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Abstract

It is well known that the presence of an incoherent feedforward loop (IFFL) in a network may give rise
to a steady state non-monotonic dose response. This note shows that the converse implication does not
hold. It gives an example of a three-dimensional system that has no IFFLs, yet its dose response is
bell-shaped. It also studies under what conditions the result is true for two-dimensional systems, in the
process recovering, in far more generality, a result given in the T-cell activation literature.

1 Introduction

For ± signed directed graphs, an “incoherent feedforward loop” (IFFL) is a pair of simple (not transvers-
ing any node twice) directed paths P1 and P2 from a node N1 to a node N2 between so that P1 and P2

have opposite net signs (product of signs along edges). For example, the 3-node signed graph in Figure 1
has an IFFL.

Figure 1: An example of an IFFL. The two solid green edges are positive, and the solid red edge is
negative. The dashed path from node x to node z has a net negative sign, but the solid green path from
node x to node z has a positive sign.

IFFLs are a ubiquitous motif in systems biology [1]. One associates a signed directed graph to a system
by considering the Jacobian of the vector field. We assume here that any such Jacobian entry has a
definite sign (≥ 0 or ≤ 0) throughput the state space. It is well-known that the presence of IFFLs
may result in steady state dose responses which are non-monotonic; see e.g. [4] or the references in [7].
Negative feedbacks or IFFLs are necessary, as otherwise the theory of monotone systems implies that
the dose response (“input to state characteristic”) will be monotone on input values [2, 3]. (In fact,
for monotone systems, even transient responses at any given time also behave monotonically on input
magnitude.)

It has been argued that IFFLs are also necessary. For example, in [5] the authors state that “models
without an incoherent feed-forward loop but with negative feedback. . . cannot produce a bell-shaped dose-
response” (main text as well as section “Negative feedback cannot produce a bell-shaped dose-response”
in SI). This conclusion was based on a computational screen of 58,905 network architectures, as well as
explicit examples in the SI. We show here that this converse is false, i.e. one may have non-monotonic
dose-responses even in systems that include no IFFLs (but, of course, include negative feedback loops,
as these are necessary if there are no IFFLs). Our counterexample is not included in the class of reaction
formulas systems computationally explored in [5], thus explaining the discrepancy.
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We also study under what conditions the result is true for two-dimensional systems, in the process
recovering, in far more generality, a result given in [5] in the context of T-cell activation.

2 A counterexample for three-dimensional systems

Consider the following system:

ẋ1 = −αx1 + f(x2)

ẋ2 = g(x1)− βx2 + γx3

ẋ3 = h(x2)− ηx3 + u

where the functions f , g, and h are decreasing and non-negative and α, β, γ, η are positive constants. The
system evolves on states xi(t) ≥ 0, and the input u is taken as a constant in some interval I ⊆ [0,∞).
The output is y = h(x1, x2, x3) = x3. Note that the system is positive, meaning that when starting from
nonnegative x1, x2, x3 the solutions remain nonnegative.

The Jacobian matrix (with respect to the variables xi), evaluated at any state, has the following sign
structure:

J =

 − − 0
− − +
0 − −


which we represent graphically as in Fig. 2.

Figure 2: Signed digraph representing the three-dimensional example. (Using x, y, z instead of xi’s.)

Clearly, there and no IFFLs in our network, because there is only one directed path between any two
pairs of nodes.

In general, suppose that for each constant input value u ∈ I there is an asymptotically stable steady
state Xu. The output at this steady state is y = h(Xu), and the mapping u 7→ h(Xu) is defined as the
steady state dose response of the system. We will now provide functions f , g, and h for which the dose
response for our system is non-monotonic (see right panel in Figure 3).

We define the functions f and g as follows:

f(s) := ψe−aσ(s)

g(s) := θe−bσ(s)

h(s) := ρe−cσ(s)

σ(s) :=

 0.8 0 ≤ s < 0.8
s 0.8 ≤ s ≤ 1.2
1.2 1.2 ≤ s

and the positive parameters are as follows:

a = 1 , b = 2 , c = 2 , α = 1 , β = 1 , γ = 1 , η = 2 , ψ = e , θ = e2/2 , ρ = e2/2 .
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That is, the system is:

ẋ1 = −x1 + e1−σ(x2)

ẋ2 =
1

2
e2(1−σ(x1)) − x2 + x3

ẋ3 =
1

2
e2(1−σ(x2)) − 2x3 + u .

We study equilibria for constant inputs in the interval

I := [0.4, 0.6] .

At the midpoint of this interval, u0 = 0.5, a steady state is

Xu0
= (x1, x2, x3) = (1, 1, 0.5) .

We now find equilibria for any given constant input u. From ẋ1 = 0 we have that

e1−σ(x2) = x1

and then solve ẋ3 = 0 for x3, using that e2(1−x2) =
(
e1−σ(x2)

)2
, and obtain:

x3 = u/2 + e2(1−x2)/4 = x22/4 + u/2 .

Finally, we set ẋ2 = 0, substituting the above x3, to obtain an equation relating x1, x2, and u:

x21
4
− x2 +

e2(1−x1)

2
+
u

2
= 0 .

This equation is equivalent to

U(x1, x2) := −x
2
1

2
+ 2x2 + e2(1−σ(x1)) = u .

Now we will show that, for each u ∈ I, there is a unique solution (x1, x2) for U(x1, x2) = u, and,
moreover, this solution has x1 ∈ [0.8, 1.2] and x2 ∈ [0.8, 1.2], the non-saturation regime, case (1A) below.
We do this by analyzing various cases.

Case 1: x2 ∈ [0.8, 1.2].

(1A) Consider first the case x1 ∈ [0.8, 1.2]. Thus σ(xi) = xi for i = 1, 2. Now x2 = 1 − lnx1, so we
substitute and write U as a function of x1 alone:

U(x1) = −x
2
1

2
+ 2− 2 lnx1 + e2(1−x1) .

This is a strictly decreasing function of x1 on the interval [0.8, 1.2] and its values range from 0.6345 at
x1 = 0.8 to 0.2450 at x1 = 1.2. Thus, the interval I = [0.4, 0.6] is included in the range of U , and a
unique solution of U(x1) = u exists. From this, we obtain the unique values x2 = 1 − lnx1 and then
x3 = x22/4 + u/2.

(1B) Assume now x1 < 0.8, so σ(x1) = 0.8. Now

U(x1) = −x
2
1

2
+ 2− 2 lnx1 + e0.4 .

This is a strictly decreasing function of x1 on the interval [0, 0.8] and its values range from +∞ at x1 = 0
to 0.6345 at x1 = 0.8. Therefore I = [0.4, 0.6] does not intersect the range. Thus there are no solutions
in case (1B).

(1C) Assume now x1 > 1.2, so σ(x1) = 1.2. Now

U(x1) = −x
2
1

2
+ 2− 2 lnx1 + e−0.4 .
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This is a strictly decreasing function of x1 on the interval [1.2,∞) and its values range from −0.5765 at
x1 = 1.2 to −∞ at x1 = +∞. Therefore I = [0.4, 0.6] does not intersect the range. Thus there are no
solutions in case (1C).

Case 2: x2 ∈ [0, 0.8], so σ(x2) = 0.8. Now ξ̇1 = 0 means that x1 = e1−σ(x2) = e0.2 ≈ 1.2214 > 1.2 and
thus the only case for x1 to consider is x1 ≈ 1.2214, σ(x1) = 1.2. So

U(x1, x2) = U(x2) = 2x2 − a where a ≈ −1.4162 .

This is an increasing function of x2 on the interval [0, 0.8], and its values range from ≈ −1.4162 at
x2 = 0 to ≈ 0.1838 at x2 = 0.8. Therefore I = [0.4, 0.6] does not intersect the range. Thus there are no
solutions in case (2).

Case 3: x2 > 1.2, so σ(x2) = 1.2. Now ξ̇1 = 0 means that x1 = e1−σ(x2) = e−0.2 ≈ 0.8187 and thus the
only case for x1 to consider is x1 ≈ 0.8187, σ(x1) = x1 ≈ 0.8187. So

U(x1, x2) = U(x2) = 2x2 − a where a ≈ −1.7721 .

This is an increasing function of x2 on the interval [1.2,+∞), with a minimum value of ≈ 0.6279 at
x2 = 1.2. Therefore I = [0.4, 0.6] does not intersect the range. Thus there are no solutions in case (3).

We conclude that steady states are unique, and occur only in case (1A), when neither variable is satu-
rated.

For case (1A), then, we solve numerically

−x
2
1

2
+ 2− 2 lnx1 + e2(1−x1) = u

to get x1 = x1(u) for each constant input u in the interval I and back substitute to obtain the remaining
variables, obtaining a steady state Xu, Figure 3, We verify that the dose response (third coordinate) is
indeed not monotone. See Figure 3.

Figure 3: Plots of steady states x1, x2, x3 (labeled x, y, z in figure) as functions of constant input. Note
the bell-shape of the output x3.

The maximal real part of the eigenvalues of the Jacobian matrix along these steady states is always
negative, showing asymptotic stability, Figure 4.

Simulations from random initial states indicate that the state Xu, u ∈ I is globally asymptotically stable.

Remark. A small technical issue is that the saturation σ, while a (globally) Lipschitz function (insuring
unique and everywhere defined solutions of the ODE) is not differentiable at those states for which either
x1 or x2 equals exactly 0.8 or 1.2, which happens only a set of measure zero. Thus the Jacobian is not
well-defined at every state in the classical sense. However, it is well-defined in the sense of nonsmooth
analysis, and in any event the signs of interactions reflect the increasing or decreasing influence of each
variable on each other variable, and this can be defined with no need to take derivatives. The saturation
function σ could be replaced by an approximating differentiable function, but use of σ makes calculations
somewhat simpler.

This example was derived as follows.
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Figure 4: Maximum real part of eigenvalues, as a function of u, showing stability.

We first ignore the saturations, and consider the Jacobian (with respect to the x variables):

J =

 −1 −e1−x2 0
−e2(1−x1) −1 1

0 −e2(1−x2) −2


which has characteristic polynomial P (λ) = λ3 + a2λ

2 + a3λ+ a4 with

a2 = 4

a3 = e2(1−x2) − e3−x2−2x1 + 5

a4 = e2(1−x2) − 2e3−x2−2x1 + 2 .

the Routh-Hurwitz criterion requires that a2, a3, a4 > 0 and ∆ := a2a3 − a4 > 0 for stability. In
particular, when x1 = 1 and x2 = 1 (as in the equilibrium Xu corresponding to u = 0.5), a2 = 4, a3 = 5,
and a4 = 1, so these properties are satisfied here, and that this equilibrium is stable.

It follows that, in particular, the Jacobian is nonsingular at this equilibrium, so that, by the implicit
function theorem, we know that there is a local curve Xu of equilibria for each u near u = 0.5. We then
guessed a range where stability will be preserved, by checking the Routh-Hurwitz criterion as a function
of (x1, x2). This suggested the range to be used, and the eigenvalue plot confirmed the results. The
saturation function was added in order to provide unique equilibria and thus the possibility of global
stability; without it, we found that there is bistability.

The fact that the dose response is bell-shaped is suggested by a perturbation argument, with no need to
plot numerically. In terms of the derivatives X ′u of Xu with respect to u, we have an implicit equation

JX ′u + b = 0

where b = col(0, 0, 1). Thus the derivative of the output y = x3 is, as a function of u:

−cJ−1b = −det(J)−1γ

where γ is the (3, 3) entry of the adjugate matrix, which is the principal 2× 2 minor of J , namely zero.
Thus we have a point at which the output may have a local minimum or maximum. One could check
the second derivative to see that this is strict, but at this point a simulation completes the proof.

Remark. In any dimension, for systems ẋ = f(x, u) with output y = h(x), one may similarly check by
a perturbation argument if the determinant of the Jacobian of f and a suitable minor do not change sign
along the state space. A sufficient condition for this can be given in terms of regular interval matrices
[6]. We omit the easy details.

Remark. The bell-shaped dose response in Fig 3 (right panel) spans only a small range of output
values. One could rescale this example to have a more dramatic effect. There are at least two ways to
change this while still having the same result (no IFFL):
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• We can add a new variable, let us say x4, with an equation ẋ4 = ϕ(x3)−x4, where now the output
is x4, and the function ϕ is strictly increasing. This system will still have no IFFLs.

Now the dose-response is ϕ(h(Xu)), where h(Xu) was the previous dose response. We can take a
Hill function for ϕ. rendering the new dose response initially almost 0, changing to 1, and finally
back to near zero.

• A less elegant alternative, if we want to insist on three-dimensional example, is to make a change of
variables x3 = ϕ(x3), with the same function ϕ as above. Now the equation for ẋ1 will have a term
ϕ−1(x3), which is still increasing on x3, and the equation for ẋ3 will have the term ϕ′(ϕ−1(x3))
multiplying the previous left hand side, so all Jacobians still have the same sign.

3 The case of two-dimensional systems

Consider this diagram for a system, containing one negative feedback loop (and no IFFL):

Here u is the input, y the output, and x the intermediate state that provides the negative feedback loop.

We model this as

ẋ = f(x, y)

ẏ = g(x, y, u)

on x(t) ≥ 0, y(t) ≥ 0 (with u ≥ 0 seen as a constant in this problem), and we impose these conditions
(subscripts indicate partial derivatives):

1. fy(x, y) > 0 for all x, y (arrow from y to x is activating),

2. gx(x, y, u) ≤ 0 for all x, y, u (arrow from x to y is repressing),

3. gu(x, y, u) ≥ 0 for all x, y, u (arrow from u to y is activating),

4. f(0, y) ≥ 0, g(x, 0, u) ≥ 0 for all x, y, u (invariance of nonnegative orthant).

In addition, we impose these constraints to make the problem non-trivial:

5. for each non-negative constant input u, there is a unique (non-negative) steady state, denoted as
(xu, yu)

6. (xu, yu) depends smoothly on u (this is done for purely technical reasons, to be able to compute
the sensitivity on u),

7. this steady state is exponentially asymptotically stable.

We call yu as a function of u the dose response.

We will show:

• The dose response need not be monotone (it may be bell-shaped).
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• However, if we impose the additional requirement that fx(x, y) ≤ 0 for all x, y, then the dose
response is monotone.

This last requirement says, in effect, that x can degrade but there is no auto-catalysis on x.

We prove the second statement and give an example for the first one.

The proof of is immediate by the arguments given above - now the adjugate matrix is just a single
element that is always negative. We prove it in detail.

We compute the Jacobian:

Jx,y =

(
fx fy
gx gy

)
The assumed stability condition means that the trace is negative and the determinant is positive (at the
equilibrium (xu, yu), for each u):

T := fx + gy < 0 D := fxgy − fygx > 0 .

(Observe that, if we assume that both fx ≤ 0 and gy < 0, then we automatically have T ≤ 0 and D ≥ 0,
but we do not need these additional assumptions, since we are assuming stability.)

The steady states satisfy
f(xu, yu) = 0, g(xu, yu, u) = 0

at all u, and are differentiable in u, so we differentiate:

fx
∂xu
∂u

+ fy
∂yu
∂u

= 0 gx
∂xu
∂u

+ gy
∂yu
∂u

+ gu ≡ 0 .

Thus
∂yu
∂u

= −fx
fy

∂xu
∂u

and

−D
fy

∂xu
∂u

+gu =
fygx − fxgy

fy

∂xu
∂u

+gu = (gx−gyfx/fy)
∂xu
∂u

+gu = gx
∂xu
∂u

+gy

(
−fx
fy

∂xu
∂u

)
+gu = 0

which gives
∂xu
∂u

=
fy
D
gu

and thus substituting back in the formula for ∂yu
∂u :

∂yu
∂u

= −fx
fy

fy
D
gu = −fx

D
gu .

Therefore, if we also have fx ≤ 0 then ∂yu
∂u ≥ 0 and we conclude that yu is increasing on u. (Strictly if

fx < 0 and gu > 0.)

This ends the proof.

Remark. Note that not all the properties 1-7 are used in the proof. Also, the same result holds if
we have an invariant set V for the solutions of the differential equations and we are only interested in
solutions that remain in V. Of course, the conditions are then imposed on all (x, y) ∈ V.

Remark. In the paper [5] the authors prove the same result for the particular system evolving on [0, 1]2

in which:

f(x, y) = α(y)(1− x)− δx
g(x, y, u) = u(1− y)− (β + γx)y

and
α(y) = c+

a

a+
(
b
y

)n
7
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for certain (positive) parameters a, b, c. (For simplicity, we redefined the input in that paper, to absorb
an additive and a multiplicative constant.) All conditions for our result are satisfied. (Note that
fx = −α(y)− δ < 0.) The existence of a unique steady state follows from the fact that one can solve the
first equation to obtain x = θ(y) := α(y)/(δ + α(y)) and when substituted into u(1− y) = (β + γθ(y))y
we have that the left hand side decreases from u to zero and the right had side increases from zero, so
there is a unique equilibrium (and it is smoothly dependent on u by the implicit function theorem).

This construction also hints at the counterexample. We need to find f and g so that: 1-7 hold and gx
changes sign along the curve (xu, yu).

In order to obtain such a counterexample, we will take special forms for f and g:

f(x, y) = −α(x) + y

g(x, y, u) = β(x)− y + u+ κ

where κ > 0 is a constant (this could be though of either as constitutive production of y or as a lower
bound on a redefined input κ+ u) and the smooth functions α and β are defined below.

We need the following properties:

1. fy(x, y) > 0 (satisfied because fy = 1 > 0)

2. gx(x, y, u) ≤ 0, i.e. α′ ≥ 0 (here prime is derivative w.r.t. x)

3. gu(x, y, u) ≥ 0 (satisfied because gu = 1)

4. f(0, y) ≥ 0, g(x, 0, u) ≥ 0: we’ll take α(0) = 0 and β(x) ≥ 0

and additional properties as follows.

The steady state for constant input u solves these two equations:

y = α(x)

and
β(x)− α(x) + u+ κ = 0

or equivalently
γ(x) := α(x)− β(x) = u+ κ .

We will require that, for some δ > 0, γ(δ) = κ and γ(x) > 0, γ′(x) ≥ 0 for all x ∈ [δ,∞). By the
implicit mapping theorem, this says that there is a unique (and differentiable) solution x ∈ [δ,∞) of
γ(x) = u + κ, for each u ≥ κ, and this solution depends smoothly on u. This will be xu. We will also
require α(x) ≥ 0 for all x ∈ [δ,∞], which then gives yu = α(xu). Thus, there is a unique steady state
for each u, and (xu, yu) depends smoothly on y, guaranteeing gives properties 5 and 6. There remains
to assure stability: D > 0 and T < 0 at all equilibria, Since fx = −α, fy = 1, gx = β′, gy = −1:

D = fxgy − fygx = α′ − β′ = γ′, T = fx + gy = −α− 1

we need to require α(x) > −1 for all x ∈ [δ,∞) (we already required γ′ > 0). To summarize, we need:

• smooth functions α, β : [0,∞)→ R,

• α(0) = 0,

• β(x) ≥ 0 for all x ∈ [0,∞),

• numbers δ > 0, κ > 0 so that γ := α− β has γ(δ) = κ,

• γ′(x) > 0 for all x ∈ [δ,∞) (this implies that γ(x) ≥ γ(δ) > 0)

• α(x) > −1 for all x ∈ [δ,∞).
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Our objective is to get a sign change in ∂yu
∂u , so we need that fx changes sign, i.e. α′ should admit both

a positive and a negative sign on x ∈ x ∈ [δ,∞).

There are many possible choices for such α and β. We pick a rather artificial one merely to show the
existence of such functions, not for any practical significance. We will pick

0 < ε <
1

(1 + π)2
≈ 0.0583

and any
0 < δ ≤ π

and these functions:

β(x) :=
1

1 + x
,

α̃(x) :=
1

1 + x
+ sinx+ (1 + ε)x,

α(x) := θ(x) α̃(x),

where θ is a smooth function which is 0 at x = 0 (thus assuring α(0) = 0) and θ(x) ≡ 1 for x ≥ δ.
Observe that this definition assures that α̃(x) = α(x) for all x ≥ δ. Such functions θ can be obtained
by an abstract partition of unity argument. However, the same argument can be adapted to work with
a Hill function θ(x) = xn/(Kn + xn) with 0� K � 1 and n� 1.

Note that − 1
(1+x)2 ≥ −1 and cosx ≥ −1, so the function α̃(x) has derivative

α̃′(x) = − 1

(1 + x)2
+ cosx+ 1 + ε ≥ −1− 1 + 1 + ε = −1 + ε

which shows that α′(x) = α̃′(x) > −1 for x ≥ δ.
Let g̃(x) = ã(x)− β(x) = sinx+ (1 + ε)x, and that γ̃(x) = γ(x) for all x ≥ δ. Observe that

g̃′(x) = = cosx+ 1 + ε ≥ −1 + 1 + ε = ε > 0

for all x and that γ(0) = 0, so it follows that γ̃(x) > 0 for all x (and thus in particular for x ≥ δ).
When x = π, α′(π) = − 1

(1+π)2 + ε < 0 because of the choice of ε. On the other hand, for x = 2π,

α(x) = α̃′(x) = − 1
(1+2π)2 + 2 + ε > 1 + ε > 0. This shows that α′ changes sign.

We now define
κ := α̃(δ)− β(δ) = α(δ)− β(δ) = sin δ + 1.001δ,

so that γ(κ) = δ is satisfied.

For example, if we take ε = 0.001 and δ = π/2, κ = 1 + 1.001π/2.

As a numerical example, with ε = 0.001 and

u+ κ ≈ 3.1378, 3.1447, 4.0461 (u ≈ 0.5654, 0.5723, 1.4737)

which were obtained by evaluating γ(x) at the respective points below:

xu = 2.8000, 3.1000, 5.0000

and the does response is not monotone, since we have these respective values for y:

yu = 3.4009, 3.3886, 4.2127

(we built up this example by starting from the fact that ∂yu
∂u < 0 in an interval around an u for which

xu = π, since the sign of ∂yu
∂u is the sign of α′ at that point). See Fig. 5 for part of the plot of yu vs u.
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Figure 5: Non-monotone dose-response for two-dimensional example
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