are signal tracks for a subset of the 1032 input datasets. Data from seven 

(DNase I hypersensitivity, H3K27me3, H3K36me3, H3K4me1, H3K4me2, H3K4me3, and H3K9me3) of 

the 32 chromatin marks are shown, colored based on the legend at right. These data are from 15 of the 

127 reference epigenomes each representing different cell and tissue groups. The loci on left highlights a 

genomic region for which a portion is annotated as constitutive promoter states (TSS1-2). The loci on the 

right panel highlights a region for which a portion is annotated as a brain enhancer state (EnhA6), which 

has high signals of H3K27ac in reference epigenomes of the group Brain. Per-cell-type concatenated 

model annotations for these loci from these and additional reference epigenomes can be found in Supp. 

Fig. 24. 
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Figure 2: Full-stack state emission parameters. (A) Each of the 100 rows in the heatmap corresponds 

to a full-stack state. Each of the 1032 columns corresponds to one experiment. For each state and each 

experiment, the heatmap gives the probability within the state of observing a binary present call for the 

experiment’s signal. Above the heatmap there are two rows, one indicating the cell or tissue type of the 

experiment and the other indicating the chromatin mark. The corresponding color legends are shown 

towards the bottom. The states are displayed in 16 groups with white space between each group. The 

states were grouped based on biological interpretations indicated by the color legend at the bottom. Full 

characterization of states is available in Supplementary Data. The model’s transition parameters 

between states can be found in Supp. Fig. 6. Columns are ordered such that experiments profiling the 

same chromatin marks are next to each other. 

(B) Each row corresponds to a full-stack state as ordered in (A). The columns correspond to the top 10 

experiments with the highest emission value for each state, in order of decreasing ranks, colored by their 

associated chromatin marks as in (A).  

(C) Similar to (B), but experiments are colored by the associated cell or tissue type group. We noted on 

the right the cell or tissue groups of some per-cell-type enhancer states.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2021. ; https://doi.org/10.1101/2020.11.17.387134doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.17.387134
http://creativecommons.org/licenses/by/4.0/


 

 

 

A

DNase1

PromF1

F

High align and match frequencies for a few primates

High align and march for mammals, but missing notable subsets

High align and match frequencies for primates

Putative artifact

High align and match frequency for all vertebrates

High align and match for mammals

High align and match for mammals and some non-mammals

ConsHMM states

Enrichments with 

external annotations

Associated 

consHMM

state

Avg. gene exp

TSS1

TSS2

PromF4

PromF6

PromF3

E

Annotated TSS neighborhood 

enrichments

TxEx4 (TES enriched)

TxEnh4

D

Annotated TES neighborhood 

enrichments
C

B

G
e
n
e
.e
x
p
c
o
lo
r
 s
c
a
le

s
t
a
t
e

%
 G
e
n
o
m
e

G
E
N
C
O
D
E
_
c
o
d
in
g

R
e
fS
e
q
E
x
o
n

R
e
fS
e
q
G
e
n
e

R
e
fS
e
q
T
E
S

C
p
G
Is
la
n
d

R
e
fS
e
q
T
S
S

R
e
fS
e
q
T
S
S
2
k
b

a
ss
e
m
b
ly
_
g
a
p

la
m
in
B
1
la
d
s

p
h
a
st
C
o
n
s_
e
le
m
e
n
ts

p
se
u
d
o
g
e
n
e

re
p
e
a
t_
e
le
m
e
n
ts

zn
f_
g
e
n
e
s

m
a
x
_
e
n
ri
c
h
e
d
 

c
o
n
sH
M
M
 s
ta
te
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EnhWk1 1.54 0.18 0.39 0.95 0.76 0.01 0.16 0.38 0 0.8 1.57 0.7 0.81 0.59 5-AM_Mam

EnhWk2 0.352 1.95 2.03 1.64 1.76 0.77 1.85 2.21 0 0.42 1.39 0.36 0.42 0.66 28-AM_SMam
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TxEnh5 0.498 9.39 7.17 2.18 3.79 2.76 1.03 1.17 0 0.2 2.25 0.56 0.5 1.42 1-AM_allVert
TxEnh6 0.189 6.29 5.96 2.21 5.84 0.7 0.94 1.49 0 0.22 1.81 0.46 0.61 1.14 1-AM_allVert
TxEnh7 0.27 1.02 0.99 2.28 0.73 0.42 1.09 1.62 0 0.03 1.11 0.26 0.55 1.28 47-A_SMam

TxEnh8 0.243 4.84 4.96 2.22 4.27 0.23 0.82 0.81 0 0.09 2.11 0.48 0.56 1.22 1-AM_allVert

TxWk1 2.8 1.39 2.28 2.15 3.09 0.08 0.18 0.35 0 0.62 1.16 0.88 1.11 1.71 7-AM_Mam

TxWk2 0.842 6.61 4.8 2.11 2.51 1.58 0.71 0.72 0 0.63 1.66 0.87 0.77 1.27 1-AM_allVert

Tx1 0.824 0.2 0.21 2.31 0.3 0.01 0.18 0.67 0 0.12 0.85 0.38 1.15 2.24 44-AM_SMam

Tx2 1.58 0.18 0.25 2.27 0.35 0.04 0.15 0.48 0 0.23 0.84 0.61 1.17 1.74 77-AM_Prim

Tx3 0.508 0.3 0.36 2.26 0.29 0.19 0.39 0.63 0 0.13 0.57 0.48 1.04 1.64 75-AM_Prim

Tx4 0.47 2.66 2.15 2.31 1.38 0.04 0.39 0.65 0 0.13 1.33 0.6 1.01 2.7 1-AM_allVert
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PromF2 0.138 2.4 3.21 1.38 4.35 3.88 8.11 13.9 0 0.11 2.34 0.46 0.39 1.23 5-AM_Mam

PromF3 0.153 4.63 5.09 1.52 4.37 25.3 13.3 25.7 0 0.12 2.19 0.53 0.31 3.39 28-AM_SMam

PromF4 0.19 10.2 13.5 1.89 2.52 96.7 62.2 28 0 0.17 4.13 0.57 0.12 4.77 28-AM_SMam
PromF5 0.135 7.33 8.49 1.56 2.42 71 31.9 22.4 0 0.37 3.95 0.72 0.16 2.27 28-AM_SMam
PromF6 0.129 3.69 3.25 2.1 3.64 1.55 2.74 26.4 0 0.17 1.95 0.61 0.48 4.34 1-AM_allVert
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Figure 3: Full-stack states enrichments for external genomic annotations. (A) Fold enrichments of 

full-stack states with external genome annotations (Methods). Each row corresponds to a state and each 

column corresponds to one external genomic annotation: CpG Islands, Exons, coding sequences, gene 

bodies (exons and introns), transcription end sites (TES), transcription start sites (TSS), TSS and 2kb 

surrounding regions, lamina associated domains (laminB1lads), assembly gaps, annotated ZNF genes, 

repeat elements and PhastCons constrained element (Methods). The last row shows the percentage of the 

genome that each external genome annotation covers. The heatmap colors are column-normalized, i.e. 

within each column, the color of the cells are such that highest values are colored red and lowest values 

are colored white.  

(B) Each row indicates the ConsHMM state [46] that has the highest enrichment fold in each full-stack 

state as ordered in (A). Legends of the ConsHMM state groups indicated with different colors are shown 

below the heatmap in (A), and descriptions of select ConsHMM states curated from (Arneson & Ernst, 

2019) are available in Supplementary Data 6. 

(C) Average weighted expression of genes that overlap each full-stack state in different groups of cells 

(Methods). Each column corresponds to a cell group indicated at the bottom. Each row corresponds to a 

state, as ordered in (A).  

(D-E) Positional enrichments of full-stack states relative to annotated (D) transcription end sites (TES) 

and (E) transcription start sites (TSS). Positive coordinate values represent the number of bases 

downstream in the 5’ to 3’ direction of transcription, while negative values represent the number of bases 

upstream. Each line shows the positional enrichments in a state. Lines are colored as indicated in (A).  

(F) Enrichments of full-stacks states with per-cell-type chromatin states associated with CTCF and open 

chromatin, but limited histone modifications in six cell types [31] (Methods). The six cell types are 

indicated along the bottom of the figure. States are displayed horizontally in the same order as (A). The 

DNase1 state showed the strongest enrichment for the per-cell-type chromatin states associated with 

CTCF and open chromatin in all six cell types. 
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Figure 4: Full-stack states enrichments with conserved elements and repeat classes. 

(A) The first ten rows show the states most enriched with PhastCons elements and concurrently least 

enriched with RepeatMasker repeat elements, ordered by decreasing enrichments with PhastCons 

elements. The bottom ten rows show the states most enriched with repeat elements and concurrently least 

enriched with PhastCons elements, ordered by increasing enrichments with repeat elements. The columns 

from left to right list the state ID, the percent of the genome that each state covers, and the fold 

enrichments for repeat elements and PhastCons elements. 

(B) Heatmap of the state emission parameters from Fig. 2A for the subset of states highlighted in panel 

(A). The colors are the same in Fig. 2A. 

(C) Fold enrichments of full-stack states with different repeat classes (Methods). Rows correspond to 

states and columns to different repeat classes. Only states that are most enriched with at least one repeat 

class are shown. Fold enrichment values that are maximal for a given are shown in dark red. Other fold 

enrichments greater than one are shaded light red.  
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Figure 5: Full-stack states’ relationship with human genetic variants. 

(A) Enrichments of full-stack states with duplications and deletions from [47]. Only states that are in the 

top ten most enriched states are shown. Top five fold-enrichments for each class of structural variants are 

colored in increasing darker shades of red for higher ranked enrichments. Enrichment values below one, 

corresponding to depletions, are colored yellow. The columns from left to right are the state label, percent 

of genome the state covers, the fold enrichment for deletions, and fold enrichment for duplications. 

(B) Emission probabilities corresponding to states in (A). The coloring is the same as Fig. 2A. The figure 

highlights how states most associated with structural variants generally had higher emission of H3K9me3 

compared to other chromatin marks. 

(C) Enrichments of full-stack states with top 1% prioritized bases in the non-coding genome by 14 variant 

prioritization scores previously analyzed [46]. Only states that are among the top five most enriched states 

by at least one score are shown. The top five enrichment values for each score are colored in increasing 

darker shades of red for higher ranked enrichment values. Enrichment values below one, corresponding to 

depletions, are colored in yellow. The columns from left to right are the state label, percent of the genome 

covered, the 14 score enrichments, and a detailed description of the state. 

(D) Log base 10 of ratios of states’ enrichment with GNOMAD variants [62] with the lowest MAFs (< 

0.0001) vs. GNOMAD variants with the highest MAFs (0.4-0.5). States are ordered as in Fig. 2A. Top 

five states with the highest and lowest enrichment ratios are labeled to the right.  

(E) States most enriched with fine-mapped phenotypic variants against the background of common 

variants. Fine-mapped phenotypic variants were identified by either CAVIAR [67] or FINEMAP [68] 

(Methods). 

(F) State enrichments with somatic mutations associated with four cancer types in the non-coding 

genome. Only states that are among the ten most enriched with variants from at least one cancer type are 

shown. States in the top five are colored according to their ranks. The top five enrichment values for each 

cancer type are colored in increasing darker shades of red for higher ranked enrichment values. The 
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columns are the state label, the percent of the genome the state covers, and the fold enrichments of 

variants from breast, haematopietic and lymphoid, liver, and pancreas cancer types. 

(G) Emission probabilities corresponding to states in (F), as subsetted from Fig. 2A. The coloring is the 

same as Fig. 2A. The figure highlights how states with the greatest enrichments for cancer-associated 

variants tend to have higher emission probabilities for H3K9me3 compared to other chromatin marks. 
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Methods 

Input data and processing 

We obtained coordinates of reads aligned to Human hg19 in .tagAlign format for the consolidated 

epigenomes as processed by the Roadmap Epigenomics Consortium from  

https://egg2.wustl.edu/roadmap/data/byFileType/alignments/consolidated/. In total we obtained data for 

1032 experiments and their corresponding input control data. The experiments correspond to 127 

reference epigenomes, 111 of which were generated by the Roadmap Epigenomics Consortium and 16 

were generated by the ENCODE Consortium. Of the 1032 experiments, 979 were of ChIP-seq data 

targeting 31 different epigenetic marks and 53 were of DNase-seq (Sup Fig. 2). For each of the 127 

reference epigenomes there was a single ChIP-seq input control experiment. For the 53 reference 

epigenomes that had a DNase-seq experiment available there was an additional DNase control file.  

We next binarized the data at 200 base pair resolution using the BinarizeBed command of 

ChromHMM (v.1.18). To apply BinarizeBed in stacked mode we generated a cell_mark_file input table 

for ChromHMM with four tab-delimited columns. The first column had the word ‘genome’ for all 

datasets, the second column contained entries of the form ‘<EID>-<mark>’ where ‘EID’ is the epigenome 

ID and ‘mark’ is the mark name, the third column specifies the name of the corresponding file with 

aligned reads, and the fourth column is the name of the file with the corresponding control reads. Each 

row in the table corresponds to one of the 1032 experiments. 

  
In order to reduce the memory and time needed to execute BinarizeBed on a large number of 

datasets, we split the cell_mark_file table into 104 smaller tables with each table having at most 10 entries 

corresponding to at most 10 datasets to be processed. This was done with a custom script, but the same 

functionality has been included with the ‘-splitcols’ and ‘-k’ flags of BinarizedBed in ChromHMM 

v1.22.  We then ran BinarizeBed in parallel for each of these smaller cell_mark_file tables and generated 

output into separate sub-directories. We ran BinarizeBed with the option ‘-gzip’ which generates gzipped 

files. 
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To merge data from the 104 subdirectories from the previous step into files containing binarized 

data of all experiments, we ran the command ‘MergeBinary’, which we added in v1.18 of ChromHMM. 

We ran the command with the options ‘-gzip -splitrows’. The ‘-splitrows’ option generates multiple files 

of merged binarized data for each chromosome, where, under the default settings that we used, each file 

contains data for a genomic region of at most 1MB. Splitting each chromosome into smaller regions 

allows the model learning step of ChromHMM to scale in terms of memory and time to the large number 

of input data tracks (i.e. features) that we were using. We used chr1-22, chrX, chrY, and chrM in the 

binarization and model learning. 

  
Training full-stack model and generating genome-wide state annotations 

We learned the full-stack chromatin state model for the 1032 datasets using the LearnModel 

command of ChromHMM (v1.18). This version of ChromHMM includes several options that we added to 

improve the scalability when training with large numbers of features. One of these features was to 

randomly sample different segments of the genome for training during each iteration, instead of training 

on the full genome. This sampling strategy was previously used by ConsHMM [46], which was built on 

top of ChromHMM. We note that this sampling procedure can also be applied to learn concatenated 

models, in which case there would be no requirement that the same segments are sampled in each cell 

type. However, sampling can be unnecessary for typical instances of learning concatenated chromatin 

state models, given that it usually involves fewer different inputs to the model, fewer number of states, 

and in training these models, ChromHMM is able to tolerate more parallel cores without reaching 

memory limits.  

To learn the full-stack model with input data processed as outlined above, we used 

ChromHMM’s LearnModel command with the options ‘-splitrows -holdcolumnorder -pseudo -many -p 6 

-n 300 -d -1 -lowmem -gzip’. The ‘-splitrows’ flag informs ChromHMM that binarized data for a 

chromosome is split into multiple files, which reduces the memory requirements and allows ChromHMM 

to select a subset of the genome to train on for each iteration. The ‘-holdcolumnorder’ flag prevents 
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ChromHMM from reordering the columns of the output emission matrix, which saves time when there 

are a large number of features.  

The ‘-pseudo’ flag specifies that in each update of model parameters, ChromHMM adds a pseudo 

count of one to the numbers of observations of transition between each pair of states, presence and 

absence of each mark from each state, and initial state assignments of the training chromatin state 

sequence. This prevents model parameters from being set to zero, which is needed for numerical stability 

when some features are sparse and ChromHMM does not train on the full genome in each iteration.  

The ‘-many’ flag specifies ChromHMM to use an alternative procedure for calculating the state 

posterior probabilities that is more numerically stable when there are a large number of features. The 

procedure is designed to prevent all states from having zero posterior probability at any genomic position, 

which can happen due to the limits of floating-point precision. The procedure does this by leveraging the 

observation that only the relative product of emission probabilities across states are needed at each 

position to determine the posterior probabilities. Specifically, for each position, the procedure initializes 

the product of emission probabilities for all features, i.e. the emission product, from each state to one. For 

each feature, the procedure then multiplies the current emission products from each state by the emission 

probability of the feature in the state, and divides all the resulting products by their maximum to obtain 

updated emission products. We iteratively repeat these steps of multiplication and normalization until all 

features have been included into the calculation of relative emission products across states.   

The ‘-p 6’ flag specifies to ChromHMM to train the model in parallel using 6 processors. The ‘-n 

300’ flag specifies to ChromHMM to randomly pick 300 files of binarized data, corresponding to 300 

regions of 1 MB (or less if the last segment of the chromosome was selected) for training in each 

iteration. The ‘-d -1’ option has ChromHMM not to require an evaluated likelihood improvement between 

iterations to continue training since evaluated likelihood decreases are expected, as on each iteration the 

likelihood is evaluated on a different subset of data.  The ‘-lowmem’ flag has ChromHMM reduce main 

memory usage by not storing in main memory all the input data and instead re-loading from disk when 
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needed. The asymptotic worst-case time and memory of the model learning is discussed in the 

Supplementary Information. 

 

Choice of number of states 

We trained full-stack models with 10-120 states, in 5 state increments, using the data and 

procedure outlined above. For each of these models, we calculated an estimated Akaike Information 

Criterion (AIC) [78] and Bayesian Information Criterion (BIC) [79] value based on a subset of the 

genome (Supp. Fig. 3). AIC and BIC are calculated based on the log likelihood for 300 random 1Mb 

regions outputted by ChromHMM from the last training iteration. In general, both the AIC and BIC 

decrease as the numbers of states increase, but with diminishing improvements. We also applied the 

CompareModels command of ChromHMM [25] with the 100-state model as a reference model, which 

reports, for each state of the 100-state model, the maximum correlations of emission parameters between 

the state in the 100-state model and any state for each other models (Supp. Fig. 3C). We conducted a 

similar analysis with the emission parameters of H3K4me1, hence for each state in each model, we 

obtained emission probabilities of H3K4me1 in 127 cell types. For this analysis, for each of the 19 tissue 

groups previously defined [16], we calculated the correlation of each state’s H3K4me1 emission 

parameters with a binary vector indicating if the cell type in each parameter is in the tissue group (1) or 

not (0). We then report, for each tissue group, the maximum correlations among all states in each model 

(Supp. Fig. 3D). These analyses showed, for instance, that a state corresponding to Brain-specific 

enhancers in the 100-state model, EnhA6, was well captured in models with 55-states or more (correlation 

of >=0.98 with states in models with >=55 states and correlation >=0.78 for H3K4me1-emissions with the 

Brain binary vector). A state characterized as enhancers specific to Huvec cells in the 100-state model, 

EnhA20, was well captured in models with 100 or more states (correlation >=1.00 based on all marks’ 

emission parameters).  

Additionally, for models with 20, 40, 60, 80, 100 and 120 states, we also produced genome 

annotations and then quantitatively compared the chromatin state annotations from models in terms of 
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their power to predict locations of various other genomic annotations not used in the model training: 

Exon, Gene Body, TSS, TSS2kb, CpG Islands, TES, laminB1lads elements (listed in section External 

Annotation Sources section). Specifically, we evaluated the predictive power using the AUROCs that are 

calculated as described in a subsection below. Across different genomic contexts, as the number of full-

stack states increased, the AUROC increased, but with diminishing improvements as the number of states 

increased (Supp. Fig. 3A).  

To balance the additional information available in models with an increased number of states, 

while keeping the number of states manageable for interpretation and downstream analysis, we choose to 

focus on a model with 100 states. We note that this choice is greater than previously used for 

concatenated models with per-cell-type annotations [3,16,21], which reflects the additional information 

available for genome annotation based on the large number of datasets spanning many cell types that we 

are using.  

 

Lifting chromatin state annotations to hg38 

The full stack chromatin state annotations were learned directly in hg19, as this was the assembly 

for which uniformly processed data from the Roadmap Epigenomics integrative analysis was available. 

Learning full-stack annotation directly in hg19 allowed direct comparison with existing per-cell-type 

annotations inferred. We also generated a version of full-stack annotation in hg38 by lifting over the 

original annotation from hg19 to hg38. To do this, we first wrote the hg19 chromatin state annotation into 

.bed format such that each line corresponds to a 200bp interval. We then used the liftOver tool [80] with 

default parameters to generate the annotation in hg38. We did not annotate bases in hg38, if multiple 

bases in hg19 mapped to it. In total, there are 1,186,379 200-bp segments that were not mapped from 

hg19 to hg38, of which 98.7% fall into an assembly gap and 99.6% fall into the full-stack state primarily 

associated assembly gaps (GapArtf1) (Supp. Fig. 50). In hg38 on chr1-22, X, and Y, 92.9% of bases are 

annotated to a state, and that number increases to 97.1% when excluding assembly gaps. We verified that 

we saw highly similar state fold enrichments for similar annotations between hg19 and hg38 (Supp. Fig. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2021. ; https://doi.org/10.1101/2020.11.17.387134doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.17.387134
http://creativecommons.org/licenses/by/4.0/


 

 

18). The sources of external annotations from hg38 are outlined in section “External annotation sources” 

below.  

  

Summary sets of experiments 

To construct a summary visualization of the emission parameters with a reduced set of features 

that approximate the annotation from the full model, we applied a greedy search over the 1032 input 

datasets as described in Supplementary Methods.  We applied this procedure to reduce the 1032 input 

datasets to 80 summary datasets. 

 

Identifying states with differential association of marks for individual tissue groups 

For each state, we tested for combinations of the 8 most profiled marks, and 19 tissue groups 

previously defined [16], whether the emission probabilities of features associated with one chromatin 

mark and in one tissue group was significantly greater than those of features associated with the same 

mark and not in the tissue group. The eight marks that we tested were H3K9me3, H3K4me1, H3K4me3, 

H3K27me3, H3K36me3, H3K27ac, H3K9ac, and DNase. H3K27ac, H3K9ac and DNase were profiled in 

98, 62 and 53 reference epigenomes, respectively, and the remaining five marks in 127 reference 

epigenomes. For tests involving H3K27ac, H3K9ac, and DNase, we excluded tissue groups for which 

there were no experiments. In total, there were 14,200 tests among 100 states, 8 chromatin marks and 19 

tissue groups. For each combination of state, chromatin mark and tissue group being tested, we applied a 

one-sided Mann-Whitney test to test whether the emission probabilities of the state for the features 

associated with the tested mark in the tested tissue group are greater than those in other tissue groups. The 

Bonferroni-corrected p-value threshold based on a significance level of 0.05 to declare a test significant 

was 3.5e-6.  

 

Computing coefficients of variation across different tissue groups 
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For each state, we looked into the emission probabilities of experiments associated with six 

chromatin marks strongly associated with promoter and enhancer activities (DNase, H3K27ac, H3K4me1, 

H3K4me2, H3K4me3, H3K9ac). We grouped these experiments based on their associated chromatin 

mark and tissue groups, and calculated the average emission probabilities of experiments in each 

chromatin mark-tissue group combination. For each state and chromatin mark combination, we then 

calculated the coefficient of variation across different tissue groups, in terms of average emission 

probabilities from the previous step. For each group of states, we averaged the resulting coefficients of 

variation across states of the same group. The results show the average coefficients of variation of 

emission probabilities across different tissue groups for each state group-chromatin mark combination.  

 

Computing fold enrichments for other annotations 

All overlap enrichments for external annotations were computed using the ChromHMM 

OverlapEnrichment command. We used the ‘-b 1’ flag, which specifies a binning resolution of the 

annotations. This ‘-b 1’ flag is necessary when computing enrichments based on the hg38 liftOver 

annotations, which no longer respects the 200bp segment coordinate intervals from hg19. Including this 

flag gives the same results when applied to annotations from hg19 with 200bp segments, though with 

extra computational costs. We also included the ‘-lowmem’ flag to specify the lower memory usage 

option. The ChromHMM command OverlapEnrichment computes fold enrichment between chromatin 

states and provided external annotations relative to a uniform genome-wide background distribution. 

More specifically, the fold enrichments are calculated as: 

���,�  �  

#��

#�

#�

#�

�  

#��

#�

#�

#�

�  
#�� 	  #�

#� 	  #�
 

where 

���,�: fold enrichment of state s in genomic context x 

#�: number of genomic positions belonging to the state S 

#�: number of genomic positions where genomic context X is present 
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#��: number of genomic bins that overlap both state S and genomic context X 

#�: number of genomic positions in the entire genome 

 

Enrichment and estimated probabilities of overlap with per-cell-type chromatin state annotations 

We obtained per-cell type chromatin state annotations based on a 25-state ChromHMM model 

learned using concatenated approach for 127 reference epigenomes, which we will refer to as cell types 

for ease of presentation, from the Roadmap Epigenomics project [16,39]. This model was trained based 

on observed and imputed data for 12-marks. We hereafter refer to this model as the CT-25-state model. 

As per the design of the concatenated approach of ChromHMM, CT-25-state model generates per-cell-

type chromatin state annotations for each of the 127 cell types, and the 25 states’ characteristics are 

shared across 127 cell types. For each of these 127 cell types, we calculated overlap enrichments between 

the 100 full-stack states and the CT-25-states, resulting in 127 tables of size 100-by-25. We summarized 

this information by reporting, for each of the 100 full-stack states, and 127 cell types, the per-cell-type 

state in CT-25-state model that is maximally enriched, resulting in a 100-by-127 table (Supp. Fig. 8). We 

also provided detailed comments about the patterns of maximum-enriched-states observed across 127 cell 

types for each full-stack state in the Supplementary Data File 3 to serve as a resource for future 

applications. We also reported, for each of the 100 full-stack states and each per-cell-type-25-state, the 

maximum and median values of fold enrichments across 127 cell types (Supplementary Data File 3).     

In addition, we also estimated for each combination of (1) CT-25 state, (2) cell type group and (3) 

full-stack state, the probability that a genomic position being annotated as the corresponding full-stack 

state will overlap with the corresponding per-cell type state in a cell type from the corresponding cell 

group. The 19 groups of cell types were previously defined by the Roadmap Epigenomics Consortium 

[16]. To compute the target estimate probabilities, for each full-stack state, we sampled 100 genomic bins 

(each of length 200bp) that are assigned to that full-stack state. Second, in each of the 127 cell types, we 

report the frequency that the sampled regions of each full-stack state overlapped with each CT-25-state. 

We repeated such a process 21 times. We then calculated the average frequencies of overlap between 
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each full-stack state and each CT-25-state, across 21 random samplings and across the cell types in each 

group (Example: Blood, ESC). This results in a table of size 100 full-stack states by 475 combinations of 

CT-25 states and 19 cell groups, with each cell showing the values of estimated probabilities (Supp. Fig. 

9). These values, along with detailed comments about patterns of these overlap probabilities for each full-

stack state, are available in Supplementary Data File 3.   

  
Receiver operator characteristic curve analysis for predicting external annotations 

To evaluate how well the chromatin state annotations from different ChromHMM models can 

inform us about the position of external genomic annotations, we computed the Receiver Operator 

Characteristic (ROC) in a procedure as follows: First, we divided the genome into 200bp bins, and 

randomly partitioned 50% of the bins for training and the remaining 50% for testing. Second, we 

computed the enrichment of the target external annotation with each chromatin state on the training data, 

and ranked states in decreasing order of such enrichments. We used this ranking of states to iteratively 

add genomic bases assigned to the states as our predictions of bases that overlap the target annotation in 

the testing dataset. Based on the overlap of the predictions and the target annotation at each iteration, we 

plotted ROC curves and summarized the information by computing area under the ROC curves 

(AUROC). 

 
Per-cell-type annotations used to compare against full-stack annotations  

In evaluating how predictive the full-stack model is at annotating external genomic elements, we 

compared the full-stack model to two sets of per-cell-type chromatin state annotations in terms of their 

ability to predict external annotations. One set of per-cell type annotations was the 18-state ChromHMM 

from Roadmap Epigenomic Project [16], which was based on a model trained using the concatenated 

approach and observed data of six chromatin marks (H3K4me1, H3K4me3, H3K9me3, H3K27ac, 

H3K27me3 and H3K36me3) in 98 cell types. In this model, we have a common set of state definitions 

across cell types, but unique state annotations for each cell type. The second set of per-cell type 

annotations were based on models learned independently in each of the 127 cell types. In learning these 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2021. ; https://doi.org/10.1101/2020.11.17.387134doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.17.387134
http://creativecommons.org/licenses/by/4.0/


 

 

models, we partitioned the 1032 datasets used to learn the full-stack model into 127 subsets based on their 

associated cell type. For each of the 127 cell types, we applied ChromHMM to learn a 100-state per-cell-

type ChromHMM model using only the observed data in the corresponding cell type. The number of 

states is similar to that in the full-stack model, to control for this variable in the evaluation. This process 

generates 127 models, each used to generate per-cell-type annotations in one cell type. The independent 

model learning approach of ChromHMM differs from the concatenated approach because the model 

parameters (state emission, transition, and initial probabilities) are different for different cell types, while 

state parameters in concatenated model are shared across cell-types. However, these two approaches both 

produce chromatin state annotations on a per-cell type basis. We learned these independent models with 

the same ChromHMM parameters as described above for the full-stack model, with the exception of using 

the ‘-init random’ flag to randomly initialize models’ parameters. Even when we specified the number of 

states to ChromHMM as 100, however, we note that due to the large number of states relative to the input 

tracks, for some of these models, fewer than 100 distinct states ended up being assigned to positions in 

the genome.  

  

Computing fine-mapped variant enrichment 

To compute enrichment of full-stack states for phenotypically associated fine-mapped variants, 

we downloaded data on fine-mapped variants for 3052 traits from CAUSALdb [66]. Specifically we 

obtained posterior probabilities of variants being causal based on two fine-mapping methods, FINEMAP 

[68] and CAVIAR [67], which do not use epigenomic annotations as part of the fine mapping procedure. 

For each method and trait combination, we separately partitioned the provided set of potential causal 

variants into distinct loci. To form the distinct loci, we merged neighboring variants into the same loci 

until there was at least 1MB-gap between the two closest variants from different loci. Separately for each 

fine-mapping method, trait, and locus combination, we selected the single variant with the highest 

posterior probability of being causal. For each fine-mapping method, we took the union of variants across 

3052 traits, and then calculated the fold enrichments for the union of these lead variants with stacked 
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ChromHMM states relative to the enrichment with a background set of common variants from dbSNP 

build 151 (hg19). To do this, we separately computed the enrichments of both of these sets relative to a 

genome-wide background, and then divided the enrichment of the foreground set (lead fine-mapped 

variants) by the enrichment of the background set (common variants). The dbSNP variants were obtained 

from the UCSC genome browser [81].  

 

Computing structural variant enrichments 

To compute enrichment of the full-stack states for structural variant enrichments, we obtained 

data of structural variants from [47]. We used the B38 call set, which was in hg38 and used for the 

analysis presented in [47]. We filtered out structural variants that did not pass the quality control criteria 

of [47]. We then separately considered structural variants annotated as either a deletion or a duplication, 

for which there were, 112,328 and 28,962 sites respectively.  

Since the structural variants were defined in hg38, we computed their enrichment for 

ChromHMM state annotations from full-stack and per-cell-type concatenated models that were lifted over 

from hg19 to hg38, following the procedure outlined above. Next, we followed the enrichment analysis 

procedure outlined above to compare full-stack vs. per-cell-type chromatin state annotations’ power in 

recovering structural variants. 

To compare the power of full-stack state annotations vs. per-cell-type state annotation frequency, 

we utilized the 15-state per-cell-type chromatin state annotation for 127 cell types (reference epigenomes) 

from Roadmap Epigenomics Consortium. We followed the analysis outlined in [47], for each of the 15 

per-cell-type states, we annotated genomic positions based on the number of cell types in which the state 

is present (ranging from 0 to 127), resulting in 15 state frequency annotations per genomic position. We 

then applied the procedure above for each per-cell-type state to compare the predictive power of the 

state’s annotation frequency against the full-stack annotation. 

 

Computing enrichments with cancer-associated variants 
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We obtained data of somatic mutations associated with different types of cancer from COSMIC 

non-coding variants dataset v.88 in hg38 [69]. We selected from this dataset variants that were from 

whole-genome sequencing. We filtered out variants that overlap with any of the following: the hg38 

black-listed regions from the ENCODE Data Analysis Center (DAC) [82], hg38 dbSNP (v151) set of 

common variants from the UCSC genome browser database, or regions annotated as coding sequence 

(‘CDS’) based on GENCODE v.30 hg38 [83] gene annotations. We decided to restrict this analysis to the 

four cancer types with most number of variants present in the dataset in hg38: liver (1,351,417), pancreas 

(500,930), haematopoietic and lymphoid tissue (354,501), and breast (323,751). We then lifted over these 

sets of variants from hg38 to hg19, resulting in 1,351,159, 500,798, 354,351, and 323,685, variants 

respectively. To obtain a background set of genomic locations for the enrichment analysis, we filtered 

from the genome the same set of hg38 annotations of black-listed regions, common variants, and coding 

sequences as we did for the foreground of COSMIC mutations. We then lifted over these remaining 

positions from hg38 to hg19 to obtain the background. We calculated the enrichment of chromatin states 

with cancer-associated variants by first calculating the enrichment values of chromatin states with filtered 

variants associated with each of the four cancer types, and the enrichment values with background set of 

genomic bases, all relative to the whole genome. We then divided the cancer-associated variant 

enrichment values by the background bases enrichments. 

 

Gene ontology enrichments 

We calculated the gene ontology enrichments of genes being in proximity to each full-stack state 

annotation using GREAT [84]. For each full-stack state, we reported the top-GO terms with lowest FDR-

corrected p-values. If multiple GO terms showed the same minimum p-values, we reported all of them. A 

full list of GO-terms associated with full-stack states are available in Supplementary Data File 1.  

 

External annotations sources 
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The sources for external annotations for enrichments analyses, not given above, were as follows (all 

download links are listed in Supplementary Data File 5): 

� Annotations of CpG islands, exon, gene bodies (exons and introns), transcription start (TSS), 

and transcription end sites (TES), 2kb windows surrounding TSSs (TSS2kb) in hg19 and 

hg38 were RefSeq annotations included in ChromHMM (v1.18) and originally based on 

annotations obtained from the UCSC genome browser on July 26th 2015. 

� Lamina associated domains were for human embryonic lung fibroblasts that were included in 

ChromHMM (1.18), which were lifted over to hg19 from hg18 positions originally provided 

by [38].  

� Annotations of assembly gaps in hg19 and hg38 were obtained from the UCSC genome 

browser and correspond to the Gap track. 

� Coordinates of zinc finger genes correspond to non-overlapping coordinates from 

GENCODE’s hg19 gene annotation, v30 [83]. ZNF named genes were those whose gene 

named contained ‘ZNF’. The list of C2H2-type genes were from 

https://www.genenames.org/. 

� Annotations of coding sequences in hg19 and hg38 correspond to coordinates of genes whose 

feature type is ‘CDS’ from GENCODE’s hg19 and hg38 gene annotation, v30 [83]. 

� Annotations of pseudogenes in hg19 and hg38 correspond to coordinates of genes whose 

gene type or transcript type contained ‘pseudogene’ from GENCODE’s hg19 and hg38 gene 

annotation, v30 [83]. 

� Annotations of repeat elements were obtained from UCSC genome browser RepeatMasker 

hg19 tracks. 

� Per-cell-type concatenated ChromHMM chromatin state annotations were obtained from the 

Roadmap Epigenomics Consortium through http://compbio.mit.edu/roadmap [16]. These 

include data of the 18-state models based on observed data and the 25-state chromatin model 

based on imputed data for 98 and 127 reference epigenomes, respectively. 
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� CTCF- per-cell-type chromatin states were based on the ChromHMM chromatin state 

annotations for six human cell types (GM12878, H1ESC, Helas3, Hepg2, Huvec, K562) for a 

25-state model from the ENCODE integrative analysis [22,31]. We extracted coordinates of 

regions annotated to the ‘Ctcf’ and ‘CtcfO’, both associated with CTCF signal and limited 

histone mark signal.  

� Blacklisted regions were those provided by the ENCODE Data Analysis Center (DAC) for 

hg19 and hg38 [82].  

� ConsHMM conservation state annotations for human (hg19) were those from [46].  

� Annotations of human genetic variants and their allele frequency were from GNOMAD 

v2.1.1 [62]. The dataset includes 229 million SNVs and 33 million indels from 15,708 

genomes of unrelated individuals, which are aligned against the GRCg37/hg19 reference.  

� GWAS catalog variants were obtained from the NHGRI-EBI Catalog, accessed on December 

5th, 2016 [63]. 

� Coordinates of CpG sites profiled across cell types were obtained from DNA Methylation 

data in Roadmap Epigenomic portal.  

� Data of G/C content at 5bp resolution from UCSC Genome Browser, file 

hg19.gc5Base.txt.gz.  

� Data of binding regions of proteins of the polycomb repressive complexes were downloaded 

from the ENCODE portal [85]. Download links are listed in Supplementary Data File 5. 

  

Analysis of gene expression across states 

To analyze the relationship between gene expression and the full-stack states, we downloaded 

gene expression data from the Roadmap Epigenomics Consortium [16]. Specifically, we downloaded a 

matrix of gene expression values, in RPKM (Reads Per Kilobase Million), for protein coding genes for 56 

reference epigenomes that were among the 127 used as part of the full-stack model. In total, we obtained 

expression values for 19,795 Ensembl protein coding genes. 
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The gene expression data was obtained from  

(https://egg2.wustl.edu/roadmap/data/byDataType/rna/expression/57epigenomes.exon.RPKM.pc.gz). We 

also obtained the corresponding genomic coordinates for these genes from 

(https://egg2.wustl.edu/roadmap/data/byDataType/rna/expression/Ensembl_v65.Gencode_v10.ENSG.gen

e_info). For this analysis, we filtered out genes that are not classified as protein-coding. We transformed 

the gene expression values by adding a pseudo-count of 1 to the raw counts in RPKM, and taking the log 

of the resulting values. 

For each full-stack-state and 56 reference epigenomes, we calculated the average gene expression 

of all genes overlapping with the state, taking into account the genes’ length. For each gene � we denote 

its length ��  and expression ��. We let ��  denote the state assigned at the 200-bp bin � and ��  denote the 

set of genes overlapping the 200bp bin �. Let �� denote the set of 200bp bins that are assigned to state �. 

The average normalized expression with state � then becomes: 

	
� �� �� � ����	����� 

 �
�  

∑����
∑����

��

��

∑����
∑����

1
��

 

We also calculated for each state the average and coefficient of variation of these averages across 

reference epigenomes. We used the BEDTools [86] bedtools intersect command to obtain the chromatin 

state assignments for 200bp segments that totally or partially overlap with any gene. To obtain average 

gene expressions of a state in a cell group as presented in Fig. 3C, we averaged the reported bp-

normalized average gene expressions of the corresponding state across cell types within the group.  

We also analyzed average gene expression values for each state as a function of the position of 

the state annotations relative to TSS, following a procedure similar to what was used previously [3]. We 

first identified a gene’s outer transcription start site (TSS) based on the reported coordinates of the gene 

and strand in the gene annotation file noted above. For each 200bp bin that is within 25kb upstream or 

downstream of an annotated TSS, including those that directly overlap with an annotated TSS, we 

determined the assigned full-stack state at this bin, and the position of the bin relative to those TSSs. Bins 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2021. ; https://doi.org/10.1101/2020.11.17.387134doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.17.387134
http://creativecommons.org/licenses/by/4.0/


 

 

directly overlapping an annotated TSS were at position 0. If the gene was on the positive strand, the 

segments’ genomic coordinates lower than the TSSs’ correspond to upstream regions at negative points 

(minimum value: -250000), while genomic coordinates higher than the TSSs’ correspond to downstream 

regions at positive points (maximum value: 25000). If the gene is on the negative strand, the upstream and 

downstream positions are reversed. For each state and each 200-bp bin position relative to TSS, we 

determined the subset of genes where there is a 200bp bin annotated to that state at that position relative 

to their TSSs, and calculated their average expression. This produces a 100-by-251 table for one reference 

epigenome, corresponding to the number of full-stack states and 200-bp segments intersecting the 50kb 

windows surrounding genes’ TSSs and one segment directly overlapping the TSSs. We then smoothed the 

averaged expression data spatially by applying a sliding window with a window size of 21, i.e. each 

segment’s smoothed gene expression is the average of data in that segment and 21 surrounding genomic 

segments. Data of average gene expression in the first and last 10 segments within the 50kb window are 

not included in the window of smoothed data. We averaged results of 56 tables corresponding to 56 

reference epigenomes as the final output from this procedure.  

 

Computing average DNA methylation levels 

 The DNA methylation analysis was conducted based on Whole Genome Bisulfite Sequencing 

data from Roadmap Epigenomics [16]. The fraction DNA methylation values was obtained from 

https://egg2.wustl.edu/roadmap/data/byDataType/dnamethylation/WGBS/FractionalMethylation.tar.gz. 

For each combination of 37 reference epigenomes with DNA methylation available and 100-full-stack 

states, the average fractional DNA methylation in that reference epigenome was computed for all CpG 

bases with a non-missing DNA methylation value overlapping the full-stack state annotation. 

 

Computing enrichment for bases prioritized by variant prioritization scores 

To compute state enrichments for bases prioritized by different variant prioritization scores, we 

followed the approach of [46]. We obtained coordinates of bases containing prioritized variants based on 
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14 different methods as processed and described in [46]. The scores were Eigen and Eigen-PC version 

1.1, funSeq2 version 2.1.6, and CADD v1.4, REMM, FIRE, fitCons, CDTS, LINSIGHT, FATHMM-XF, 

GERP++, phastCons, phyloP and DANN [48,50–61]. For 12 of the 14 scores, we separately considered 

prioritized variants genome-wide and in non-coding regions only. Two of the variant prioritization scores, 

LINSIGHT and FunSeq2, were defined only in the non-coding regions, so these scores were only used in 

the non-coding region analysis. As described in [46], the regions included in the non-coding analysis were 

defined as the bases where both LINSIGHT and FunSeq2 provided scores, which was 90.4% of the 

genome. For both the non-coding and whole genome analysis we computed the enrichment for bases 

ranked in the top 1%, 5% or 10% using the variant prioritization scores. We note that because of ties in 

some scores, the score-threshold above which we classified the bases as prioritized was chosen to be as 

close as possible to the target percentage (1%, 5% or 10%). We also note that if there were any bases with 

missing values for any particular score, then that base was assigned with the minimum values of such 

scores.  

Enrichment values for the whole genome were computed as described above with the 

OverlapEnrichment command from ChromHMM. For computing enrichments restricted to non-coding 

regions, we first calculated enrichment of the non-coding prioritized variants relative to the whole 

genome and the enrichment of non-coding regions as defined above relative to the whole genome. We 

then divided these two enrichment values to obtain the enrichment of prioritized non-coding variants 

within non-coding regions. 

 

Data availability 
Full-stack chromatin state annotation of the genome is available at 

https://github.com/ernstlab/full_stack_ChromHMM_annotations. An updated version of ChromHMM is 

available at https://ernstlab.biolchem.ucla.edu/ChromHMM/. All links to download publicly available 

data for analyses in this paper are listed in Supplementary Data File.  
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