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Abstract  25 

Metabolic division of labor (MDOL) is widespread in nature, whereby a complex 26 

metabolic pathway is shared between different strains within a community for mutual 27 

benefit. However, little is known about how the mutual interactions in the microbial 28 

community engaged in MDOL are regulated. We hypothesized that when degradation 29 

of an organic compound is carried out via MDOL, the substrate traits (i.e., 30 

concentration and its toxicity) modulate the benefit allocation between the two 31 

microbial populations, thus affecting the structure of this community. We tested this 32 

hypothesis by combining mathematical modelling with experiments using engineered 33 

synthetic microbial consortia. Numerous modelling analyses suggested that the 34 

proportion of the population executing the first metabolic step can be simply 35 

estimated by Monod-like formulas governed by substrate traits. The model and the 36 

proposed formula quantitatively predicted the structure of our synthetic consortia 37 

composed of two strains degrading salicylate through MDOL. Individual-based 38 

modelling and colony pattern formation assays further indicated that our rule is also 39 

applicable to estimating community structure in spatially structured environments. 40 

Our results demonstrate that the structure of the microbial communities can be 41 

quantitatively predicted from simple environmental factors, such as substrate 42 

concentration and its toxicity, which provides novel perspectives on understanding the 43 

assembly of natural communities, as well as insights into how to manage artificial 44 

microbial systems.   45 
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Introduction 46 

In natural environments, microorganisms rarely live autonomously; instead, they 47 

interact with other individuals to form complex communities, in which they secrete a 48 

variety of toxins to compete with each other, or share metabolites to mutually benefit 49 

their survival. Among diverse modes of microbial interaction, metabolic division of 50 

labor (MDOL) is one of the most widespread phenomena, where distinct populations 51 

perform different but complementary steps of the same metabolic pathway [1-4]. 52 

MDOL controls numerous ecologically and environmentally important biochemical 53 

processes. One important aspect of microbial metabolism implemented by MDOL is 54 

the degradation of a variety of complex organic compounds, including PAHs [5, 6], 55 

pesticide [7-10], plastics [11], antibiotics [12], or polysaccharides [13, 14]. Bacterial 56 

degradation of these complex substrates is usually mediated by long metabolic 57 

pathways via a number of intermediates. While these pathways often remain intact 58 

within one population, they are frequently found segregated across different members 59 

within a community in a MDOL manner. Typical examples include syringate 60 

degradation via sequential cross-feeding between Acetobacterium woodii and 61 

Pelobacter acidigallici [5], phenanthrene degradation between Marinobacter sp. N4 62 

and other PAH-degrading microbes in marine environments [6], as well as atrazine 63 

degradation through MDOL within four bacterial species [9]. However, little is known 64 

about how microbial communities engaged in MDOL are regulated [15].  65 

The substrate whose concentration spatially and temporally fluctuates in the marine 66 

[16], soil [17] and wastewater [18] environments, acts as one of the most important 67 
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conditions that govern the performance of the microbial communities [19-21]. Firstly, 68 

the concentration of substrates regulates the growth of microbial populations 69 

according to the Monod equation [22]. Secondly, many substrates such as PAHs [23, 70 

24], pesticide [7-10], and antibiotics [12], are toxic to bacterial cells, inhibiting their 71 

growth. Increasing substrate concentration enhances resource availability of a 72 

population that benefit its growth, but also potentially increases the toxic effects of 73 

substrate that harms its growth (e.g., growth kinetics may follow the equations 74 

integrated with toxic terms [25]). Thus, concentration and toxicity of substrate 75 

profoundly affect the fitness of its microbial degraders [24, 26, 27]. However, it still 76 

remains ill-defined how substrate straits affect the relative fitness of different strains 77 

involved in a community, and thus govern the structure of the community. As 78 

structure of a community is fundamental to determine its functioning [28, 29], 79 

revealing this question is fundamental for managing such microbial systems for the 80 

removal of serious pollutants.  81 

Distinct from the pure culture, the effects of substrate on different populations 82 

involved in a MDOL community may vary quite a lot. Firstly, asymmetric benefit 83 

allocation exists between different populations in the MDOL community. In MDOL 84 

communities that degrade organic compounds, only the population performing the last 85 

steps can produce the growth resources (such as small organic acids) that support the 86 

bacterial growth (Supplementary Figure 1). Therefore, the population performing the 87 

last steps can preferentially acquire and privatize these nutrients (which we henceforth 88 

call product privatization), thus acquiring the greater benefit, while the other members 89 
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have to collect nutrients leaked from this population (Figure 1; left of the first row). 90 

This uneven allocation of limited resources generally benefits the population that 91 

executes the last steps (we henceforth named this population the ‘Embezzler’, 92 

analogous to a human worker responsible for the final step of an assembly line, who 93 

pockets the final product and fails to share profits with other workers). This 94 

phenomenon has been observed in many recent studies [7, 10, 30]. Increasing 95 

substrate concentration would enhance the flux of metabolites [31, 32]. Because the 96 

Embezzler only have a limited capacity of consuming the final product, increased 97 

metabolic flux causes more product released from the Embezzler cells, in turn 98 

facilitating the growth of the other population (Figure 1; Right of the first row). 99 

Secondly, substrate toxicity exerts different influences on different members. The 100 

population performing the first step transforms the toxic substrate to the intermediates 101 

(we named it the ‘Detoxifier’ henceforth), which helps it possess a lower intracellular 102 

concentration of the toxic substrate (Figure 1; The second row), resulted in that the 103 

toxic substrate is less harmful to the Detoxifier than to Embezzler. Accordingly, 104 

Detoxifier is favored when the substrate is toxic.  105 

It is important to reveal the effects of substrate concentration and toxicity on the 106 

structure of the MDOL community. To test the above two hypotheses and reveal how 107 

substrate traits shape the structure of microbial community engaged in MDOL, in this 108 

study, we combined mathematical modelling and experimentation using a synthetic 109 

microbial community. We also tested whether these effects are different when the 110 

community grows in spatially well-mixed and structured environments.  111 
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Results 113 

Testing of our hypotheses in a well-mixed system  114 

An ODE model for modelling the dynamics of a community engaged in MDOL  115 

To test our hypotheses on the effects of substrate concentration and its toxicity, we 116 

built a mathematical model to simulate the dynamics of a community engaged in 117 

metabolic division of labor (MDOL) in a well-mixed system. The dimensionless form 118 

of this model is composed of 11 ordinary differential equations (ODEs; Eqn. [4] - Eqn. 119 

[13] in Methods). As summarized in Figure 2A, we considered the degradation of an 120 

organic substrate (S) into an intermediate metabolite (I), before being degraded to the 121 

final product (P). We assumed that two strains carry out this pathway via MDOL, with 122 

the first strain only executing the first step, and the second only executing the second. 123 

Initially, only S was supplied and the initial concentration was parameterized by s0 124 

(nondimensional). Importantly, based on our hypothesis of ‘Embezzler behavior’, we 125 

assumed that, P, which is synthesized by the second strain, is the sole available 126 

resource for the growth of both strains. As a result, the second strain possesses the 127 

advantage of preferentially acquiring the resource, while the first strain only obtains 128 

those growth-limiting resource that is leaked from the second strain. Therefore, the 129 

second strain behaves as an ‘Embezzler’. Moreover, biotoxicity of the substrate was 130 

imposed (Supplementary Table 3;[25]) to the growth function, and the toxic strength 131 

was mediated by parameter θ. Thus, for the scenarios where substrate is assumed to 132 

be toxic, the strain executing the first step behaves as a ‘Detoxifier’. Details about the 133 

model are described in Supplementary Information S1.  134 
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Analysis of the ODE model indicates initial substrate concentration affects the 135 

structure of a MDOL community.  136 

To test our first hypothesis stating that substrate concentration affects the structure of 137 

the community, we analyzed our ODE model omitting substrate toxicity (Figure 2A). 138 

As the dimensionless model contains 11 independent parameters (Supplementary 139 

Table 4) that may affect the structure of the community, we performed a first round of 140 

numerical simulations using 885,735 parameter sets considering realistic value ranges 141 

of all the parameters (Supplementary Information S1.3; Supplementary Table 4). Our 142 

analysis showed that the Embezzler population dominated the steady-state community 143 

in all these simulations (Supplementary Figure 2; no toxic scenarios, i.e., steady-state 144 

frequencies of Detoxifier are lower than 0.5), which was in agreement with our basic 145 

assumption of product privatization. Multivariate regression analyses further 146 

suggested that six key parameters played vital roles in shaping the structure of MDOL 147 

community (Supplementary Table 4; Supplementary Figure 3A; p < 0.01 and the 148 

fitting coefficient values over 0.01). Notably, s0  was second most important 149 

according to the absolute value of the fitting coefficient. s0 positively correlated with 150 

the steady-state proportion of the Detoxifier population, suggesting that a higher 151 

initial substrate concentration favors the Detoxifier, consistent with our first 152 

hypothesis.  153 

Through the second round of simulations (Supplementary Information S1.3), We 154 

found that when all other five key parameters were kept constant, the steady-state 155 

proportion of the Detoxifier population (DF) increased with an increase of the initial 156 
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substrate concentration (Figure 2B and 2C), and can be estimated by a Monod-like 157 

formula using s0 as the function argument (Figure 2C),  158 

DF = 
Fdmax·s0

ks+s0
         [1] 159 

Here, Fdmax represents the maximum proportion of the Detoxifier populations when 160 

substrate is non-toxic; ks  represents the half-saturation constant. Our analysis 161 

indicated that the simulation results of all tested parameter sets can be accurately 162 

fitted to Eqn. [1] (Figure 2D, values of Adjusted R2 mostly over 0.95), although the 163 

best fitting of Fdmax and ks were affected by the values of other five key parameters 164 

(Figure 2E and 2F; Supplementary Information S1.3; Supplementary Table 5; 165 

Supplementary Figure 4-5). Together, these results suggest that, in the absence of 166 

substrate toxicity, the proportion of the Detoxifier population increases nonlinearly 167 

with the increase of the initial substrate concentration, and maintains a maximum 168 

value.  169 

To investigate why substrate concentration governs the structure of a community, we 170 

next analyzed the intracellular and extracellular concentration of final product of the 171 

two populations. We found that with the increase of initial substrate concentration, the 172 

fraction of final product released by the Embezzler population increased 173 

(Supplementary Figure 6A-H; Supplementary Figure 6I, Red dots). As a consequence, 174 

the Detoxifier obtained more product from the environment, resulting in a higher 175 

intracellular product concentration, gradually approaching that of the Embezzler. 176 

Moreover, based on the first hypothesis, the intracellular product concentration of the 177 

Detoxifier should never exceed that of the Embezzler, even if the substrate 178 
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concentration was elevated to high levels. This prediction was confirmed by our 179 

analyses (Supplementary Figure 6A-H; Supplementary Figure 6I, blue dots). As a 180 

result, Embezzler cells still maintained their advantage from privatizing final product. 181 

This result suggests that in the absence of substrate toxicity, the benefit from product 182 

privatization obtained by the Embezzler population cannot be completely eliminated 183 

by simply increasing the substrate concentration. This observation matched with our 184 

result that the maximum proportion of the Detoxifier population (Fdmax) never 185 

exceeded 0.5 (Figure 2F; Supplementary Figure 5). In summary, these results suggest 186 

that substrate concentration affects the structure of the community engaged in MDOL 187 

by affecting the amount of the final product released by Embezzler (Figure 1; the first 188 

row).  189 

Analysis of the ODE model indicates that substrate toxicity affects the structure of a 190 

MDOL community.  191 

To test our second hypothesis, we next employed an ODE model that included the 192 

parameter of substrate toxicity (Figure 3A). Applying similar simulation and analysis 193 

method as used in the above section (Supplementary Information S1.3), we found that 194 

the toxic strength (θ) of substrate also played a significant role in structure the MDOL 195 

community. θ exhibited a significantly positive relationship with the final proportion 196 

of the Detoxifier population (Figure 3B; Supplementary Figure 2-3; Supplementary 197 

Table 4), in agreement with our second hypothesis. We then upgraded Eqn. [1] to 198 

collectively consider the effects of substrate concentration and its toxicity (Figure 3C), 199 

as follow  200 
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DF = 
Fdmax·s0

ks+s0
·(1+

Tsmax·θs0

kt+θs0
)       [2] 201 

In Eqn. [2], we use term 1+
Tsmax·θs0

kt+θs0
 to describe the effect of substrate toxicity on the 202 

proportion of the Detoxifier populations. Tsmax represents the maximum fold increase 203 

of Detoxifier proportion benefiting from the substrate toxicity; ks represents the 204 

half-saturation constant of this toxic effect. This term is positively affected by the 205 

toxic strength (θ) and substrate concentration (s0), since increasing either toxic 206 

strength or substrate concentration harms population growth (see Eqn. [12]-[13] in 207 

Methods and Supplementary Table 3). Our analyses further indicated that the DF 208 

values derived from numerical simulations accurately fitted to the values predicted by 209 

Eqn. [2] (Figure 3D; values of Adjusted R2 mostly over 0.90; see Supplementary 210 

Table 5, and Supplementary Figure 7-10 for parameter sensitive analyses). These 211 

results suggest that when substrate toxicity was taken into account, the proportion of 212 

the Detoxifier population increased with both the initial concentration and the toxic 213 

strength of the substrate.  214 

To address why substrate toxicity affects structure of the community, we next 215 

analyzed the intracellular and extracellular concentration of both S and P of the two 216 

populations. As shown in Supplementary Figure 11, the fraction of final product 217 

released by the Embezzler population largely agrees with the result derived from 218 

those non-toxic scenarios, suggesting that the presence of substrate toxicity does not 219 

change the leakiness of final product from the Embezzler. Our analysis of the S 220 

concentration showed that the Detoxifier population generally maintained a lower 221 

intracellular concentration level of S than that of the Embezzler (Supplementary 222 
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Figure 12), due to its conversion of S, thus possessing a growth advantage over the 223 

Embezzler population. Based on this mechanism, higher speed of the first reaction, or 224 

lower S transport rate, appears to favor the Detoxifier population since these two 225 

conditions assist Detoxifier in maintaining a lower intracellular S concentration. 226 

Consistent with this corollary, Tsmax was significantly positively correlated with a1 227 

and significantly negatively correlated with γ
s
 (Supplementary Table 5; 228 

Supplementary Figure 10). Overall, these results indicated that the difference in 229 

intracellular concentration of substrate is the main reason why substrate toxicity 230 

favors the Detoxifier population (Figure 1; second row).  231 

When we assessed the community structure at different conditions of substrate traits, 232 

we found that Detoxifier population dominated the community when the substrate 233 

concentration and substrate toxicity were sufficiently high (its relative proportion 234 

exceeded 50% of the community; Figure 3C; Supplementary Figure 2), suggesting 235 

that the benefit from product privatization of the Embezzler can be neutralized by 236 

higher substrate concentration and toxicity. This phenomenon is quantitively 237 

characterized by Eqn. [2]: the maximum Detoxifier proportion (Fdmax) never exceed 238 

0.5 in the absence of substrate toxicity (Supplementary Figure 8), but substrate 239 

toxicity can assist Detoxifier in breaking through this constraint, as quantified by the 240 

term 1+
Tsmax·θs0

kt+θs0
.  241 

In summary, our simulations clearly showed that when a compound degradation 242 

pathway is executed through MDOL in a community, both increasing substrate 243 

concentration and toxicity of the substrate favor the Detoxifier population, resulting in 244 
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substrate traits to shape the structure of the community.  245 

Experimental evaluation of our rule using a liquid culture of a synthetic microbial 246 

consortium engaged in MDOL   247 

To experimentally test the prediction from our ODE model, we engineered a synthetic 248 

consortium composed of two P. stutzeri strains, which cooperatively degrade an 249 

organic compound, salicylate, via MDOL (Figure 4A). In this synthetic consortium, 250 

strain P. stutzeri AN0010 only retained its ability to convert toxic substrate, salicylate 251 

to the intermediate catechol [33], behaving as the ‘Detoxifier’; the second strain, P. 252 

stutzeri AN0001, was only able to metabolize catechol, but possessed the preferential 253 

access to the final product, i.e., pyruvate and acetyl-CoA (Figure 4A), the direct 254 

carbon source of both strains, thus behaving as the ‘Embezzler’. Details about the 255 

strain construction are described in Supplementary Information S3. For simplicity, we 256 

henceforth refer to our community as ‘SMC-mdol’.  257 

We first derived a function to predict the structure of our synthetic consortium based 258 

on our model using experimentally measured or previously reported parameters 259 

(Figure 4B; Supplementary Table 6; Supplementary Information S1.3). We quantified 260 

the toxicity of salicylate (see Supplementary Information S3.4 for measurement 261 

details), and the measured dimensionless value of toxic strength (θ) of salicylate was 262 

0.0032 (Supplementary Figure 13). Accordingly, we mathematically predicted the 263 

effects of substrate traits on the structure of SMC-mdol, as indicated by the red line in 264 

Figure 4B and 4C. In the liquid minimal medium supplemented with different 265 

concentrations of salicylate, SMC-mdol exhibited similar dynamics to that from our 266 
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corresponding ODE simulations (Supplementary Figure 14). The steady-state 267 

proportion of Detoxifier population increased from 25.6% ± 2.5% to 61.1% ± 2.6% as 268 

a function of initial salicylate concentration (Figure 4C). Moreover, our prediction 269 

function accurately estimated the steady-state structure of SMC-mdol, with a 270 

predictive power (Adjusted R2) of 0.983. Importantly, when the substrate 271 

concentration reached high levels, the Detoxifier population dominated the 272 

community (i.e., its relative fraction over 50 %), suggesting that substrate toxicity 273 

considerably affected the structure of our consortium. Together, these experiments 274 

confirmed our simple rule proposed from mathematical modelling, and suggested that 275 

the structure of microbial community engaged in MDOL are governed by 276 

concentration and toxicity of the substrate.  277 

Testing our hypotheses in spatially structured environments  278 

In the above modeling and experiments, we investigated how substrate traits affect the 279 

structure of a MDOL community, principally by assuming that the substances and 280 

cells were well-mixed in the system. However, microorganisms frequently grow in 281 

spatially structured environments [34-36]. Previous studies reported that different 282 

physical characteristics between the well-mixed and spatially structured systems 283 

significantly affected the structure of a community [37-40]. Therefore, we set out to 284 

test whether our rule derived from the assumption of a well-mixed system can be 285 

expanded to estimate the structure of a MDOL community in spatially structured 286 

environments.  287 

Individual-based modelling of the dynamics of a MDOL community.  288 
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To develop a mathematical framework to simulate the dynamics of MDOL 289 

community in spatially structured environment, we built an individual-based (IB) 290 

model. The basic configuration of our IB model was identical to the framework of our 291 

ODE model. Moreover, we assumed that the diffusion of S, I, and P was limited in the 292 

IB model, and mediated by their diffusion coefficients (Ds , Di, and Dp). Details 293 

about the IB model are described in Supplementary Information S2.  294 

To test our hypotheses, we ran the IB model using the parameters consistent with our 295 

experimental system (Supplementary Table 7), but varied the toxic strength (θ) and 296 

initial concentration of the substrate (s0). We found that during the colony growth, cell 297 

lineages of Detoxifier and Embezzler segregated at frontiers, forming adjacent red and 298 

green cell sectors (Figure 5A; Supplementary video 1-4). Analysis of the spatial 299 

distribution of S, I, and P suggested that the development of this colony characteristic 300 

was mainly attributed to the ‘active layer effect’ reported previously [41]. As S is 301 

generally supplied from the outside of the colony, a thin active cell layer formed 302 

depending on the penetration of S, I and P (Supplementary video 1-4). Consequently, 303 

community structures in the inoculating and expanding regions may differ. 304 

Accordingly, we separately analyzed the structures in the inoculating region and 305 

expanding region of the colonies (Supplementary Figure 15). We found that with the 306 

growth of colony, community structures in the inoculating region changed little, while 307 

the community structures in the expanding region shifted over time, gradually 308 

approaching a steady-state (Supplementary Figure 16). Therefore, we next 309 

investigated how substrate traits affect the steady-state structures of the MDOL 310 
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community in the expanding regions. the community structure in the expanding 311 

region was significantly affected by substrate traits, and can be well estimated by the 312 

rule (Eqn. [2]) that we proposed for a well-mixed system (Figure 5B; Supplementary 313 

Figure 17). This result indicated that the structure of the MDOL community in 314 

spatially structured environments can also be estimated by the proposed simple 315 

formula governed by substrate traits.  316 

We also found that increasing substrate concentration assisted Detoxifier to obtain 317 

more product from the environment, thus retaining higher intracellular product 318 

concentrations (Supplementary Figure 18). Furthermore, Detoxifier cells possessed a 319 

lower intracellular concentration level of S than that of the Embezzler cells in our IB 320 

simulations (Supplementary Figure 19); higher speed of the first reaction, or lower S 321 

transport rate, also significantly increased the maximum benefit (Tsmax ) that 322 

Detoxifier cells can obtained from substrate toxicity (Supplementary Figure 20; 323 

correlation analysis p<0.0001), same as our results from ODE modelling. Therefore, 324 

same mechanisms as in the well-mixed system are also applicable to explain why 325 

substrate traits affects the structure of MDOL community in spatially structured 326 

environments.  327 

Experimental evaluation of our rule by culturing our synthetic microbial consortium 328 

in spatially structured environment.  329 

We next experimentally tested our hypotheses in spatially structured environments. 330 

Several studies have reported that type IV pilus may affected the microbial colony 331 

patterns [42-44]. To directly focus on the effects of substrate traits and avoid the 332 
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effects of pili, we deleted the pilA and pilB genes of the both strains involved in our 333 

synthetic consortium. This design follows other studies that performed patterning 334 

experiments using non-motile strains [45-48]. The derived consortium was named as 335 

SMC-mdol△pilAB. As shown in Fig. 4C, this strain modification did not change the 336 

effects of substrate traits on the structures of the consortium in well-mixed system, as 337 

well as the salicylate toxicity to the strains (Supplementary Figure 13).  338 

To test our hypotheses, we cultured SMC-mdol△pilAB on an agarose surface to which 339 

salicylate was added at different concentrations. The experimentally observed colony 340 

patterns were very similar to those observed in the simulations (Figure 5C). We next 341 

separately assessed the structures of the consortium in both the inoculating region and 342 

expanding region of the colonies. We found that the proportion of Detoxifier 343 

population slightly shifted from 40.9% ± 3.5% to 60.0% ± 6.0% in the inoculating 344 

region (Supplementary Figure 21), but it largely varied from 17.4% ± 1.5% to 69.0% 345 

± 7.0% in the expanding region (Figure 5D). Importantly, the experimental results of 346 

expanding region accurately fitted to our derived prediction function (Figure 5D) with 347 

a predicting power (Adjusted R2) of 0.982. Together, our simulations and experiments 348 

demonstrated that our rules on how substrate traits shape the structure of MDOL 349 

community were applicable when this community grew in a spatially structured 350 

environment.  351 

The effects of substance diffusivity on the structure of the MDOL community  352 

Although the structure of MDOL community in spatially structured and well-mixed 353 

environments can both be estimated by Eqn. [2], the estimated parameter values in the 354 
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prediction functions derived from ODE and IB model are slightly different (Figure 4 355 

and 5), even if we applied identical parameters and equations in these two models 356 

(Supplementary Information S2.3). Through mathematical modelling, we revealed 357 

that limited mass diffusion is one of the major reasons that lead to this difference (see 358 

Supplementary Information 2.2 for detail). Our analyses suggested that higher level of 359 

P diffusion favors the Detoxifier (Supplementary Figure 22-23), whereas increasing 360 

the diffusion level of I harms the Detoxifier (Supplementary Figure 24-25).  361 

In addition, we found that the diffusion level of substrate has two opposing effects on 362 

the structure of MDOL community. On the one hand, higher diffusion level of S 363 

benefits Detoxifier (Figure 6A, first row), through thickening the cell’s ‘active layer’ 364 

(Figure 6B; [48]), and thus increasing production and secretion of the final product by 365 

Embezzler cells. On the other hand, higher diffusion level of S also decreases the 366 

fitness of the Detoxifier cells by modifying the concentration gradient of S around the 367 

two types of cells, and thus changing relative toxic level of S (Figure 6A, second row; 368 

Supplementary Figure 26). Combining these two effects, we formulated a new 369 

formula to estimate the structure of MDOL community 370 

DF = 
Fdmax·s0

ks+s0
·(1+

Tsmax·θs0

kt+θs0
)·(

s0Ds

kd1+s0Ds
-

θDs

kd2+θDs
)       [3] 371 

In this formula, 
s0Ds

kd1+s0Ds
 represents an estimate of the positive effect of increasing 372 

substrate diffusion level via thickening cell ‘active layer’, related to the initial 373 

substrate concentration (s0; Figure 6B; [48]); 
θDs

kd2+θDs
 represents an estimate of the 374 

negative effect of increasing substrate diffusion level, influenced by toxic strength of 375 

the substrate (Figure 6A; the second row). Eqn. [3] accurately estimated the structure 376 
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of MDOL community in our IB simulations (Figure 6C; R2=0.994). Overall, we 377 

concluded that the traits of substrate, including concentration, toxicity, and diffusivity, 378 

are fundamental to shaping the structure of MDOL community.  379 

   380 
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Discussion 381 

Here we show how substrate traits shape the structure of the microbial communities 382 

engaged in metabolic division of labor (MDOL) when degrading organic compounds. 383 

The population performing the first step is favored by both higher substrate 384 

concentration and its toxicity. This rule is applicable when the community grow both 385 

in a well-mixed and a spatially structured environment.  386 

Recently, numerous studies have explored the strategy of dividing metabolic roles 387 

across different populations in a consortium toward removal of organic pollutants [8, 388 

49-53]. Our proposed rule may be expanded to forecast the structure of these 389 

consortia. For instance, one recent study reported that a bacterial consortium 390 

composed of Leucobacter sp. GP and Achromobacter denitrificans PR1 efficiently 391 

degrades an antibiotic, sulfamethoxazole, in which the strain GP is responsible for the 392 

initial metabolism of the sulfamethoxazole (Detoxifier), and the strain PR1 carries out 393 

the subsequent conversion (Embezzler)[12]. This study measured the structures of the 394 

community across a gradient of initial substrate concentrations, and found that the 395 

proportion of the GP is positively correlated with the initial sulfamethoxazole 396 

concentration. This observation largely agrees with the idea derived from our model 397 

and experiments. The prediction on the structure of community may largely help to 398 

manage these communities for better performance [15, 28, 29].   399 

Our study also indicated that limited mass diffusion in spatially structured 400 

environments is one key factor to determine the structure of a community. This 401 

finding is reminiscent of recent studies proposing that limited mass diffusion plays 402 
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significant role on the structure of the communities engaged in other diffusion-based 403 

interaction modes, including syntrophic exchange [37, 40, 54], cross-protection [55], 404 

and ‘rock-paper-scissors’ interaction [56, 57]. One important hypothesis from these 405 

studies is that limited mass diffusion is one possible way to privatize public benefit 406 

[37, 40, 58]. We found this hypothesis is also applicable to explain the structuring of 407 

the community engaged in MDOL. On the one hand, limited mass diffusion helps the 408 

Embezzler population to privatize the final product for its own growth. On the other 409 

hand, it helps the Detoxifier population to privatize its benefit from detoxification. 410 

Therefore, limited mass diffusion may be a universally used avenue for 411 

microorganisms to maintain their private benefit in spatially structured environments.  412 

In our IB modelling, we also found that specific spatial patterns developed by the 413 

MDOL community. In agreement with previous studies [39, 59, 60], when two 414 

populations engaged in MDOL, cells from the two populations are spatially more 415 

proximal to each other than the scenario when the two populations did not exhibit 416 

defined interactions (Supplementary Figure 27). In addition, we also found that the 417 

level of spatial proximity was governed by substrate traits (Supplementary Figure 27). 418 

Interestingly, when the strength of substrate toxicity was higher, the Detoxifier cells 419 

occupied the periphery of the growing colony, forming a clearly ‘ring’ around the 420 

colony (Figure 5; Supplementary video 3; Supplementary Figure 28). The formation 421 

of this ring might be due to the fact that the substrate was present at higher 422 

concentrations at the colony edge, and hence more toxic, thus largely favoring 423 

Detoxifier cells at edge. These results suggest that substrate traits also govern the 424 
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spatial distributions of different cells in the colony developed by MDOL community, 425 

which may in turn, affect the structure of such community. Although we did not 426 

observe this featured cell distribution in our experiments, one recent study found that 427 

a MDOL community that degrades toluene developed a similar ‘ring’-shape pattern as 428 

observed in our IB model [59]. Therefore, such cell distribution may represent a 429 

critical feature of the spatial patterns developed by a MDOL community that degrades 430 

toxic substrates.  431 

While our study provides critical new insights into how the community engaged in 432 

MDOL assembles, a number of limitations need to be taken into consideration. First, 433 

our model analysis showed that substrate toxicity is vital to determine the structure of 434 

communities engaged in MDOL. However, due to the difficulties in manipulating the 435 

toxicity of the substrate (salicylate) in vitro, we were unable to experimentally 436 

compare the impact of the different toxic strengths on the structure of our community. 437 

Nevertheless, our model correctly predicts that simply increasing the initial substrate 438 

concentration is unlikely to shape a community dominated by the Detoxifier 439 

population, while the presence of substrate toxicity renders the ‘Detoxifier’ population 440 

in the community to become dominant. Therefore, the observation that Detoxifier 441 

population was able to dominate the synthetic consortium when supplying high 442 

concentration of salicylate, and the measured biotoxicity of salicylate strongly 443 

suggested that substrate toxicity should affect the structure of our synthetic microbial 444 

consortium. In agreement with this idea, our prediction functions involved in 445 

salicylate toxic strength fits the experiment results very well. To further examine this 446 
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idea, it is necessary to design a better system in which the toxicity of the substrate can 447 

be modulated.  448 

Second, our ODE model suggests that apart from substrate traits, five other key 449 

parameters exist that exhibit considerable effects on the structure of a MDOL 450 

community. Here, we primarily focused on the effects of substrate traits, without 451 

analyzing in detail how all the seven key factors collectively determine the structure 452 

of community. Nonetheless, our analysis presented here suggests that biotic factors 453 

such as speed of the first reaction (a1), mass transport rate (γ
s
, γ

i
, γ

p
), as well as 454 

consumption rate of P (Cp), affected the structure of the community, namely by 455 

determining the value of parameters in Eqn. [2] (i.e., Fdmax, ks, Tsmax, and kt). 456 

However, due to the difficulties in analytically solving non-linear ODEs, as well as 457 

the low efficiency of individual-based simulations [61], detailed quantitative 458 

understanding of how all these factors affect the structure of MDOL community 459 

remains limited. Further studies may use more simplified models that combine these 460 

elements to provide a more general description of the principles governing the 461 

structuring of a MDOL community.  462 

To engineer stable and high-efficient microbial systems for bioproduction or 463 

biodegradation, it will be critical to predict how the communities assembled by a 464 

given set of strains exhibiting modularized functions. Our results demonstrate that, for 465 

a given community engaged in MDOL, its structure can be quantitatively estimated 466 

from the abiotic factors, such as the traits of its substrate, suggesting that it is feasible 467 

to manage microbial communities through manipulation of specific environmental 468 
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factors, to address grand challenges facing human society in agriculture, degradation 469 

of the environment, and human health.  470 

   471 
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Methods 472 

Formulation and analyses of the ODE model 473 

Formulation of the ODE model  474 

To simulate the dynamics of a MDOL community in well-mixed system, a 475 

mathematical model was formulated using ordinary differential equations (ODEs). 476 

Here, the dimensionless forms of the models were presented. The detailed derivations 477 

of the models, and choices of parameter values are described in Supplementary 478 

Information S1.  479 

As described in the Results section, a two-step pathway was assumed to be 480 

implemented by MDOL between two populations (Figure 2A and Figure 3A). For 481 

simplicity, the basic model was built based on five simple assumptions: (1) The 482 

systems are well mixed in each compartment (inside a cell or in the extracellular 483 

space). (2) transport of substrate (S), intermediate (I) and final product (P) is mediated 484 

by passive diffusion; (3) P was assumed to be the sole and limited resource for the 485 

growth of the two populations and its consumption was calculated following Monod 486 

equations; (4) Basic biological properties (the coefficients in Monod equations) 487 

regarding the growth of the two populations are identical, since we only focused on 488 

the effects of abiotic factors; (5) when applicable, substrate toxicity was introduced by 489 

adding three different toxic terms to the growth equation (Supplementary Table 3), 490 

dependent on intracellular S concentration of the corresponding population. The 491 

dynamics of intracellular and extracellular I and P are given by  492 

ds1,in

dτ
=-

a1

1+s1,in
s1,in+γs·�sout-s1,in�           [4] 493 
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ds2,in

dτ
=γ

s
·�sout-s2,in�               [5] 494 

di1,in

dτ
=

a1

1+s1,in
s1,in-γi·�i1,in-iout�            [6] 495 

di2,in

dτ
=-

a2

β
2
+i2,in

i2,in+γi·�iout-i2,in�            [7] 496 

dp1,in

dτ
=-

Cp

β
g
+p

1,in

p
1,in

+γ
p
· �p

out
-p

1,in
�            [8] 497 

dp
2,in

dτ
=

a2

β
2
+i2,in

i2,in-
Cp

β
g
+p

2,in

p
2,in

+γ
p
·�p

out
-p

2,in
�          [9] 498 

dsout

dτ
=-x1·γs·�sout-s1,in�-x2·γs·�sout-s2,in�           [10] 499 

diout

dτ
=x1·γi·�iout-i1,in�-x2·γi·�iout-i2,in�           [11] 500 

dp
out

dτ
=x2·γp· �p

out
-p

1,in
� -x1·γp·�pout-p1,in�          [12] 501 

The growth of the two populations was modeled using a general logistic function with 502 

first-order cell death: 503 

dx1

dτ
=

Cp

bg+p
1,in

p
1,in

yt1x1 �1-
x1+x2

ρ
�           [13] 504 

dx2

dτ
=

Cp

bg+p2,in
p
2,in

yt2x2 �1-
x1+x2

ρ
�           [14] 505 

The definitions and dimensionless methods of all variables are listed in 506 

Supplementary Table 1. The definitions and dimensionless methods, as well as the 507 

value ranges of all the parameters involved in these equations are listed in 508 

Supplementary Table 2.  509 

Simulation and analyzing protocol of the ODE model 510 

Details of the simulation and analysis protocols of our ODE model and the 511 

downstream analyses are described in Supplementary Information S1.3. Briefly, to 512 

solve the community dynamics of the MDOL community with given parameter sets, 513 

numerical simulations of our ODE model were performed using NDsolve function of 514 

Wolfram Mathematica. The numerical solutions of all the variables, including the 515 
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dynamics of mass (S, I, P) concentration and biomass, were recorded for further 516 

analyses. To perform simulations with numerous parameter sets, as well as the 517 

downstream analysis, custom Mathematica scripts were wrote mainly based on the Do 518 

loop function.  519 

Individual-based modeling 520 

Our individual based (IB) model was constructed based on gro platform (https: 521 

https://github.com/liaupm/GRO-LIA), a simulator designed by Gutiérrez and 522 

colleagues aiming to describe multicellular bacterial behavior [62]. The model aims to 523 

simulate the growth of a microbial colony composed of two populations who execute 524 

substrate degradation via MDOL on a surface. The model was formulated mainly 525 

using the same equations as our dimensional ODE model (Supplementary Information 526 

S1.1, Eqns. [S1]-[S13]) to characterize the intra- and extracellular dynamics of mass 527 

(S, I, P) concentration, as well as to calculate the rate of cell growth. Four main 528 

differences exist between our IB model and the ODE model: (1) The IB model was 529 

formulated on a spatially structured surface, and the diffusion of S, I, and P was 530 

limited; (2) Mass dynamics was modelled at single-cell level; (3) The growth of both 531 

populations was modelled at single-cell level, and passive cell shoving during the cell 532 

growth was included; (4) cells were inoculated in the center of the surface, and the 533 

entire community underwent ‘colony range expansion’, a process whereby the 534 

community immigrate outwards as a whole, driven by the force generated from cell 535 

growth and division (Supplementary Figure 15). The mathematical framework 536 

formulating these four points is described in Supplementary Information S2.1. To 537 
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implement our design of the IB model, custom codes were written in gro language. 538 

Variables and Parameters in the IB model are summarized in Supplementary Table 7. 539 

Details of the IB simulation workflow are described in Supplementary Information 540 

S2.  541 

Experimental verification of our model prediction 542 

Genetic manipulation of the P. stutzeri strains 543 

All P. stutzeri strains were engineered from a naphthalene-degrading bacterial strain P. 544 

stutzeri AN10 [63]. Genes that encode the key enzymes responsible for corresponding 545 

metabolic steps in salicylate degradation pathway were knocked out to generate the P. 546 

stutzeri strains. The details of the genetic manipulation of are described in 547 

Supplementary information S3.  548 

Liquid cultivation of our synthetic microbial communities 549 

Liquid cultivation of our synthetic microbial communities was performed in 96-well 550 

plates that contains 120 μL fresh minimum medium. Proportions of the two 551 

populations in the community were estimated by measuring the fluorescent intensity 552 

of the two strains involved using a microplate reader (Molecular Devices, Sunnyvale, 553 

America). Detailed protocols are described in Supplementary information S4.  554 

Colony pattern formation assays 555 

Colony pattern formation assays were performed on the agarose surface in a Petri dish 556 

(60 mm in diameter). Images of the colony patterns were taken under a 5× objective 557 

using a Leica DM6000B fluorescence microscope (Leica Corporation, Wetzlar, 558 

Germany) equipped with a LED fluorescence illuminator (Leica Corporation). The 559 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 19, 2021. ; https://doi.org/10.1101/2020.11.18.387787doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.18.387787
http://creativecommons.org/licenses/by-nc-nd/4.0/


relative fraction of each population in the colonies was measured by image analysis, 560 

as well as similar fluorescence-measurement method as performed in liquid 561 

cultivation experiments. Detailed protocols are described in Supplementary 562 

information S5. 563 

Statistical analysis 564 

Unless indicated otherwise, the number of replicates was three for each simulation, 565 

and six for each experiment. For comparative statistics, unpaired, two-tailed, Student's 566 

t-test was performed in Wolfram Mathematica (version 12.4). To fit the data to the 567 

proposed function, Nonlinearmodelfit function of the Wolfram Mathematica (version 568 

12.4) was applied.  569 

Code availability  570 

All custom Mathematica codes used for ODE simulation and data analyses, as well as 571 

the source gro codes used for our IB simulations are available at Github: 572 

https://github.com/RoyWang1991/MDOLcode/tree/master/MDOL-spatial.  573 
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Figures 798 

 799 

Figure 1 Hypothesis for how substrate concentration and toxicity govern the structure of community engaged in MDOL. In a community 800 
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degrading an organic compound through metabolic division of labor (MDOL), final product was assumed to be the sole resource and was 801 

synthesized by the strain performing the second step. Therefore, this strain will obtain more nutrients (denoted as bigger ‘smiling face’), while 802 

the other strain has to collect product released from this population (denoted as smaller ‘smiling face’). Thus, the last population was named 803 

‘Embezzler’. However, increasing the concentration of the substrate (vertical axis) improves the flux of the pathway. Since the P consuming 804 

ability of Embezzler cells is limited (dashed box), increasing the concentration will lead to higher final product leakiness, favoring the growth of 805 

the first population. Moreover, introducing substrate biotoxicity (horizontal axis) also favors the first population, because it converts this toxic 806 

substrate (denoted as smaller sad face), resulting in lower intracellular substrate concentration compared to that of the Embezzler cells (denoted 807 

as bigger sad face). Thus, the first population was named ‘Detoxifier’.    808 
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 809 

Figure 2 Simulation of the ordinary differential equation (ODE) model excluding substrate toxicity. (A) Schematic diagram showing the basic 810 

assumptions of our ODE model without including substrate toxicity. (B-C) A representative case shows how substrate concentration affects the 811 

structure of a MDOL community. The simulation dynamics of the fraction of Detoxifier population with the conditions of different initial 812 

substrate concentrations are shown in (B). The relationship between substrate concentration and stead-state fraction of Detoxifier is shown in (C). 813 
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In (C), the green dots denote the simulated stead-state fraction of Detoxifier, and the red dashed line shows the plot of the best fitting function 814 

using Eqn. [1]. Parameter values used in these simulations: y =10-4, Cp = 10, bg = 1, a1 = 10000, a2 = 1000, β2 = 1, γ
s
 = 1, γ

i
 =1, γ

p
 = 1, ρ =10-2. 815 

The best fitting value of ks in this case is 35.3, and that of Fdmax is 0.417. (D-F) Distributions of Adjusted R2 (D) of the fitting functions, best 816 

fitting value of ks (E) and Fdmax (F) in the second-round simulations that does not include substrate toxicity, using 7776 parameter value 817 

combinations of the five key parameters ( a1, γ
s
, γ

i
, γ

p
, and Cp).   818 
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 819 

Figure 3 Simulation of the ordinary differential equation (ODE) model that includes 820 

substrate toxicity, suggesting that both substrate concentration and its toxicity 821 

collectively affect the structure of a community engaged in MDOL. (A) Schematic 822 

diagram showing the basic assumptions of our ODE model that includes substrate 823 

toxicity. (B) Multiple linear regression analysis of the simulation results of the ODE 824 

model showed how the parameters included in the model affect the structure of the 825 

MDOL community. Left: results from the first-round simulations that considered all 826 

the twelve parameters are shown. Blue font denotes the identified key parameters. 827 

Right: results from the second-round simulations that only considered the seven key 828 

parameters. The axis of the radar plot denotes the values of fitting coefficients of the 829 

parameters from multiple linear regression analyses. Red dots denote the steady-state 830 
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fraction of Detoxifier is positively correlated with corresponding parameter, while the 831 

green dots represent the negative correlation. The origin axis (0) is highlighted by 832 

dash line to emphasize the fact that the closer a value is to zero, the smaller the effect 833 

on the community structure by the corresponding parameter. The data are also listed 834 

in Supplementary Table 4 and Supplementary Table 5. In this analysis, the toxic 835 

effects of substrate on population growth were assumed to follow a reciprocal 836 

relationship. Results considering other relationships are shown in Supplementary 837 

Figure 3. (C) A representative case shows how both substrate concentration and its 838 

toxicity collectively affect the stead-state proportion of Detoxifier cells. The green 839 

dots denote the simulated stead-state fraction of Detoxifier, and the surface shows the 840 

plot of the best fitting function using Eqn. [2]. Parameter values used in these 841 

simulations: y =10-4, Cp = 10, bg = 1, a1 = 10000, a2 = 1000, β2 = 1, γ
s
 = 1, γ

i
 =1, γ

p
 842 

= 1, ρ =10-2. The best fitting value of ks, Fdmax, kt, and TSmax in this case are 48.9, 843 

0.423, 0.848, 3.39, respectively. (D) Distributions of Adjusted R2 of the fitting 844 

functions in the second-round simulations that includes substrate toxicity, using 7776 845 

parameter value combinations of the five key parameters ( a1, γs, γi, γp, and Cp).  846 
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 848 

Figure 4 Structure of SMC-mdol in a spatially unstructured system governed by 849 

different substrate traits. (A) Design of the SMC-mdol. Shown are the pathway of 850 

salicylate degradation in ‘Superman’ strain P. stutzeri AN0011, as well as partial 851 

pathways carried out by Detoxifier strain AN0010 and Embezzler strain AN0001. 852 

Skull marks that salicylate is toxic. (B) Predicting the structure of the synthetic 853 

consortium using our ODE model, as well as the derived predictive function using 854 

Eqn. [2]. The relationship between the steady-state fraction of the Detoxifier 855 

population and substrate concentration (s0), as well as substrate toxic strength (θ), was 856 

built from our mathematical model using parameters consistent with our 857 
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experiemental system. Each green dot shows the steady-state fraction of Detoxifier 858 

obtained by one simulation accociated with the specific parameter set. The surface 859 

diagram shows distribution of the steady-state fraction of Detoxifier predicted by our 860 

proposed simple formula. The Red line in the surface denotes the scenarios θ=0.0032, 861 

which is the toxic strength of salicylate obtained from experiemental measurements. 862 

(C) The experimental measured steady-state fractions of Detoxifier in cultures with 863 

different salicylate concentrations is consistent with those from mathematical 864 

predictions. Note that in the plots, substrate concentrations are shown in dimentional 865 

form (S0, Cmmol/L), but in the predictive functions, the fitting analysis was 866 

performed using its dimensionless form (s0).  867 
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 869 

Figure 5 Substrate traits governing the structure of a microbial community engaged in 870 

metabolic division of labor (MDOL) in a spatially structured environment. (A) 871 

Representative colony patterns from Individual-based (IB) modelling initialized with 872 
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different substrate traits. Detoxifier cells are shown in red, while Embezzler cells are 873 

shown in green. (B) Analysis of community composition in the expanding region of 874 

the colonies from IB simulations across eight kinds of initial substrate concentrations 875 

and five different toxic strength. Plot shows how both substrate concentration and its 876 

toxicity collectively affect the stead-state proportion of Detoxifier. The green dots 877 

denote the simulated stead-state fraction of Detoxifier. The surface shows the plot of 878 

the best fitting function using Eqn. [2]. The Red line in the surface denotes the 879 

scenarios θ=0.0032, which is the toxic strength of salicylate obtained from 880 

experimental measurements. (C) Representative colony patterns from the pattern 881 

formation assays of SMC-mdol△pilAB, as well as the IB simulations using the 882 

parameters matched with our synthetic system (Supplementary Table 7), across eight 883 

different initial substrate concentrations. (D) The experimental measured steady-state 884 

fractions of Detoxifier in the expanding region of these colonies is consistent with 885 

those from mathematical predictions. Note that in the plots, substrate concentrations 886 

are shown in dimensional form (S0, Cmmol/L), but in the predictive functions, the 887 

fitting analyses were performed using its dimensionless form (s0).  888 
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 890 

Figure 6 The effects of the diffusion level of substrate, intermediate and product on 891 

the structure of MDOL community. (A) The relationship between initial substrate 892 

concentration (S0) with the steady-state proportion of Detoxifier cells in the expanding 893 

region of the colonies, across different substance diffusion level (denoted by different 894 

curve colors) and different strength of substrate toxicity (θ, denoted by five 895 

subgraphs). First row: diffusion levels of S, I and P (that is Di, Di, and Dp) were set to 896 

be identical and simultaneously modulated in the simulations. Second row: Diffusion 897 

levels of I and P (Di and Dp) were set as default values shown in Supplementary Table 898 

7, while diffusion levels of S were solely modulated. Other parameters in these 899 

simulations were initialized with the default values shown in Supplementary Table 7. 900 

The simulation data were then fitted to Eqn. [2] to obtain the curves shown in the plot. 901 
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The Adjust R2 values for these fitting analyses range from 0.994 to 0.997. (B) 902 

Diffusion levels of substrate affected the thickness of cell ‘active layer’. 903 

Representative colony images (first row), the corresponding distributions of final 904 

product (second row), as well as the distributions of cell growth rates (third row) in 905 

the 2D plane at steady-state, obtained from individual-based simulations initialized 906 

with different diffusion level of substrate. Shown are the results in which S0 was set to 907 

10 C-mol/L and θ was 0 (not include substrate toxicity). In the colony images, 908 

Detoxifier cells are shown in red, while Embezzler cells are shown in green. 909 

Thickness of cell ‘active layer’ is reflected by thickness of the cell layer that 910 

possessing positive growth rate (third row). (C) The linear correlation between the 911 

steady-state frequencies of Detoxifier predicted by Eqn. [4] and those frequencies 912 

obtained by our Individual-based simulations. The dashed line shows the linear curve 913 

in which the predicting results is completely identical to simulated results. The best 914 

fitting value of ks, Fdmax, kt, TSmax, kd1, and kd2 in this case are 30.8, 0.446, 1.46, 1.05, 915 

14000, and 44.8 respectively.  916 
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