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Abstract1

As a cancer develops, its cells accrue new mutations, resulting in a heterogeneous, complex genomic2

profile. We make use of this heterogeneity to derive simple, analytic estimates of parameters driving car-3

cinogenesis and reconstruct the timeline of selective events following initiation of an individual cancer.4

Using stochastic computer simulations of cancer growth, we show that we can accurately estimate mu-5

tation rate, time before and after a driver event occurred, and growth rates of both initiated cancer cells6

and subsequently appearing subclones. We demonstrate that in order to obtain accurate estimates of7

mutation rate and timing of events, observed mutation counts should be corrected to account for clonal8

mutations that occurred after the founding of the tumor, as well as sequencing coverage. We apply9

our methodology to reconstruct the individual evolutionary histories of chronic lymphocytic leukemia10

patients, finding that the parental leukemic clone typically appears within the first fifteen years of life.11

Introduction12

When a cell accrues a sequence of driver mutations – genetic alterations that provide a proliferative advantage13

relative to surrounding cells – it can begin to divide uncontrollably and eventually develop the complex14

features of a cancer [1–3]. Thousands of specific driver mutations have been implicated in carcinogenesis,15

with individual tumors harboring from few to dozens of drivers, depending on the cancer type [4]. Mutations16

that don’t have a significant effect on cellular fitness also arise, both before and after tumor initiation [5].17

These neutral mutations, or “passengers”, can reach detectable frequencies by random genetic drift or the18

positive selection of a driver mutation in the same cell [6–9]. Mutational burden detectable by bulk sequencing19

reveals tens to thousands of passengers per tumor [10, 11].20
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Genome sequencing technologies have revealed the heterogeneous, informative genetic profiles produced21

by the evolutionary process driving carcinogenesis [12, 13]. These genetic profiles have been used to obtain22

insight into specific features of the carcinogenic process operating in individual patients. For example, the23

molecular clock feature of passenger mutations has been employed to measure timing of early events in tumor24

formation, as well as identify stages of tumorigenesis and metastasis [14–22]. Other studies have estimated25

mutation rates [5, 23, 24], selective growth advantages of cancer subclones [25–28], and the effect of spatial26

structure on cancer evolution [29–31]. We note that previous approaches typically only estimate one or a27

few parameters of cancer evolution. In addition, many state of the art methods make use of computationally28

expensive approaches [24, 30, 32] or simplifying assumptions, such as approximating tumor expansion as29

deterministic or ignoring cell death [27, 32].30

Mathematical models of cancer progression, especially when used in conjunction with experimental and31

clinical data, can provide important insights into the evolutionary history of cancer [9, 19, 33–37]. Branching32

processes – a type of a stochastic process – can be used to model how different populations of dividing, dying,33

and mutating cells in a tumor evolve over time [38]. Their theory and applications have been well developed34

to model the multistage nature of cancer development [25, 29, 35, 38–40]. Here we use a branching process35

model of carcinogenesis to derive a comprehensive reconstruction of an individual tumor’s evolution.36

Tumors can grow for many years, even decades, before they reach detectable size [16]. Typically, tumor37

samples used for sequencing would be obtained at the end of the tumor’s natural, untreated progression.38

More recently, longitudinal sequencing, where a tumor is sequenced at multiple times during its development,39

has provided better resolution of tumor growth dynamics and evolution in various cancer types [27, 41–40

44]. We establish that two longitudinal bulk sequencing and tumor size measurements are sufficient to41

reconstruct virtually all parameters (mutation rate, growth rates, times of appearance of driver mutations,42

and time since the driver mutation) of cancer evolution in individual patients. Our analytic approach43

yields simple formulas for the parameters; thus estimation of the parameters governing cancer growth is not44

computationally intensive, regardless of tumor size. Our framework makes possible a personalized, high-45

resolution reconstruction of a tumor’s timeline of selective events and quantitative characterization of the46

evolutionary dynamics of the subclones making up the tumor.47
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Results48

Model49

We consider a multi-type branching process of tumor expansion (Fig. 1a). Tumor growth is started with50

a single initiated cell at time 0. Initiated tumor cells divide with rate b and die with rate d. These cells51

already have the driver mutations necessary for expansion, so we assume b > d. The population of initiated52

cells can go extinct due to stochastic fluctuations, or survive stochastic drift and start growing (on average)53

exponentially with net growth rate r = b−d. We will focus only on those populations that survived stochastic54

drift.55

At some time t1 > 0 a new driver mutation occurs in a single initiated tumor cell, starting a new56

independent birth-death process, with birth rate b1 and death rate d1 (Fig. 1b). Net growth rate of cells57

with the new driver is r1 = b1 − d1. The new driver increases the rate of growth, i.e., r1 > r. We define58

the driver’s selective growth advantage by g = (r1/r − 1). In addition, both populations of cells (with and59

without the driver) accrue passenger mutations with rate u (Fig. 1c).60

After the driver mutation occurs, an additional time t passes before the tumor is observed. Cells con-61

taining i new driver mutations, where i is either 0 or 1, will be referred to as type-i cells or simply, clone i.62

In Materials and Methods we also analyze the more general case of two nested or sibling driver mutations,63

as well as the fully generalized case of any clonal structure that might arise during tumor expansion.64

Parameter estimates from two longitudinal measurements65

We demonstrate that with two longitudinal bulk sequencing measurements, it is possible to accurately66

estimate net growth rates, time of appearance of a driver mutation, time between a driver mutation and67

observation, and mutation rate in the tumor. The tumor is first sequenced at time of observation, t1 + t,68

where both time of driver mutation, t1, and time from driver mutation to observation, t, are yet unknown69

(Fig. 1b). A second bulk sequencing is performed at t1 + t+ δ, a known δ time units after the tumor is first70

observed (Fig. 1b). From the bulk sequencing data, the fraction of cells carrying the driver mutation, α171

and α2, can be measured at the timepoints t1 + t and t1 + t + δ, respectively. We denote total number of72

cells in the tumor at the two bulk sequencing timepoints as M1 and M2. Number of cells in the tumor can73

be estimated from measurements of tumor volume [45].74

Equating expected values of the sizes of type-0 and type-1 population at the two bulk sequencing time75

points with the measured numbers of cells present in clones 0 and 1, we obtain estimates of the net growth76
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Figure 1: Stochastic branching process model of tumor evolution. (a) Stochastic branching process
model for tumor expansion. Initiated tumor cells (blue) divide with birth rate b, die with death rate d, and
accrue passenger mutations with mutation rate u. Type-1 cells, which carry the driver mutation, divide
with birth rate b1, die with death rate d1, and accrue passenger mutations with mutation rate u. (b) The
initiated tumor, or type-0, (blue) population growth is initiated from a single cell. A driver mutation occurs
in a single type-0 cell at time t1, starting the type-1 population (red). The tumor is bulk sequenced at times
t1 + t and t1 + t+ δ. (c) By the time the tumor is observed, it has a high level of genetic heterogeneity due
to the mutations that have accrued in both type-0 (blue) and type-1 populations (red). Each yellow star
represents a different passenger mutation.
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rates of the two subclones:77

r =
1

δ
log
( (1− α2)M2

(1− α1)M1

)
(1)78

r1 =
1

δ
log
(α2M2

α1M1

)
(2)79

80

From the growth rate estimates and subclone sizes, we can approximate the expected value of the time a81

population in a branching process takes to reach an observed size [38]. This yields an estimate of the time t82

from the appearance of driver mutation until observation:83

t =
1

r1
log(M1α1) (3)84

85

Using the bulk sequencing data from the second timepoint, γ, the number of subclonal passengers between86

the specified frequencies f1 and f2, can be measured. Using results from previous work [46], we derive the87

expected value of γ (Materials and Methods), which can be used to estimate the mutation rate u:88

u =
f1f2rr1γ

(f2 − f1)(α2r + r1(1− α2))
(4)89

90

The m passenger mutations that were present in the original type-1 cell when the driver mutation occurred91

(Fig. 1c) are present in all type-1 cells. m can be estimated from bulk sequencing data, and used to estimate92

time of appearance of the driver. We maximize the likelihood function P (m|t1) with respect to time of93

appearance of the driver, t1, (see Materials and Methods) to obtain the maximum likelihood estimate94

t1 =
m

u
(5)95

96

Using formulas (4) and (5), we can now estimate t1.97

Estimates verified in simulated tumors98

To assess the accuracy of the parameter estimates for several modes of tumor evolution, we simulate tumor99

growth by performing a Monte Carlo simulation, which simulates the birth, death, and accumulation of100

mutations in the individual cells that make up a tumor. This simulation generates the mutation frequency101

and tumor size data used by the estimates (see Methods section for details of simulation). We simulate three102

different types of tumors (slow growing, fast growing, and no cell death), with a high and a low mutation103

rate for each.104
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In a simulation of a fast growing tumor with a single subclonal driver mutation that confers a strong105

selective growth advantage of 100%, we can accurately estimate growth rates, mutation rate, time of driver106

event, and time since driver event (Fig. 2). Growth rates of both initiated tumor and driver subclones107

can be estimated with a high degree of accuracy, achieving mean percentage error (MPE) of -0.07% and108

0.03% for the lower mutation rate (u = 1) scenario. The mutation rate u and estimates for time of driver109

appearance, t1, and time since driver, t, can also be estimated accurately, with MPEs of -0.9% , 3.8% , and110

-0.4% , respectively. Estimates for u, t1, and t have a somewhat greater degree of variation compared to the111

growth rate estimates, due to the inherent randomness of the number of mutations and time to reach the112

observed size that occur in each realization of the stochastic process.113

For the parameter regime with no cell death and the regime for a slow-growing tumor, we again achieve114

high accuracies for the net growth rates (Fig. S1, Fig. S2). In the lower mutation rate (u = 1) scenario,115

parameter estimates for the mutation rate u and time of driver appearace t1 can be accurately estimated116

for both regimes, with MPEs of -1.3% and 4.9% for the no cell death case, and MPEs of -3% and 3.7% for117

the slow-growing tumor. The t, time since driver event, estimates have somewhat higher errors, with MPE118

of -6.3% for the no cell death case, and MPE of 30.3% for the slow-growing tumor.119
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Figure 2: Accuracy of parameter inferences from simulated data. We simulated tumor growth by
performing a Monte Carlo simulation, which simulates the birth, death, and accumulation of mutations
in the individual cells that make up a tumor, and generates the mutation frequency and tumor size data
used by the estimates. Mean percent errors (MPEs) of estimates are shown in black above the plots, and
mean absolute percent errors (MAPEs) are shown in gray. Boxes contain 25th-75th quartiles, with median
indicated by thick horizontal black line. Whiskers of boxplots indicate 2.5 and 97.5 percentiles. Violins are
smoothed density estimates of the percent error data points. Ground truth parameter set: b = b1 = 0.25,
d = 0.18, d1 = 0.11, t1 = 70, t = 50, δ = 20, f1 = 1%, and f2 = 20%. Mutation rate (a) u = 1, (b) u = 3. At
least 100 Monte Carlo simulation runs with a surviving tumor performed for each parameter combination.
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Correcting mutation counts observed from genome sequencing data120

We note that in our estimate for the time of appearance of the driver, t1 (see formula (5)), used for comparison121

to simulated data, we employed a correction to m, the number of mutations that were present in the founder122

type-1 cell at t1. From sequencing data, these m mutations are indistinguishable (Fig. 3a) from mutations123

that occurred after t1 in type-1 cells, and reached fixation in the type-1 population [46]. Thus, the value of124

m observed from sequencing data, mobs, will overestimate the true m. In Materials and Methods we show125

that the expected value of the number of passengers that occurred after t1 and reached fixation in the type-1126

population is u/r1. We subtract this correction factor from mobs:127

m = mobs − u/r1 (6)128
129

The correction for the m mutations present in the original type-1 cell (6) at time t1 improves the accuracy130

of the estimate for time of appearance of driver mutation t1. For the fast growing tumor with mutation rate131

u = 1 (Fig. S3a), the correction lowers the mean percent error (MPE) of the t1 estimate from 14.0% to132

3.8%. For the slow growing tumor with mutation rate u = 5 (Fig. 3b), the correction lowers the MPE of133

the t1 estimate from 22.0% to 5.7% (Fig. 3b).134

Another issue arises from obtaining mutation count γ, number of mutations with frequency between f1135

and f2, from genome sequencing data. When sequencing data is post-processed by filtering out mutations136

with L or fewer variant reads, low-frequency mutations will be difficult to detect [35] (Fig. 3c). For a sample137

with average sequencing coverage of R and tumor purity p, mutations with mutant allele frequency below138

L/(pR) will typically not be observable. As a result, since mutations with frequencies between f1 and f2139

count towards γ, if f1 ≤ 2L/(pR), the observed number of subclonal mutations between frequencies f1 and140

f2, γobs, will underestimate the true value, γ. In the Materials and Methods, we derive a correction for γ,141

based on the expected value of the number of subclonal mutations present at cancer cell frequencies (CCFs)142

between f1 and 2L/(pR):143

γ = γobs

( 1
f1
− 1

f2
pR
2L −

1
f2

)
(7)144

145

Before applying our methodology to patient sequencing data, we estimated the validity of the above cor-146

rection applied to observed simulated mutation counts. When we simulate sequencing reads from simulated147

mutation frequencies (see Materials and Methods) and post-process by removing mutations with L = 2 or148

fewer variant reads, the adjustment we derived for mutation count γ (7) is critical, even for average sequenc-149

ing coverage of 200x (Fig. 3d). Without any correction, the observed γ has MPE of -53.3% compared to150
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Figure 3: Corrections for observed mutation counts. (a) If passenger mutations (circles with stars)
that occur after the driver reach fixation in the driver population (red), then they are indistinguishable from
the passengers that were present in the first cell with the driver, which accrued in the type-0 population
(blue). The estimate of when the driver occurred needs to account for these mutations (circled). In (b), we
compare percent errors of parameter estimates for time from tumor initiaton until appearance of a driver
subclone, t1, with and without this correction (Eq. (6)). Errors for estimate with correction (Eq. (12))
are shown in blue, and for estimate without correction (Eq. (5)) in orange. Errors are plotted as a kernel
density estimate for Monte Carlo simulations of slow growing tumor with mutation rate u = 5. Mean percent
errors (MPEs) and mean absolute percent errors (MAPEs) are listed. (c) Mutations present on two or fewer
variant reads (red) are filtered out in post-processing. Mutations with more than two variant reads (black)
are included. The number of subclonal mutations between frequencies f1 and f2, γ, which is used in the
mutation rate estimate, must be corrected for mutations that are filtered out. In (d), the percent errors for
the observed (orange) and corrected (blue) γ (Eq. (7)) are plotted as kernel density estimates. Observed
mutations are those that passed post-processing, i.e. those that have more than L = 2 mutant reads. True
mutation frequencies were generated from 135 surviving runs of a Monte Carlo simulation of a fast growing
tumor with mutation rate u = 1, from which sequencing reads were simulated with 200x average coverage
(see Materials and Methods). Percent errors are calculated relative to the true γ measured from the true
mutation frequencies.
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true γ, but with the correction, the computed γ has MPE of -1.4%. When average coverage is 100x, this151

correction becomes even more important, as many of the low-frequency mutations are discarded (Fig. S3b).152

Without any correction, the observed γ has MPE of -79.7%. With the correction the computed γ has MPE153

of -3.4%. The accuracy of the γ measurement affects our estimate of the mutation rate (4).154

Estimating parameters for individual patients with CLL155

We use our formulas to infer the patient-specific parameters of cancer evolution for four patients with156

chronic lymphocytic leukemia (CLL) whose growth patterns and clonal dynamics were analyzed in [27].157

These CLLs had peripheral white blood cell (WBC) counts measured and whole exome sequencing (WES)158

performed at least twice before treatment. We consider patients whose WBC counts were classified as159

having an exponential-like growth pattern, with average γobs > 2 and 3 or fewer macsoscopic subclones (i.e.160

subclones with cancer cell fractions of 20% or greater for at least one pre-treatment time point). As in Ref.161

[27], we perform subclonal reconstruction for each patient using PhylogicNDT [43]. To obtain confidence162

intervals for our parameter estimates, we utilize a sampling procedure to account for model and measurement163

uncertainties, including uncertainties in subclone frequencies, fitted growth curves, and the Poisson process164

for mutation accumulation (see Materials and Methods). For each patient’s tumor, we compute estimates of165

the growth rate of each clone, exome mutation rate, the times that each subclone arose, and how long each166

subclone expanded before the tumor was detected (Table S1). We reconstruct these histories for tumors167

with various clonal structures.168

Patients 3 and 21 are examples of a CLL with a single subclone (Fig. 4). For Patient 3, Clone 0, the169

most recent common ancestor (MRCA) of this patient’s CLL, was initiated when the patient was 14.6 [1.4,170

26.8] years old (median and [95% confidence interval] of estimate). Clone 0 grew with a net growth rate of171

0.51 [0.20, 0.85] per year. 18.9 years later, Clone 1 was initiated when the patient was 33.5 [24.1, 39.2] years172

old. Clone 1 expanded with a growth rate of 0.85 [0.65, 1.04] per year (corresponding to a selective growth173

advantage of 68.7% over Clone 0), and the patient was diagnosed 29.5 [23.8, 38.9] years later at age 63. We174

find that the CLL exome mutation rate was 0.48 [0.39, 0.59] mutations per year in this patient.175

For patient 21, we estimate that the parental clone (MRCA, Clone 0) of this patient’s CLL was initiated176

when the patient was 6.4 [0.3, 16.7] years old, and grew with a net growth rate of 0.79 [0.30, 1.14] per year.177

Clone 1 appeared when the patient was 19.6 [10.8, 24.0] years old, and grew more quickly than Clone 0, with178

a growth rate of 1.52 [1.01, 2.04] per year (corresponding to selective growth advantage of 91.4% over Clone179

0). Clone 1 contained a FGFR1 mutation, which might have been acting as a driver of the increased net180

proliferation. Clone 1 then grew for 15.4 [11.0, 24.2] years before the patient was diagnosed at age 35. We181
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Figure 4: Reconstructing the timeline of CLL evolution in patients. We applied our methodology to
estimate subclonal growth rates, mutation rates and evolutionary timelines in CLL tumors from Ref. [27].
Vertical height of a clone represents its log10-scaled size. Phylogenetic trees, colored by clone number, show
annotated driver mutations along the trees’ edges. For each patient, we show estimates for patient age at
CLL initiation and times of appearance of CLL subclones. Dashed white line indicates when the patient was
diagnosed. Solid black arrows indicate times of bulk sequencing measurements.
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estimate that this patient’s CLL had an exome mutation rate of 0.20 [0.19, 0.23] mutations per year.182

Patients 6 and 9 present more complex clonal structures. CLL of Patient 9 contains two sibling subclones,183

Clones 1 and 2, in addition to the parental population, Clone 0. Clone 2 contains a nested subclone (Clone184

3). Clone 0 arose when the patient was 4.9 [1.2, 10.8] years old, and had a growth rate of 0.28 [0.17, 0.42]185

per year. Clone 1 arose when the patient was 18.8 [8.8, 35.1] years old. At the time of sequencing, Clone186

1 had a negative growth rate of -0.40 [-0.45, -0.19] (/year). Clone 2, containing a KRAS mutation, had the187

largest net growth rate of the three clones (0.67 [0.49, 0.94] per year), corresponding to a selective growth188

advantage of 140.9% over the parental clone. Clone 2 arose when the patient was 21.3 [7.7, 31.7] years old.189

Clone 3 was initiated from within Clone 2 when the patient was 24.8 [10.3, 37.6] years old. We estimate that190

the CLL exome mutation rate of Patient 9 is 0.36 [0.35, 0.37] mutations/year.191

CLL of Patient 6 contains two sibling subclones (Clones 1 and 2) descendant from the leukemic MRCA192

Clone 0. Clone 1 has a nested subclone (Clone 3). We estimate that the CLL was initiated when the patient193

was 2.8 [0.1, 13.2] years old. Clone 0 then grew at a rate of 0.68 [0.15, 1.30] per year. Approximately 33194

years after the appearance of Clone 0, when the patient was 35.4 [21.7, 46.1] years old, the first subclone,195

Clone 1 appeared. Clone 1 had a net growth rate of 0.41 [0.08, 0.73] per year. Clone 3 arose from within196

Clone 1 when the patient was 45.9 [31.3, 54.6] years old. This clone had net growth rate 1.09 [0.65, 1.78] per197

year. Clone 3 harbored a driver mutation in ASXL1 and had selective growth advantage of 60.8% over Clone198

0. Clone 2, nested in parental clone (Clone 0), was initiated when the patient was 46.7 [25.6, 57.5] years199

old and had growth rate 0.46 [0.08, 0.85] per year. The patient was then diagnosed at age 58, eventually200

needing treatment 12.0 years after diagnosis. In Patient 6, we estimate a CLL exome mutation rate of 0.15201

[0.12, 0.19] mutations per year.202

The average mutation rate in the four CLL patients we analyze is 0.30 mutations/year. This rate is over203

the exome, which accounts for ∼ 1% of the human genome. Our average estimated mutation rate in CLL204

exomes is similar to the measured rate of accumulation of mutations in human tissues of 40 mutations per205

year over the entire genome [47]. Other recent work has estimated a mutation rate of 17 mutations per206

year in human haematopoietic stem cell/multipotent progenitors [48]. Our estimated mutation rates during207

CLL progression are on par or higher than the recent estimates in healthy hematopoietic cells [48], in line208

with the expectation that mutation rates may be increased in cancer. The estimated times of appearance of209

CLL subclones are very long, on the order of 10 years or more. This finding is agreement with results from210

Gruber et al. [27], who find few new CLL subclones over years to a decade of evolution. We observe that211

CLL initiation occurred early in most patients, within the first fifteen years of their lives, consistent with212

recent work in other cancer types [19, 36].213
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Discussion214

We use a stochastic branching process model to reconstruct the timing of driver events and quantify the215

evolutionary dynamics of different subclonal populations of cancer cells. We can accurately estimate the216

growth rates of tumor subclones, selective growth advantage of individual driver mutations, mutation rate in217

the tumor, time between tumor initiation and appearance of a subclonal driver mutation, and time between218

driver mutation and tumor observation. Together, this allows us to estimate the age of the patient at tumor219

initiation, as well as the age at appearance of a subclonal driver.220

Previous work has computed relative order of driver events [18, 21, 49], while other studies have given221

estimates for scaled mutation rates and time of events [24, 32]. However, we present estimates for absolute,222

unscaled mutation rates and times, which are easily interpretable and don’t implicitly depend on unknown223

parameters. We assume that mutations accrue with time, and not only at cell divisions, which simplifies224

derivations and is supported by recent experimental data [47].225

For individual CLLs that underwent bulk sequencing at two time points [27], we infer growth rates of226

individual subclones, mutation rate in the tumor, the times when cancer subclones began growing, and the227

time between driver mutations and the patient’s diagnosis. Our inferences are limited by the relatively228

low number of mutations present in CLL, as well as sequencing coverage [27]. The accuracy of estimates229

presented here is expected to be even higher in cancer types with more mutations, with whole genome230

sequencing available, or with higher sequencing coverage. Our methodology is in principle applicable to any231

cancer type, not only CLL or liquid cancers. We note, however, that in the case of solid tumors, multiple232

biopsies would potentially be needed to fully account for the existing heterogeneity.233

Our model and derivations assume a fixed mutation rate u after transformation and fixed growth rates of234

cancer subclones, similar to previous approaches [24, 30, 35]. Using an exponential model of cancer growth235

with constant mutation and growth rate to estimate parameters of cancer evolution has its weaknesses: some236

cancer subclones (such as Clone 1 from Pt. 9) not only do not grow exponentially, they actually decline in237

absolute cell numbers. Sudden genomic instability events, or a change in cancer mutation and/or growth238

rate over time could also introduce errors into our parameter inferences. Recent sequencing data points to239

mutational processes that change over time during cancer evolution [20, 50]; incorporating possible changes240

in the mutation and/or growth rate into the model would require much higher density of sequencing and241

clinical data [37].242
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Materials and Methods243

Branching process model of tumor evolution244

We employ a continuous, multi-type branching process model of cancer evolution. Tumor expansion is245

initiated by a single type-0, or initiated tumor cell. Type-0 cells divide with rate b and die with rate d,246

yielding a net growth rate of r = b − d. At time t1, a single driver mutation is introduced into a randomly247

selected cell in the type-0 population, founding a new type-1 population of cells. This type-1 population248

undergoes its own independent branching process. They divide with rate b1, die with rate d1, and have249

net growth rate r1 = b1 − d1. If the driver mutation gives type-1 cells a selective growth advantage over250

the type-0 population, then r1 > r. With the ratios of the growth rates denoted as s = r1/r, the growth251

advantage can be quantified as g = (s−1)·100%. In the case of neutral evolution, g = 0. If there is a selective252

advantage, g > 0. Neutral mutations, or passengers, have no effect on the cell’s fitness, and accrue according253

to a Poisson process with rate u. We assume an infinite alleles model such that there is no back mutation254

and an infinite sites model such that every new passenger mutation is unique. Only surviving populations255

are considered. All derivations below will condition on survival. The type-0 and type-1 populations at time256

t will be denoted as X0(t) and X1(t), respectively.257

Measurements sufficient to determine evolutionary history258

We derive estimates for parameters describing the carcinogenic process using measurements taken from two259

timepoints late in the tumor’s development. We require sequencing of the tumor at the two timepoints,260

when the tumor is first observed at the unknown time t1 + t and a specified δ later, at t1 + t+ δ. From these261

two bulk sequencing measurements, we obtain measurements of α1 and α2, the fraction of cells carrying the262

driver mutation at t1 + t and t1 + t + δ, respectively. In addition, from the bulk sequencing at t1 + t + δ,263

we obtain measurements of m, the number of mutations present in the founder type-1 cell, as well as γ, the264

number of mutations with frequency between the specified f1 and f2. The total population size at these265

times, M1 and M2, is also measured.266

Expected value of γ, number subclonal mutations267

For a population consisting of a single clone with birth and death rates b and d, the expected number of268

subclonal mutations present at a frequency larger than f is shown to be [46]269

ū(1− f)

(1− δ)f
(8)270

271
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where δ = d/b and ū is the probability that a daughter cell gains a new passenger mutation at cell division.272

In this paper, we allow mutations to occur at any point in time and consider the absolute mutation rate per273

cell, u, which is equal to ūb. Then the expected number of subclonal mutations between f1 and f2, Eγ, is274

Eγ =
u(1− f1)

b(1− δ)f1
− u(1− f2)

b(1− δ)f2
(9)275

=
u

r
(1/f1 − 1/f2) (10)276

277

where r = b− d > 0.278

Now we derive Eγ in the case of clones 0 through k, each clone with growth rate ri > 0 and fraction αci .279

Each clone i has αci
u
ri

(1/f1 − 1/f2) expected subclonal passengers between frequencies f1 and f2. Thus, the280

total expected number of passengers with frequencies between f1 and f2 is281

Eγ = (1/f1 − 1/f2)

k∑
i=0

uαci
ri

(11)282

283

For the simplest case we consider, a tumor with a single driver mutation occurring in the initiated tumor284

population, there is a type-0 population with growth rate r and a type-1 population with growth rate r1.285

Equation (11) reduces to286

Eγ =

(
uα

r1
+
u(1− α)

r

)(
1

f1
− 1

f2

)
(12)287

288

where α is the fraction of cells having the driver mutation.289

Derivation of estimates of evolutionary parameters290

With the two bulk sequencings at t1 + t and t1 + t+ δ, we are able to derive estimates for t1, t, r, r1, and u.291

First we solve for r and r1, based on the estimated cell counts at t1 + t and t1 + t+ δ. The observed type-i292

cell count is equated to the expected value of the type-i population size, conditioned on survival. For the293

type-0 population,294

E[X0(t1 + t)|X0(t1 + t) > 0] =
b

r
er(t1+t) = (1− α1)M1 (13)295

E[X0(t1 + t+ δ)|X0(t1 + t+ δ) > 0] =
b

r
er(t1+t+δ) = (1− α2)M2 (14)296

297
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Proceeding similarly for the type-1 population, we obtain298

r1 =
1

δ
log
(α2M2

α1M1

)
(15)299

r =
1

δ
log
( (1− α2)M2

(1− α1)M1

)
(16)300

301

The expected value of the first time a population of type-1 cells in a branching process reaches the observed302

size α1M1 is [38]303

Et =
1

r1
log
(α1M1r1

b1

)
− 1

r1

∫ ∞
0

e−z log zdz (17)304

=
1

r1
log
(α1M1r1

b1

)
+

0.5772

r1
(18)305

306

which we approximate as307

Et ≈ 1

r1
log(α1M1) (19)308

309

We make use of two approximations to arrive at (19). First, we neglect the second term in (18), which serves310

as a small correction to the first term. This term will be dominated by the first term as it increases with311

logarithm of the cancer size. For r1 = 0.5, α1M1 ∼ 1011, and r1 ≈ b1, the second term (1.2) will be only312

2.3% of the first term (50.7). For any growth rate, the second term will be 2.3% of the first term. Second,313

we assume r1 is similar in magnitude to b1.314

With the measurement of γ, the number of subclonal passengers with frequency between f1 and f2, we315

can estimate the mutation rate u. In the previous section we derive the expected value of γ as316

Eγ =

(
uα

r1
+
u(1− α)

r

)(
1

f1
− 1

f2

)
(20)317

318

Using the estimates of r and r1 from (15) and (16), and the measured value of γ from the second bulk319

sequencing, equation (20) can be solved for the mutation rate u,320

u =
f1f2rr1γ

(f2 − f1)(α2r + r1(1− α2))
(21)321

322

When estimating mutation rate for the CLL patients from Ref. [27], for which there is bulk sequencing at323

two or more timepoints, we average the mutation rate calculated at each of these timepoints. (21) is applied324

for each timepoint with the respective CCFs and observed γ values for each timepoint.325
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To derive the maximum likelihood estimates of t1, we consider the likelihood function P (m|t1). The326

number of passenger mutations present in the founder type-1 cell that appeared at time t1 is a Poisson327

process with rate u. Thus,328

P
(
m|t1

)
∝ (ut1)me−ut1

m!
(22)329

330

Maximizing the logarithm of the likelihood function with respect to t1 yields a MLE for t1 in terms of331

estimated or measured quantities:332

t1 = m/u (23)333
334

Estimating number of unobserved subclonal mutations from sequencing data335

When sequencing data is post-processed by filtering out any mutations with L or fewer variant reads, the336

number of mutations between f1 and f2 will likely be underestimated if 2L/(Rp) > f1, where R is average337

sequencing coverage and p is tumor purity. Define γobs as the observed number of mutations between338

frequencies f1 and f2, after post-processing has been performed that filtered out any mutations with L or339

fewer variant reads. The expected number of subclonal mutations between frequencies f1 and x is given by340

γ(x) = c(1/f1 − 1/x) (24)341
342

where c is a constant that will vary depending on the patient and sample. It can be fit on the sequencing343

data by noting344

γobs = γ(f2)− γ(2L/(Rp)) (25)345

= c(Rp/(2L)− 1/f2) (26)346
347

Therefore, c can estimated from the sequencing data as348

c =
γobs

Rp/(2L)− 1/f2
(27)349

350

Then, we can estimate γ as351

γ = γobs

( 1
f1
− 1

f2
Rp
2L −

1
f2

)
(28)352

353
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Number of passengers reaching fixation after t1354

We estimate the number of passengers that occurred after t1 and reached fixation in the type-1 population355

in order to adjust the mobs mutation count. From [46], when mutations occur at cell division, the expected356

number of clonal passengers is δū/(1 − δ). ū is the probability that a daughter cell gains a new passenger357

mutation at cell division, so the mutation rate is u = ūb1. For the type-1 population, δ = d1/b1 < 1. When358

mutations accrue over time, and not only at divisions, the expected number of clonal passengers is thus359

ū/(1− δ) = u/r1 (29)360
361

Similarly, for a clone i, the expected number of passengers that occur after time ti and reach fixation is362

u/ri (30)363
364

where ri = bi − di > 0.365

Simulation of tumor evolution and sequencing data366

To assess the accuracy of the analytic results, we perform a continuous time Monte Carlo simulation to367

model tumor evolution and collection of sequencing data with an implementation of the Gillespie algorithm368

[51]. Simulations are written in C/C++.369

The type-j population has division rate bj , death rate dj , and mutation rate u. Mutations can occur at370

any point of the cell cycle, not just during division. zn is the number of type-j cells with passenger n as371

their most recent passenger mutation. The type-0 population is initiated with a single cell at time 0, and372

the type-1 population is initiated with a single cell at time t1. Let a be the vector recording the ancestor of373

new mutations. Element ai is the subclonal ancestor of the ith passenger mutation. Repeat 1-4 while time374

is less than t1 + t+ δ.375

1) Set Γ = Nj(bj + dj + u). Time increment to next event time is randomly sampled from Exp[Γ].376

• For type-0, if time is greater than or equal to t1 for first time, randomly select type-0 subclone i377

to have driver mutation, remove one cell from type-0 population count, and set N1 = 1. Record378

the true value of m, the number of passenger mutations present in the founder type-1 cell.379

2) Randomly select cell, with most recent passenger mutation i, to have the event.380

3) Determine which type of event and update population and mutation frequencies. Sample Y from381

Uniform[0,Γ] to determine event type:382
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i) y ∈ (0, bj)→ birth. Nj += 1, zi += 1.383

ii) y ∈ (bj , bj + dj)→ death. Nj −= 1, zi −= 1.384

iii) y ∈ (bj + dj , bj + dj + u)→ passenger mutation. Suppose it’s the kth passenger, zi −= 1, zk = 1.385

Update ancestor: ak = i.386

4) For type-0, if time is less than t1 and population goes extinct, restart simulation. For type-1, if time387

is greater than t1 and population goes extinct, restart type-1 simulation at t1 with a single cell.388

5) Reindex to remove extinct passenger mutations, and traverse back through ancestor vector a to sum389

total number of cells with each passenger.390

Measurements are taken at bulk sequencing times t1 + t and t1 + t+ δ. If time is greater than or equal to391

t1+t, we measure M1 = N0+N1 and α1 = N1/(N0+N1). Then an additional bulk sequencing measurement392

is taken at the final time t1 + t+ δ, where we measure M2 = N0 +N1 and α2 = N1/(N0 +N1). At t1 + t+ δ,393

we measure γ, the number of mutations with frequency between f1 and f2.394

To measure mobs, the observed number of passengers in the founder type-1 cell, we count the number of395

passengers present in all type-1 cells. We also save the true value of m.396

For when we calculate a percent error of corrected and observed γ values in Figure 3d and Supplementary397

Figure 3b, we simulate sequencing data by sampling from the mutation frequencies obtained in the Monte398

Carlo simulation, outlined above, using the approach of [35]. Define average sequencing coverage as R,399

number of cells at time of sequencing as M , Zi as the number of cells with mutation i, Ri as read coverage,400

and χi as the true mutation frequency from Monte Carlo simulation. For each saved Monte Carlo simulation401

run, repeat the following 100 times:402

1) Generate read coverage: Ri ∼ Binomial[M,R/M ]403

2) Generate number of cells carrying mutation i: Zi ∼ Binomial[Ri, χi/2]404

3) Post-processing. If there are L = 2 or fewer variant reads, discard mutation.405

4) Measure γobs, the observed number of subclonal mutations between frequencies f1 and f2: γobs =406 ∑
i I(f1 ≤ 2Zi/R ≤ f2, Zi > L)407

5) Calculate the truth, γtrue, from the true mutation frequencies: γtrue =
∑
i I(f1 ≤ χi ≤ f2)408

Parameter values for simulations409

For the simulation we consider three parameter sets corresponding to three modes of tumor evolution: a fast410

growing tumor, slow growing tumor, and tumor with no cell death. For each parameter regime we have a low411
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and high mutation rate. Mutation rate parameter values lie within observed genome wide point mutation412

rates per day [52]. For the fast growing tumor b = b1 = 0.25, d = 0.18, d1 = 0.11, t1 = 70, t = 50, δ = 20,413

and u = 1, 3. For the slow growing tumor b = 0.25, b1 = 0.25, d = 0.225, d1 = 0.2125, t1 = 180, t = 135,414

δ = 45, and u = 1, 5. For the parameter regime with no cell death b = 0.25, b1 = 0.375, d = d1 = 0.0,415

t1 = 23, t = 17, δ = 6, and u = 1, 10. The fast growing tumor dynamics are from [34]. The slower growing416

tumor parameter regime has a reduced net growth of r = 0.025, compared to the fast growing tumor’s net417

growth rate of r = 0.07.418

Subclonal reconstruction of CLL sequencing data419

The sequencing data from all CLLs analyzed is from Ref. [27], Supplementary Tables 2-4. As in that420

publication, we use PhylogicNDT [43] to perform subclonal reconstruction. We run the Cluster and BuildTree421

modules of PhylogicNDT on the longitudinal mutation data from Supplementary Table 3 of [27], using422

mutation alternate/reference counts, copy number, and tumor purity at all pre-treatment time points. Then423

for each patient, PhylogicNDT outputs a clonal reconstruction, which includes a phylogenetic tree of the424

subclones and posterior distributions of subclone CCFs. Additionally, it clusters mutations and assigns them425

to clones. We directly use subclone assignments and posteriors generated from PhylogicNDT. In our analysis426

we focus on estimating timing and growth rates of macroscopic subclones whose CCFs are greater than 20%427

for at least one pre-treatment timepoint.428

Accounting for uncertainties in subclone frequencies and growth rates429

Our estimates for parameters of cancer evolution require as input the information on the number of subclonal430

populations in the tumor, their CCFs and their phylogenetic relationships. In order to obtain this informa-431

tion, we use PhylogicNDT [43], which performs subclonal reconstruction of longitudinal cancer sequencing432

data. The uncertainty in subclone CCFs reported by PhylogicNDT affects our estimates for subclone growth433

rates, which in turn affect the estimates of mutation rate and and time t between driver(s) and diagnosis.434

We account for this uncertainty by drawing from the CCF posterior distributions that are output by Phy-435

logicNDT. Using these sampled CCF values, we then calculate growth rates, mutation rate u, and time t436

between driver(s) and diagnosis, thereby generating confidence intervals for these parameters due to CCF437

uncertainty.438

To estimate subclonal growth rates, we fit an exponential growth curve to subclonal sizes measured at439

two or more time points. This regression yields fitted values for each clone’s growth rate and age. To account440

for uncertainty in the curve fit (in the case of more than two longitudinal samples), we sample the growth441
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rates and age of clone from a bivariate normal distribution with mean equal to the fitted parameters and442

variance equal to the covariance matrix of the fitted parameters. In line with recent findings [53], we found443

that sometimes the estimated growth rate is smaller than minimal possible growth rate necessary to reach444

the observed clone size. In that case, for calculating mutation rate, time of the driver(s), and time between445

driver(s) and diagnosis we use the minimal growth rate.446

Accounting for model uncertainty447

The largest source of model uncertainty is the Poisson process for how mutations accumulate, which is used448

to estimate the time t1 of the driver mutation. In the simulation experiments, the time t1 had the largest449

error and variation (Fig. 2). The estimate for t1 depends on the m mutations present in all cells in the450

driver subclone. The observed m is a single random sample from a Poisson distribution. To account for451

the uncertainty in t1 arising from m in the CLLs analyzed, we sample ti from the posterior distributions452

P (t1|m). This source of model uncertainty due to the Poisson process will be most significant for cancers453

like CLL with a smaller number of mutations.454

The time t between driver mutation and diagnosis (t) is a random variable due to the stochasticity of455

cancer cell growth, and will naturally have a certain amount of variation. Time between driver event and456

diagnosis in a branching process follows a Gumbel distribution [38], and will have a constant variance. The457

mean, however, will increase with the logarithm of the cancer cell counts, which for the CLLs analyzed are458

∼ 1011. The simulations of cancer evolution grow to smaller tumor sizes (∼ 105) and, as a result, the estimate459

for t has a significant amount of uncertainty (Fig. 2). However, for time scales necessary to generate a tumor,460

the estimate for t will be quite accurate. For commonly observed tumor sizes, the stochastic fluctuations in461

the time for the cancer to reach that size will be smaller relative to the magnitude of the time. For a cancer462

with cell count ∼ 1011, the standard deviation of the time t will be less than 5% of its expected value.463

Tumor with two nested driver subclones464

Here we consider the case where there are two nested driver subclones (Fig. S4a). “Nested” means that all465

cells carrying the second driver mutation also carry the first. Type-0, or initiated tumor, cells have birth466

rate b0, death rate d0, and net growth rate r0 = b0 − d0. Type 1 cells, which only have the first driver, have467

birth rate b1, death rate d1, and net growth rate r1 = b1 − d1. Type-2 cells, which carry both drivers, have468

birth rate b2, death rate d2, and net growth rate r2 = b2 − d2. The first driver occurred in a type-0 cell at469

time t1. The second driver occurred in a type-1 cell at t2 = t1 + t′2. The mutation rate u is the same for all470

subclones.471
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At times t1 + t′2 + t and t1 + t′2 + t + δ, the tumor is bulk sequenced. The bulk sequencing allows the472

measurement of the fraction of cells with driver 1 at time t1 + t′2 + t, α1; the fraction of cells with driver 2473

at t1 + t′2 + t, α2; fraction of cells with driver 1 at time t1 + t′2 + t + δ, β1; the fraction of cells with driver474

2 at t1 + t′2 + t + δ, β2; and the observed number of subclonal passenger mutations between frequencies f1475

and f2, γobs. Note that the fraction of the population that is a type-1 cell at the two times is α1 − α2 and476

β1 − β2. The fraction of type-0 cells at the two bulk sequencing timepoints are 1 − α1 and 1 − β1. The477

number of total cells at bulk sequencing timepoints are M1 and M2. Equating the estimated cell counts to478

the expected value of the type-i population size Xi, conditioned on survival,479

E
[
Xi

(
t1 + t′2 + t

)∣∣∣Xi

(
t1 + t′2 + t

)
> 0] =



b0
r0
er0(t1+t

′
2+t) i = 0

b1
r1
er1(t

′
2+t) i = 1

b2
r2
er2t i = 2

(31)480

=


(1− α1)M1 i = 0

(α1 − α2)M1 i = 1

α2M1 i = 2

(32)481

482

483

E
[
Xi

(
t1 + t′2 + t+ δ

)∣∣∣Xi

(
t1 + t′2 + t+ δ

)
> 0
]

=



b0
r0
er0(t1+t

′
2+t+δ) i = 0

b1
r1
er1(t

′
2+t+δ) i = 1

b2
r2
er2(t+δ) i = 2

(33)484

=


(1− β1)M2 i = 0

(β1 − β2)M2 i = 1

β2M2 i = 2

(34)485

486

Solving the above equations for ri, we obtain the growth rate estimates:487

r0 =
1

δ
log
( (1− β1)M2

(1− α1)M1

)
(35)488

r1 =
1

δ
log
( (β1 − β2)M2

(α1 − α2)M1

)
(36)489

r2 =
1

δ
log
(β2M2

α2M1

)
(37)490

491
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The expected value of the first time a population of type-2 cells in a branching process reaches the observed492

size α2M1 [38],493

Et =
1

r2
log(

α2M1r2
b2

)− 1

r2

∫ ∞
0

e−z log zdz (38)494

=
1

r2
log(

α2M1r2
b2

) +
0.5772

r2
(39)495

496

can be approximated as497

Et ≈ 1

r2
log(α2M1) (40)498

499

We make use of two approximations to arrive at (40). First, we neglect the second term in (39), which serves500

as a small correction to the first term. Second, we assume r2 is similar in magnitude to b2.501

By (11),502

Eγ = u

(
1− β1
r0

+
β1 − β2
r1

+
β2
r2

)(
1

f1
− 1

f2

)
(41)503

504

Using the estimates for r0, r1, and r2 from (35)-(37), and setting (41) equal to the value of γ obtained from505

(28) and the second bulk sequencing, u can be estimated:506

u =
f1f2γ

(f2 − f1)( 1−β1

r0
+ β1−β2

r1
+ β2

r2
)

(42)507

508

When estimating mutation rate for the CLL patients from Ref. [27], for which there is bulk sequencing at509

two or more timepoints, we average the mutation rate calculated at each of these timepoints. (42) is applied510

for each timepoint with the respective CCFs and observed γ values for each timepoint.511

Every type-1 cell carries the m1 passenger mutations that were present in the original type-1 cell when512

the first driver mutation mutation occurred at t1. Similarly, every type-2 cell carries the m2 passengers that513

were present in the founder type-2 cell when the second driver mutation occurred at t2. Note, none of the514

m1 mutations are counted towards m2. Now we consider the likelihood function515

P (m1,m2|t1, t′2) (43)516
517
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P (m1,m2|t1, t′2) ∝ P (m1|t1)P (m2|t′2) (44)518

∝ (ut1)m1e−ut1

m1!

(ut′2)m2e−ut
′
2

m2!
(45)519

520

Now, maximizing the logarithm of (45) with respect to t1 and t′2,521

t1 =
m1

u
(46)522

t′2 =
m2

u
(47)523

524

The number of passengers present in the founder type-i cell cannot be directly observed, but we can525

measure mi obs, the number of passengers present in all type-i cells. An expected u/r1 passengers occurring526

after t1 in type-1 cells and reaching fixation in the type-1 subclone will be incorrectly included in m1 obs,527

rather than in m2 obs (see Methods). Similarly, an expected u/r2 passengers occurring after t2 in type-2 cells528

and reaching fixation in the type-2 subclone will be incorrectly included in m2 obs. Thus,529

m1 = m1 obs − u/r1 (48)530

m2 = m2 obs − u/r2 + u/r1 (49)531
532

Tumor with two sibling driver subclones533

Here we consider a tumor with two “sibling” driver mutations (Fig. S4b). Sibling driver mutations are534

drivers that occur in separate subclones. In this case, cells are either initiated tumor cell (type-0), carry535

driver 1 (type-1), or carry driver 2 (type-2). No cells contain both drivers. Driver 1 occurred in a type-0536

cell at time t1. Driver 2 occurred in a type-0 cell at t2. Type-0 cells have birth rate b0, death rate d0, and537

net growth rate r0 = b0 − d0. Type-1 cells, which carry driver 1, have birth rate b1, death rate d1, and538

net growth rate r1 = b1 − d1. Type-2 cells, which carry driver 2, have birth rate b2, death rate d2, and net539

growth rate r2 = b2 − d2. The mutation rate u is the same for all subclones.540

Suppose time τi elapses between driver mutation i and tumor observation. Bulk sequencing of the tumor541

is performed at t1 + τ1 (or equivalently t2 + τ2), and a known δ later. Sequencing the tumor allows the542

measurement of the fraction of cells with driver 1 at the first sequencing, α1; the fraction of cells with driver543

2 at the first sequencing, α2; fraction of cells with driver 1 at the second sequencing, β1; the fraction of544

cells with driver 2 at the second sequencing, β2; and the number of subclonal passenger mutations between545
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frequencies f1 and f2, γ. The fraction of type-0 cells at the two bulk sequencing timepoints are 1− α1 − α2546

and 1− β1 − β2. The number of total cells at the two sequencing timepoints are M1 and M2.547

Equating the estimated cell counts to the expected value of the type-i population size Xi, conditioned548

on survival,549

E
[
Xi

(
ti + τi

)∣∣∣Xi

(
ti + τi

)
> 0] =


b0
r0
er0(t1+τ1) i = 0

bi
ri
eri(τi) i = 1, 2

(50)550

=


(1− α1 − α2)M1 i = 0

αiM1 i = 1, 2

(51)551

552

553

E
[
Xi

(
ti + τi + δ

)∣∣∣Xi

(
ti + τi + δ

)
> 0
]

=


bi
ri
eri(t1+τ1+δ) i = 0

bi
ri
eri(τi+δ) i = 1, 2

(52)554

=


(1− β1 − β2)M2 i = 0

βiM2 i = 1, 2

(53)555

556

Solving the above equations for ri, we obtain557

r0 =
1

δ
log
( (1− β1 − β2)M2

(1− α1 − α2)M1

)
(54)558

ri =
1

δ
log
(βiM2

αiM1

)
i = 1, 2 (55)559

560

The expected value of the first time a population of type-i cells in a branching process reaches the561

observed size αiM1 is [38]562

Eτi =
1

ri
log
(αiM1ri

bi

)
− 1

ri

∫ ∞
0

e−z log zdz (56)563

=
1

ri
log
(αiM1ri

bi

)
+

0.5772

ri
(57)564

565

which we approximate as566

Eτi ≈
1

ri
log(αiM1) i = 1, 2 (58)567

568

We use two approximations to arrive at (58). We neglect the second term in (57), which serves as a small569
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correction to the first term. Second, we assume ri is similar in magnitude to bi.570

By (11),571

Eγ = u

(
1− β1 − β2

r0
+
β1
r1

+
β2
r2

)(
1

f1
− 1

f2

)
(59)572

573

Using the estimates for r0, r1, and r2 from (54) and (55), and setting (59) equal to the value of γ obtained574

from (28) and the second bulk sequencing, u can be estimated:575

u =
f1f2γ

(f2 − f1)( 1−β1−β2

r0
+ β1

r1
+ β2

r2
)

(60)576

577

When estimating mutation rate for the CLL patients from Ref. [27], for which there is bulk sequencing at578

two or more timepoints, we average the mutation rate calculated at each of these timepoints. (60) is applied579

for each timepoint with the respective CCFs and observed γ values for each timepoint.580

Every type-1 cell carries the m1 passenger mutations that were present in the original type-1 cell when581

the first driver mutation mutation occurred at t1. Similarly, every type-2 cell carries the m2 passengers that582

were present in the founder type-2 cell when the second driver mutation occurred at t2. We assume that583

m1 and m2 don’t contain any shared mutations. In the CLL dataset we use, this is true. We consider the584

likelihood function P (m1,m2|t1, t2)585

P (m1,m2|t1, t2) ∝ P (m1|t1)P (m2|t2) (61)586

∝ (ut1)m1e−ut1

m1!

(ut2)m2e−ut2

m2!
(62)587

588

Maximizing the logarithm of (62) with respect to t1 and t2 yields the maximum likelihood estimates:589

t1 =
m1

u
(63)590

t2 =
m2

u
(64)591

592

Using the same approach as in the case of a single driver, we obtain the corrections for the observed number593

of mutations present in all cells of each subclone:594

m1 = m1 obs − u/r1 (65)595

m2 = m2 obs − u/r2 (66)596
597
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Fully generalized estimates for any phylogeny of k drivers598

Here we derive estimates for a completely general tumor phylogeny. Suppose a tumor has k driver mutations.599

In this general case, define a type-i cell as a cell where its most recent driver mutation was driver i. Note600

that a type-i cell can have between 0 and k− 1 other driver mutations. A phylogenetic reconstruction of the601

k driver mutations is necessary for the completely general case. From this phylogenetic tree, the ancestor602

of each subclone can be obtained. Define the function a(i) as the ancestor of the type-i population. That603

is, if all driver mutations contained in the type-i population are ordered, a(i) gives the driver mutation604

that occurred prior to i. Define ti as the time between when driver i occurred and when the type-i cells’605

previous driver mutation occurred. At time of observation, assume the type-i population has κi total driver606

mutations, where 1 ≤ κi ≤ k for all 1 ≤ i ≤ k. Denote the time between the type-i’s κi, or last, driver607

mutation and when the tumor is observed as τi. This is the time between the founder type-i cell’s birth608

and tumor observation. Then the tumor is first observed and bulk sequenced at T1 ≡ (
∑κi−1
j=0 taj(i)) + τi609

(equivalently τ0 for i = 0), where we denote aj as the jth iterate of the function a:610

a0(i) ≡ i (67)611

aj(i) ≡ a(aj−1(i)) ∀j ≥ 1 (68)612
613

The tumor is also bulk sequenced at T2 ≡ (
∑κi−1
j=0 taj(i)) + τi + δ (equivalently τ0 + δ for i = 0). These614

assumptions allow for any subclone phylogeny, including combinations of the previously discussed sibling615

and nested subclone types.616

The bulk sequencing allows the measurement of the fraction of cells with driver i at T1, αi; the fraction617

of cells with driver i at time T2, βi; and the number of subclonal passenger mutations between frequencies618

f1 and f2, γ. Again, the number of total cells at measurement times T1 and T2 are M1 and M2. To write the619

type-i frequencies, αci and βci , in terms of the driver frequencies, we subtract the fraction of cells descending620

from type-i cells but gaining additional driver mutation(s) after i, from the fraction of cells containing driver621

i:622

αci =


αi −

∑k
j=1 δi,a(j)αj 1 ≤ i ≤ k

1−
∑k
j=1 α

c
j i = 0

(69)623

βci =


βi −

∑k
j=1 δi,a(j)βj 1 ≤ i ≤ k

1−
∑k
j=1 β

c
j i = 0

(70)624

625
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where δi,a(j) is the Kronecker delta, defined as626

δi,a(j) =


0 if i 6= a(j)

1 if i = a(j)

627

628

Equating the estimated cell counts at the first bulk sequencing timepoint to the expected value of the type-i629

population size Xi, conditioned on survival,630

E[Xi(T1)|Xi(T1) > 0] =
bi
ri
eriτi631

= αciM1 (71)632
633

And similarly, at the second bulk sequencing timepoint,634

E[Xi(T2)|Xi(T2) > 0] =
bi
ri
eri(τi+δ) (72)635

= βciM2 (73)636
637

Solving the above equations for ri, we obtain638

ri =
1

δ
log
(βciM2

αciM1

)
∀i = 0, 1, . . . , k (74)639

640

By (11)641

Eγ =

(
u

k∑
i=0

βci
ri

)(
1

f1
− 1

f2

)
(75)642

643

Now, using the growth rate estimates ri and the subclone sizes, we can estimate each τi. The expected644

value of the first time a population of type-i cells in a branching process reaches the observed size αciM1 is645

[38]646

Eτi =
1

ri
log
(αciM1ri

bi

)
− 1

ri

∫ ∞
0

e−z log zdz (76)647

=
1

ri
log
(αciM1ri

bi

)
+

0.5772

ri
(77)648

649
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which we approximate as650

Eτi ≈
1

ri
log(αciM1) (78)651

652

We make use of two approximations to arrive at (78). First, we neglect the second term in (77), which serves653

as a small correction to the first term. Second, we assume ri is similar in magnitude to bi.654

Using the (k + 1) ri estimates from (74), and setting (75) equal to the value of γ obtained at the second655

bulk sequencing from (28), u can be estimated:656

u =
f1f2γ

(f2 − f1)(
∑k
i=0

βc
i

ri
)

(79)657

658

When estimating mutation rate for the CLL patients from Ref. [27], for which there is bulk sequencing at659

two or more timepoints, we average the mutation rate calculated at each of these timepoints. (79) is applied660

for each timepoint with the respective CCFs and observed γ values for each timepoint.661

The number of passengers present in the original type i founder cell cannot be directly observed, but we662

can measure mi, the number of clonal passengers present in the type i population, only including passengers663

not present in other clones. We will assume that the mi don’t contain any shared mutations, which is true664

for the CLL dataset we consider. The likelihood function P (m1, . . . ,mk|t1, . . . , tk) is proportional to665

k∏
i=1

P (mi|ti) ∝
k∏
i=1

(uti)
mie−uti

mi!
(80)666

667

Then, maximizing the logarithm of (80) with respect to t1, t2, . . . , tk,668

ti =
mi

u
∀i = 1, . . . , k (81)669

670

The observed clonal passengers in the founder type-i cell will incorrectly include passengers that reached671

fixation in the type-i population after driver mutation i occurred, instead of correctly being counted toward672

the descendant of clone i. As a result, we again correct for the expected number of these passengers, u/ri.673

That is,674

mi = mi, obs − u/ri + u/ra(i) ∀i = 1, . . . , k (82)675
676
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Availability of data and materials677

All simulated data generated during this study are included in this published article and its supplementary678

information files. CLL data analyzed is publicly available in Supplementary Tables from Ref. [27]. Code679

can be found at https://github.com/nathanlee543/Cancer_Inf_Sims680
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[21] Sundermann, L. K., Wintersinger, J., Rätsch, G., Stoye, J. & Morris, Q. Reconstructing tumor evolu-734

tionary histories and clone trees in polynomial-time with SubMARine. PLOS Computational Biology735

17, e1008400 (2021). URL https://dx.plos.org/10.1371/journal.pcbi.1008400.736

[22] PCAWG Evolution and Heterogeneity Working Group et al. Reconstructing evolutionary trajectories of737

mutation signature activities in cancer using TrackSig. Nature Communications 11, 731 (2020). URL738

http://www.nature.com/articles/s41467-020-14352-7.739

31

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2022. ; https://doi.org/10.1101/2020.11.18.387837doi: bioRxiv preprint 

https://www.nature.com/articles/nrc2013
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1752-4571.2008.00063.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1752-4571.2008.00063.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1752-4571.2008.00063.x
https://www.pnas.org/content/97/3/1236
https://www.pnas.org/content/97/3/1236
https://www.pnas.org/content/97/3/1236
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2393770/
https://www.nature.com/articles/nature09515
http://www.pnas.org/cgi/doi/10.1073/pnas.1400179111
http://www.pnas.org/cgi/doi/10.1073/pnas.1400179111
http://www.pnas.org/cgi/doi/10.1073/pnas.1400179111
https://stm.sciencemag.org/content/7/283/283ra54
https://stm.sciencemag.org/content/7/283/283ra54
https://stm.sciencemag.org/content/7/283/283ra54
http://www.sciencedirect.com/science/article/pii/S0092867418301648
http://www.sciencedirect.com/science/article/pii/S0092867418301648
http://www.sciencedirect.com/science/article/pii/S0092867418301648
http://www.nature.com/articles/s41586-019-1907-7
https://dx.plos.org/10.1371/journal.pcbi.1008400
http://www.nature.com/articles/s41467-020-14352-7
https://doi.org/10.1101/2020.11.18.387837
http://creativecommons.org/licenses/by-nc-nd/4.0/


[23] Tomasetti, C. & Bozic, I. The (not so) immortal strand hypothesis. Stem Cell Research 14, 238–241740

(2015).741

[24] Werner, B. et al. Measuring single cell divisions in human tissues from multi-region sequenc-742

ing data. Nature Communications 11, 1–9 (2020). URL https://www.nature.com/articles/743

s41467-020-14844-6. Number: 1 Publisher: Nature Publishing Group.744

[25] Bozic, I. et al. Accumulation of driver and passenger mutations during tumor progression.745

Proceedings of the National Academy of Sciences of the United States of America 107, 18545–18550746

(2010). URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2972991/.747

[26] Sun, R. et al. Between-region genetic divergence reflects the mode and tempo of tumor evolution.748

Nature Genetics 49, 1015–1024 (2017). URL https://www.nature.com/articles/ng.3891.749

[27] Gruber, M. et al. Growth dynamics in naturally progressing chronic lymphocytic leukaemia. Nature750

570, 474–479 (2019). URL https://www.nature.com/articles/s41586-019-1252-x.751

[28] Salichos, L., Meyerson, W., Warrell, J. & Gerstein, M. Estimating growth patterns and driver effects752

in tumor evolution from individual samples. Nature Communications 11, 1–14 (2020). URL https:753

//www.nature.com/articles/s41467-020-14407-9.754

[29] Noble, R. et al. Spatial structure governs the mode of tumour evolution. Nature Ecology & Evolution755

(2021). URL https://www.nature.com/articles/s41559-021-01615-9.756

[30] Chkhaidze, K. et al. Spatially constrained tumour growth affects the patterns of clonal selection and757

neutral drift in cancer genomic data. PLOS Computational Biology 15, e1007243 (2019). URL https:758

//journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007243.759

[31] Fu, X. et al. Spatial patterns of tumour growth impact clonal diversification in a computational model760

and the TRACERx Renal study. Nature Ecology & Evolution (2021). URL https://www.nature.com/761

articles/s41559-021-01586-x.762

[32] Williams, M. J. et al. Quantification of subclonal selection in cancer from bulk sequencing data.763

Nature Genetics 50, 895 (2018). URL https://www.nature.com/articles/s41588-018-0128-6.764

[33] Avanzini, S. et al. A mathematical model of ctDNA shedding predicts tumor detection size.765

Science Advances 6, eabc4308 (2020). URL https://www.science.org/doi/10.1126/sciadv.766

abc4308.767

32

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2022. ; https://doi.org/10.1101/2020.11.18.387837doi: bioRxiv preprint 

https://www.nature.com/articles/s41467-020-14844-6
https://www.nature.com/articles/s41467-020-14844-6
https://www.nature.com/articles/s41467-020-14844-6
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2972991/
https://www.nature.com/articles/ng.3891
https://www.nature.com/articles/s41586-019-1252-x
https://www.nature.com/articles/s41467-020-14407-9
https://www.nature.com/articles/s41467-020-14407-9
https://www.nature.com/articles/s41467-020-14407-9
https://www.nature.com/articles/s41559-021-01615-9
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007243
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007243
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007243
https://www.nature.com/articles/s41559-021-01586-x
https://www.nature.com/articles/s41559-021-01586-x
https://www.nature.com/articles/s41559-021-01586-x
https://www.nature.com/articles/s41588-018-0128-6
https://www.science.org/doi/10.1126/sciadv.abc4308
https://www.science.org/doi/10.1126/sciadv.abc4308
https://www.science.org/doi/10.1126/sciadv.abc4308
https://doi.org/10.1101/2020.11.18.387837
http://creativecommons.org/licenses/by-nc-nd/4.0/


[34] Bozic, I. et al. Evolutionary dynamics of cancer in response to targeted combination therapy. eLife 2,768

e00747 (2013). URL https://elifesciences.org/articles/00747.769

[35] Dinh, K. N., Jaksik, R., Kimmel, M., Lambert, A. & Tavaré, S. Statistical Inference for the Evolutionary770
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