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Abstract6

Time series data of allele frequencies are a powerful resource for detecting and7

classifying natural and artificial selection. Ancient DNA now allows us to observe8

these trajectories in natural populations of long-lived species such as humans. Here,9

we develop a hidden Markov model to infer selection coefficients that vary over time.10

We show through simulations that our approach can accurately estimate both selection11

coefficients and the timing of changes in selection. Finally, we analyze some of the12

strongest signals of selection in the human genome using ancient DNA. We show that13

the European lactase persistence mutation was selected over the past 5,000 years with14

a selection coefficient of 2-2.5% in Britain, Central Europe and Iberia, but not Italy. In15

northern East Asia, selection at the ADH1B locus associated with alcohol metabolism16

intensified around 4,000 years ago, approximately coinciding with the introduction of17

rice-based agriculture. Finally, a derived allele at the FADS locus was selected in18

parallel in both Europe and East Asia, as previously hypothesized. Our approach is19

broadly applicable to both natural and experimental evolution data and shows how20

time series data can be used to resolve fine-scale details of selection.21
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Introduction22

Time series data of allele frequencies are obtained from many sources including experimental23

evolution experiments and ancient DNA studies. These data are particularly useful for24

estimating the strength of selection and reconstructing the allele frequencies of individual25

alleles. This is particularly useful when timing can be informative about the basis and26

environmental correlates of selection.27

Many methods have been developed to solve the problem of inferring selection co-28

efficients from time series data (Bollback et al., 2008; Illingworth and Mustonen, 2011;29

Malaspinas et al., 2012; Mathieson and McVean, 2013; Nishino, 2013; Feder et al., 2014;30

Lacerda and Seoighe, 2014; Foll et al., 2015; Terhorst et al., 2015; Schraiber et al., 2016;31

Ferrer-Admetlla et al., 2016; Shim et al., 2016; Nené et al., 2018; Paris et al., 2019). One32

assumption common to almost all these methods is that the selection coefficient is con-33

stant throughout time. This may be appropriate in some cases, for example experimental34

evolution where conditions are strictly controlled, but it is less appropriate in natural pop-35

ulations. In particular, many of the most interesting examples of human adaptation involve36

adaptation to new environments, gene-culture co-evolution, or infectious diseases. Selection37

in these cases is likely to be time-varying, and the timing of selection is typically an impor-38

tant question. Inferring time-varying selection requires more data than inferring constant39

selection, but increasing sample sizes of ancient human DNA mean that it should now be40

possible to infer timings and trajectories at higher resolution.41

Here, we extend the hidden Markov model of Mathieson and McVean (2013) to allow42

selection coefficients that change over time. A model that allowed selection coefficients to43

vary arbitrarily would be overfitted, so we restrict selection coefficients to a pre-specified44

finite number of possible values and penalize changes. By defining the model in this way45

we are able to compute maximum likelihood estimates of the parameters using an EM46

algorithm.47
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Methods48

Wright-Fisher model49

Following the notation of Mathieson and McVean (2013), we consider a Wright-Fisher50

population with an effective size of 2Ne. We write ft as the frequency of the selected allele51

at generation t for t = 0 . . . T . Suppose that the frequency trajectory is known exactly and52

the selection coefficient s is constant over time. Then, an approximate maximum likelihood53

estimator for s (Watterson, 1982) is54

ŝ =
fT − f0∑T−1

t=0 ft (1− ft)
. (1)

That is, the total change in allele frequency, divided by the sum of the heterozygosity over55

the time the allele is observed. Now suppose that the selection coefficient at generation t56

is st, but that it takes one of K possible values σ0 . . . σK . We assume that we know which57

value st takes at each generation and define indicator variables zt such that st = σzt . We58

show in the Appendix that the maximum likelihood estimator of σk is given by59

σ̂k =

∑T−1
t=0 1 {zt = k} (ft+1 − ft)∑T−1
t=0 1 {zt = k} ft (1− ft)

. (2)

This is Equation 1 with sums over generations when the selection coefficient is equal to σk.60

Hidden Markov model - constant selection61

This model was developed in Mathieson and McVean (2013), but we describe it briefly here62

as background for the time-varying selection mode. In practice, ft is unknown. Instead, the63

data consist of samples of nt chromosomes at each generation t (nt can be zero), of which64

at carry the selected allele. We treat ft as the hidden state in a hidden Markov model and65

(at, nt) as the observations. To apply standard HMM theory, we discretize the frequency66

space so that ft ∈ G = {g1, . . . , gD}, keeping the interval between grid points δg = gi+1−gi67

constant. The transition probabilities P (ft+1 = g|ft) are computed by approximating the68
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Wright-Fisher transition density69

P (ft+1 = g|ft) =
∫ g+δg/2

g−δg/2
φ

(
x− µt
νt

)
dx (3)

where µt = ft + sft (1− ft) and νt = ft(1−ft)
2Ne

. The emission probabilities are binomial70

at ∼ Bin (nt, ft). We find the MLE for s by starting from an initial guess s0 and applying71

the EM update rule,72

sr+1 =
E [fT ]−E [f0]∑T−1
t=0 E [ft (1− ft)]

(4)

with expectations over the posterior distribution of ft computed using the forward-backward73

algorithm. We recalculate the forward-backward matrix and repeat until sr converges.74

Hidden Markov model - time-varying selection75

In the case of time-varying selection, the hidden states are given by {ft, zt} for t = 0 . . . T ,76

ft ∈ {g1 . . . gD} zt ∈ {1 . . .K} The parameters are the σk for k = 1 . . .K (Figure 1). The77

emission probabilities depend only on ft and are the same as in the constant s model. The78

transition probabilities are given by79

P (ft+1, zt+1 = g, j|ft, zt) = (c1 [j 6= zt] + (1− c)1 [j = zt])

∫ h+δg/2

h−δg/2
φ

(
x− µt
νt

)
dx (5)

where µt = ft + stft (1− ft); st = σzt ; νt =
ft(1−ft)
Ne

and c is a fixed constant that gives the80

probability of transitioning between hidden selection states in any generation. We show in81

the Appendix that the EM update rule for σk is82

σr+1
k =

∑T−1
t=0 E [1 {zt = k} (ft+1 − ft)]∑T−1
t=0 E [1 {zt = k} ft (1− ft)]

, (6)

where now the expectations are taken over the joint posterior distribution of (ft, zt) calcu-83

lated with the forward-backward algorithm. The forward-backward algorithm gives us the84

joint posterior probabilities pg,kt = P (ft = g, zt = k), which allow us to calculate the denom-85

inator and the term E [1 {zt = k} ft]. To calculate the term E [1 {zt = k} ft+1] we also need86

to know the conditional posterior probabilities pgh,kjt = P (ft+1 = h, zt = j|ft = g, zt = k)87
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Figure 1: Schematic of the time-varying hidden Markov model. Below the dashed line are

the hidden states. At the time indicated by the red arrows, we observe at selected alleles

out of nt total, ft = g3 and zt = 1 and therefore st = σzt = σ1.
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which can be computed from the forward and backward matrices. Then, Equation 6 can88

be written in terms of the discretized frequencies and posterior probabilities as89

σr+1
k =

∑T−1
t=0

∑
g∈G

[
pg,kt

[[∑
h∈G

∑K
j=1 hp

gh,kj
t

]
− g
]]

∑T−1
t=0

∑
g∈G

[
pg,kt g(1− g)

] . (7)

In summary, the algorithm is as follows:90

1. Specify the number of discrete selection coefficients, K and the per-generation proba-91

bility of changing states c. Make an intial guess for the selection coefficients σ1, . . . σK .92

2. Using the current values of σ1, . . . σK , the observations at, nt, the binomial emission93

probabilities, and the transition probabilities defined in Equation 5 compute the for-94

ward and backward matrices. Use Equation 7 to update the estimates of σ1, . . . σK .95

3. Repeat step 2 until iteration r where maxk |σrk − σ
r−1
k | is less than some pre-defined96

tolerance, and stop.97

Because there are DK hidden states, running time is O(D2K2T ) and space is O(DKT ).98

Simulated data99

We simulated allele frequencies under a Wright-Fisher model, with an effective population100

size of Ne = 10, 000 under three different scenarios (Fig. 2A-C);101

1. The selection coefficient is 0.02 for 50 generations and then −0.02 for 50 generations.102

Initial frequency f0 = 0.1.103

2. The selection coefficient is 0.02 for 100 generations, 0 for 50 generations, and then104

−0.02 for 50 generations. Initial frequency f0 = 0.1.105

3. The selection coefficient alternates between 0.02 and −0.02 every 40 generations.106

Initial frequency f0 = 0.5.107
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We sampled 100 haploid individuals every 10 generations. We set initial estimates of σk to108

be ±0.05 for K = 2 and 0,±0.05 for K = 3, a grid size of 100 (i.e. D = 100) and a tolerance109

of 0.001. We fixed the probability of transitioning between selection states c to be the inverse110

of the total generations observed; i.e. we expect ∼ 1 selection state transition. We show the111

distribution of the point estimates of σ̂k, and the averaged posterior distribution of the zt112

(Fig. 2D-F). Finally, we varied both the frequency and size of the samples and investigated113

how the performance of the estimator changed (Fig. 2G-I) in terms of:114

• The root mean squared error in the estimate of the selection coefficients σ̂k.115

• The posterior probability that the the inferred selection state is correct within ±10116

generations of each changepoint.117

• The root mean squared error in the weighted per-generation estimate of the selection118

coefficient ŝt =
∑

g∈G
∑K

k=1 σ̂kp
g,k
t .119

We investigated performance as we varied parameter values and specified incorrect values120

for fixed parameters, for example Ne, c or K.121

Comparison with existing approaches122

We compared our approach to CP-WFABC (Shim et al., 2016)—the only existing method123

that is able to infer time-varying selection coefficients. Specifically, CP-WFABC uses Ap-124

proximate Bayesian Computation (ABC) to fit a model with a single changepoint and125

two selection coefficients (i.e our scenario 1). We used the default number of simulations126

(1,000,000) with the best 1,000 retained, and set the prior to be the range (−2s, 2s) as we127

tested performance for different values of s. We use the posterior distribution of the change-128

point to calculate the probability of being in the wrong state, and the posterior mode as a129

point estimate of the selection coefficients which we compare with our maximum likelihood130

estimates.131
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Ancient DNA data132

We collected published ancient DNA data from four regions of Europe chosen because133

they had large sample sizes and corresponding present-day data from the 1000 Genomes134

Project (1000 Genomes Project Consortium, 2015). We restricted to dates after the arrival135

of Steppe-related ancestry in each region to minimize the effects of changes in ancestry136

associated with that arrival (Haak et al., 2015). The four regions were: Britain (GBR, 50-137

60°N, 5°W-2°E, <4400BP), Central Europe (CEU, 47-53°N, 8-20°E, <5000BP), Italy (TSI,138

36-45°N, 7-15°E, <5000BP), Iberia (IBS, 36-44°N, 10°W-4°E, <5000BP). We identified a139

total of 499 samples, although not all had coverage at rs4988235 or rs174546. The samples140

were originally published in the following references: Allentoft et al. (2015); Amorim et al.141

(2018); Antonio et al. (2019); Fernandes et al. (2018); Gamba et al. (2014); Lipson et al.142

(2017); Martiniano et al. (2016, 2017); Mathieson et al. (2015, 2018); Mittnik et al. (2019);143

Narasimhan et al. (2019); Olalde et al. (2018, 2019); Schiffels et al. (2016); Valdiosera et al.144

(2018); Veeramah et al. (2018) and Zalloua et al. (2018). We also identified 255 ancient145

samples from East Asia (excluding Japan) from Ning et al. (2020); Yang et al. (2020) and146

Wang et al. (2020) and divided them into "North" and "South" populations at 30°N. We147

restricted the South population to <5000BP because only one sample was older.148

Ancient DNA analysis149

We used a grid of D = 1000, two selection states and a tolerance of 1 × 10−4. We set Ne150

to grow exponentially from 104 to 106 over the past 200 years approximately as inferred151

by Browning and Browning (2015), though without the more rapid increase in past 10152

generations. Though this estimate is for European populations, our estimator is robust to153

mis-specification of Ne so we assumed it was representative of late Holocene growth rates154

and used the same values for East Asia. Finally, we estimated the bias and uncertainty in155

our estimates using a parametric bootstrap: we simulated observations conditional on the156

inferred frequency trajectory and actual sample dates, and then reran the estimator.157
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Logistic regression analysis158

We ran an independent analysis where we fitted the observations using logistic regression159

on time and ancestry components estimated using ADMIXTURE with K=3 (Alexander160

et al., 2009). That is, the expected allele frequency of individual i, f i is given by:161

log

(
f it

1− f it

)
= βPit+ γ1Ai + γ2Bi, (8)

where Pi is the population to which individual i belongs and Ai and Bi are two of its162

ancestry component values (the third is 1 − Ai − Bi ). We estimate s by estimating the163

predicted change in frequency in one generation for each individual, converting it to an164

estimate of s based on the expected frequency change in the Wright-Fisher model (i.e.165

ŝi =
f it+1−f it
f it (1−f it )

) and then averaging over all individuals in each population. We estimate the166

standard error by assuming that the ratio of ŝ to its standard error is the same as the ratio167

of βPi to its standard error. While this is not an explicit model of the evolutionary process,168

it does allow us to account for variation in genome-wide ancestry across individuals.169

Results170

Simulated data171

In simulated data, we recover allele frequency trajectories, selection coefficients and the172

timing of changes in selection coefficients (Fig. 2). Simulations also allow us to test the173

robustness of the estimator to misspecification and highlight key features of its behavior.174

First, under scenario 1, we tested robustness to misspecification of Ne and c. These pa-175

rameters must be specified in advance. However, we find that the error in the estimates176

is robust over one order of magnitude for Ne, and two orders of magnitude for c (Fig. S1177

& S2) Thus, as long as reasonable estimates of these parameters are available, misspecifi-178

cation should not be a major concern. Second, we note that even for very large samples179

the RMSE of the selection coefficient σ̂k and ŝt do not tend to zero. This is partly due to180
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the stochastic effect of drift and partly due to the fact that the estimators can be biased,181

particularly for low initial frequencies (Fig. S3). If the initial frequency is very low, there182

is a relatively high chance that the allele is just by drift. For example, for an allele in a183

single copy, there is a probability of ∼ e−1 ≈ 0.37 that the allele is lost in one generation184

leading to a negative MLE for the selection coefficient.185

As sample size increases, the RMSE of ŝk decreases more reliably than that of σ̂k (Fig.186

2G-I). In other words, the estimator is better at answering the question “what is the selection187

coefficient in generation t?” than “what is the selection coefficient in state k?”. The first188

question allows us to average estimates over multiple states, even if the number of states is189

misspecified. In fact, if there are too many or too few selection states in the HMM, then190

the estimator does over- or underestimate the number of transitions (Fig. S4A) but the191

error in ŝt does not change (Fig. S4B). Therefore in our analysis of real data we focus on192

ŝt, rather than σ̂k.193

In practice, the performance of the estimator depends on the data. For example, the194

accuracy with which we are able to detect fluctuating selection in scenario 3 (Fig. 2C)195

depends on the period of fluctuation (Fig. S5). Performance also depends on the sampling196

scheme. If we do not sample around a changepoint then we will misestimate selection197

coefficients around that time. Given relatively smooth trajectories, performance depends198

on the total number of observations—sampling ten times as many chromosomes ten times199

less frequently gives about the same error (Fig. 2G-I). However more uniform sampling200

in time would be more robust to rapidly changing trajectories. In general we recommend201

assessing the performance and robustness of the estimator using a parametric bootstrap202

approach. Run the estimator on the observed data, simulate data under the inferred model203

and actual pattern of observations, and investigate performance on the simulated data.204

Finally, we compared the performance of our estimator to the only previously published205

method for detecting time-varying selection coefficients—CPWFABC (Shim et al., 2016).206

This method uses Approximate Bayesian Computation to jointly infer a single changepoint207
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Figure 2: Performance of the estimator on simulated data. A-C: Simulated trajectories

(dashed), observations (points), and inferred trajectories (solid). Colors indicate true and

inferred selection states. D-F: For each of the scenarios in A-C, density plots of distribution

of the estimates of the selection coefficients σ̂k from 100 simulations. Red lines mark the

true values. Lower panels show the average posterior probabilities of being in each selection

state (P (zt = k)) in each generation. Red lines mark the true changepoints. G-I: For each

of the scenarios in A-C, we show the RMSE error in σ̂k in the upper panel, the RMSE error

in ŝt in the middle panel, and the posterior probability that zt is wrong in ±10 generations

around each changepoint. We show estimates for sample sizes ranging from 1 to 1000,

sampled either every generation or every 10 generations.
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and two selection coefficients (pre- and post- changepoint). We tested the performance of208

this model under scenario 1 and find that our estimator outperforms it both in terms of209

locating the changepoint and estimating the selection coefficients (Fig. S6).210

Selection at LCT in Europe211

The SNP rs4988235 (C/T-13910) is associated with adult lactase persistence in Europeans212

(Enattah et al., 2002) and exhibits one of the strongest signals of positive selection in the213

entire genome (Bersaglieri et al., 2004; Grossman et al., 2013). Estimates of the strength214

and timing of selection on the variant based on present-day data are variable and have wide215

confidence intervals, ranging from 0-0.2 for s) and ∼1500-65,000 years before present for the216

origin of the mutation (Bersaglieri et al., 2004; Tishkoff et al., 2007; Itan et al., 2009; Peter217

et al., 2012). Direct evidence from ancient DNA has established that the allele was rare or218

absent in the Neolithic and was not present at substantial frequency until the Bronze Age,219

starting around 5000BP (Burger et al., 2007; Allentoft et al., 2015; Mathieson et al., 2015).220

In parts of Europe, for example Iberia, the derived allele did not become common until221

even later (Olalde et al., 2019). Using ancient DNA data from across Europe, Mathieson222

and Mathieson (2018) estimated a selection coefficient of 0.018.223

We used data from 499 ancient Europeans, divided by region, to investigate whether224

there were differences in the selective pressure across Europe, and whether the strength225

of selection varied over time (Fig. 3). We estimate that in Britain and Central Europe,226

the variant experienced a selection coefficient of ∼0.025, consistently for the past 4-5000227

years. In Iberia, the selection coefficient was slightly lower—around 0.02. Bootstrapping228

suggests that the selection coefficients outside Italy might be underestimated by up to229

0.005 (Fig. 3). We find no evidence that the allele was ever under selection in Italy, with230

an estimated selection coefficient of zero. One concern is that these differences might be due231

to difference in the timing of ancestry changes across Europe. We therefore fitted a logistic232

regression to the observations, including date and two ancestry components (inferred using233
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Figure 3: Selection at LCT. A: Location of 499 samples used in the analysis. The area of

each circle is proportional to the sample size at each site. B: Upper panel: Solid lines

indicate the inferred allele frequency trajectory for the lactase persistence allele in different

parts of Europe. Faded lines indicate bootstrap replicates generated by sampling observa-

tions from this inferred frequency trajectory Lower panel: Inferred selection coefficient

(ŝt) and bootstrap replicates as a function of time.
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ADMIXTURE withK = 3). This model yields similar estimates of the selection coefficients234

(Fig. S7). Finally, we fitted the lattice model from Mathieson and McVean (2013) allowing235

migration between demes and, again, find very similar results (Fig. S8).236

It is unknown whether selection on lactase persistence was dominant or additive. If we237

assume that the selection coefficient is constant over time, we can test the effect of different238

dominance parameters (Mathieson and McVean, 2013). Maximum likelihood estimates239

indicate complete or partial dominance, but the difference in log-likelihood is small and240

we cannot reject additivity (Fig. S9). Finally, it has been suggested that the allele had241

already reached its present-day frequency by the Middle Ages (Kruttli et al., 2014) and242

that selection must have stopped by then. Simulations show that, given the distribution of243

observations, we would be unable to detect this change in selection, so this question remains244

unresolved (Fig. S10).245

Selection at ADH1B in East Asia246

The alcohol and aldehyde dehydrogenase genes ADH1B and ALDH2 are the key compo-247

nents of the oxidative alcohol metabolism pathway. The derived A allele of rs1229984 in248

ADH1B increases the rate at which ethanol is oxidised to acetaldehyde and the A allele of249

rs671 in ALDH2 decreases the rate at which acetaldehyde is transformed into acetic acid.250

The net effect of the two polymorphisms is to increase the concentration of acetaldehyde251

after consuming alcohol, leading to unpleasant negative effects; consequently the variants252

are protective against alcohol abuse (Chen et al., 1999). These two variants are at high253

frequency in East Asia (0.8 and 0.2, respectively) compared to the rest of the world (up to254

0.03 and 0.00) (1000 Genomes Project Consortium, 2015). Both variants exhibit genomic255

signatures of selection (Oota et al., 2004; Barreiro et al., 2008; Okada et al., 2018). Expla-256

nations include protection against alcohol abuse and the anti-parasitic action of aldehyde257

(Oota et al., 2004), and the variants are thought to be associated with the Neolithic devel-258

opment of rice farming (Peng et al., 2010). Using ancient DNA from 255 ancient individuals259
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Figure 4: Selection at ADH1B. A: Location of samples used in the analysis. The area of

each circle is proportional to the sample size at each site. Open circles denote locations of

present-day samples. B: Upper panel: Solid lines indicate the inferred allele frequency

trajectory for the derived ADH1B allele in North and South East Asia. Faded lines indicate

bootstrap replicates generated by sampling observations from the inferred trajectory Lower

panel: Inferred selection coefficient (ŝt) and bootstrap replicates as a function of time.
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from East Asia (Ning et al., 2020; Yang et al., 2020; Wang et al., 2020), and present-day260

allele frequencies from 1103 individuals (Peng et al., 2010), we estimated the frequency and261

selection coefficient trajectories for ADH1B (Fig. 4). We estimate that by 4000 BP, the262

derived ADH1B was already common south of 30°N, but was still rare further north. Selec-263

tion intensified in the north around 4000 BP with a selection coefficient of around 2%. We264

find consistent results if we replace the present-day population samples with the CHB and265

CHS 1000 Genomes populations, and when we fit the logistic regression model, correcting266

for K = 3 inferred ancestry components (Fig. S11).267

Rice was domesticated in the Yangtze basin (≈ 30◦N) as early as 8000 BP and our results268

suggest that by 4000 BP, the derived ADH1B allele was common there. It subsequently269

spread north where it experienced strong selection. We did not find the derived ALDH2270

allele in any ancient individuals suggesting that it was selected in both north and south271

East Asia in the past few thousand years on a background of the derived ADH1B allele.272

Selection at FADS in Europe and East Asia273

Another signal of selection in Europe is found at the FADS locus. Here the derived variant274

has been strongly selected in the past 10,000 years and is thought to be an adaptation to275

an agricultural diet (Ameur et al., 2012; Mathieson et al., 2015; Buckley et al., 2017; Ye276

et al., 2017; Mathieson and Mathieson, 2018) In contrast to the LCT locus, we find that277

the derived allele at the FADS locus tagged by rs174546 follows approximately the same278

trajectory in each region, and has approximately the same selection coefficient (0.007-0.012),279

consistent with a Europe-wide estimate of 0.004-0.015 (Mathieson and Mathieson, 2018)280

(Fig. 5A). In East Asia, we find that the same allele has also been under recent selection,281

with a trajectory and selection coefficient in the north that is similar to that observed in282

Europe (Fig. 5B). In the south we estimate a lower frequency but stronger selection though283

with only one observation (out of 30) of the derived allele, this is very uncertain. In both284

cases, we find consistent results with the logistic regression model (Figures S12 and S13).285
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Figure 5: Inferred allele frequency trajectories and selection coefficient for the derived FADS

allele in A Europe and B East Asia. Details are as in Figures 3 and 4. Present-day allele

frequencies taken from the 1000 Genomes project populations.
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Discussion286

Ancient DNA is powerful tool for studying the role of natural selection in human evolution.287

By detecting time-varying selection, we can identify environmental changes leading to se-288

lective pressure on particular alleles. Our approach is not limited to human data, and is289

broadly applicable to ancient DNA, ecological or experimental evolution studies.290

We find that the selection coefficient for the European lactase persistence allele was291

consistently around 2-2.5% in Britain, Central Europe and Iberia while the allele was not292

selected at all in Italy. The distribution of observations mean that we have limited power293

to detect changes in selection coefficient over this time period. In East Asia, our analy-294

sis of the ADH1B locus is consistent with selection intensifying in the North after 4000295

BP, corresponding to the introduction of rice farming. However, geographic sampling and296

knowledge of ancestry changes is currently more limited in East Asia than in Europe, so297

this result does not exclude more complex trends. As previously hypothesized (Mathieson,298

2020), the derived FADS allele was selected in both Europe and East Asia.299

Genomic signatures of selection are relatively easy to detect with present-day data. An-300

cient DNA provides temporal information, as well as information about changes in ancestry,301

allowing the timing and strength of selection to be inferred. Though this does not solve302

the ultimate problem of identifying the environmental drivers of selection, it goes a long303

way to making that problem tractable, allowing hypotheses to be rejected. For example,304

one hypothesis about selection for lactase persistence is that it allows the uptake of vita-305

min D from milk rather than UV radiation, which is advantageous in the North but not306

South of Europe. However, our results show that selection was almost as strong in Iberia307

as in Northern Europe and much stronger than in Italy, making this unlikely to be the sole308

explanation. By allowing these inferences, our approach and others based on ancient DNA309

should provide much deeper insight into the nature of recent human evolution.310
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Appendix466

This derivations follow very closely those for the constant selection case in Mathieson and467

McVean (2013). Suppose the allele frequency ft in generation t is known exactly. The se-468

lection coefficient in generation t is st = σk1 {Zt = k} where zt is known. Then, conditional469

on ft, the distribution of ft+1 is binomial with size Ne and probability ft + stft(1 − ft).470

Thus, log-likelihood of the selection coefficients σ1 . . . σK is given by:471

`(σ1, . . . , σK) = 2Ne

T∑
t=1

{ft log(1 + st)− log(1 + stft−1} . (9)

But, since st = σk1 {Zt = k}, the log-likelihoods for each σk do not depend on each other472

so we can write473

`(σk) = 2Ne

T∑
t=1

{ft log(1 + σk1 {Zt = k})− log(1 + σk1 {Zt = k} ft−1)} . (10)

Differentiating w.r.t. σk and setting equal to zero gives.474

T∑
t=1

{
ft−1(1 + σ̂k)1 {Zt = k}
1 + ft−1σ̂k1 {Zt = k}

}
−

T∑
t=1

ft1 {Zt = k} = 0. (11)

Expanding the fraction to first order in σk gives

T∑
t=1

1 {Zt = k}
{
(ft−1(1 + σ̂k))(1− ft−1σ̂k)− ft +O(σ̂2k)

}
= 0. (12)

σ̂k

T∑
t=1

{(ft−1(1− ft−1} −
T∑
t=1

{(ft − ft−1}+O(σ̂2k) = 0, (13)

which yields the result in Equation 2. Another way to see this is that in Equation 10,475

we could remove the indicator functions and write the sum over t : Zt = k, rather than476

t = 1 . . . T leading to an equivalent form of Equation 2. For the EM update step we477

maximize the expectation over {ft, zt} of the likelihood (Equation 10). Taking expectations,478

differentiating and setting equal to zero we obtain, by the same argument above, the result479

of Equation 6.480
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Supplementary Figures481
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Figure S1: Errors in scenario 1 (defined as in Fig. 2G) when Ne is mis-specified. True

Ne = 10, 000, and we sample 100 chromosomes every 10 generations.
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Figure S2: Errors in scenario 1 (defined as in Fig. 2G) when c is mis-specified. True

c = 0.01, and we sample 100 chromosomes every 10 generations.
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Figure S3: Bias in the estimate of selection coefficients σ̂k in scenario 1 as a function of

initial allele frequency. Simulations as in Fig. 2D.
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Figure S4: Performance of the estimator when the number of selection states is misspecified.

A: distribution of the number of inferred state changes (in the sense that the most likely

state changes), for different numbers of true model states. Histograms show the distribution

of inferred state changes from 100 replicates, and dashed red lines show the mean. For 1

true state we simulate s = 0.02 for 50 generations, for 2 states we simulate s = 0.02 and 0

for 50 generations each, and for 3 states we simulate s = 0.02, 0 and -0.02 for 50 generations

each. B: With the same simulations as part A, we show the distribution of RMSE of ŝt for

different numbers of model states. Dashed red lines show the mean.
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Figure S5: Performance of the estimator for scenario 3 (Fig. 2C) when the period of

fluctuation varies. We show the probability that we estimate that we are in the wrong

state. Observations are 100 chromosomes either every generation or every 10 generations.
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estimated selection coefficient (i.e. σ̂k for our HMM and the CP-WFABC posterior mode).
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Figure S7: Results of fitting a logistic regression to the observations of the derived LCT

allele, as a function of date and ancestry (inferred using ADMIXTURE with K = 3, and

converting the effect size for date to an estimate of the selection coefficient (Methods).

Top left: LOESS smoothed fitted allele frequency trajectories in each region. Top left:

Estimated selection coefficients and 95% confidence intervals in each region Right panels:

Ancestry components for each individual, with smoothed LOESS fit lines.
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Figure S8: Results of fitting the 2 × 2 lattice model of (Mathieson and McVean, 2013) to

the data, allowing migration between Britain and Iberia, Britain and Central, Central and

Italy, and Italy and Iberia. Upper panel: Inferred allele frequency trajectories in each

region. Lower panel: Estimated selection coefficients and approximate 95% confidence

intervals in each region.
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Figure S9: Results of fitting the single population model of Mathieson and McVean (2013)

and allowing the dominance parameter h to vary. Upper panel: Log-likelihood (relative

to the maximum) as a function of the dominance parameter h. Lower panel: Maximum

likelihood estimate of s as a function of the dominance parameter h.
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Figure S10: Testing whether we can detect the end of selection on LCT. Keeping the existing

sampling points, we made the inferred allele frequency trajectory 1000, 2000 or 3000 years

shorter, keeping the same total increase in frequency and inserting a 500,1000 or 1500 year

period of constant frequency until the present. We then simulated observations keeping the

observed distribution, and reran the estimator. We show 5 replicate simulations for each

estimator.
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Figure S11: A: Location of present-day CHB and CHS populations from 1000 Genomes. B:

Inferred frequency trajectories and selection coefficients for the derived ADH1B allele using

present-day 1000 Genomes population frequencies (CHB/CHS). C: Inferred allele frequency

trajectory and (constant) selection coefficient for the logistic regression model. Points show

the fitted values for each ancient individuals and lines show a LOESS fit. D: Two ancestry

components inferred using ADMIXTURE. Points show the fitted values and lines show a

LOESS fit. Page 36
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Figure S12: Results of fitting a logistic regression to the observations of the derived FADS

allele in Europe, as a function of date and ancestry (inferred using ADMIXTURE with

K = 3), and converting the effect size for date to an estimate of the selection coefficient

(Methods). Upper left: Fitted allele frequency trajectories in each region. Lower left:

Estimated selection coefficients and 95% confidence intervals in each region Right pan-

els: Ancestry components for each individual (identical to Figure S7), with region-specific

smoothed loess fit lines.
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Figure S13: Results of fitting a logistic regression to the observations of the derived FADS

allele in East Asia, as a function of date and ancestry (inferred using ADMIXTURE with

K = 3), and converting the effect size for date to an estimate of the selection coefficient

(Methods). Upper left: Fitted allele frequency trajectories in each region. Lower left:

Estimated selection coefficients and 95% confidence intervals in each region (0.004-0.015

and -0.01-0.18 in North and South, respectively). Right panels: Ancestry components for

each individual (identical to Figure S11), with region-specific smoothed LOESS fit lines.
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