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1 Abstract

2 As a cancer develops, its cells accrue new mutations, resulting in a heterogeneous, complex genomic
3 profile. We make use of this heterogeneity to derive simple, analytic estimates of parameters driving car-
4 cinogenesis and reconstruct the timeline of selective events following initiation of an individual cancer.
5 Using stochastic computer simulations of cancer growth, we show that we can accurately estimate mu-
6 tation rate, time before and after a driver event occurred, and growth rates of both initiated cancer cells
7 and subsequently appearing subclones. We demonstrate that in order to obtain accurate estimates of
8 mutation rate and timing of events, observed mutation counts should be corrected to account for clonal
9 mutations that occurred after the founding of the tumor, as well as sequencing coverage. We apply
10 our methodology to reconstruct the individual evolutionary histories of chronic lymphocytic leukemia
1 patients, finding that the parental leukemic clone typically appears within the first fifteen years of life.

» Introduction

13 When a cell accrues a sequence of driver mutations — genetic alterations that provide a proliferative advantage
1 relative to surrounding cells — it can begin to divide uncontrollably and eventually develop the complex
15 features of a cancer [IH3]. Thousands of specific driver mutations have been implicated in carcinogenesis,
16 with individual tumors harboring from few to dozens of drivers, depending on the cancer type [4]. Mutations
v that don’t have a significant effect on cellular fitness also arise, both before and after tumor initiation [5].
18 These neutral mutations, or “passengers”, can reach detectable frequencies by random genetic drift or the
19 positive selection of a driver mutation in the same cell [6H9]. Mutational burden detectable by bulk sequencing

2 reveals tens to thousands of passengers per tumor [10, [IT].
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2 Genome sequencing technologies have revealed the heterogeneous, informative genetic profiles produced
» by the evolutionary process driving carcinogenesis [12] [[3]. These genetic profiles have been used to obtain
»s  insight into specific features of the carcinogenic process operating in individual patients. For example, the
2 molecular clock feature of passenger mutations has been employed to measure timing of early events in tumor
»s  formation, as well as identify stages of tumorigenesis and metastasis [14H22]. Other studies have estimated
» mutation rates [5], 23, 24], selective growth advantages of cancer subclones [25H28], and the effect of spatial
z structure on cancer evolution [29H3T]. We note that previous approaches typically only estimate one or a
s few parameters of cancer evolution. In addition, many state of the art methods make use of computationally
2 expensive approaches [24, B0, B2] or simplifying assumptions, such as approximating tumor expansion as
» deterministic or ignoring cell death [27 [32].

3 Mathematical models of cancer progression, especially when used in conjunction with experimental and
» clinical data, can provide important insights into the evolutionary history of cancer [9, 19, [33H37]. Branching
13 processes — a type of a stochastic process — can be used to model how different populations of dividing, dying,
s and mutating cells in a tumor evolve over time [38]. Their theory and applications have been well developed
s to model the multistage nature of cancer development [25] 29, [35] B8H40]. Here we use a branching process
s model of carcinogenesis to derive a comprehensive reconstruction of an individual tumor’s evolution.

37 Tumors can grow for many years, even decades, before they reach detectable size [I6]. Typically, tumor
;s samples used for sequencing would be obtained at the end of the tumor’s natural, untreated progression.
s More recently, longitudinal sequencing, where a tumor is sequenced at multiple times during its development,
w0 has provided better resolution of tumor growth dynamics and evolution in various cancer types [27), AT}
a [44]. We establish that two longitudinal bulk sequencing and tumor size measurements are sufficient to
»2 reconstruct virtually all parameters (mutation rate, growth rates, times of appearance of driver mutations,
s and time since the driver mutation) of cancer evolution in individual patients. Our analytic approach
w yields simple formulas for the parameters; thus estimation of the parameters governing cancer growth is not
s computationally intensive, regardless of tumor size. Our framework makes possible a personalized, high-
s resolution reconstruction of a tumor’s timeline of selective events and quantitative characterization of the

«  evolutionary dynamics of the subclones making up the tumor.
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« Results

» Model

so  We consider a multi-type branching process of tumor expansion (Fig. ) Tumor growth is started with
51 a single initiated cell at time 0. Initiated tumor cells divide with rate b and die with rate d. These cells
s> already have the driver mutations necessary for expansion, so we assume b > d. The population of initiated
53 cells can go extinct due to stochastic fluctuations, or survive stochastic drift and start growing (on average)
s exponentially with net growth rate r = b—d. We will focus only on those populations that survived stochastic
55 drift.

56 At some time t; > 0 a new driver mutation occurs in a single initiated tumor cell, starting a new
sv independent birth-death process, with birth rate b; and death rate d; (Fig. ) Net growth rate of cells
ss  with the new driver is 71 = b; — d;. The new driver increases the rate of growth, i.e., r;y > r. We define
o the driver’s selective growth advantage by g = (r1/r — 1). In addition, both populations of cells (with and
o without the driver) accrue passenger mutations with rate u (Fig. [Ik).

61 After the driver mutation occurs, an additional time t passes before the tumor is observed. Cells con-
¢ taining ¢ new driver mutations, where ¢ is either 0 or 1, will be referred to as type-i cells or simply, clone 1.
63 In Materials and Methods we also analyze the more general case of two nested or sibling driver mutations,

e as well as the fully generalized case of any clonal structure that might arise during tumor expansion.

» Parameter estimates from two longitudinal measurements

6 We demonstrate that with two longitudinal bulk sequencing measurements, it is possible to accurately
o7 estimate net growth rates, time of appearance of a driver mutation, time between a driver mutation and
e observation, and mutation rate in the tumor. The tumor is first sequenced at time of observation, t; + ¢,
6 where both time of driver mutation, ¢;, and time from driver mutation to observation, ¢, are yet unknown
o (Fig. ) A second bulk sequencing is performed at t; + ¢+ 9, a known § time units after the tumor is first
n  observed (Fig. ) From the bulk sequencing data, the fraction of cells carrying the driver mutation, oy
= and asg, can be measured at the timepoints t; + ¢ and t; + t + J, respectively. We denote total number of
73 cells in the tumor at the two bulk sequencing timepoints as M; and M;. Number of cells in the tumor can
n  be estimated from measurements of tumor volume [45].

7 Equating expected values of the sizes of type-0 and type-1 population at the two bulk sequencing time

7 points with the measured numbers of cells present in clones 0 and 1, we obtain estimates of the net growth
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Figure 1: Stochastic branching process model of tumor evolution. (a) Stochastic branching process
model for tumor expansion. Initiated tumor cells (blue) divide with birth rate b, die with death rate d, and
accrue passenger mutations with mutation rate u. Type-1 cells, which carry the driver mutation, divide
with birth rate by, die with death rate dy, and accrue passenger mutations with mutation rate u. (b) The
initiated tumor, or type-0, (blue) population growth is initiated from a single cell. A driver mutation occurs
in a single type-0 cell at time ¢, starting the type-1 population (red). The tumor is bulk sequenced at times
t1+tand t; +t+9. (c) By the time the tumor is observed, it has a high level of genetic heterogeneity due
to the mutations that have accrued in both type-0 (blue) and type-1 populations (red). Each yellow star
represents a different passenger mutation.
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a1 From the growth rate estimates and subclone sizes, we can approximate the expected value of the time a
@ population in a branching process takes to reach an observed size [38]. This yields an estimate of the time ¢

ss from the appearance of driver mutation until observation:

1
84 t= 710g(M1a1) (3)
1

85

s Using the bulk sequencing data from the second timepoint, v, the number of subclonal passengers between
e the specified frequencies f; and fo, can be measured. Using results from previous work [46], we derive the

s expected value of v (Materials and Methods), which can be used to estimate the mutation rate u:

89 u = f1f27"7"1V (4)
% (f2_f1)<a2r+r1(1_a2))

o The m passenger mutations that were present in the original type-1 cell when the driver mutation occurred
«» (Fig. ) are present in all type-1 cells. m can be estimated from bulk sequencing data, and used to estimate
s time of appearance of the driver. We maximize the likelihood function P(mlt;) with respect to time of

u appearance of the driver, t1, (see Materials and Methods) to obtain the maximum likelihood estimate

m
95 t1 = —
u

o7 Using formulas and , we can now estimate ¢;.

« HEstimates verified in simulated tumors

9 To assess the accuracy of the parameter estimates for several modes of tumor evolution, we simulate tumor
w0 growth by performing a Monte Carlo simulation, which simulates the birth, death, and accumulation of
11 mutations in the individual cells that make up a tumor. This simulation generates the mutation frequency
12 and tumor size data used by the estimates (see Methods section for details of simulation). We simulate three
03 different types of tumors (slow growing, fast growing, and no cell death), with a high and a low mutation

s rate for each.
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105 In a simulation of a fast growing tumor with a single subclonal driver mutation that confers a strong
06 selective growth advantage of 100%, we can accurately estimate growth rates, mutation rate, time of driver
w7 event, and time since driver event (Fig. [2). Growth rates of both initiated tumor and driver subclones
s can be estimated with a high degree of accuracy, achieving mean percentage error (MPE) of -0.07% and
we  0.03% for the lower mutation rate (u = 1) scenario. The mutation rate v and estimates for time of driver
1w appearance, t1, and time since driver, ¢, can also be estimated accurately, with MPEs of -0.9% , 3.8% , and
m -0.4% , respectively. Estimates for u, ¢1, and ¢ have a somewhat greater degree of variation compared to the
2 growth rate estimates, due to the inherent randomness of the number of mutations and time to reach the
us  observed size that occur in each realization of the stochastic process.

114 For the parameter regime with no cell death and the regime for a slow-growing tumor, we again achieve
us high accuracies for the net growth rates (Fig. S1, Fig. S2). In the lower mutation rate (v = 1) scenario,
ue parameter estimates for the mutation rate v and time of driver appearace t; can be accurately estimated
ur  for both regimes, with MPEs of -1.3% and 4.9% for the no cell death case, and MPEs of -3% and 3.7% for
us  the slow-growing tumor. The ¢, time since driver event, estimates have somewhat higher errors, with MPE

1o of -6.3% for the no cell death case, and MPE of 30.3% for the slow-growing tumor.
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Figure 2: Accuracy of parameter inferences from simulated data. We simulated tumor growth by
performing a Monte Carlo simulation, which simulates the birth, death, and accumulation of mutations
in the individual cells that make up a tumor, and generates the mutation frequency and tumor size data
used by the estimates. Mean percent errors (MPEs) of estimates are shown in black above the plots, and
mean absolute percent errors (MAPEs) are shown in gray. Boxes contain 25th-75th quartiles, with median
indicated by thick horizontal black line. Whiskers of boxplots indicate 2.5 and 97.5 percentiles. Violins are
smoothed density estimates of the percent error data points. Ground truth parameter set: b = by = 0.25,
d=0.18,dy =0.11, t; =70, t = 50, 6 = 20, f1 = 1%, and fo = 20%. Mutation rate (a) u =1, (b) u = 3. At
least 100 Monte Carlo simulation runs with a surviving tumor performed for each parameter combination.
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1 Correcting mutation counts observed from genome sequencing data

1 We note that in our estimate for the time of appearance of the driver, t; (see formula ), used for comparison
122 to simulated data, we employed a correction to m, the number of mutations that were present in the founder
s type-1 cell at ¢;. From sequencing data, these m mutations are indistinguishable (Fig. ) from mutations
e that occurred after ¢; in type-1 cells, and reached fixation in the type-1 population [46]. Thus, the value of
15 m observed from sequencing data, mgps, will overestimate the true m. In Materials and Methods we show
126 that the expected value of the number of passengers that occurred after ¢; and reached fixation in the type-1
17 population is u/r1. We subtract this correction factor from mgps:

128 m = Meops — U/rl (6)
129

130 The correction for the m mutations present in the original type-1 cell @ at time ¢1 improves the accuracy
1 of the estimate for time of appearance of driver mutation ¢;. For the fast growing tumor with mutation rate
1 u = 1 (Fig. S3a), the correction lowers the mean percent error (MPE) of the ¢; estimate from 14.0% to
13 3.8%. For the slow growing tumor with mutation rate v = 5 (Fig. ), the correction lowers the MPE of
1 the t1 estimate from 22.0% to 5.7% (Fig. Bp).

135 Another issue arises from obtaining mutation count 7, number of mutations with frequency between f;
s and fo, from genome sequencing data. When sequencing data is post-processed by filtering out mutations
1w with L or fewer variant reads, low-frequency mutations will be difficult to detect [35] (Fig. B). For a sample
138 with average sequencing coverage of R and tumor purity p, mutations with mutant allele frequency below
w  L/(pR) will typically not be observable. As a result, since mutations with frequencies between f; and f,
w count towards 7, if f; < 2L/(pR), the observed number of subclonal mutations between frequencies f; and
1w fa, Yobs, Will underestimate the true value, . In the Materials and Methods, we derive a correction for -,
12 based on the expected value of the number of subclonal mutations present at cancer cell frequencies (CCF's)

us  between f; and 2L/(pR):

144 Y = Yobs <M> (7)
145 i - E
146 Before applying our methodology to patient sequencing data, we estimated the validity of the above cor-

w7 rection applied to observed simulated mutation counts. When we simulate sequencing reads from simulated
s mutation frequencies (see Materials and Methods) and post-process by removing mutations with L = 2 or
1 fewer variant reads, the adjustment we derived for mutation count ~y is critical, even for average sequenc-

150 ing coverage of 200x (Fig. ) Without any correction, the observed v has MPE of -53.3% compared to
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Figure 3: Corrections for observed mutation counts. (a) If passenger mutations (circles with stars)
that occur after the driver reach fixation in the driver population (red), then they are indistinguishable from
the passengers that were present in the first cell with the driver, which accrued in the type-0 population
(blue). The estimate of when the driver occurred needs to account for these mutations (circled). In (b), we
compare percent errors of parameter estimates for time from tumor initiaton until appearance of a driver
subclone, t;, with and without this correction (Eq. (6)). Errors for estimate with correction (Eq. (12))
are shown in blue, and for estimate without correction (Eq. (5)) in orange. Errors are plotted as a kernel
density estimate for Monte Carlo simulations of slow growing tumor with mutation rate v = 5. Mean percent
errors (MPEs) and mean absolute percent errors (MAPEs) are listed. (¢) Mutations present on two or fewer
variant reads (red) are filtered out in post-processing. Mutations with more than two variant reads (black)
are included. The number of subclonal mutations between frequencies f; and fo, 7, which is used in the
mutation rate estimate, must be corrected for mutations that are filtered out. In (d), the percent errors for
the observed (orange) and corrected (blue) v (Eq. ) are plotted as kernel density estimates. Observed
mutations are those that passed post-processing, i.e. those that have more than L = 2 mutant reads. True
mutation frequencies were generated from 135 surviving runs of a Monte Carlo simulation of a fast growing
tumor with mutation rate u = 1, from which sequencing reads were simulated with 200x average coverage
(see Materials and Methods). Percent errors are calculated relative to the true v measured from the true
mutation frequencies.
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151 true vy, but with the correction, the computed v has MPE of -1.4%. When average coverage is 100x, this
12 correction becomes even more important, as many of the low-frequency mutations are discarded (Fig. S3b).
155 Without any correction, the observed v has MPE of -79.7%. With the correction the computed v has MPE

s of -3.4%. The accuracy of the v measurement affects our estimate of the mutation rate (4)).

55 Estimating parameters for individual patients with CLL

156 We use our formulas to infer the patient-specific parameters of cancer evolution for four patients with
57 chronic lymphocytic leukemia (CLL) whose growth patterns and clonal dynamics were analyzed in [27].
155 These CLLs had peripheral white blood cell (WBC) counts measured and whole exome sequencing (WES)
19 performed at least twice before treatment. We consider patients whose WBC counts were classified as
10 having an exponential-like growth pattern, with average vops > 2 and 3 or fewer macsoscopic subclones (i.e.
11 subclones with cancer cell fractions of 20% or greater for at least one pre-treatment time point). As in Ref.
2 [27], we perform subclonal reconstruction for each patient using PhylogicNDT [43]. To obtain confidence
163 intervals for our parameter estimates, we utilize a sampling procedure to account for model and measurement
164 uncertainties, including uncertainties in subclone frequencies, fitted growth curves, and the Poisson process
s for mutation accumulation (see Materials and Methods). For each patient’s tumor, we compute estimates of
s the growth rate of each clone, exome mutation rate, the times that each subclone arose, and how long each
17 subclone expanded before the tumor was detected (Table S1). We reconstruct these histories for tumors
18 with various clonal structures.

169 Patients 3 and 21 are examples of a CLL with a single subclone (Fig. |4). For Patient 3, Clone 0, the
wo most recent common ancestor (MRCA) of this patient’s CLL, was initiated when the patient was 14.6 [1.4,
m 26.8] years old (median and [95% confidence interval] of estimate). Clone 0 grew with a net growth rate of
w2 0.51 [0.20, 0.85] per year. 18.9 years later, Clone 1 was initiated when the patient was 33.5 [24.1, 39.2] years
ws  old. Clone 1 expanded with a growth rate of 0.85 [0.65, 1.04] per year (corresponding to a selective growth
e advantage of 68.7% over Clone 0), and the patient was diagnosed 29.5 [23.8, 38.9] years later at age 63. We
ws  find that the CLL exome mutation rate was 0.48 [0.39, 0.59] mutations per year in this patient.

176 For patient 21, we estimate that the parental clone (MRCA, Clone 0) of this patient’s CLL was initiated
v when the patient was 6.4 [0.3, 16.7] years old, and grew with a net growth rate of 0.79 [0.30, 1.14] per year.
s Clone 1 appeared when the patient was 19.6 [10.8, 24.0] years old, and grew more quickly than Clone 0, with
w  a growth rate of 1.52 [1.01, 2.04] per year (corresponding to selective growth advantage of 91.4% over Clone
o 0). Clone 1 contained a FGFR1 mutation, which might have been acting as a driver of the increased net

w1 proliferation. Clone 1 then grew for 15.4 [11.0, 24.2] years before the patient was diagnosed at age 35. We
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Figure 4: Reconstructing the timeline of CLL evolution in patients. We applied our methodology to
estimate subclonal growth rates, mutation rates and evolutionary timelines in CLL tumors from Ref. [27].
Vertical height of a clone represents its log;,-scaled size. Phylogenetic trees, colored by clone number, show
annotated driver mutations along the trees’ edges. For each patient, we show estimates for patient age at
CLL initiation and times of appearance of CLL subclones. Dashed white line indicates when the patient was
diagnosed. Solid black arrows indicate times of bulk sequencing measurements.
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12 estimate that this patient’s CLL had an exome mutation rate of 0.20 [0.19, 0.23] mutations per year.

183 Patients 6 and 9 present more complex clonal structures. CLL of Patient 9 contains two sibling subclones,
s Clones 1 and 2, in addition to the parental population, Clone 0. Clone 2 contains a nested subclone (Clone
s 3). Clone 0 arose when the patient was 4.9 [1.2, 10.8] years old, and had a growth rate of 0.28 [0.17, 0.42]
s per year. Clone 1 arose when the patient was 18.8 [8.8, 35.1] years old. At the time of sequencing, Clone
17 1 had a negative growth rate of -0.40 [-0.45, -0.19] (/year). Clone 2, containing a KRAS mutation, had the
s largest net growth rate of the three clones (0.67 [0.49, 0.94] per year), corresponding to a selective growth
180 advantage of 140.9% over the parental clone. Clone 2 arose when the patient was 21.3 [7.7, 31.7] years old.
10 Clone 3 was initiated from within Clone 2 when the patient was 24.8 [10.3, 37.6] years old. We estimate that
w1 the CLL exome mutation rate of Patient 9 is 0.36 [0.35, 0.37] mutations/year.

192 CLL of Patient 6 contains two sibling subclones (Clones 1 and 2) descendant from the leukemic MRCA
13 Clone 0. Clone 1 has a nested subclone (Clone 3). We estimate that the CLL was initiated when the patient
e was 2.8 [0.1, 13.2] years old. Clone 0 then grew at a rate of 0.68 [0.15, 1.30] per year. Approximately 33
105 years after the appearance of Clone 0, when the patient was 35.4 [21.7, 46.1] years old, the first subclone,
106 Clone 1 appeared. Clone 1 had a net growth rate of 0.41 [0.08, 0.73] per year. Clone 3 arose from within
w7 Clone 1 when the patient was 45.9 [31.3, 54.6] years old. This clone had net growth rate 1.09 [0.65, 1.78] per
18 year. Clone 3 harbored a driver mutation in ASXL1 and had selective growth advantage of 60.8% over Clone
o 0. Clone 2, nested in parental clone (Clone 0), was initiated when the patient was 46.7 [25.6, 57.5] years
20 old and had growth rate 0.46 [0.08, 0.85] per year. The patient was then diagnosed at age 58, eventually
20 needing treatment 12.0 years after diagnosis. In Patient 6, we estimate a CLL exome mutation rate of 0.15
20 [0.12, 0.19] mutations per year.

203 The average mutation rate in the four CLL patients we analyze is 0.30 mutations/year. This rate is over
24 the exome, which accounts for ~ 1% of the human genome. Our average estimated mutation rate in CLL
205 exomes is similar to the measured rate of accumulation of mutations in human tissues of 40 mutations per
26 year over the entire genome [47]. Other recent work has estimated a mutation rate of 17 mutations per
27 year in human haematopoietic stem cell/multipotent progenitors [48]. Our estimated mutation rates during
28 CLL progression are on par or higher than the recent estimates in healthy hematopoietic cells [48], in line
200 with the expectation that mutation rates may be increased in cancer. The estimated times of appearance of
20 CLL subclones are very long, on the order of 10 years or more. This finding is agreement with results from
a1 Gruber et al. [27], who find few new CLL subclones over years to a decade of evolution. We observe that
a2 CLL initiation occurred early in most patients, within the first fifteen years of their lives, consistent with

a3 recent work in other cancer types [19] B36].
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2 iscussion

25 We use a stochastic branching process model to reconstruct the timing of driver events and quantify the
26 evolutionary dynamics of different subclonal populations of cancer cells. We can accurately estimate the
a7 growth rates of tumor subclones, selective growth advantage of individual driver mutations, mutation rate in
28 the tumor, time between tumor initiation and appearance of a subclonal driver mutation, and time between
a0 driver mutation and tumor observation. Together, this allows us to estimate the age of the patient at tumor
»0 initiation, as well as the age at appearance of a subclonal driver.

o Previous work has computed relative order of driver events [I8] 21} [49], while other studies have given
22 estimates for scaled mutation rates and time of events [24], 32]. However, we present estimates for absolute,
»3 unscaled mutation rates and times, which are easily interpretable and don’t implicitly depend on unknown
24 parameters. We assume that mutations accrue with time, and not only at cell divisions, which simplifies
25 derivations and is supported by recent experimental data [47].

226 For individual CLLs that underwent bulk sequencing at two time points [27], we infer growth rates of
27 individual subclones, mutation rate in the tumor, the times when cancer subclones began growing, and the
»s  time between driver mutations and the patient’s diagnosis. Our inferences are limited by the relatively
20 low number of mutations present in CLL, as well as sequencing coverage [27]. The accuracy of estimates
20 presented here is expected to be even higher in cancer types with more mutations, with whole genome
2 sequencing available, or with higher sequencing coverage. Our methodology is in principle applicable to any
2 cancer type, not only CLL or liquid cancers. We note, however, that in the case of solid tumors, multiple
213 biopsies would potentially be needed to fully account for the existing heterogeneity.

23 Our model and derivations assume a fixed mutation rate u after transformation and fixed growth rates of
25 cancer subclones, similar to previous approaches [24] B0, 35]. Using an exponential model of cancer growth
26 with constant mutation and growth rate to estimate parameters of cancer evolution has its weaknesses: some
2 cancer subclones (such as Clone 1 from Pt. 9) not only do not grow exponentially, they actually decline in
23 absolute cell numbers. Sudden genomic instability events, or a change in cancer mutation and/or growth
29 rate over time could also introduce errors into our parameter inferences. Recent sequencing data points to
20 mutational processes that change over time during cancer evolution [20] [50]; incorporating possible changes
21 in the mutation and/or growth rate into the model would require much higher density of sequencing and

22 clinical data [37].

12
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. Materials and Methods

.« Branching process model of tumor evolution

25 We employ a continuous, multi-type branching process model of cancer evolution. Tumor expansion is
xus initiated by a single type-0, or initiated tumor cell. Type-0 cells divide with rate b and die with rate d,
27 yielding a net growth rate of r = b — d. At time t;, a single driver mutation is introduced into a randomly
xus  selected cell in the type-0 population, founding a new type-1 population of cells. This type-1 population
xo  undergoes its own independent branching process. They divide with rate by, die with rate d;, and have
0 net growth rate ry = by — dy. If the driver mutation gives type-1 cells a selective growth advantage over
1 the type-0 population, then 7 > r. With the ratios of the growth rates denoted as s = 71 /r, the growth
»  advantage can be quantified as g = (s—1)-100%. In the case of neutral evolution, g = 0. If there is a selective
»3  advantage, g > 0. Neutral mutations, or passengers, have no effect on the cell’s fitness, and accrue according
4 to a Poisson process with rate u. We assume an infinite alleles model such that there is no back mutation
»s  and an infinite sites model such that every new passenger mutation is unique. Only surviving populations
6 are considered. All derivations below will condition on survival. The type-0 and type-1 populations at time

27t will be denoted as Xo(t) and X (t), respectively.

= Measurements sufficient to determine evolutionary history

0 We derive estimates for parameters describing the carcinogenic process using measurements taken from two
%0 timepoints late in the tumor’s development. We require sequencing of the tumor at the two timepoints,
261 when the tumor is first observed at the unknown time ¢; + ¢ and a specified § later, at t; +t¢+ 6. From these
% two bulk sequencing measurements, we obtain measurements of a; and «q, the fraction of cells carrying the
%3 driver mutation at t; + ¢ and t; + ¢ + J, respectively. In addition, from the bulk sequencing at ¢; + ¢t + 4,
x4 we obtain measurements of m, the number of mutations present in the founder type-1 cell, as well as ~, the
s number of mutations with frequency between the specified f; and fo. The total population size at these

6 times, M7 and Mo, is also measured.

»w Expected value of v, number subclonal mutations

%8s For a population consisting of a single clone with birth and death rates b and d, the expected number of

x%0  subclonal mutations present at a frequency larger than f is shown to be [40]

270
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o where § = d/b and @ is the probability that a daughter cell gains a new passenger mutation at cell division.
a3 In this paper, we allow mutations to occur at any point in time and consider the absolute mutation rate per
o cell, u, which is equal to ub. Then the expected number of subclonal mutations between f; and fs, Ev, is
o Ey— u(l— f1) B u(l — fa)
bL=06)fi b(1-9)f
= 2(1/fi=1/f) (10)

277

9)

s where r =b—d > 0.
279 Now we derive Ev in the case of clones 0 through k, each clone with growth rate r; > 0 and fraction af.
20 Each clone i has af*(1/f1 — 1/ f2) expected subclonal passengers between frequencies f; and fo. Thus, the

s total expected number of passengers with frequencies between f; and fs is

]

k C
U
Ey=(1/fi-1/f)) — (11)
283 =0
284 For the simplest case we consider, a tumor with a single driver mutation occurring in the initiated tumor

s population, there is a type-0 population with growth rate r and a type-1 population with growth rate ;.

s Equation reduces to

287 _ (v u(1a)> (1 _ 1>
288 By = < 1 + r f fa (12)

20 where « is the fraction of cells having the driver mutation.

2

@

w0 Derivation of estimates of evolutionary parameters

20 With the two bulk sequencings at ¢ +¢ and t; + ¢ + 9, we are able to derive estimates for t1, t, r, r1, and u.
20 First we solve for r and r1, based on the estimated cell counts at ¢; + ¢ and t; + ¢t + d. The observed type-i
23 cell count is equated to the expected value of the type-i population size, conditioned on survival. For the

2a type-0 population,

b
205 E[Xo(tl + t)|X0(t1 + t) > 0] = ;eT(tH—t) = (1 — al)Ml (13)

206 E[Xo(t1 +t 4 6)| Xo(t1 +t +6) > 0] = ger(“““) = (1 —az)M, (14)

297
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2 Proceeding similarly for the type-1 population, we obtain

- 1 OéQMQ
299 r = 5 log <a1M1> (15)
1 (1 - a2)M2
r=—=log | ——— 16
: 55 (annr) (1)

2 The expected value of the first time a population of type-1 cells in a branching process reaches the observed

w03 size aq My is [3§]

1 M 1 [
304 Et = —log (M) - —/ e *log zdz (17)
! b1 1 Jo
1 M 0.5772
305 = —log (041 lrl) + (18)
306 1 by 1

7 which we approximate as

1
308 Et ~ — log(alMl) (19)
1

309

a0 We make use of two approximations to arrive at . First, we neglect the second term in , which serves
au  as a small correction to the first term. This term will be dominated by the first term as it increases with
22 logarithm of the cancer size. For ry = 0.5, a; My ~ 10!, and r; =~ by, the second term (1.2) will be only
a3 2.3% of the first term (50.7). For any growth rate, the second term will be 2.3% of the first term. Second,
s Wwe assume 7 is similar in magnitude to b;.

315 With the measurement of -, the number of subclonal passengers with frequency between f; and fs, we

a5 can estimate the mutation rate u. In the previous section we derive the expected value of v as

u u(l—a))(l 1)
Ey=(—+——)+—-+ 20
e ! ( r r fo fe 20
319 Using the estimates of r and 71 from (15) and (16), and the measured value of v from the second bulk

20 sequencing, equation (20) can be solved for the mutation rate w,

o1 u = flfQTrer (21)

322 (fQ_fl)(a2T+r1(1_a2))

23 When estimating mutation rate for the CLL patients from Ref. [27], for which there is bulk sequencing at
324 two or more timepoints, we average the mutation rate calculated at each of these timepoints. is applied

s for each timepoint with the respective CCFs and observed «y values for each timepoint.

15
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326 To derive the maximum likelihood estimates of ¢;, we consider the likelihood function P(m|t1). The
37 number of passenger mutations present in the founder type-1 cell that appeared at time ¢; is a Poisson
38 process with rate u. Thus,

t m ,—uty
o P(mlt;) x (uty)™e™
330 m!

(22)

s Maximizing the logarithm of the likelihood function with respect to ¢; yields a MLE for ¢; in terms of

3 estimated or measured quantities:

333 t1 = m/u (23)

334

s Estimating number of unobserved subclonal mutations from sequencing data

s When sequencing data is post-processed by filtering out any mutations with L or fewer variant reads, the
s number of mutations between f; and fo will likely be underestimated if 2L/(Rp) > f1, where R is average
s sequencing coverage and p is tumor purity. Define 7,55 as the observed number of mutations between
0 frequencies f; and fs, after post-processing has been performed that filtered out any mutations with L or

s fewer variant reads. The expected number of subclonal mutations between frequencies f; and z is given by

A(@) = o1/ fi — 1/a) (24)

342

w3 where c is a constant that will vary depending on the patient and sample. It can be fit on the sequencing

as  data by noting

5 Yobs = Y(f2) —¥(2L/(Rp)) (25)

s = c(Rp/(2L) — 1/ f2) (26)

347

us Therefore, ¢ can estimated from the sequencing data as

_ “Yobs
- = Rp/CL) - 1/T, @7)

s Then, we can estimate v as

1 _ 1
S—E— o
353 2L T fa
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= Number of passengers reaching fixation after ¢,

s We estimate the number of passengers that occurred after ¢; and reached fixation in the type-1 population
36 in order to adjust the myps mutation count. From [46], when mutations occur at cell division, the expected
s7 number of clonal passengers is 64/(1 — §). @ is the probability that a daughter cell gains a new passenger
s mutation at cell division, so the mutation rate is w = @b;. For the type-1 population, 6 = dy /by < 1. When
0 mutations accrue over time, and not only at divisions, the expected number of clonal passengers is thus

360 ’l_L/(]. —5) :u/rl (29)

361

2 Similarly, for a clone i, the expected number of passengers that occur after time ¢; and reach fixation is

363 u/ri (30)

364

s  where r; = b; —d; > 0.

s Simulation of tumor evolution and sequencing data

w7 To assess the accuracy of the analytic results, we perform a continuous time Monte Carlo simulation to
s model tumor evolution and collection of sequencing data with an implementation of the Gillespie algorithm
w0 [B1]. Simulations are written in C/C++.

370 The type-j population has division rate b;, death rate d;, and mutation rate v. Mutations can occur at
snany point of the cell cycle, not just during division. z, is the number of type-j cells with passenger n as
sz their most recent passenger mutation. The type-0 population is initiated with a single cell at time 0, and
sz the type-1 population is initiated with a single cell at time t;. Let a be the vector recording the ancestor of
s new mutations. Element a; is the subclonal ancestor of the ith passenger mutation. Repeat 1-4 while time

a5 1s less than ¢; +¢ + 6.

376 1) Set I' = N;(b; + d; + u). Time increment to next event time is randomly sampled from Exp[I'].

377 e For type-0, if time is greater than or equal to ¢; for first time, randomly select type-0 subclone 4
378 to have driver mutation, remove one cell from type-0 population count, and set N; = 1. Record
379 the true value of m, the number of passenger mutations present in the founder type-1 cell.

380 2) Randomly select cell, with most recent passenger mutation 4, to have the event.

381 3) Determine which type of event and update population and mutation frequencies. Sample Y from
382 Uniform[0,T'] to determine event type:

17
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383 i) ye (O,bj) — birth. N; +=1, z; += 1.

384 11) S (bj,bj —l—d]) — death. N —=1, z —= 1.

385 ili) y € (b; +d;,b; +d;j +u) — passenger mutation. Suppose it’s the kth passenger, z; —=1, 2, = 1.
336 Update ancestor: ap = 1.

387 4) For type-0, if time is less than ¢; and population goes extinct, restart simulation. For type-1, if time
388 is greater than ¢; and population goes extinct, restart type-1 simulation at ¢; with a single cell.

389 5) Reindex to remove extinct passenger mutations, and traverse back through ancestor vector a to sum
390 total number of cells with each passenger.

301 Measurements are taken at bulk sequencing times ¢, +¢ and ¢; +t+ 6. If time is greater than or equal to

s t1+¢, we measure My = No+ N; and ag = N1 /(Ng+ Np). Then an additional bulk sequencing measurement
303 18 taken at the final time ¢; 4+ ¢ + J, where we measure My = Ny + N7 and ay = N1 /(Ng+ N1). At t1 +t+9,
s we measure 7y, the number of mutations with frequency between f; and fs.

305 To measure mps, the observed number of passengers in the founder type-1 cell, we count the number of
w6 passengers present in all type-1 cells. We also save the true value of m.

307 For when we calculate a percent error of corrected and observed v values in Figure 3d and Supplementary
ws Figure 3b, we simulate sequencing data by sampling from the mutation frequencies obtained in the Monte
s Carlo simulation, outlined above, using the approach of [35]. Define average sequencing coverage as R,
wo number of cells at time of sequencing as M, Z; as the number of cells with mutation ¢, R; as read coverage,
w1 and y; as the true mutation frequency from Monte Carlo simulation. For each saved Monte Carlo simulation

w2 run, repeat the following 100 times:

403 1) Generate read coverage: R; ~ Binomial[M, R/M]

404 2) Generate number of cells carrying mutation i: Z; ~ Binomial[R;, x;/2]

205 3) Post-processing. If there are L = 2 or fewer variant reads, discard mutation.

406 4) Measure 7,ps, the observed number of subclonal mutations between frequencies fi and fo: Yops =
407 Zil(f1§2zi/R§f2aZi>L)

408 5) Calculate the truth, ¥4y, from the true mutation frequencies: virue = Y, I(f1 < xi < fa)

« Parameter values for simulations

a0 For the simulation we consider three parameter sets corresponding to three modes of tumor evolution: a fast

a1 growing tumor, slow growing tumor, and tumor with no cell death. For each parameter regime we have a low

18
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a2 and high mutation rate. Mutation rate parameter values lie within observed genome wide point mutation
as  rates per day [52]. For the fast growing tumor b = b = 0.25, d = 0.18, d; = 0.11, ¢; = 70, t = 50, § = 20,
as  and uw = 1, 3. For the slow growing tumor b = 0.25, by = 0.25, d = 0.225, d; = 0.2125, t; = 180, t = 135,
as 0 = 45, and u = 1, 5. For the parameter regime with no cell death b = 0.25, by = 0.375, d = d; = 0.0,
s t; =23,t=17,6 =6, and u = 1, 10. The fast growing tumor dynamics are from [34]. The slower growing
a7 tumor parameter regime has a reduced net growth of r = 0.025, compared to the fast growing tumor’s net

ns  growth rate of r = 0.07.

as  Subclonal reconstruction of CLL sequencing data

w0 The sequencing data from all CLLs analyzed is from Ref. [27], Supplementary Tables 2-4. As in that
1 publication, we use PhylogicNDT [43] to perform subclonal reconstruction. We run the Cluster and BuildTree
2 modules of PhylogicNDT on the longitudinal mutation data from Supplementary Table 3 of [27], using
»23 mutation alternate/reference counts, copy number, and tumor purity at all pre-treatment time points. Then
«a  for each patient, PhylogicNDT outputs a clonal reconstruction, which includes a phylogenetic tree of the
w5 subclones and posterior distributions of subclone CCFs. Additionally, it clusters mutations and assigns them
a6 to clones. We directly use subclone assignments and posteriors generated from PhylogicNDT. In our analysis
w27 we focus on estimating timing and growth rates of macroscopic subclones whose CCF's are greater than 20%

»s  for at least one pre-treatment timepoint.

» Accounting for uncertainties in subclone frequencies and growth rates

a0 Our estimates for parameters of cancer evolution require as input the information on the number of subclonal
s populations in the tumor, their CCFs and their phylogenetic relationships. In order to obtain this informa-
2 tion, we use PhylogicNDT [43], which performs subclonal reconstruction of longitudinal cancer sequencing
a3 data. The uncertainty in subclone CCF's reported by PhylogicNDT affects our estimates for subclone growth
s¢ rates, which in turn affect the estimates of mutation rate and and time ¢ between driver(s) and diagnosis.
a5 We account for this uncertainty by drawing from the CCF posterior distributions that are output by Phy-
a6 logicNDT. Using these sampled CCF values, we then calculate growth rates, mutation rate w, and time ¢
s between driver(s) and diagnosis, thereby generating confidence intervals for these parameters due to CCF
a3 uncertainty.

430 To estimate subclonal growth rates, we fit an exponential growth curve to subclonal sizes measured at
a0 two or more time points. This regression yields fitted values for each clone’s growth rate and age. To account

w1 for uncertainty in the curve fit (in the case of more than two longitudinal samples), we sample the growth
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w2 rates and age of clone from a bivariate normal distribution with mean equal to the fitted parameters and
w3 variance equal to the covariance matrix of the fitted parameters. In line with recent findings [53], we found
we  that sometimes the estimated growth rate is smaller than minimal possible growth rate necessary to reach
ws  the observed clone size. In that case, for calculating mutation rate, time of the driver(s), and time between

ws  driver(s) and diagnosis we use the minimal growth rate.

w7 Accounting for model uncertainty

us  The largest source of model uncertainty is the Poisson process for how mutations accumulate, which is used
o to estimate the time t; of the driver mutation. In the simulation experiments, the time ¢; had the largest
0 error and variation (Fig. [2). The estimate for ¢; depends on the m mutations present in all cells in the
s driver subclone. The observed m is a single random sample from a Poisson distribution. To account for
2 the uncertainty in t; arising from m in the CLLs analyzed, we sample ¢; from the posterior distributions
i3 P(t1|m). This source of model uncertainty due to the Poisson process will be most significant for cancers
sa  like CLL with a smaller number of mutations.

455 The time ¢ between driver mutation and diagnosis (¢) is a random variable due to the stochasticity of
w6 cancer cell growth, and will naturally have a certain amount of variation. Time between driver event and
»s7  diagnosis in a branching process follows a Gumbel distribution [38], and will have a constant variance. The
s mean, however, will increase with the logarithm of the cancer cell counts, which for the CLLs analyzed are
s~ 101, The simulations of cancer evolution grow to smaller tumor sizes (~ 10°) and, as a result, the estimate
wo for t has a significant amount of uncertainty (Fig. [2). However, for time scales necessary to generate a tumor,
w1 the estimate for ¢ will be quite accurate. For commonly observed tumor sizes, the stochastic fluctuations in
w2 the time for the cancer to reach that size will be smaller relative to the magnitude of the time. For a cancer

s with cell count ~ 10!, the standard deviation of the time ¢ will be less than 5% of its expected value.

w Tumor with two nested driver subclones

s Here we consider the case where there are two nested driver subclones (Fig. S4a). “Nested” means that all
w6 cells carrying the second driver mutation also carry the first. Type-0, or initiated tumor, cells have birth
w7 rate by, death rate dy, and net growth rate rg = bg — dg. Type 1 cells, which only have the first driver, have
s birth rate by, death rate d;, and net growth rate ry = by — dy. Type-2 cells, which carry both drivers, have
w9 birth rate by, death rate do, and net growth rate ro = by — da. The first driver occurred in a type-0 cell at
w0 time t1. The second driver occurred in a type-1 cell at to = ¢; 4 t5. The mutation rate u is the same for all

s subclones.
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a2 At times t1 + th, + ¢ and t; + t§ + ¢ + ¢, the tumor is bulk sequenced. The bulk sequencing allows the
w3 measurement of the fraction of cells with driver 1 at time ¢, + t§ + ¢, a1; the fraction of cells with driver 2
mat t) + th +t, ag; fraction of cells with driver 1 at time t; + 5 + ¢t + 6, 81; the fraction of cells with driver
w5 2 at t; +th +t+ 4, Ba; and the observed number of subclonal passenger mutations between frequencies f;
as and fo, Yops. Note that the fraction of the population that is a type-1 cell at the two times is @ — as and
awr 1 — B2. The fraction of type-0 cells at the two bulk sequencing timepoints are 1 — a3 and 1 — ;. The
s number of total cells at bulk sequencing timepoints are M; and M. Equating the estimated cell counts to
a0 the expected value of the type-i population size X;, conditioned on survival,

bo gro(titty+t)  ; —
To

" E[X;(t1 +t5+1) ‘X,- (i+th+t) >0 = bentrn =1 (31)
T1

ba grat i=2
T2

(1—0[1)M1 1 =0

481 = (041 — O{Q)Ml 1=1 (32)

Oé2M1 =2

482

483

bo ro(ti+ty+t+8) 5 —
70

484 ]E[Xi (t1 +th+t+ 5) ‘Xi (t1 +th+t+ 5) > 0} = by ri(th+t+6) i=1 (33)
T1
%erz(t+6) i=2
(1-p)My; =0

485 = (ﬁl — ﬁg)Mg 1 =1 (34)
B2 Mo =2

486

w7 Solving the above equations for r;, we obtain the growth rate estimates:

1 (1 — 1) Mo
488 o = 5 1og ((1 — al)M1> (35)
_1 (B1 — Ba) My
489 rn = S 10g ((041 — 042) 1) (36)
1 Ba My
ﬁf " 5 fo (Oéle) 37)
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w2 The expected value of the first time a population of type-2 cells in a branching process reaches the observed

w3 size ag My [38],

1 M 1 [
494 Et = — log(w) - —/ e *log zdz (38)
) b2 2 Jo
1 M 0.5772
= — log(2212y 4 (39)
496 T2 bQ T2

w7 can be approximated as

1
498 Et ~ — log(ang) (40)
T2

499

s We make use of two approximations to arrive at (40)). First, we neglect the second term in (39)), which serves

s as a small correction to the first term. Second, we assume ro is similar in magnitude to bs.

502 By ,

503 E’yzu(l_ﬁl+ﬁl_ﬁ2+ﬁ2> (1_1) (41)

st 0 1 re )\ f1 fo

ss  Using the estimates for rg, r1, and 79 from —7 and setting equal to the value of v obtained from

sos  (|28]) and the second bulk sequencing, u can be estimated:

507 u = fl f2/7 (42)

(f2 = P + 252+ 32)

508

s0  When estimating mutation rate for the CLL patients from Ref. [27], for which there is bulk sequencing at
s two or more timepoints, we average the mutation rate calculated at each of these timepoints. is applied
su  for each timepoint with the respective CCFs and observed ~ values for each timepoint.

512 Every type-1 cell carries the m; passenger mutations that were present in the original type-1 cell when
si3 the first driver mutation mutation occurred at ¢1. Similarly, every type-2 cell carries the mo passengers that
siu were present in the founder type-2 cell when the second driver mutation occurred at to. Note, none of the
55 my mutations are counted towards mso. Now we consider the likelihood function

516 P(m17m2|t1,t'2) (43)

517
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518 P mi, Mo tl,t/ x P mq tl P mao tl 44
2 2
£ )M e= Ut (g Ym2 —ut!
519 X (u 1) € (u 2) € : (45)
520 my! ma!

s Now, maximizing the logarithm of with respect to t; and 5,

ty = — 46

522 1 u ( )
ma

th=— 47

oy 2= 7, (47)

525 The number of passengers present in the founder type-i cell cannot be directly observed, but we can

26 INeasure Mmy; ops, the number of passengers present in all type-i cells. An expected u/r; passengers occurring
sor  after ¢ in type-1 cells and reaching fixation in the type-1 subclone will be incorrectly included in mq ops,
s rather than in mg ops (see Methods). Similarly, an expected u/ro passengers occurring after ¢o in type-2 cells

s0  and reaching fixation in the type-2 subclone will be incorrectly included in ms ops. Thus,

530 my1 = Miobs — U/Tl (48)

sa1 My = Mo ops — U/T2 +u/T1 (49)
532

s Tumor with two sibling driver subclones

s Here we consider a tumor with two “sibling” driver mutations (Fig. S4b). Sibling driver mutations are
si5  drivers that occur in separate subclones. In this case, cells are either initiated tumor cell (type-0), carry
s driver 1 (type-1), or carry driver 2 (type-2). No cells contain both drivers. Driver 1 occurred in a type-0
ss7 cell at time ¢1. Driver 2 occurred in a type-0 cell at t5. Type-0 cells have birth rate by, death rate dy, and
s net growth rate rg = bg — do. Type-1 cells, which carry driver 1, have birth rate by, death rate d;, and
s net growth rate 1 = by — dy. Type-2 cells, which carry driver 2, have birth rate by, death rate do, and net
s growth rate ro = by — do. The mutation rate u is the same for all subclones.

541 Suppose time 7; elapses between driver mutation ¢ and tumor observation. Bulk sequencing of the tumor
s is performed at ¢; + 71 (or equivalently to + 72), and a known ¢ later. Sequencing the tumor allows the
s3 measurement of the fraction of cells with driver 1 at the first sequencing, «1; the fraction of cells with driver
s 2 at the first sequencing, as; fraction of cells with driver 1 at the second sequencing, (1; the fraction of

sas  cells with driver 2 at the second sequencing, B2; and the number of subclonal passenger mutations between
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s frequencies f1 and fa, v. The fraction of type-0 cells at the two bulk sequencing timepoints are 1 — a1 — a
se7 and 1 — 81 — P. The number of total cells at the two sequencing timepoints are M; and Ms.
54 Equating the estimated cell counts to the expected value of the type-i population size X;, conditioned

ss9  On survival,

bo pro(ta+m) 5 =
T0

550 ]E{XL (ti + Ti> ‘Xz (ti + Ti) > 0} = (50)
bi ori(Ti) i=1,2

T4

(1—0[1—0[2)M1 1=0
551 = (51)

OziMl = 1,2

552

553

biori(titmi+d) 5 —

554 E{X1<t2+Tl+5>‘X1(tl+Tl+5) >0:| =" (52)
bigri(rito) i=1,2
(1-B1—P)Mz =0

555 = (53)
Bi Mo 1=1,2

556

ss7 - Solving the above equations for r;, we obtain

L (1 — 51— B2) M. )
- 54
. o= 5 ((1 — Q1 — Oég)Ml ( )
e (237
TP = —= 1=1,2 55
- o= slox (257 (55)
561 The expected value of the first time a population of type-i cells in a branching process reaches the
s observed size a; My is [38]
1 Mir\ 1 [
563 Er; = —log (a L ) - —/ e *log zdz (56)
T bz Ti Jo
1 Mir; 2
564 = — IOg (Otz 1TZ> 0.577 (57)
565 Ti b; T
s66  which we approximate as
1 .
567 Er; = — log(a; M7) i=1,2 (58)
568 T

ss0  We use two approximations to arrive at . We neglect the second term in , which serves as a small
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s correction to the first term. Second, we assume 7; is similar in magnitude to b;.

571 By ,

Ey—u(l_ﬁ?}_ﬁ?+ﬂl+52> (1 - 1) (59)

573 0 i rmJ\fi fo

574 Using the estimates for rq, 1, and 79 from and , and setting equal to the value of v obtained

s from and the second bulk sequencing, u can be estimated:

5

N

576 u = f1f2’Y
(F2 = P2+ 24 22)

577 T

(60)

ss When estimating mutation rate for the CLL patients from Ref. [27], for which there is bulk sequencing at
so two or more timepoints, we average the mutation rate calculated at each of these timepoints. is applied
ss0  for each timepoint with the respective CCFs and observed «y values for each timepoint.

581 Every type-1 cell carries the m passenger mutations that were present in the original type-1 cell when
se2  the first driver mutation mutation occurred at ¢1. Similarly, every type-2 cell carries the ms passengers that
se3 were present in the founder type-2 cell when the second driver mutation occurred at t,. We assume that
sea My and mgy don’t contain any shared mutations. In the CLL dataset we use, this is true. We consider the

sss  likelihood function P(mq,malt1,t2)

586 P(ml,m2|t1,t2) X P(m1|t1)P(m2|t2) (61)
t mia —ut1 ma2 —ut2

587 o (’LL 1) ¢ (Ut2) ¢ (62)

588 ml! m2!

ss9  Maximizing the logarithm of with respect to ¢; and ¢, yields the maximum likelihood estimates:

t = — 63

590 1 U ( )
mao

to = — 64

g 2= (64)

s3 Using the same approach as in the case of a single driver, we obtain the corrections for the observed number

see  of mutations present in all cells of each subclone:

505 m1 = Miobs — U/rl (65)

596 mo = M2obs — u/’l"g (66)
597
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s Fully generalized estimates for any phylogeny of k drivers

s0  Here we derive estimates for a completely general tumor phylogeny. Suppose a tumor has k driver mutations.
eo In this general case, define a type-i cell as a cell where its most recent driver mutation was driver 7. Note
s that a type-i cell can have between 0 and k — 1 other driver mutations. A phylogenetic reconstruction of the
ez Kk driver mutations is necessary for the completely general case. From this phylogenetic tree, the ancestor
o3 of each subclone can be obtained. Define the function a(i) as the ancestor of the type-i population. That
e0¢ 1s, if all driver mutations contained in the type-i population are ordered, a(i) gives the driver mutation
es that occurred prior to i. Define ¢; as the time between when driver i occurred and when the type-i cells’
es previous driver mutation occurred. At time of observation, assume the type-i population has k; total driver
eor mutations, where 1 < xk; < k for all 1 < i < k. Denote the time between the type-i’s k;, or last, driver
es mutation and when the tumor is observed as 7;. This is the time between the founder type-i cell’s birth
o9 and tumor observation. Then the tumor is first observed and bulk sequenced at T} = (Z';zgl tai(i)) + Ti

s (equivalently 7o for i = 0), where we denote a’/ as the jth iterate of the function a:

611 ao(i) =1 (67)

612 (i) =ald® (i) Vji>1 (68)

613

sie  The tumor is also bulk sequenced at Tp = (Z';Zgl tai(iy) + 7i + 0 (equivalently 79 + 6 for i = 0). These
e assumptions allow for any subclone phylogeny, including combinations of the previously discussed sibling
e and nested subclone types.

617 The bulk sequencing allows the measurement of the fraction of cells with driver ¢ at T, «a;; the fraction
sis  of cells with driver ¢ at time 75, §;; and the number of subclonal passenger mutations between frequencies
e0  f1 and fo, v. Again, the number of total cells at measurement times 77 and T, are M7 and Ms. To write the

e20 type-i frequencies, of and 3¢, in terms of the driver frequencies, we subtract the fraction of cells descending

s from type-i cells but gaining additional driver mutation(s) after 4, from the fraction of cells containing driver

622 i:
k )
Q= D10 a() 1<i<k
623 Oéfz =t (J) ! (69)
1-3" s i=0
Bi— 351 6iahB 1<i<k
ge— T s e (70)
1_25:1 By 1=0

625
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6 where d; ,(;y is the Kronecker delta, defined as

0 ifi#a())

1 ifi=a(j)

627 51 a(_y) =

628

&0 Equating the estimated cell counts at the first bulk sequencing timepoint to the expected value of the type-i

630 population size X;, conditioned on survival,

bi .
631 E[XZ<T1)|XZ<T1) > 0] = 7'67"7,7'1

2

632 = Oszl (71)

633

e« And similarly, at the second bulk sequencing timepoint,

635 E[X;(T2)|X;(T2) > 0] = bf’:em(n-&-(s) -

K2

636 = ﬁfMQ (73)

637

ss  Solving the above equations for r;, we obtain

1 Bi M>
639 r‘:flog( l. ) V’L—O,l, .,k (74)
640 ' 0 a;Ml
sn By (L1)

k c
¢ 1 1

642 E~ry=(u S R — 75
: ! (;Tz‘)<f1 f2> ()
643 1=
644 Now, using the growth rate estimates r; and the subclone sizes, we can estimate each 7,. The expected

ws  value of the first time a population of type-i cells in a branching process reaches the observed size afM; is

646 [38]
1 ¢Myr; 1 [
647 Er; = —log (u> - —/ e *log zdz (76)
T b; ri Jo
1 Oéng’I"i 0.5772
=1 2 7
:Zg T3 © ( b; ) T ( )
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es0 which we approximate as

1
651 E’Ti ~ - 1Og(an1) (78)

652 Ti

63 We make use of two approximations to arrive at . First, we neglect the second term in , which serves
e as a small correction to the first term. Second, we assume r; is similar in magnitude to b;.
655 Using the (k + 1) r; estimates from (74), and setting equal to the value of v obtained at the second

o5 bulk sequencing from (28), u can be estimated:

657 u = fl f2’7 B (79)

658 (f2 _fl)(Zi'C:O TLC)

0 When estimating mutation rate for the CLL patients from Ref. [27], for which there is bulk sequencing at
s0 two or more timepoints, we average the mutation rate calculated at each of these timepoints. (79)) is applied
e1 for each timepoint with the respective CCFs and observed «y values for each timepoint.

662 The number of passengers present in the original type ¢ founder cell cannot be directly observed, but we
63 can measure m;, the number of clonal passengers present in the type ¢ population, only including passengers

6« not present in other clones. We will assume that the m; don’t contain any shared mutations, which is true

os for the CLL dataset we consider. The likelihood function P(my, ..., mg|t1,...,tx) is proportional to
k k

(ut)mie_“ti
666 H P(mi|ti) x H lTni' (80)
667 i=1 i=1 v
s Then, maximizing the logarithm of with respect to 1, to, .. ., tx,
669 tizﬁ Vi=1,...,k (81)
670 u

en The observed clonal passengers in the founder type-i cell will incorrectly include passengers that reached
ez fixation in the type-i population after driver mutation i occurred, instead of correctly being counted toward
o3 the descendant of clone i. As a result, we again correct for the expected number of these passengers, u/r;.

e« That iS,

675 mi = My obs fu/ri+u/ra(i) Vi=1,...,k (82)

676
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Availability of data and materials

All simulated data generated during this study are included in this published article and its supplementary
information files. CLL data analyzed is publicly available in Supplementary Tables from Ref. [27]. Code

can be found at https://github.com/nathanlee543/Cancer_Inf_Sims
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