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Abstract  

Chimeric antigen receptor (CAR) T cell therapy has led to impressive clinical responses in patients 

with hematological malignancies; however, its utility in patients with solid tumors has been limited. 

While CAR T cells for the treatment of advanced prostate cancer are being clinically evaluated 

and are anticipated to show bioactivity, their safety and the impact of the immunosuppressive 

tumor microenvironment (TME) have not been faithfully explored preclinically. Using a novel 

human prostate stem cell antigen knock-in (hPSCA-KI) immunocompetent mouse model and 

syngeneic murine PSCA CAR T cells, we performed analyses of normal and tumor tissues by 

flow cytometry, immunohistochemistry, and/or RNA sequencing. We further assessed the 

beneficial impact of cyclophosphamide (Cy) pre-conditioning on modifications to the 

immunosuppressive TME and impact on PSCA-CAR T cell safety and efficacy. We observed an 

in vivo requirement of Cy pre-conditioning in uncovering the efficacy of PSCA-CAR T cells in 

prostate and pancreas cancer models, with no observed toxicities in normal tissues with 

endogenous PSCA expression. This combination also dampened the immunosuppressive TME, 

generated pro-inflammatory myeloid and T cell signatures in tumors, and enhanced the 

recruitment of antigen-presenting cells, and endogenous as well as adoptively-transferred CAR T 

cells, resulting in long-term anti-tumor immunity.  
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Introduction: 

Despite clinical successes of chimeric antigen receptor (CAR)-engineered T cell therapies in 

hematological malignancies, effective CAR T cell therapies in solid tumors has been limited.1-3 

Immunotherapies for solid tumors are restricted by the tumor microenvironment (TME), which 

includes among others, tumor-associated macrophages (TAMs), myeloid-derived suppressor 

cells (MDSCs), and regulatory T cells (Tregs), all which suppresses endogenous immunity, as 

well as adoptively transferred T cell trafficking, persistence, and anti-tumor activity.1, 4, 5 Alleviating 

immunosuppression in solid tumors and improving CAR T cell-mediated anti-tumor activity is an 

active, but still very early, area of research and includes targeting immune checkpoint [e.g., PD-

1 and CTLA-4] and/or other immunomodulatory pathways. Pre-conditioning chemotherapy has 

been widely employed in combination with CAR T cell therapy, particularly in the setting of 

hematological malignancies. This approach has classically been described as “space-making” 

lymphodepletion to enhance homeostatic cytokine production for improved adoptively-transferred 

T cell engraftment.6, 7 However, the totality of benefits and underlying mechanisms of action of 

this approach for solid tumors is still controversial.8 Studies to more faithfully assess the safety 

and efficacy of this approach in the context of solid tumor CAR T cell therapies will require more 

comprehensive preclinical models.9 

Our group has recently initiated a phase 1 clinical trial to evaluate the safety, feasibility and 

biological activity of prostate stem cell antigen (PSCA)-directed CAR T cells in patients with 

metastatic castration-resistant prostate cancer (mCRPC), based on extensive preclinical 

optimization using human xenograft models.10 As with most solid tumor-associated antigens 

(TAAs, e.g., HER2, CEA, PSMA, mesothelin), PSCA expression in normal tissues, including the 

stomach, bladder, pancreas, and prostate, may pose safety concerns or limit the therapeutic 

benefits of CAR T cells.11, 12 While studies using immunocompromised mice allow for evaluating 

activity of CAR T cells in vivo for clinical translation, these immunocompromised mice typically 
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lack a physiologically normal tissue expression of TAAs, which precludes assessment of potential 

“on-target, off-tumor” toxicities. Additionally, they fail to capture the complexity of the local TME 

and the impact of immunotherapy on systemic immunity. These components may contribute to 

some of the key discrepancies in clinical CAR T cell responses observed in hematological 

malignancies and solid tumors.13, 14 

In the current study, we developed an immunocompetent mouse model that allows simultaneous 

assessment of safety and anti-tumor efficacy of PSCA-CAR T cells. Our knock-in mouse system 

allowed for expression of human PSCA under the control of the mouse PSCA promoter in normal 

tissues. This model enabled us to evaluate PSCA-CAR T cell therapy in the context of a host with 

an intact immune system and the ability to comprehensively interrogate mechanisms underlying 

response and/or resistance to CAR T cell therapy. We found PSCA-CAR T cells ineffective in 

eliciting in vivo anti-tumor responses unless given after lymphodepleting pre-conditioning with 

cyclophosphamide (Cy). Mechanistically, we showed that the benefits of Cy pre-conditioning were 

attributed to early changes in the TME, including pro-inflammatory myeloid cell modifications, 

improved antigen presentation pathways, and profound tumor infiltration of both endogenous and 

adoptively-transferred T cells. Combining Cy pre-conditioning with PSCA-CAR T cells resulted in 

durable curative responses and subsequent protective immunity against tumor rechallenge. 

Importantly, potent PSCA-CAR T cell anti-tumor responses were not associated with adverse 

effects on normal tissues expressing PSCA, or other overt off-tumor toxicities. These findings will 

inform our ongoing clinical trials and further provide a preclinical platform to design rational 

combination approaches to maximize the safety and efficacy of immunotherapies for PSCA+ solid 

tumors. 
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Results 

Murine PSCA-CAR T cells demonstrate selective in vitro activation against PSCA+ murine 

tumor cells 

We generated a fully-murine PSCA-CAR retroviral construct (PSCA-mCAR) targeting human 

PSCA. Importantly, the human PSCA targeting scFv used (clone 1G8) is the same clone that was 

subsequently humanized to generate our current phase 1 clinical trial (NCT03873805) lead 

therapeutic candidate (Figure 1 a).10 PSCA-mCAR retrovirus yielded efficient transduction of 

murine splenic CD4/CD8 T cells as determined by expression of mCD19t (Figure 1 b).  In vitro 

antigen-specific activity of PSCA-mCAR T cells was assessed by co-culture of wild-type RM9 

(hPSCA-) or RM9-hPSCA tumor cells with freshly-transduced PSCA-mCAR T cells, resulting in 

antigen-dependent secretion of murine IFNγ and IL-2 cytokines (Figure 1 c and d). PSCA-mCAR 

T cells also showed antigen-dependent activation and exhaustion markers murine 4-1BB and PD-

1, respectively, at varying effector:tumor (E:T) ratios (Figure 1 e). RM9-hPSCA tumor cells 

exhibited CAR T cell-dependent increases in PD-L1 in vitro, presumably in response to IFNγ 

secretion by activated CAR T cells (Figure 1 f). CAR T cell-mediated killing of RM9-hPSCA tumor 

cells increased from 24 h and 72 h (Figure 1 g). Additionally, PSCA-mCAR T cells also expanded 

following 72 h co-culture (Figure 1 h). These data show that our fully-murine PSCA-CAR T cells 

exhibit strong antigen-specific activity against murine tumors expressing human PSCA.  

 

PSCA-mCAR T cells lack in vivo therapeutic efficacy in immunocompetent mice 

To investigate the safety and efficacy of PSCA-CAR T cells in an immunocompetent system, we 

utilized a recently developed human PSCA knock-in (hPSCA-KI) mouse model.15 We used 

heterozygous mice (hPSCA-KIhet) (Figure S1 a), to allow for engraftment of RM9-hPSCA tumor 

cells that may express both endogenous murine and engineered human PSCA. Using flow 
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cytometry, immunohistochemistry (IHC), and (RNAscopeTM)  analyses of normal and tumor tissue, 

we observed low to moderate levels expression of hPSCA, relative to RM9-hPSCA tumors, in 

normal prostate epithelia, bladder, and stomach, mimicking expression patterns observed in 

humans (Figure S1 b-d).15, 16  

Safety and efficacy of PSCA-CAR T cells were assessed in hPSCA-KI mice bearing s.c. RM9-

hPSCA tumors treated with either Mock (untransduced) or PSCA-mCAR T cells by i.v. delivery. 

In contrast to the potent activity seen in previously published human xenograft models,10 we 

observed minimal anti-tumor responses in hPSCA-KI mice treated with PSCA-mCAR T cells 

(Figure S2 a). Encouragingly, no overt toxicities including visual weight loss or gross anatomical 

defects to normal organs upon euthanasia were observed in these mice. Interestingly, 

lymphocyte-deficient RAG2-/- mice bearing RM9-hPSCA tumors treated with singularly with 

PSCA-mCAR T cells demonstrated curative responses in 33% of treated mice (Figure S2 b), 

highlighting the therapeutic potential of these CAR T cells in immunocompromised mice, and also 

suggesting that in immunocompetent mice, the intact endogenous immune system is likely 

contributing to a suppressive TME which resulted in limited efficacy of PSCA-mCAR T cells alone.  

 

In vivo efficacy of PSCA-mCAR T cells in immunocompetent mice requires 

cyclophosphamide preconditioning 

Given the observed efficacy of PSCA-mCAR T cells in lymphocyte-deficient RAG2-/- mice but not 

in immunocompetent hPSCA-KI mice (Figure S2 a and b), we assessed whether 

lymphodepleting pre-conditioning could improve the therapeutic impact of PSCA-mCAR T cells in 

this model. An in vivo Cy dose titration using a single intraperitoneal (i.p.) dose of Cy (50, 100, or 

200 mg/kg) in hPSCA-KI mice resulted in a dose-dependent peripheral lymphodepletion in each 

immune subset evaluated, with a maximal lymphodepletion achieved 4 days following Cy 
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treatment (Figure S3 a - e). The anti-tumor activity of Cy alone was then examined in i.ti.tumor 

bearing hPSCA-KI mice. From these studies we determined that in this model a single i.p. 100 

mg/kg dose of Cy could provide adequate peripheral lymphodepletion, with minimal anti-tumor 

activity, and an absence of survival benefit (Figure S3 f). 

We next evaluated the impact of 100 mg/kg Cy pre-conditioning in combination with PSCA-mCAR 

T cell therapy in vivo. PSCA-mCAR T cells or Cy treatment alone showed essentially no or only 

transient anti-tumor activity against RM9-hPSCA tumors respectively, and neither provided 

durable survival benefits (Figure 2 a). However, the combination of PSCA-mCAR T cells with Cy 

pre-conditioning elicited robust anti-tumor activity, improved overall survival, and complete 

responses (CR) in over 40% of mice (Figure 2 b and c). These data strongly suggest that pre-

conditioning in this model is required to unleash the therapeutic potential of PSCA-mCAR T cells. 

Importantly, no overt toxicities or gross changes in cellular architecture to hPSCA expressing 

normal tissues (prostate, bladder, stomach) were observed at early and later timepoints post T 

cell treatment in any of the treated mice, including the combination of PSCA-mCAR T cells and 

Cy (Figure 2 d).  

 

Cyclophosphamide reverts T cell exclusion and promotes tumor infiltration of CAR T cells  

We next evaluated the effects of Cy on the local TME. Tumors were initially harvested at day 3 

post CAR T cell therapy and analyzed by IHC. Interestingly, a clear T cell exclusion phenotype 

was observed in tumors from mice treated with Mock or PSCA-mCAR T cells alone, with T cells 

relegated to the normal tissue periphery and only few T cells within the tumor (Figure 3 a). 

Following Cy pre-conditioning, T cells were observed at a much higher frequency within the tumor, 

which was greatly enhanced in combination with PSCA-mCAR T cell treatment. These data, 
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coupled with impressive in vivo anti-tumor responses with the combination (Figure 2), suggest 

that Cy may revert T cell exclusion within the TME.  

We then quantified the kinetics of PSCA-mCAR T cell trafficking with or without Cy pre-

conditioning. hPSCA-KI mice s.c. engrafted with RM9-hPSCA (non-firefly luciferase expressing) 

received Cy pre-conditioning followed 24 h later with i.v. firefly luciferase-expressing Mock/ffluc 

or PSCA-mCAR/ffluc T cells. Mice were imaged daily to monitor CAR T cell biodistribution (Figure 

3 b). We observed significant increases of intratumoral PSCA-mCAR T cell flux in Cy pre-

conditioned mice as early as 24 h post T cell treatment (Figure 3 c) as compared with mice 

treated with PSCA-mCAR T cells alone where T cell signal was predominantly confined at the 

tumor periphery. Interestingly, the early intratumural accumulation of CAR T cells was observed 

prior to maximal Cy-mediated peripheral lymphodepletion in our model. By day 3 post CAR T cell 

treatment, intratumoral proliferation/expansion of CAR T cells following Cy pre-conditioning was 

nearly 10-fold higher than with CAR T cells alone (Figure 3 d). Furthermore, analysis of PB at 

days 1, 3 or 10 post T cell treatment, and tumor-draining lymph nodes at 7 days post T cell 

treatment, both failed to show an accumulation of peripheral PSCA-mCAR T cells, despite 

evidence of a Cy mediated peripheral lymphodepletion (Figure 3 e, Figure S4 a and b). These 

data highlight a Cy-mediated modulation of the local TME resulting in tumor-specific trafficking 

and expansion of PSCA-mCAR T cells. 

 

Cyclophosphamide overcomes the immunosuppressive TME 

To better understand the impact of Cy on the local TME, we performed RNA sequencing of tumors 

in each treatment group. Analysis of standardized transcript expression revealed that Cy pre-

conditioning induced widespread transcriptional changes in comparison to Mock or PSCA-mCAR 

T cells alone, indicating a local tumor modulating effect of Cy (Figure 4 a). A gene ontology (GO) 
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Gene Set Enrichment Analysis (GSEA) of biological processes was performed and identified most 

impacted gene pathways. GSEA analysis showed significant enrichment of T cell migration 

pathways in tumors following Cy pre-conditioning alone (Figure 4 b, top). Tumors from PSCA-

mCAR T cells in combination with Cy showed multiple pathway enrichment sets, highlighted by 

multiple T cell activation pathways, increased IFNγ production, increased adaptive immune 

responses, and monocyte chemotaxis (Figure 4 b, bottom).   

IHC analysis of tumors in each treatment group reflected the observed transcriptional changes 

which suggested a favorable pro-inflammatory TME shift allowing a reversion of T cell exclusion 

(Figure 4 c). Specifically, we found increased frequencies of intratumoral cytotoxic CD8+ T cells 

and a corresponding increase of granzyme-B+ (GzmB) cells following Cy pre-conditioning. We 

also observed increases in intratumoral PD-L1 in areas coincident with higher T cell accumulation. 

Interestingly, Cy did not appear to modulate Foxp3+ Treg frequencies within the tumor. Increased 

immune-related gene signatures in pre-conditioned tumors highlight the impact of Cy, which was 

further enhanced by the presence of PSCA-mCAR T cells (Figure 4 d). The majority of 

upregulated genes included markers of immune cell subsets (e.g., Cd3e, Cd4, Cd8a, Itgam), 

monocyte/myeloid cell activation/differentiation (e.g., Ly6c1/2, Ly6g, Csf1r, Itgam/Cd11b, 

Itgax/Cd11c), T cell activation (e.g., Gzmb, Cd274), pro-inflammatory factors (e.g., Il6, Nos2, IL1b, 

Tnf), and T cell chemoattraction (e.g., Ccl5, Cxcl9). Flow cytometry analysis of pro-inflammatory 

monocytic Ly6C+ cells (gated within CD11b+) showed a significant increase following Cy pre-

conditioning (Figure 4 e). Cy pre-conditioning also resulted in fewer tumor-promoting M2-like 

CD206+ myeloid cells and increased CD11c+ antigen presenting myeloid populations (Figure 4 f 

and g), confirming findings from the RNA sequencing analysis. Furthermore, a pro-inflammatory 

shift in peripheral myeloid subsets (increased peripheral Ly6C+ and decrease in Ly6G+) was 

observed in the blood of mice treated with the combination of Cy pre-conditioning and PSCA-

mCAR T cells relative to CAR T cells alone (Figure S7 e). IPA network canonical pathway 
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analysis also showed increases in innate/adaptive immune cell communication following Cy pre-

conditioning, with antigen-presentation pathways most upregulated following PSCA-mCAR T 

cells and Cy (Figure S7 a - d). Overall, these data support a key role for Cy in overcoming the 

local immunosuppressive TME and promoting endogenous anti-tumor immunity.  

 

PSCA-mCAR T cells effectively target PSCA+ prostate cancer bone metastases and 

generates protective tumor immunity 

We next assessed our therapy in a more clinically-relevant bone metastatic model. hPSCA-KI 

mice were i.ti. engrafted with RM9-hPSCA tumors, pre-conditioned with Cy, followed by i.v. Mock 

or PSCA-mCAR T cell treatment as described in Figure 5 a. Tumor flux imaging indicated that 

mice treated with Mock T cells, Mock T cells with Cy, and PSCA-mCAR T cells alone showed 

minimal anti-tumor responses. In contrast, PSCA-mCAR T cells in combination with Cy pre-

conditioning promoted anti-tumor responses in the majority of treated mice (Figure 5 b and S5 

a) with 50% curative responses (Figure 5 c).  At day 7 post-CAR T cell therapy, we observed 

clearance of bone tumors and unremarkable gross architecture of bone marrow in the 

combination group (Figure S5 b).  

We next examined the impact on long-term anti-tumor immunity resulting from reversion of T cell 

exclusion observed in mice pre-conditioned with Cy and treated with CAR T cells (Figure 4 and 

Figure S7). Cured mice following Cy and CAR T cell combo treatment, along with tumor naïve 

control mice, were rechallenged with s.c. RM9-hPSCA tumors (Figure 5 d, left). Impressively, in 

mice rechallenged with PSCA-expressing tumor, we observed rejection in 80% of mice as shown 

by flux imaging and caliper tumor volume measurement (Figure 5 d right, and 5 e). Mice 

rechallenged with RM9-hPSCA failed to show a re-emergence of PSCA-mCAR T cells 

systemically, suggesting that tumor rejection was independent of PSCA-CAR targeting of PSCA+ 
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tumor, and related to modified endogenous anti-tumor immunity (Figure 5 f). To confirm this, we 

repeated rechallenge in Cy and PSCA-mCAR cured mice as before, but this time rechallenged 

with RM9 wild-type tumors (non-PSCA, non-ffluc expressing) and again saw strong endogenous 

anti-tumor immunity in mice previously cured with Cy and PSCA-mCAR T cell treatment relative 

to tumor naïve mice (Figure 5 g). These data suggest that Cy and CAR T cell-mediated increases 

in antigen presentation, innate/adaptive immune response, and IFNγ signaling pathways results 

in improved primary PSCA-mCAR T cell responses, as well as a stimulation of endogenous 

protective immunity tumor rechallenge. 

 

PSCA-mCAR T cells effectively target PSCA+ KPC metastatic pancreatic cancer 

In addition to its overexpression in prostate cancers and their metastases, PSCA is also highly 

expressed in pancreatic cancers.17 Accordingly, we sought to validate our Cy pre-conditioning in 

combination with PSCA-CAR T cells against KPC pancreatic ductal adenocarcinoma (PDAC) 

tumor cells engineered to express hPSCA (KPC-hPSCA). Importantly, KPC tumors harbor 

features of PDAC, including intraepithelial neoplasia and a robust inflammatory reaction including 

exclusion of effector T cells.18 KPC-hPSCA were administered i.v., which induces lung metastasis, 

and were pre-conditioned with Cy, followed with i.v. Mock or PSCA-mCAR T cell treatment as 

indicated in Figure 6 a. Quantification of tumor flux post T cell treatment showed that mice treated 

with Mock T cells alone or Mock T cells with Cy exhibited minimal anti-tumor responses (Figure 

6 b and Figure S6 a) as expected. Interestingly, PSCA-mCAR T cells treatment alone in this 

model showed pronounced but transient anti-tumor activity, distinct from the prostate tumor 

model. Impressively, the combination of Cy pre-conditioning and PSCA-mCAR T cells showed a 

more potent anti-tumor activity resulting in extended survival and curative responses in over 60% 

of mice (Figure 6 c). IHC of lung tissues at 13 days post-T cell treatment showed disease-free 
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mice treated with PSCA-mCAR T cells and Cy (Figure S6 b). Combined, these models 

demonstrate the utility of pre-conditioning with Cy to improve PSCA-CAR T cell therapy responses 

in solid tumors.  
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Discussion: 

In this study, we investigated the safety and efficacy of PSCA CAR T cell therapy using 

immunocompetent hPSCA-KI mice. We discovered that robust local intratumoral activity, 

proliferation and therapeutic responses of PSCA-CAR T cells were dependent on pre-conditioning 

with Cy. PSCA-CAR T cell therapy demonstrated safety in mice with physiological hPSCA 

expression in normal tissues, mimicking patterns of expression found in humans.15, 16 We showed 

a lack of therapeutic responses with PSCA-CAR T cell treatment alone in this system, contrasting 

with the complete responses previously observed using human xenograft tumor models in 

immunocompromised NSG mice.10 The dramatic improvement of CAR T cell activity and survival 

of mice following Cy pre-conditioning led us to postulate that in addition to its conventional 

lymphodepleting effects, Cy also mediates substantial modulation of the solid tumor TME. 

Accordingly, we showed that Cy pre-conditioning resulted in rapid CAR and endogenous T cell 

infiltration within the tumor, re-shaped the TME resulting in shifts in myeloid cells from M2 to M1 

phenotypes, increased endogenous antigen presentation pathways, and increased 

innate/adaptive immune response signaling, all further enhanced by combination with CAR T 

cells. Importantly, we also showed CAR antigen-independent protective immunity against tumor 

rechallenge in this model. Together, these data emphasize three important features: 1) commonly 

used immunocompromised xenograft animal models greatly underrepresent the impact of the 

host immune system thereby overestimating CAR T cell activity, 2) independent of peripheral 

lymphodepleting effects, Cy modulates the local TME and may be critical to unleashing the full 

potential of solid tumor CAR T cell therapies, and 3) the combination of Cy pre-conditioning along 

with CAR therapy in our model also modifies host immunity to elicit protection against tumor 

rechallenge. 
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Prior studies have demonstrated Cy-mediated depletion of peripheral T cells, particularly Tregs, 

may act as a cytokine sink to alter CD8 T cell activity.7, 19, 20 Studies suggest that Cy-mediated 

depletion of Tregs is highly transient, and modulation of dendritic cell function within the TME may 

explain improved anti-tumor immunity.21 Similarly, we did not observe striking changes in tumoral 

Foxp3+ Tregs following Cy in our model, suggesting alternative modifications of the local TME. 

We found that as early as 24 h following PSCA-mCAR T cell treatment, clear intratumoral 

trafficking and accumulation of CAR T cells were observed in Cy pre-conditioned mice. This 

robust tumoral recruitment of PSCA-mCAR T cells was observed prior to the peak peripheral 

lymphodepleting effects of Cy in this model. Once maximal lymphodepletion was achieved, 3 days 

following T cell treatment, we then observed great increases in intratumoral T cell expansion both 

in antigen specific PSCA-mCAR, and to a lesser degree in adoptively transferred non-targeting 

Mock T cells. This contrasts with previous findings that indicate intratumoral T cell homing or 

migration aided by Cy is reserved for antigen-specific T cells.22 In addition to the direct T cell 

modulating effects of Cy, pre-conditioning lymphodepletion enhances IL-2, IL-7, and IL-15 

cytokine signaling to improve systemic persistence of CD19-CAR T cells.22, 23 However, we found 

no increases in peripheral CAR T cells despite robust local anti-tumor responses. Additionally, 

prior to maximal peripheral lymphodepletion, Cy modified the local TME, improving infiltration of 

endogenous T cells, IFNγ signaling in the TME, as well as an M2-like to M1-like macrophage shift. 

This result is consistent with prior work showing pro-inflammatory modulation by Cy in the TME, 

which may synergize with type-I IFN cytokines, which we observe especially in combination with 

antigen specific PSCA-mCAR T cells.24, 25  

 

Cy pre-conditioning greatly enhanced PSCA-mCAR T cell activity in the immunocompetent 

models we tested, but did not demonstrate curative responses in all treated mice. This implies 

that additional CAR T cell resistance mechanisms may limit maximal therapeutic benefits of this 
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approach and must be investigated further. Major resistance mechanisms include hampered T 

cell trafficking or persistence in tumors, intrinsic and/or acquired resistance to CAR T cell therapy 

driven in part by immune suppressive pathways, and tumor antigen escape from single-antigen 

targeted CAR T cell strategies. With regards to trafficking, it is possible that a lack of immediate 

antigen engagement by systemically-administered CAR may limit peripheral survival and 

trafficking to solid tumors as there is observed trapping of adoptively-transferred T cells in first-

pass tissues, including lung and liver.26 Interestingly, PSCA-mCAR T cells, both with and without 

pre-conditioning, demonstrated greater therapeutic activity in the lung metastatic KPC-PDAC 

model, perhaps taking advantage of earlier lung trafficking of systemically administered T cells. A 

recent study in a melanoma model showed that lymphodepleting chemotherapy pre-conditioning 

promoted peripheral immunosuppressive MDSCs, which limited persistence of tumor infiltrating 

T cells and resulted in greater disease progression.27 While at later timepoints, Cy-mediated 

immunosuppression may contribute to tumor recurrences in our models, our data strongly support 

the early benefits of Cy pre-conditioning in re-shaping the tumor microenvironment to promote 

CAR T cell responses. 

 

Further studies are warranted to determine the mechanism(s) responsible for the protective 

immunity following Cy and PSCA-CAR T cell therapy. Immune checkpoint pathways may also 

limit therapeutic responses and have been highlighted in multiple preclinical and clinical CAR T 

cell programs.28, 29  In support of this acquired tumor resistance mechanism, we observed robust 

in vitro and in vivo induction of PD-1/PDL1 signaling following PSCA-CAR T cell treatment.30-32 

Future studies will investigate the benefits of combining PSCA-CAR T cells with immune 

checkpoint blockade and other acquired or intrinsic immunosuppressive pathways. Antigen 

escape mechanisms are a major challenge in achieving durable responses to CAR T cell therapy 

in both hematological and solid tumor malignancies.33-35 In our model, tumor cells were clonally 
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positive or FACS sorted for uniformly positive PSCA expression, which would greatly reduce the 

possibility of an antigen-negative outgrowth following CAR T cell therapy. However, transcriptional 

downregulation or novel PSCA mutations in response to CAR T cell pressure may have occurred, 

similar to clinical observations following CD19-CAR T cell therapy.33, 36 Prior clinical experience 

with hematological malignancies and solid tumors alike suggests antigen heterogeneity is likely a 

key barrier that will require multi-targeted CAR T cell approaches. 

 

To our knowledge, this is the first example of a preclinical model to assess the safety of PSCA-

targeted agents, including CAR T cell therapy. Several groups have developed immunocompetent 

mouse models to evaluate the safety of T cell therapeutic approaches, including those targeting 

CD19, CEA, and HER2.14, 37, 38 In pre-clinical CD19-CAR T cell models, the severity of toxicity (i.e. 

CRS, neurotoxicity, and in some cases death) was increased in the presence of lymphodepleting 

pre-conditioning regimens.39 Further, in human CEA transgenic mouse models, it was found that 

CEA-targeted CAR T cells were only effective when combined with lymphodepletion. In these 

mice, toxicities (colitis, weight loss, liver toxicity, and death) were only seen in mice pre-

conditioned with total body irradiation (TBI) alone or a triple combination of fludarabine, Cy, and 

TBI.14, 40 In contrast, tumor bearing hPSCA-KI mice who received Cy-preconditioning and PSCA-

CAR T cell therapy displayed no overt toxicities, including normal tissues expressing PSCA; 

however, expression intensity and pattern of PSCA in our hPSCA-KI model may not completely 

represent human biology. Our phase 1 clinical trial (NCT03873805) is evaluating the safety, 

feasibility, and biological activity of PSCA-CAR T cells in patients with metastatic castration-

resistant prostate cancer, and based on these preclinical studies we have added a 

lymphodepletion arm to assess the effects on the TME and clinical outcomes.  
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Materials and Methods 

Cell Lines 

The Ras/Myc transformed prostate cancer line, RM9  and firefly-luciferase expressing LSL-

KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre (KPC) cell lines were a kind gift from Dr. Timothy C. 

Thompson at MD Anderson Cancer Center Dr. Edwin Manuel at City of Hope respectively.41, 42 

Cell lines were cultured in Dulbecco’s Modified Eagles Medium (Life Technologies), containing 

10% fetal bovine serum (FBS, Hyclone), 25 mM HEPES (Irvine Scientific), 2 mM L-Glutamine 

(Fisher Scientific), and 1X antibiotic-antimycotic (1X AA, Gibco) (cDMEM). PLAT-E retroviral 

packaging cells (Cell Biolabs Inc.) were cultured in cDMEM with addition of 1 μg/mL puromycin 

and 10 μg/mL blasticidin (InvivoGen) prior to transfection. All cells were cultured at 37°C with 5% 

CO2.  

 

Animals  

Animal experiments were performed under protocols approved by the City of Hope Institutional 

Animal Care and Use Committee. For all in vivo studies, 6–8 week-old male mice were used. 

Human prostate stem-cell antigen (PSCA) knock-in (hPSCA-KI) C57BL/6j mice, whose 

generation has been described previously, were provided by Dr. Robert E. Reiter and Dr. Anna 

Wu at UCLA.15 To prevent possible rejection of tumor lines that endogenously express murine 

PSCA, homozygous hPSCA-KI mice were F1 crossed with wild-type C57BL/6j mice to generate 

heterozygous hPSCA-KI mice. Unless otherwise indicated, all mice used in experiments were 

heterozygous hPSCA-KI. For experiments in immunocompromised animals, 6 to 8 week-old 

RAG2-/- (Jackson Laboratories) mice were used. 

 

Genotyping PCR 
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To confirm the genotype of hPSCA-KI mice, genomic DNA was isolated and analyzed by PCR. 

Genomic DNA was collected from tail or ear tissue isolated via Qiagen DNA Mini Kit (Qiagen) 

according to manufacturer’s protocol. Isolated DNA samples were analyzed in independent 

master mixes containing primers, Accustart PCR SuperMix (Quantabio), and sterile 

DNAse/RNAse-free water. Three primer sequences (kindly provided by Dr. Robert Reiter at 

UCLA) were used to detect murine genomic PSCA DNA (from 5’ and 3’ arms) and hPSCA cDNA. 

mPSCA-5’arm primer sequence: TGTCACTGTTGACTGTGGGTAGCA, mPSCA-3’arm primer 

sequence: CTTACTTGATAGGAGGGCTCAGCA, hPSCA primer sequence: 

CCAGAGCAGCAGGCCGAGTGCA. PCR was performed on a FlexCycler2 (Analytik Jena) 

programmed for 94°C for 1 minute, 35 cycles at (94°C for 20 seconds, 59°C for 20 seconds, 72°C 

for 45 seconds), and a final run at 72°C for 3 minutes. PCR products were loaded on to 2% 

agarose gels, run at 150 V for approximately 20 minutes, and stained in SybrSafe (Life 

Technologies) prior to imaging on a BioSpectrum MultiSpectral Imaging System (UVP). 

 

DNA Constructs, Tumor Lentiviral Transduction and Retrovirus Production 

Tumor cells were engineered to express firefly-luciferase (ffluc) and tumor antigen human PSCA 

(hPSCA) by sequential transduction with epHIV7 lentivirus carrying the ffluc gene under the 

control of the EF1α promoter, and epHIV7 lentivirus carrying the human PSCA gene under the 

control of the EF1α promoter as described previously.10 The scFv sequence from the murine anti-

human PSCA antibody clone (1G8) was used to develop the murine CAR (mCAR) construct.43 

The extracellular spacer domain included the murine CD8 hinge region followed by a murine CD8 

transmembrane domain.44, 45 The intracellular co-stimulatory signaling domain contained the 

murine 4-1BB followed by a murine CD3ζ cytolytic domain as previously described.46 The CAR 

sequence was separated from a truncated murine CD19 gene (mCD19t) by a T2A ribosomal skip 

sequence and cloned into the pMYs retrovirus backbone (Cell Biolabs Inc). Production of 
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retrovirus used to transduce primary murine T cells were performed as previously described.47 

The CAR sequence was separated from a truncated murine CD19 gene (mCD19t) by a T2A 

ribosomal skip sequence and cloned into the pMYs retrovirus backbone under the control of a 

hybrid MMLV/MSCV promoter (Cell Biolabs Inc). The ffluc sequence was also cloned into the 

pMYs retrovirus backbone. Retrovirus was produced by transfecting the ecotropic retroviral 

packaging cell line, PLAT-E, with addition of PSCA-mCAR or ffluc retrovirus backbone plasmid 

DNA using FuGENE HD transfection reagent (Promega). Viral supernatants were collected after 

24, 36, and 48 h, pooled, and stored at -80ºC in aliquots for future T cell transductions.  

 

Murine T Cell Isolation, Transduction, and Ex Vivo Expansion 

Splenocytes were obtained by manual digestion of spleens from male heterozygous hPSCA-KI 

mice. Enrichment of T cells was performed by EasySep™ mouse T cell isolation kit per 

manufacturer’s protocol (StemCell Technologies). Retroviral transduction with PSCA-mCAR 

and/or ffluc and subsequent expansion were performed as previously described.47  

 

Flow Cytometry 

Flow cytometric analysis was performed as previously described.10, 47 Briefly, cells were 

resuspended in Hank’s balanced salt solution without Ca2+, Mg2+, or phenol red (HBSS-/-, Life 

Technologies) containing 2% FBS and 1x Antibiotic-Antimycotic (AA, Gibco) (FACS buffer). 

Single cell suspensions from mouse tissues or tumors were incubated for 15 minutes at ambient 

room temperature with rat anti-mouse Fc Block™ (BD Pharmingen). Cells were then incubated 

with primary antibodies for 30 minutes at 4ºC in the dark. For secondary staining, cells were 

washed twice prior to 30 minutes incubation at 4ºC in the dark with either Brilliant Violet 510 

(BV510), fluorescein isothiocyanate (FITC), phycoerythrin (PE), peridinin chlorophyll protein 
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complex (PerCP), PerCP-Cy5.5, PE-Cy7, allophycocyanin (APC), or APC-Cy7 (or APC-

eFluor780)-conjugated antibodies. Anti-mouse antibodies against mCD206 (Biolegend, Clone: 

C068C2), mLy6G (Biolegend, Clone: 1A8), mLy6C (Biolegend, Clone: HK1.4), mCD11b 

(Biolegend, Clone: M1/70), mCD11c (Biolegend, Clone: N418), mMHC Class II (I-A/I-E, 

Biolegend, Clone: M5/144.15.2), mCD274 (mPD-L1, Biolegend, Clone:10F.9G2), mCD45 

(Biolegend, Clone: 30-F11), mCD19 (BD Biosciences, Clone: 1D3), mCD3 (Biolegend, Clone: 

17A2), mCD279 (mPD-1, Biolegend, Clone: 29F.1A12), mCD4 (Biolegend, Clone: RM4-5), 

mCD137 (ThermoFisher, Clone: 17b5), mCD8a (Miltenyi Biotec, Clone: 53-6.7), and goat anti-

mouse Ig (BD Biosciences) were used for flow cytometry. Additionally, a mouse anti-human PSCA 

antibody (clone 1G8) used for flow cytometry was from the laboratory of Dr. Robert Reiter at 

UCLA 16. Cell viability was determined using 4’, 6-diamidino-2-phenylindole (DAPI, Sigma). Flow 

cytometry was performed on a MACSQuant Analyzer 10 (Miltenyi Biotec), and data was analyzed 

with FlowJo software (v10, TreeStar). 

 

In Vitro Tumor Killing and T Cell Functional Assays 

For tumor killing assays, PSCA-mCAR T cells and tumor targets were co-cultured at indicated 

effector:tumor (E:T) ratios in the absence of exogenous cytokines or antibiotics in 96-well plates 

for 24 to 72 h and analyzed by flow cytometry. Tumor killing was calculated by comparing DAPI-

negative (viable) mCD45-negative cell counts in co-cultures with CAR T cells relative to that 

observed in co-culture with Mock (untransduced) T cells. T cell functional analysis from these 

assays were also determined by flow cytometry, using indicated cell surface antibodies.  

 

ELISA Cytokine Assays 
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Cell-free supernatants from tumor killing assays were collected at indicated times and frozen at -

20°C for further analysis. Murine IFNγ and IL-2 cytokines were measured in supernatants 

according to the Murine IFNγ and IL-2 ELISA Ready-SET-GO!® ELISA kit (Invitrogen) according 

to manufacturer’s protocol, respectively. Plates were read at 450 nm using a Cytation3 imaging 

reader with Gen5 microplate software v3.05 (BioTek). 

 

Tumor RNA Isolation, Sequencing, and Analysis 

Tumor tissue samples harvested from mice were immediately snap-frozen in liquid nitrogen and 

stored at -80°C for further processing. Frozen tumor samples were placed in Green RINO RNA 

lysis tubes for bead homogenization in a Bullet Blender homogenizer (Next Advance) in the 

presence of TRIzol at 4°C. Lysate was then chloroform extracted for RNA and purified via a 

Qiagen RNA Easy isolation kit (Qiagen) according to manufacturer’s protocol. Libraries for 

stranded polyA RNA-Seq were created using the KAPA mRNA HyperPrep kit (Roche).  

 

Sequencing of 51 bp single-end reads was performed using a HiSeq2500 regular run.  Base 

calling (de-multiplexing samples between and within labs by 6 bp barcodes, from a 7 bp index 

read) was performed using bcl2fastq v2.18. Reads were aligned against the mouse genome 

(mm10) using TopHat2 48. Read counts were tabulated using htseq-count,49 with UCSC known 

gene annotations (TxDb.Mmusculus.UCSC.mm10.knownGene, downloaded 8/30/2018).50 Fold-

change values were calculated from Fragments Per Kilobase per Million reads (FPKM) 

normalized expression values, which were also used for visualization (following a log2 

transformation).51 Aligned reads were counted using GenomicRanges.52 Scripts are a modified 

version of a template for RNA-Seq gene expression analysis 

(https://github.com/cwarden45/RNAseq_templates/tree/master/TopHat_Workflow) and RNA-Seq 
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data for this study was deposited in X. Expression of log2(FPKM + 0.1) expression was visualized 

in heatmaps using heatmap.3 (https://github.com/obigriffith/biostar-

tutorials/blob/master/Heatmaps/heatmap.3.R). Custom gene sets defined in Ingenuity Pathway 

Analysis (IPA, Ingenuity® Systems, www.ingenuity.com)  was used for generation of specific 

heatmap gene sets used in the current study. Candidate genes were selected by pair-wise 

comparisons between treatment groups, looking for genes with a |fold-change| > 1.5. Genes were 

filtered to only include transcripts with an FPKM expression level of 1 (after a rounded log2-

transformation) in at least 50% of samples as well as genes that are greater than 150 bp.  An 

expression level of FPKM greater than 1 was used to reduce false positives. Expression level 

FPKM data was then used to generated 1 vs 1 treatment group comparisons. IPA pathway 

analysis was used to calculate canonical pathway enrichments among treatment groups and 

generation of heatmaps using the provided set of genes.  Gene Set Enrichment Analysis (GSEA) 

was run on log2(FPKM + 0.1) expression values, with up-regulated enrichment results for Gene 

Ontology (GO) Biological Process categories in MSigDB.53-55 

 

In Vivo Tumor Studies  

For in vivo intratibial (i.ti.) tumor studies, 2.5 x 104 RM9-hPSCA/ffluc cells were prepared HBSS-/- 

and i.ti. engrafted in 6–8 week-old male heterozygous hPSCA-KI mice as described previously.10 

For in vivo subcutaneous (s.c.) tumor studies, 0.2 - 1.0 x 106 RM9-hPSCA/ffluc cells were 

prepared in HBSS-/- and s.c. engrafted in 6–8 week-old male heterozygous hPSCA-KI mice. 

Tumor growth was monitored at least twice per week via biophotonic imaging (LagoX, Spectral 

Instruments) or by volumetric caliper measurement (length x width x height = mm3). Flux signals 

were analyzed by noninvasive optimal imaging as previously described.10, 47 For i.ti. studies, on 

day 3 or 4 post engraftment, mice were grouped based on flux signal and i.p. injected with the 

indicated dose of cyclophosphamide (Cy, Sigma-Aldrich) or vehicle (sterile PBS). For s.c. studies, 
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mice were treated i.p. with Cy or vehicle once tumor volumes reached an average of 100 mm3. 

For all studies, mice received intravenous (i.v.) treatment with 5.0 x 106 Mock or PSCA-mCAR T 

cells. Flux imaging or caliper measurement continued until scheduled harvest or humane 

endpoints were reached. For tumor rechallenge studies, tumor burden was measured by flux 

imaging until complete responses (CR) were achieved and maintained for at least 30 days. Mice 

achieving a CR, and age matched tumor naïve hPSCA-KI control mice, were then rechallenged 

by s.c. injection of 0.5 to 1.0 x 105 RM9-hPSCA/ffluc or RM9 wild-type (non-PSCA, non-ffluc) cells 

and engraftment was measured by flux imaging and/or volumetric caliper measurement. Humane 

endpoints were used in determining survival. Mice were euthanized upon reaching i.ti. and s.c. 

tumor volumes in excess of 1500 mm3, showing signs of distress, labored or difficulty breathing, 

weight loss, impaired mobility, or evidence of being moribund.  

 

Peripheral blood (PB) was collected from isoflurane-anesthetized mice by retro-orbital (RO) bleed 

through heparinized capillary tubes (Chase Scientific) into polystyrene tubes containing a 

heparin/PBS solution (1000 U/mL, Sagent Pharmaceuticals) at the indicated time points. Volume 

of each RO blood draw was recorded for cell quantification per µL blood. Tumor and normal tissue 

samples harvested from euthanized mice were collected into ice-cold PBS and subsequently 

processed using a murine tumor digestion kit (Miltenyi Biotec) according to manufacturer’s 

protocol. Red blood cells (RBCs) from either RO bleed or tissue collection were lysed with 1X 

Pharmlyse buffer (BD Biosciences) according to manufacturer’s protocol and then washed, 

stained, and analyzed by flow cytometry. 

 

Immunohistochemistry and RNA in situ Hybridization 
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Tumor tissue was fixed in 4% paraformaldehyde (4% PFA, Boston BioProducts) and stored in 

70% ethanol until further processing. Immunohistochemistry was performed by the Research 

Pathology Core at City of Hope. Briefly, paraffin sections (5 µm) were stained with hematoxylin & 

eosin (H&E, Sigma-Aldrich), mouse anti-human PSCA antibody (Abnova, H00008000-M03, 

Clone: 5C2), anti-mouse CD3 (Abcam, ab16669, Clone: SP7), anti-mouse granzyme-B (Abcam, 

ab4059, polyclonal),  anti-mouse CD8a (Cell Signaling, 98941S, Clone: D4W2Z), anti-mouse PD-

L1 (Abcam, AB80276, Clone: MIH6), anti-mouse FOXP3 (Abcam, Clone: EPR22102-37) 

according to manufacturer’s protocol. RNA in situ hybridization of human PSCA was performed 

by RNAScope™ (ACD). Images were obtained using the Nanozoomer 2.0HT digital slide scanner 

and the associated NDP.view2 software (Hamamatsu). 

 

Statistical Analysis 

Data are presented as mean ± standard error of the mean (SEM), unless otherwise stated. 

Statistical comparisons between groups were performed using the unpaired two-tailed Student’s 

t test to calculate p value, unless otherwise stated. *p < 0.05, **p < 0.01, ***p < 0.001; NS, not 

significant. 
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Supplemental Information: Supplemental figures and legends are available and included as 

separate document. 
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Figures Legends: 

 

Figure 1: Characterization of PSCA-mCAR T cell transduction and activity in vitro. a) 

Diagram of the fully murine retroviral expression cassette with PSCA-mCAR T cell containing 

murine scFv (1G8 clone) targeting human PSCA. A truncated non-signaling murine CD19 

(CD19t), separated from the CAR sequence, was expressed for identifying transduced T cells. b) 

Flow cytometry detection of CAR transduction measured by CD19t expression on Mock 

(untransduced) and PSCA-mCAR T cells (top) and CD4 and CD8 expression (bottom). IFNγ (c) 

and IL-2 (d) secretion, as measured by ELISA, by Mock and PSCA-mCAR T cells after 24 h co-

culture with antigen-negative RM9 and antigen-positive RM9-hPSCA. For ELISA, N≥2 replicates 

per group. e) Representative flow cytometry plots depicting %4-1BB and %PD-1 induction on 
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Mock or PSCA-mCAR after 72 h co-culture with RM9 or RM9-hPSCA (left) and quantification of 

%4-1BB and %PD-1 expression at indicated E:T ratios (right). f) Quantification of mean 

fluorescent intensity (MFI) of PD-L1 expression on indicated cancer cells after 72 h co-culture 

with Mock or PSCA-mCAR T cells. g) Representative 72 h flow cytometry plots of co-cultures of 

RM9 or RM9-hPSCA with Mock or PSCA-mCAR T cells showing dapi negative, CD45-negative 

(remaining viable tumor cells) or CD45-positive (T cell expansion) (left), and quantification of 

killing at 24 and 72 h post co-culture at indicated E:T ratios (right). h) Quantification of fold 

expansion of Mock or PSCA-mCAR T cells after 72 h co-culture with RM9 or RM9-hPSCA. For 

co-culture flow cytometry data, N≥3 replicates per group. All data are representative of two 

independent experiments. 
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Figure 2: Anti-tumor effect of PSCA-mCAR following Cy mediated pre-conditioning and 

histological evaluation of normal tissue architecture and PSCA expression following 

treatment in vivo. a) Illustration of RM9-hPSCA s.c. tumor engraftment and Cy pre-conditioning 

(vehicle or Cy 100mg/kg, i.p.) 24 h prior to treatment with 5.0x106 T cells (Mock or PSCA-mCAR, 

i.v.). b) Tumor volume (mm3) measurements of each replicate at indicated days post tumor 

injection for indicated treatment with or without Cy pre-conditioning; CR = complete response. c) 

Kaplan-Meier survival plot for mice in each group indicated. N≥6 mice per group. d) 

Representative IHC (H&E and PSCA protein staining) of indicated normal tissues from Cy-

preconditioned tumor bearing mice at day 11 (left) or day 161 (right) post Mock or PSCA-mCAR 

T cells injection. All images at 20x magnification, scale bar represents 100 μm.  
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Figure 3: Cy pre-conditioning improves intra-tumoral PSCA-mCAR T cell accumulation and 

expansion in vivo. a) IHC of CD3 T cell localization in representative RM9-hPSCA tumors 

harvested 3 days post T cell injection in all treatment groups. b) Time-course bioluminescent flux 

imaging in RM9-hPSCA tumor bearing mice following injection of ffluc-positive PSCA-mCAR T 

cells with or without Cy pre-conditioning. c) Quantification of PSCA-mCAR/ffluc T cell flux on days 

1 through 4 post T cell injection with or without Cy pre-conditioning. N≥5 mice per group. d) Fold 

change in PSCA-mCAR/ffluc T cell flux on day 3 post T cell injection from panel b and c. e) Flow 

cytometry quantification of total CD3+ T cell counts per μL PB (left) and %PSCA-mCAR (%CD19+ 

gated on total CD3+) found in PB (right) collected from mice on day 3 post T cell injection with or 

without Cy pre-conditioning. N≥5 mice per group. IHC 5x magnification, scale bar represents 500 

μm. All data are representative of two independent experiments. 
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Figure 4: Tumor RNA sequencing analysis reveals Cy mediated pro-inflammatory 

modulation of the TME. a) RNA sequencing heatmap showing standardized expression of 

transcripts from RM9-hPSCA tumors after Mock or PSCA-mCAR treatment with or without Cy 

pre-conditioning (scale -1.5 to +1.5). b) GSEA network GO pathway analysis highlighting 
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significant enrichment (FDR ≤ 0.005) in immune related biological processes from tumors treated 

with Mock + Cy relative to Mock alone (top) or PSCA-mCAR + Cy treatment relative to PSCA-

mCAR alone (bottom). c) IHC of CD8, GzmB, PDL1, and Foxp3 in representative tumor tissues 

treated with PSCA-mCAR T cells alone or PSCA-mCAR following Cy pre-conditioning. 20x 

magnification, scale bars represent 100 μm. d) Heatmap showing standardized expression of 

immune related gene signatures from bulk tumors reveal pro-immune shifts following PSCA-

mCAR or combo treatment (scale -1.5 to +1.5). e) Flow cytometry quantification of frequency 

shifts within intra-tumoral pro-inflammatory Ly6C+ (CD206-F4/80+) or MDSC-like Ly6G+ myeloid 

cells (gated on CD45+CD11b+) following indicated treatments. Quantification of MFI of M2-like 

macrophage marker CD206 (f) and dendritic cell marker CD11c (g) on tumoral myeloid cells 

following indicated treatments. For all data, N≥3 mice per group. 
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Figure 5: Cy pre-conditioning combined with PSCA-mCAR T cell treatment is effective in 

vivo against bone-metastatic RM9-hPSCA prostate tumors and promotes protective anti-

tumor immune memory. a) Illustration of RM9-hPSCA i.ti. engrafted prostate tumors with or 

without Cy pre-conditioning (vehicle or Cy 100mg/kg, i.p.) 24 h prior to treatment with 5.0x106 T 

cells (Mock or PSCA-mCAR, i.v.). b) Tumor flux in each treatment group as measured by 

bioluminescent imaging in each replicate mouse at indicated days post tumor injection. c) Kaplan-

Meier survival for treated mice. d) Tumor flux in mice engrafted with RM9-hPSCA i.ti. which 

achieved CR following PSCA-mCAR treatment with Cy pre-conditioning. At day 68 post initial 

tumor injection, tumor naïve and previously cured mice were then rechallenged with s.c. RM9-

hPSCA tumors. e) Corresponding replicate RM9-hPSCA tumor volume measurements in tumor 
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naïve and rechallenged mice from Figure 5 d. f) Flow cytometry highlighting absence of 

%CD19+CD3+ (%PSCA-mCAR, gated on CD45+CD3+) in peripheral blood (PB) at 4 days post 

RM9-hPSCA tumor challenge in naïve or rechallenge in previously cured PSCA-mCAR + Cy mice. 

g) Replicate RM9 wild-type tumor volume measurements in tumor naïve and rechallenged mice 

previously cured by PSCA-mCAR T cell + Cy treatment. N≥5 mice per group. All data are 

representative of two independent experiments.  
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Figure 6: Cy pre-conditioning combined with PSCA-mCAR T cell treatment is effective in 

vivo against PSCA+ pancreatic tumor models. a) Illustration of KPC-hPSCA i.v. engrafted 

pancreatic tumors established in the lungs, with or without Cy pre-conditioning (vehicle or Cy 

100mg/kg, i.p.) 24 h prior to treatment with 5.0x106 T cells (Mock or PSCA-mCAR, i.v.). b) Tumor 

flux in each treatment group as measured by bioluminescent imaging in each replicate mouse at 

indicated days post tumor injection. c) Kaplan-Meier survival plot for mice in each group indicated. 

N≥7 mice per group. All data are representative of two independent experiments. 
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