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 8 

Key Massage 9 

Bivariate models based on selected subsets of pairwise SNP interactions can increase the 10 

prediction accuracy by utilizing phenotypic data across years under the assumption of high 11 

genomic correlation across years.  12 

Abstract 13 

The importance of accurate genomic prediction of phenotypes in plant breeding is undeniable, 14 

as higher prediction accuracy can increase selection responses. In this study, we investigated the 15 

ability of three models to improve prediction accuracy by including phenotypic information from 16 

the last growing season. This was done by considering a single biological trait in two growing 17 

seasons (2017 and 2018) as separate traits in a multi-trait model. Thus, bivariate variants of the 18 

Genomic Best Linear Unbiased Prediction (GBLUP) as an additive model, Epistatic Random 19 

Regression BLUP (ERRBLUP) and selective Epistatic Random Regression BLUP (sERRBLUP) as 20 

epistasis models were compared with respect to their prediction accuracies for the second year. 21 

The results indicate that bivariate ERRBLUP is slightly superior to bivariate GBLUP in predication 22 

accuracy, while bivariate sERRBLUP has the highest prediction accuracy in most cases. The 23 

average relative increase in prediction accuracy from bivariate GBLUP to maximum bivariate 24 

sERRBLUP across eight phenotypic traits and studied dataset from 471/402 doubled haploid lines 25 

in the European maize landrace Kemater Landmais Gelb/Petkuser Ferdinand Rot, were 7.61 and 26 

3.47 percent, respectively. We further investigated the genomic correlation, phenotypic 27 

correlation and trait heritability as the factors affecting the bivariate model’s predication 28 

accuracy, with genetic correlation between growing seasons being the most important one. For 29 

all three considered model architectures results were far worse when using a univariate version 30 

of the model, e.g. with an average reduction in prediction accuracy of 0.23/0.14 for 31 

Kemater/Petkuser when using univariate GBLUP.  32 
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Introduction 35 

In plant breeding, genomic prediction has become a daily tool (Bernal-Vasquez et al. 2014; Stich 36 

and Ingheland 2018) which enables the optimization of phenotyping costs of breeding programs 37 

(Akdemir and Isidro-Sánchez 2019). The importance of genomic prediction of phenotypes is not 38 

restricted to plants. Livestock (Daetwyler et al. 2013) and human research (de los Campos et al. 39 

2013) also have been widely developed in this regard. In the context of plant and animal 40 

breeding, accurately predicting phenotypic traits is of special importance, since raising all animals 41 

and growing all crops to measure their performances requires a considerable amount of money 42 

under limited resources (Martini et al. 2016).  43 

Several statistical models have been compared over the last decades in the term of prediction 44 

accuracy. In this context, genomic best linear unbiased prediction (GBLUP) (Meuwissen et al. 45 

2001; VanRaden 2007) as an additive linear mixed model has been widely used due to its high 46 

robustness, computing speed and superiority in predictive ability to alternative prediction 47 

models like Bayesian methods, especially in small reference populations (Da et al. 2014; 48 

Rönnegård and Shen 2016; Covarrubias-Pazaran et al. 2018; Wang et al. 2018). Furthermore, 49 

inclusion of genotype × environment interaction into additive genomic prediction models can 50 

result in an increase in prediction accuracy (Hallauer et al. 2010; Bajgain et al. 2020). Such 51 

approaches allow borrowing information across environments which potentially leads to higher 52 

accuracy in phenotype prediction in multi environment models (Burgueño et al. 2012). In fact, 53 

multivariate mixed models have been originally proposed in the context of animal breeding 54 

(Henderson and Quaas 1976) with the purpose of modeling the genomic correlation among traits, 55 

longitudinal data, and modeling genotype by environment interactions across multiple years or 56 

environments (Mrode 2014; Lee and van der Werf 2016; Covarrubias-Pazaran et al. 2018). A 57 

multivariate GBLUP model was reported to have higher prediction accuracy than univariate 58 

GBLUP (Jia and Jannink 2012) when the genetic correlations were medium (0.6) or high (0.9) 59 

(Covarrubias-Pazaran et al. 2018). It was also shown that aggregating the phenotypic data over 60 

years to train the model and predict the performance of lines in the following years is a possible 61 

approach which can improve prediction accuracy (Auinger et al. 2016; Schrag et al. 2019a).  62 

In addition, inclusion of epistasis, defined as the interaction between loci (Falconer and Mackay 63 

1996; Lynch and Walsh 1998), into the genomic prediction model results in more accurate 64 

phenotype prediction (Hu et al. 2011; Wang et al. 2012; Mackay 2014; Martini et al. 2016; Vojgani 65 

et al. 2019b) due to the considerable contribution of epistasis in genetic variation of quantitative 66 

traits (Mackay 2014). In this context, several statistical models have been proposed. Extended 67 

genomic best linear unbiased prediction (EG-BLUP, Jiang and Reif 2015) and categorical epistasis 68 

(CE, Martini et al. 2017) models are using a marker-based epistatic relationship matrix that is 69 

constructed in a highly efficient manner. It has been shown that the CE model is as good as or 70 

better than EG-BLUP and does not possess undesirable features of EG-BLUP such as coding-71 

dependency (Martini et al. 2017).  72 
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Moreover, it was shown that the accuracy of the epistasis genomic prediction model can be 73 

increased in one environment by variable selection in another environment (Martini et al. 2016). 74 

In this approach, the full epistasis model was reduced to a model with a subset of the largest 75 

epistatic interaction effects, resulting in an increase in predictive ability (Martini et al. 2016), 76 

through borrowing information across environments. Vojgani et al. (2019b) showed that the 77 

prediction accuracy can be increased even further by selecting the interactions with the highest 78 

absolute effect sizes / variances in the epistasis model. Resulting higher computational needs 79 

were offset by the development of a highly efficient software package (Vojgani et al. 2019a) to 80 

perform computations in a bit-wise manner (Schlather 2020). Thus, enabling to conduct such 81 

predictions with data sets of practically relevant size across environments in the same year, both 82 

with respect to sample size and number of markers (Vojgani et al. 2019b). 83 

The aim of this study is to assess the bivariate genomic prediction models which incorporate 84 

pairwise SNP interactions with the target of borrowing information across years to maximize the 85 

predictive ability. Since the accuracy of genomic prediction of phenotypes was shown to be 86 

increased by both borrowing information across environments and years (Covarrubias-Pazaran 87 

et al. 2018; Schrag et al. 2019b) and inclusion of epistasis into the prediction model (Martini et 88 

al. 2016; Vojgani et al. 2020), we combine these two approaches to make the best use of the 89 

available information. We further aim to assess the optimum proportion of SNP interactions to 90 

be kept in the model in the variable selection step across years. The data used for this purpose 91 

were generated in multi-location trials of doubled haploid (DH) lines generated from two 92 

European maize landraces in 2017 and 2018.  93 

Materials and Methods 94 

Data used for analysis 95 

A set of 948 doubled haploid lines of the European maize landraces Kemater Landmais Gelb (KE, 96 

Austria, 516 lines) and Petkuser Ferdinand Rot (PE, Germany, 432 lines) were genotyped with the 97 

600 k Affymetrix® Axiom® Maize Array (Unterseer et al. 2014).  98 

After quality filtering and imputation, 910 DH lines remained (501 lines in KE and 409 lines in PE) 99 

and the panel of markers reduced to 501,124 markers (Hölker et al. 2019). Additionally, loci which 100 

were in high level of pairwise linkage disequilibrium (LD) were removed (Calus and Vandenplas 101 

2018) through linkage disequilibrium based SNP pruning with PLINK v1.07 (Purcell et al. 2007; 102 

Chang et al. 2015). LD pruning was done by the parameters of 50, 5 and 2 which considered as 103 

the SNPs window size, the number of SNPs at which the SNP window shifts and the variance 104 

inflation factor, respectively. This resulted in a data panel containing 25’437 SNPs for KE and 105 

30’212 SNPs for PE (Vojgani et al. 2020). Note that even a panel of 25’000 SNPs results in more 106 

than 1 billion SNP interactions to account for. 107 

Out of 910 genotyped lines only 873 DH lines were phenotyped (471 lines in KE and 402 lines in 108 

PE). Einbeck (EIN, Germany), Roggenstein (ROG, Germany), Golada (GOL, Spain) and Tomeza 109 
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(TOM, Spain) were the four locations that these lines were phenotyped for a series of traits in 110 

both 2017 and 2018.  111 

The means, standard deviations, maximum and minimum values of studied phenotypic traits in 112 

2017 and 2018 in each landrace are compared in Table 1 which were derived from the Best Linear 113 

Unbiased Estimations (BLUEs) of the genotype mean for each phenotypic trait by Hölker et al. 114 

(2019). The comparison of the respective detailed values for each trait in each environment and 115 

landrace in 2017 and 2018 are illustrated in the supplementary (Table S1). Vi in phenotypic traits 116 

represents the vegetative growth stage when 𝑖 leaf collars are visible based on the leaf collar 117 

method of the corn growth (Abendroth et al. 2011). Early vigour at V3 stage (EV_V3), female 118 

flowering (FF) and root lodging (RL) were not phenotyped in all four environments for both years. 119 

EV_V3 was not phenotyped in EIN in 2018, FF was not phenotyped in GOL in 2017 and RL was not 120 

phenotyped in TOM and GOL in both 2017 and 2018.  121 

The number of phenotyped lines per year and environment for trait PH_V4, as the main trait in 122 

this study, are summarized in Table 2. For EIN and ROG a higher number of phenotyped lines 123 

were generated in 2017. On the contrary, more lines were phenotypes in GOL and TOM in 2018. 124 

Statistical models for phenotype prediction 125 

We used the bivariate statistical framework as the basis of the genomic prediction models. In this 126 

regard, GBLUP, ERRBLUP and sERRBLUP as three different methods described in Vojgani et al. 127 

(2020) were used for genomic prediction of phenotypes which differ in dispersion matrices 128 

representing their covariance structure of the genetic effects. GBLUP as an additive model is 129 

based on a genomic relationship matrix calculated according to VanRaden (2008). ERRBLUP 130 

(Epistatic Random Regression BLUP) as a full epistasis model is based on all pairwise SNP 131 

interactions which generates a new marker matrix considered as a marker combination matrix. 132 

The marker combination matrix is a 0, 1 matrix indicating the absence (0) or presence (1) of each 133 

marker combination for each individual. sERRBLUP (selective Epistatic Random Regression BLUP) 134 

as a selective epistasis model is based on a selected subset of SNP interactions (Vojgani et al. 135 

2019b). Vojgani et al. (2020) proposed estimated effect variances in the training set as the 136 

selection criterion of pairwise SNP interactions due to its robustness in predictive ability 137 

specifically when only a small proportion of interactions are maintained in the model.  138 

Assessment of genomic prediction models  139 

GBLUP, ERRBLUP and sERRBLUP models have been assessed via 5-fold cross validation by 140 

randomly partitioning the original sample into 5 equal size subsamples in which one subsample 141 

was considered as the test set to validate the model, and the remaining 4 subsamples were 142 

considered as a joint training set (Erbe et al. 2010). The 5-fold cross validation technique was 143 

utilized with 5 replicates through which the Pearson correlation between the predicted genetic 144 

values and the observed phenotypes in the test set was considered as the predictive ability in 145 

each fold of each replicate, which then was averaged across 25 replicates. In this study, predictive 146 

ability was separately assessed for KE and PE for a series of phenotypic traits in four different 147 
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environments. Besides, we calculated the traits’ prediction accuracies by dividing their predictive 148 

abilities by the square-root of the respective traits’ heritabilities (Dekkers 2007) derived from all 149 

environments in both 2017 and 2018 jointly (Table S11 in the supplementary).  150 

Univariate GBLUP within 2018 was assessed by training the model in the same year (2018) as the 151 

test set was sampled from. However, bivariate GBLUP, ERRBLUP and sERRBLUP were assessed by 152 

training the model with both the training set of the target environment in 2018 and the full 153 

dataset of the respective environment in 2017. The interaction selection step in bivariate 154 

sERRBLUP is done by first using the complete dataset of target environment in 2017 to estimate 155 

all pairwise SNP interaction effect variances. Then, an epistatic relationship matrix for all lines is 156 

constructed based on the subset of top ranked interaction effect variances, which is finally used 157 

to predict phenotypes of the target environment test set in 2018 (Vojgani et al. 2020).  158 

Variance component estimation 159 

Variance component estimation in univariate GBLUP was done by EMMREML (Akdemir and 160 

Godfrey 2015) based on the training set in each run of 5-fold cross validation with 5 replicates. 161 

In bivariate models this was done by ASReml-R (Butler et al. 2018) with the approach specified 162 

by Vojgani et al. (2020) for pre estimating the variance components from the full dataset to derive 163 

the initial values for the variance components in ASReml models in 100 iterations for each 164 

combination. If the variance estimation based on the full set did not converge after 100 165 

iterations, then the estimated variance components at the 100th iteration were extracted as 166 

initial values of the bivariate model in the cross validation step. Afterwards, the model used these 167 

values to re-estimate the variance components based on the training set in each run of 5-fold 168 

cross validation in 50 iterations. The estimated variance components in the converged models 169 

based on the full set deviated only slightly from the estimated variance components based on 170 

the training set (Fig. 1). However, the variance component estimations did not converge in all 171 

folds of 5-fold cross validation with 5 replicates. In such cases, the initial values were set as the 172 

fixed values for the model to predict the breeding values. This approach appears justifiable in the 173 

case of non-convergence of the bivariate model, since we have shown in Fig. 2 that the difference 174 

in mean predictive ability of all folds and only the converged folds is not critical. This difference 175 

can get higher as the number of non-converged folds increases. The number of not converged 176 

folds in all studied material is shown in the supplementary (Table S12).  177 

Genomic correlation estimation 178 

Genomic correlations were estimated from the genetic variances and covariance derived from 179 

the ASReml bivariate model based on the full dataset of each environment in both 2017 and 180 

2018. 181 
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Table 1: Phenotypic trait description and the mean, minimum, maximum and standard deviation of the BLUEs for each phenotypic 182 

trait in KE and PE landraces in the years 2017 and 2018. 183 

Trait Definition Landrace Year Mean Minimum Maximum Standard 
deviation 

 
 

EV_V3 
 

Early vigour at V3 stage scored on 
scale from 1 (very poor early 

vigour) to 9 (very high early vigour) 

KE 
 
 

PE 
 

2017 
2018 

 

2017 
2018 

4.94 
5.06 

 
5.57 
5.47 

0.78  
0.32  

 
1.00 
1.38 

9.00  
8.67  

 
9.03 
8.93 

1.35  
1.33  

 
1.20 
1.13 

 
 

EV _V4 

Early vigour at V4 stage scored on 
scale from 1 (very poor early 

vigour) to 9 (very high early vigour) 

KE 
 
 

PE 
 

2017 
2018 

 

2017 
2018 

4.84  
5.08  

 
5.45 
5.25 

0.67  
0.96  

 
0.93 
1.63 

8.29  
8.65  

 
8.49 
9.07 

1.30  
1.30  

 
1.15 
1.19 

 
 

EV _V6 

Early vigour at V6 stage scored on 
scale from 1 (very poor early 

vigour) to 9 (very high early vigour) 

KE 
 
 

PE 
 

2017 
2018 

 

2017 
2018 

5.13  
5.54  

 
5.64 
5.38 

0.54  
1.07  

 
0.84 
1.07 

8.75  
9.60  

 
8.39 
9.68 

1.31  
1.35  

 
1.12 
1.29 

 
 

PH_V4 

Mean plant height of three plants 
of the plot at V4 stage in cm 

 

KE 
 
 

PE 
 

2017 
2018 

 

2017 
2018 

33.10  
42.01  

 
38.01 
46.19 

6.90  
8.48  

 
11.89 
16.14 

88.24  
89.24  

 
95.30 
93.20 

13.95  
16.47  

 
14.96 
17.78 

 
 

PH_V6 

Mean plant height of three plants 
of the plot at V6 stage in cm 

 

KE 
 
 

PE 
 

2017 
2018 

 

2017 
2018 

62.03  
92.27  

 
69.84 
97.80 

8.34  
21.90  

 
14.78 
50.37 

127.54  
173.66  

 
130.51 
169.71 

19.95  
21.04  

 
19.26 
19.44 
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PH_final 

Final plant height after flowering in 
cm 

KE 
 
 

PE 
 

2017 
2018 

 

2017 
2018 

139.10  
146.04  

 
124.09 
128.08 

49.27  
35.41  

 
30.21 
35.76 

245.00  
 265.02  

 
211.14 
248.43 

27.14  
35.74  

 
24.54 
35.99 

 
 

FF 

Days after sowing until female 
flowering (days until 50% of the 

plot showed silks) 

KE 
 
 

PE 
 

2017 
2018 

 

2017 
2018 

79.72  
76.99  

 
78.85 
76.70 

62.45  
62.22  

 
59.10 
60.14 

102.02  
100.14  

 
101.50 
93.96 

6.27  
6.09  

 
6.33 
6.52 

 
 

RL 

Root lodging score from 1 to 9 (1 = 
no lodging and 9= severe lodging) 

KE 
 
 

PE 
 

2017 
2018 

 

2017 
2018 

3.38  
1.42  

 
2.14 
1.21 

0.59  
0.73  

 
0.03 
0.32 

9.58  
8.52  

 
9.22 
4.69 

2.50  
0.90  

 
1.74 
0.51 

184 
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8 
 
 

Table 2: Number of KE and PE lines phenotyped in each location for the years 2017 (blue numbers) and 185 

2018 (red numbers) for trait PH_V4. 186 

 EIN 
(2017\2018) 

ROG 
(2017\2018) 

GOL 
(2017\2018) 

TOM 
(2017\2018) 

Phenotyped lines in KE 462\365 461\365 211\222 211\222 

Phenotyped lines in PE 393\365 390\365 204\240 204\240 

 187 

Fig. 1: Comparison of pre estimated genetic and residual variances and covariances of converged bivariate 188 

sERRBLUP (top 10%) based on the full dataset (dashed horizontal lines) and estimated genetic and residual 189 

variances and covariances of converged bivariate sERRBLUP (top 10%) based on training set in each run 190 

of 5-fold cross validation with 5 replicates (colored bars) for predicting EIN in 2018 when the additional 191 

environment is EIN in 2017 in KE for trait PH-V4. 192 
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9 
 
 

 193 

Fig. 2: The difference between the mean predictive ability of only the converged folds and the mean 194 

predictive ability of all folds in 5-fold cross validation with 5 replicates virus the number of the folds which 195 

did not converged across all traits in all combinations for both KE and PE in bivariate GBLUP, ERRBLUP, 196 

sERRBLUP.   197 

Results 198 

Bivariate models outperform the univariate models (Vojgani et al. 2020) and this has been 199 

confirmed in our study through the comparison in predictive ability of bivariate GBLUP and 200 

univariate GBLUP for the trait PH-V4 in both landraces indicating the superiority of bivariate 201 

GBLUP to univariate GBLUP in most cases (see Fig. 3). Among the bivariate genomic prediction 202 

models, bivariate ERRBLUP increases the predictive ability only slightly compared to bivariate 203 

GBLUP in a range from +0.008 to +0.024 for the trait PH-V4 across all environments in both 204 

landraces. This predictive ability increases further in bivariate sERRBLUP and the highest gain in 205 

accuracy is generally obtained when the top 10 or 5 percent of pairwise SNP interactions kept in 206 

the model in most cases. A too strict selection like using only the top 0.001 percent interactions, 207 

results in a decrease in predictive ability (see Fig. 3). Robustness of the predictive ability 208 

depending on the share of selected markers was higher in PE. Similar patterns are observed 209 

across a series of other traits for bivariate models which are shown in the supplementary (Fig. 210 

S1-S7). Additionally, the predictive ability of univariate GBLUP by training the model on the 211 

average phenotypic values of both 2017 and 2018 was evaluated for a series of phenotypic traits, 212 

which yielded quite similar predictive ability as obtained with univariate GBLUP within year 2018 213 

or worse in some cases (Table S10a (KE) and S10b (PE) in supplementary).  214 
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 215 

Fig. 3: Predictive ability for univariate GBLUP within 2018 (black dashed horizontal line), bivariate GBLUP 216 

(red dashed horizontal line), bivariate ERRBLUP (red open circle) and bivariate sERRBLUP (red filled circles 217 

and red solid line) for trait PH-V4 in KE (left) and in PE (right). 218 

The absolute gain in predictive ability from univariate GBLUP to maximum bivariate sERRBLUP 219 

was regressed on the respective sERRBLUP genomic correlation between the two respective 220 

environment and across the series of studied traits (Fig. 4). Regression coefficients range 221 

between 0.09 and 0.51 and thus show a clear association between the absolute gain in prediction 222 

accuracy and the genomic correlation between environments. When combining all traits and 223 
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11 
 
 

environments, this correlation is 0.64 (p-value = 0.00024) in KE and 0.73 (p-value = 1.072e-05) in 224 

PE.  225 

 226 

Fig. 4: Regression of the absolute increase in predictive ability from univariate GBLUP to maximum 227 
bivariate sERRBLUP on the respective sERRBLUP genomic correlation between 2017 and 2018 in KE (left) 228 
and in PE (right) for all studied traits. In each panel, the overall linear regression line (gray solid line) with 229 

the regression coefficient (𝒃) and R-squared (𝑹𝟐) are shown.  230 

The genomic correlations across years estimated with GBLUP and sERRBLUP for the trait PH_V4 231 

are illustrated in Table 3, indicating that the proportion of interactions in bivariate sERRBLUP 232 

which maximized the predictive ability are not necessarily linked to the highest genomic 233 
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correlation. In contrast, the best sERRBLUP for trait PH_V4 is linked to the lowest genomic 234 

correlation in most cases. However, this is not the general pattern observed for series of other 235 

traits and the best sERRBLUP for some traits and environments combinations are linked to the 236 

highest genomic correlation (Table S3-S9 in supplementary).  237 

Table 3: Genomic correlation between 2017 and 2018 in each environment for trait PH_V4 for KE (blue 238 

numbers) and PE (red numbers). The blue and red bold numbers with stars indicate which proportion 239 

of interactions in bivariate sERRBLUP maximized the predictive ability in each environment for KE and PE, 240 

respectively. 241 

 242 

Bivariate Models EIN  ROG GOL  TOM 

GBLUP 0.945 / 0.898 0.940 / 0.658 0.942 / 0.969 0.954 / 0.923 

sERRBLUP  top 10% 0.955 / 0.859* 0.869* / 0.615* 0.835 / 0.895 0.929 / 0.816* 

sERRBLUP top 5% 0.958 / 0.868 0.850 / 0.631 0.797 / 0.888 0.912 / 0.826 

sERRBLUP top 1% 0.949* / 0.895 0.848 / 0.820 0.796* / 0.905* 0.918 / 0.863 

sERRBLUP top 0.1% 0.962 / 0.966 0.917 / 0.922 0.884 / 0.948 0.929 / 0.959 

sERRBLUP top 0.01% 0.963 / 0.980 0.951 / 0.985 0.911 / 0.983 0.919* / 0.987 

sERRBLUP top 0.001% 0.997 / 0.976 0.963 / 0.970 0.908 / 0.973 0.933 / 0.968 

 243 

In this regard, the absolute increase in predictive ability from bivariate GBLUP to maximum 244 

bivariate sERRBLUP was regressed on the difference between genetic correlations estimated with 245 

GBLUP and maximum sERRBLUP, respectively, across all traits in both landraces. Fig. 5 shows a 246 

significant correlation of 0.42 (p-value = 0.0255) in KE and 0.74 (p-value = 6.458e-06) in PE 247 

between the absolute gain in the respective predictive ability and the difference in the 248 

corresponding genetic correlations.  249 
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 250 

Fig. 5: Regression of the absolute increase in predictive ability from bivariate GBLUP to maximum bivariate 251 

sERRBLUP on the difference between the GBLUP genomic correlation and maximum sERRBLUP genomic 252 

correlation between 2017 and 2018 in KE (left) and in PE (right) for all studied traits. In each panel, the 253 

overall linear regression line with the regression coefficient (𝒃) and R-squared (𝑹𝟐) are shown. The colors 254 

green, light blue, pink, red, orange, purple, yellow and dark blue represent the phenotypic traits EV_V3, 255 

EV_V4, EV_V6, PH_V4, PH_V6, PH_final, FF and RL, respectively. 256 

There might be some tendency that including phenotypes of the previous year into prediction 257 

becomes more efficient when the phenotypic correlation between years is high. In this context, 258 

the correlation between the absolute gain in predictive ability from univariate GBLUP to 259 

maximum bivariate sERRBLUP and the phenotypic correlation among the years (see Table S2) 260 

over all studied traits in all four environments and in both landraces was studied. Fig. 6 261 

demonstrates that the maximum correlation between the absolute gain in the respective 262 

predictive ability and the phenotypic correlation is obtained in EIN for KE (0.69) and in TOM for 263 

PE (0.72). Across all studied traits and environments, there is a significant correlation of 0.59 in 264 

KE (p-value= 0.001) and 0.47 in PE (p-value= 0.01).  265 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.18.388330doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.18.388330


14 
 
 

 266 

Fig. 6: Regression of the absolute increase in predictive ability from univariate GBLUP to maximum 267 

bivariate sERRBLUP on the phenotypic correlation between 2017 and 2018 in KE (left) and in PE (right) for 268 

all studied traits. In each panel, the overall linear regression line (gray solid line) with the regression 269 

coefficient (𝒃) and R-squared (𝑹𝟐) are shown. 270 

Overall, the percentage of relative increase in prediction accuracy from the bivariate GBLUP to 271 

the maximum bivariate sERRBLUP in both landraces reveals more increase in prediction accuracy 272 

for KE than PE with the average increase of 7.61 percent in KE and 3.47 percent in PE over all 273 

studied traits (see Fig. 7). Among all traits, the maximum increase in prediction accuracy for KE is 274 

22.63 percent which was obtained in EV_V6 in EIN, and for PE is 34.59 percent which was 275 
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obtained in EV_V4 in EIN. However, Fig. 7 shows some slight decreases in prediction accuracy 276 

from bivariate GBLUP to maximum bivariate sERRBLUP for some combinations of traits and 277 

environment in both landraces. This is more often observed in PE than KE, where the maximum 278 

decrease was found in EV_V6 in TOM for both PE (-3.198 percent) and KE (-2.795 percent). 279 

Overall, the average relative increase from bivariate GBLUP to maximum bivariate sERRBLUP was 280 

over 3 percent in most cases. The absolute increase in prediction accuracy is also illustrated in 281 

the supplementary (Fig. S8) indicating the average increase of 0.046 in KE and 0.015 in PE over 282 

all combinations of traits and environments.  283 

 284 

Fig. 7: Percentage of change in prediction accuracy from bivariate GBLUP to the maximum prediction 285 

accuracy of bivariate sERRBLUP in KE (left side plot) and in PE (right side plot). The average percentage of 286 

change in prediction accuracy for each trait and environment is displayed in all rows and columns, 287 

respectively. 288 

Finally, a comparison between the absolute increase in prediction accuracy from bivariate GBLUP 289 

to maximum bivariate sERRBLUP in PE versus KE shows a higher increase in KE compared to PE 290 

with a regression coefficient 0.25 (see Fig. 8). This indicates some consistency of the observed 291 

trends across landraces. This was also confirmed with paired t-test indicating that the mean 292 

increase in prediction accuracy for KE is significantly higher than in PE (p-value= 3.921e-05). 293 
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 294 

Fig. 8: Absolute change in prediction accuracy from bivariate GBLUP to the maximum prediction accuracy 295 

of bivariate sERRBLUP in PE vs. KE. The black line represents the overall linear regression line. 296 

Discussion 297 

In this study, bivariate ERRBLUP as a full epistasis model incorporating all pairwise SNP 298 

interactions provides only a modest increase in predictive ability compared to bivariate GBLUP. 299 

This was expected, since ERRBLUP incorporates a high number of interactions by which a large 300 

number of unimportant variables are introduced into the model (Martini et al. 2016), thus 301 

introducing potential ‘noise’ which can prevent gains in predictive ability. In contrast, bivariate 302 

sERRBLUP substantially increases the predictive ability compared to bivariate GBLUP. In fact, the 303 

increase in predictive ability from bivariate GBLUP to bivariate sERRBLUP is only caused by 304 

inclusion of relevant pairwise SNP interactions. Note that all bivariate models substantially 305 

outperformed univariate GBLUP, as phenotypic data of the respective environment in the 306 

previous year was used.  307 

 It was shown that multivariate GBLUP is superior in predictive ability compared to univariate 308 

GBLUP under existence of medium (~0.6) or high (~0.9) genomic correlation, and that the low 309 

genomic correlation results in no increase in multivariate GBLUP compared to univariate GBLUP 310 

(Covarrubias-Pazaran et al. 2018). Calus et al. (2011) also found an increase of 3 to 14 percent in 311 

predictive ability of multi-trait SNP-based models in a simulation study when genetic correlations 312 
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ranged from 0.25 to 0.75. In our study, we also found a significant correlation between the 313 

absolute gain in prediction accuracy from univariate GBLUP to maximum bivariate sERRBLUP and 314 

the respective genomic correlation in both KE (𝑟 = 0.64) and PE (𝑟 = 0.73) across all traits and 315 

environments combinations. 316 

Moreover, Martini et al. (2016) showed that the predictive ability in one environment can be 317 

increased by variable selection in the other environment under the assumption of positive 318 

phenotypic correlation between environments. It was shown in a wheat dataset (Pérez and de 319 

los Campos 2014), where environments 2 and 3 had the highest phenotypic correlation (0.661), 320 

that the predictive ability for phenotype prediction in environment 2 was maximized by variable 321 

selection in environment 3 and vice versa (Martini et al. 2016). Therefore, the increase in 322 

prediction accuracy is expected to be influenced by the phenotypic correlations between the 323 

environments or between the years in the same environment in bivariate models. In our study, 324 

although 2017 and 2018 were climatically quite different, since 2018 suffered from a major heat 325 

stress compared to 2017 (Table 1), we see a significant correlation between the absolute gain in 326 

predictive ability from univariate GBLUP to maximum predictive ability of bivariate sERRBLUP and 327 

the phenotypic correlation between years in each environment for both KE (𝑟 = 0.59) and PE 328 

(𝑟 = 0.47).  329 

In addition to the genomic and phenotypic correlations between the years, the trait heritability 330 

is another factor which is expected to be influential for such an increase in bivariate sERRBLUP 331 

predictive ability as well. Therefore, the traits with lower heritability are expected to obtain less 332 

gain in sERRBLUP predictive ability than the traits with higher heritability. In our study, the 333 

correlation between the absolute gain in prediction accuracy from univariate GBLUP to maximum 334 

bivariate sERRBLUP and a trait’s heritability over all studied material was considerable in both KE 335 

(𝑟 = 0.35) and PE (𝑟 = 0.45) (Fig. S9 in the supplementary). Based on the obtained results, the 336 

traits with low heritability (e.g. 0.59 for RL in PE) showed only a small increase in prediction 337 

accuracy. However, not all traits with higher heritabilities did necessarily show a higher gain in 338 

predictive ability for all traits. Overall, this association between the absolute gain in predictive 339 

ability and the trait heritabilities were close to significant in KE (p-value=0.07) and highly 340 

significant in PE (p-value=0.02). It should be noted that the trait heritabilities were calculated on 341 

an entry-mean basis within each KE and PE landraces (Hallauer et al. 2010) over all eight 342 

environments in both years 2017 and 2018 jointly. The trait heritabilities obtained only from 2017 343 

are significantly higher than the trait heritabilities obtained only from 2018 in both KE and PE 344 

based on a paired t-test (Table S11 in the supplementary). This also results in an increase in 345 

predictive ability from univariate GBLUP to maximum bivariate sERRBLUP in KE and PE, since 346 

multi-trait models have the potential of increasing the predictive ability when traits with low 347 

heritability are joined with traits with higher heritability, given they are genomically correlated 348 

(Thompson and Meyer 1986).  349 
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It should be noted that the increase in predictive ability from univariate GBLUP to maximum 350 

bivariate sERRBLUP is caused by both borrowing information across years and capitalizing on 351 

epistasis, while the increase in predictive ability from bivariate GBLUP to maximum bivariate 352 

sERRBLUP is caused by accounting for epistasis alone. Overall, the traits behave differently 353 

among different environments and landraces due to their genomic correlations, phenotypic 354 

correlations and heritabilities. To shed light on this, the maximum increase in prediction accuracy 355 

from bivariate GBLUP to bivariate sERRBLUP in KE was observed for the trait EV_V6 (0.112) in EIN 356 

where the corresponding sERRBLUP genomic correlation (0.809) is higher than the GBLUP 357 

genomic correlation (0.768). This trait has a high heritability (0.90) and high phenotypic 358 

correlation (0.551) as well. In contrast, the respective prediction accuracy decreases (-0.018) for 359 

EV_V6 in TOM for KE indicating the lower sERRBLUP genomic correlation (0.458) than GBLUP 360 

genomic correlation (0.703) and the particularly low phenotypic correlation (0.383). It should be 361 

noted that the phenotypic correlation does not play a major role for the increase in prediction 362 

accuracy from bivariate GBLUP to bivariate sERRBLUP, since both models are bivariate and 363 

benefit from the same phenotypic correlations. Therefore, EV_V6 obtaining the maximum and 364 

minimum increase in the respective prediction accuracy for KE indicates the significant role of 365 

genomic correlation among the possible causes. In general, bivariate sERRBLUP improves the 366 

prediction accuracy compared to bivariate GBLUP more in KE than PE which is potentially due to 367 

significantly higher sERRBLUP genomic correlation and heritability in KE compared to PE, based 368 

on paired t-test. 369 

In our study, 5-fold cross validation with 5 replicates was utilized to evaluate our bivariate 370 

genomic prediction models. Different split of cross validation such as 10-fold cross validation did 371 

not make a considerable difference in our bivariate models’ predictive abilities (Fig. S10 in the 372 

supplementary). The maximum increase in bivariate models’ predictive abilities when utilizing 373 

10-fold cross validation with 10 replicates compared to utilizing 5-fold cross validation with 5 374 

replicates was 0.018 in KE and 0.006 in PE for trait PH_V4. Overall, our cross validation scenario 375 

is not expected to bias the predictive abilities obtained from our bivariate models for reasons as 376 

outlined by Runcie and Cheng (2019), who observed a bias when the test set of the target trait is 377 

predicted from the full dataset of the second trait in multi-trait model. In our study, utilizing the 378 

full dataset of the target trait in one environment from 2017 to predict the same biological trait 379 

in the respective environment in 2018 should not lead to such a bias in predictive ability, since 380 

the individuals do not share the same source of non-genetic variation and they have been grown 381 

in two different years which have been climatically very different from each other. 382 

Overall, our results indicate that incorporating a suitable subset of epistatic interactions besides 383 

utilizing information across years can substantially increase the predictive ability. The amount of 384 

this increase is affected by the genomic and phenotypic correlations between the years and the 385 

heritability of the phenotypic trait. Therefore, this approach is potentially beneficial for genomic 386 

prediction of phenotypes under the assumption of sufficient genomic and phenotypic correlation 387 

between years for highly heritable traits. This may allow to reduce the number of lines which 388 
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have to be phenotyped over several years and thus reduce phenotyping costs which and thus be 389 

of high interest in practical plant breeding. 390 

  391 
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