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Abstract1

Single-cell RNA sequencing (scRNA-seq) experiments often measure thousands of genes, making2
them high-dimensional data sets. As a result, dimensionality reduction (DR) algorithms such3
as t-SNE and UMAP are necessary for data visualization. However, the use of DR methods4
in other tasks, such as for cell-type detection or developmental trajectory reconstruction, is5
stymied by unquantified non-linear and stochastic deformations in the mapping from the high-6
to low-dimensional space. In this work, we present a statistical framework for the quantification7
of embedding quality so that DR algorithms can be used with confidence in unsupervised8
applications. Specifically, this framework generates a local assessment of embedding quality by9
statistically integrating information across embeddings. Furthermore, the approach separates10
biological signal from noise via the construction of an empirical null hypothesis. Using this11
approach on scRNA-seq data reveals biologically relevant structure and suggests a novel12
“spectral” decomposition of data. We apply the framework to several data sets and DR methods,13
illustrating its robustness and flexibility as well as its widespread utility in several quantitative14
applications.15

Introduction16

Recent advances in high-throughput measurement techniques have revolutionized cellular and17

molecular biology. In particular, the advent of single-cell RNA sequencing (scRNA-seq) has made it18

possible to ask detailed questions about cellular differentiation, patterning, signaling, and variation19

at a single-cell resolution [1–13]. However, transcriptional sequencing’s attempt to characterize the20

entire cellular transcriptome at once means that thousands of genes must be measured simultaneously,21

making the data inherently high-dimensional and subject to the “curse of dimensionality” [14]. As a22

result, sophisticated methods must be employed in order to make statistical inferences from the data23

(e.g., the DESeq2 algorithm to infer simple differences in fold-change expression [15]).24
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Traditionally, a researcher would seek to find a reduced set of features (genes) or combination25

of features on which statistical methods can be applied with more power; this is known as26

dimensionality reduction (DR), and when done correctly, can be used to find a more “natural”27

description of a system [16]. Significant effort has been put into the development and application of28

DR algorithms such as PCA [17], t-SNE [18], UMAP [19], and others [20–34], which attempt to29

find lower-dimensional (usually two- or three-dimensional) representations of the data that preserve30

some aspect of the original structure (for a review, see [35–37]; in application to -omics data, see31

[38]). However, regardless of the choice of algorithm, DR will always incur a loss of information32

[39, 40], which manifests itself as distortions of high-dimensional structure in the lower-dimensional33

embedding [27, 36, 41] (See Figure S1 for an example). Furthermore, it is impossible to detect “by34

eye” which parts of an embedding are signal and which are noise, since these methods are often35

non-linear or stochastic, and therefore do not homogeneously distort the data [42, 43].36

As a result, the use of DR algorithms in scRNA-seq analysis may be treated skeptically [9,37

12, 44] or require additional guidance [45]. To underscore these concerns, consider Figure 1,38

where scRNA-seq data from over 5000 bone-marrow cells that were collected by the Tabula Muris39

Consortium [8] have been embedded in two dimensions using several DR algorithms. As noted40

earlier, the detection of different cell types in a heterogeneous tissue is a biologically interesting41

task, so the annotated cell types from [8] have been used to color the embeddings (the legend can42

be found in the S2). However, a quick examination of the embeddings in panels B and E reveals43

that the arrangement and shape of the clusters are different between two different runs of the t-SNE44

algorithm. As a result, even though algorithms such as t-SNE are provably good at clustering [46],45

they cannot reliably be used by themselves for unsupervised clustering due to these non-linear and46

stochastic effects. The rest of Figure 1 underscores that the addition of algorithmic hyperparameters47

and the choice of algorithms only serve to complicate this process.48

To address these issues, much work has been done to provide guidelines on how to use these49

algorithms [10, 44, 45, 47] and to make improvements to the algorithms themselves [46, 48–54]50

that aim to correct or account for these distortions. At the same time, an entire set of methods for51
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Figure 1: A Zoology of Embeddings Demonstrates the Non-Linear and Stochastic Effects of
Dimension Reduction Algorithms: 5037 FACS-sorted bone marrow cells from several mice were
sequenced by the Tabula Muris project [8] and have been embedded by several DR algorithms. (A)
The pair-wise Euclidean distances between a reference cell and all other cells in the data set are
shown as a histogram, with five "marker" cells highlighted by colored lines and numbered boxes. (A,
Inset) The cumulative distribution of pair-wise distances shows that the five marker cells correspond
to the 20th, 40th, 60th, 80th, and 100th percentile distances. (B) The cells are embedded in 2D
by the standard t-SNE algorithm with perplexity set to 84 (as chosen in [8]). The coloring of the
cells corresponds to the annotated cell type from [8], the legend can be found in Figure S2. The
five marker cells from panel A are indicated with lines and numbered boxes. (C) The rank distance
of the five marker cells in the high- and low-dimensional spaces (HiD and LoD, respectively) are
compared. (D) The distance distribution from all points in the embedding in (E) to the reference
point. The five marker cells from panel A are indicated by colored lines and numbered boxes. (E &
F) The same as in panels B & C except with a different random initialization to the t-SNE algorithm.
Notice the reordering of the originally marker points differs from that in panel C. (G & H) Same
as in panels B & C except with the perplexity parameter set to 25. (I & J) Same as in panels B
& C except with the perplexity parameter set to 1000. (K & L) Same as in panels B & C except
the data are now projected onto their first 2 principal components. (M & N) Same as in panels B
& C except the data have now been embedded with Isomap (default scikit-learn parameters) [22].
(O & P) Same as in panels B & C except the data have now been embedded with UMAP (default
umap-learn parameters) [19].
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quantitatively assessing the quality of DR methods has been developed [37, 43, 55]. These metrics52

can roughly be categorized as being global [27, 49, 56–64] or local [26, 42, 43, 65, 66] in scope, and53

either based on preserving distances [64], neighborhoods [27, 43, 55–57, 59, 67, 68], or topology54

[63, 69, 70], but in all cases, they attempt to summarize the extent to which a given DR algorithm55

preserves some aspect of the original data’s structure. These metrics have been successfully used to56

compare DR methods and optimize hyperparameters, and a recent comprehensive benchmarking57

of these algorithms noted that t-SNE and UMAP were, in fact, consistently high-quality methods58

across many data set and metrics [37].59

It is in this context that we propose a statistical framework for characterizing the stability60

and variability of embedding quality by posing a point-wise metric as an Empirical Embedding61

Statistic. We propose this approach to address several aspects of scRNA-seq data that have limited62

the direct application of many of the tools in the quality assessment literature. Specifically, we63

note that any assessment methodology for scRNA-seq should (1) measure quality locally, not64

globally across an embedding, (2) estimate the variation in embeddings that is introduced by the DR65

algorithms themselves, and (3) estimate where embeddings show structure consistent with actual66

high-dimensional structure and not noise. In the rest of this section, we explain why these criteria67

are necessary for a useful DR assessment framework. We then outline the approach in the next68

section before demonstrating its application and utility on several data sets.69

First, we note that while global assessment of DR methods for hyperparameter optimization is70

important, the direct use of DR output for clustering or lineage reconstruction is limited by concerns71

about the local quality of the samples within an embedding. (Heuristics for maximizing global72

quality have been proposed [45], and human-optimized parameters are often close to those selected73

algorithmically [49].) That is, it is much more important to know the answer to “Is cell A close74

to cell B in the embedding because they are similar in gene-space?” than it is to know whether75

the average cell is well-embedded. Therefore, we want to make use of the extensive work on local76

quality metrics [41, 42, 47, 66–69, 71] in developing our approach.77

In addition, the non-linearity and stochasticity of popular DR methods is well known to cause78
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large variation in the arrangement and shape of embedded structures [45], as can be seen in Figure 179

for t-SNE. (Similar results can be shown for other common algorithms, such as UMAP [19] and80

PHATE [34].) As a result, we should expect that this will introduce variation into any quality metrics,81

and this variation should be incorporated into any downstream analysis. That is, we don’t just want82

to know whether a cell is well-embedded one time, but whether it is consistently well-embedded.83

While there is a large body of work on ensemble visualization [72, 73], only recently [74] has there84

been an attempt to apply this theory to assess the variability of DR embeddings. Our approach85

differs in that it proposes a statistical framework in which to consider quality metric variability.86

Specifically, we can consider each cell’s local quality score to be a measurement of a quality statistic87

and we now want to assess the distribution of this statistic across embeddings.88

This approach then allows us to incorporate concerns about signal and noise as a statistical89

hypothesis test, where we can use consistently elevated embedding quality as evidence of real90

biological structure. To perform this test, we propose the use of resampling to generate "null"91

data sets that contain no biological structure. These null data are then embedded to provide a null92

distribution for local quality scores. Combining this null distribution with the actual quality metrics93

from the data, the output of our method is a ?-value assigned to each sample, requiring no further94

corrections, indicating the likelihood that it was embedded better than noise. This assessment of95

the presence of biological structure is especially useful in the context of scRNA-seq data, which is96

notoriously noisy and sparse [13, 44].97

In this way, the statistical approach to dimensionality reduction provides a biologically relevant98

quantification of DR quality. The approach, outlined in the next section, addresses several unique99

concerns that arise with scRNA-seq data including the local fidelity of embeddings, and the100

variability in embedding that is due to both biological noise and the DR algorithm. In our results,101

we show that the application of this approach indicates that heterogeneity in embedding quality is102

generic across data sets and DR algorithms. We then show that examining this cell-wise embedding103

variability across scale parameters reveals a spectral view of the data. We demonstrate that the104

method can be used to rigorously compare DR methods and data sets, allowing the user to untangle105
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analysis choices like those presented in Figure 1. Finally, we show that the approach may have106

utility in downstream analyses such as unsupervised clustering that can incorporate uncertainty in107

embedding.108

The Statistical Approach109

The statistical approach to dimensionality reduction consists of three components: (1) the embedding110

of the data, (2) the construction and embedding of the null data, and (3) the calculation of the111

embedding statistic and performance of a hypothesis test. These are illustrated heuristically in112

Figure 2 and more technically in S3. These steps are centered on the calculation of a local quality113

statistic, the Empirical Embedding Statistic (EES), for each sample (cell) in the data set. To clarify114

the notation throughout the rest of this paper: consider a data set - to be a collection of #�4;;B115

vectors, where each cell contains measurements for each of � genes. Recalling that the data can116

be embedded multiple times to yield different embeddings, we denote the position of each 8th cell117

in the =th embedded space by ®H8,=, where the number of embeddings is #�<143 . For each cell, in118

each embedding, we will calculate the embedding statistic, which we denote ��(8,=. We use an ∗119

to indicate null data generated by resampling, so that a resampled high-dimensional data vector120

is ®G∗
8
and it’s position in the embedded space would be ®H∗

8
. The final step of the hypothesis test121

process involves calculating the ?-value: ?8,= = %(��(∗ ≤ ��(8,=) using the empirically generated122

distribution of ��(∗. We elaborate on each of these three steps below.123

1. Data Embedding: The first step in our approach is simply to embed the data one or more124

times, and to calculate a sample-wise quality metric on each sample (single cell) for each125

embedding, ��(8,=. Depending on what aspects of data structure the researcher wants to126

assess, several of the quality metrics mentioned earlier may be adapted for this purpose. In this127

work, we calculate a similarity score between each pair of samples in the high-dimensional128

space and again in the low-dimensional space. For similarity in the high-dimensional space,129

we calculate a Gaussian probability for two points being a certain Euclidean distance apart,130
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Figure 2: The Statistical Approach: a heuristic illustration of the proposed method. (A) A data
set of #24;; cells and � genes is embedded #�<143 times. For each embedding and each cell,
��(8,= is calculated. (B) A no-covariance resampling of the data provides a ”null” data set. This
is embedded ##D;; times. For each embedding and cell, ��(∗

8,=
is calculated. (C) The ��(∗

8,=
are

combined into an empirical null distribution. Each ��(8,= is compared to the null distribution in
turn, giving a ?-value, ?8,=. (D) The ?-values are synthesized for each cell across embeddings as in
[75] to provide a point-wise quality metric, ?8. One of the data embeddings (MNIST digits [76],
t-SNE, perplexity=30) is visualized with ?8 as a color, allowing for the visual assessment of where
the embedding best preserves high-dimensional structure. Cells are well-embedded when their
neighbors, such as those indicated by red lines, are similarly situated in the 2D space and in the
original, high-dimensional space.
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where the scale is set by fixing the overall entropy of a sample’s similarities, as in [25]. The131

low-dimensional similarity is given by the likelihood of a certain distance under a Student’s132

C-distribution, with a = 1 degree of freedom. We then compare these similarity distributions133

using the Kullback-Leibler Divergence � ! [77], and we use � ! ≡ ��( as our embedding134

statistic. This choice of statistic is justified in that it directly relates the quality statistic135

to the similarities upon which t-SNE operates, and because it can be seen as a continuous136

generalization of recall, which is the likelihood that a sample’s neighbors in the embedded137

space are also neighbors in the original data [27]. (See Figure S4 for example distributions of138

the EES.) Choosing a neighborhood-preservation metric is also consistent with our goal of139

assessing local quality in the embeddings. As shown in the results section, this also gives140

our quality metric the same scale parameter as t-SNE, making the results easily interpretable.141

However, the choice of local quality metric is flexible, and other metrics may be preferable in142

different contexts.143

2. Null Construction and Embedding: The most crucial step in our process is to generate a144

biologically-realistic synthetic data set that has no biological structure, which we define as145

having zero inter-gene correlation. This is achieved via marginal resampling, where genes146

in the null data are independently drawn from the original data’s gene distribution (See Figure147

S5 for an illustration of this process). In this way, the null data contains biologically realistic148

distributions of individual genes, but no grouping of the samples as a function of these genes.149

This provides a basis on which to empirically generate a distribution of quality scores by150

embedding the null data multiple times. Figure S6 shows that the null distribution is generally151

stable across embeddings, so that only 5-20 are needed to generate a sufficient distribution.152

3. Empirical Hypothesis Test: Once the null data have been created and the embedding statistic153

��(∗ has been calculated for every point over several embeddings, each of the data statistics,154

��(8,= can be compared to the aggregated distribution of null statistics, as in the panel155

in Figure 2. This yields an empirical ?-value, which can be summarized across the #�156

8
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embeddings [75, 78, 79] to give a single quality metric, ?8, for each cell.157

We should note that while others have performed calculations for random rank orderings to158

adjust quality statistics [26, 57, 60], it is not immediately clear that a generic DR method159

will produce completely randomized neighborhoods when applied to noise. Furthermore,160

these calculations do not describe the spread with which we expect to observe neighborhood161

preservation from noise, so that unlike our proposed method, they cannot evaluate the162

likelihood of extreme values.163

Results164

Embedding Quality is Heterogeneous Across an Embedding165

As noted earlier, there is no good reason to assume a priori that a generic data set has any uniformity166

(in terms of density, continuity, topology, etc.) in the high-dimensional space. This lack of uniformity,167

is one of the central difficulties of dimensionality reduction and the analysis of high-dimensional data.168

There have been many methods proposed to address this heterogeneity, from t-SNE’s scale-sensitive169

kernel [25] to Isomap’s method of making local graph approximations [22], and yet even the most170

advanced algorithms necessarily end up setting global hyperparameters. As a result, we expect171

that even for parameters that are globally optimal there will be regions that are poorly embedded172

compared to the rest of the data (we know that global quality is bounded [40], but not the variance173

in quality within an embedding).174

This local heterogeneity in embedding quality has previously been shown [42, 43, 66, 68, 71,175

80], and we also recover this phenomenon, as shown in Figures 2, 3, and 4. Using the bottom panels176

of Figure 3 as an example, we note that embedding quality varies considerably across an embedding,177

and not necessarily with any generic pattern. Especially in comparison to an unmarked embedding178

it is impossible to deduce what parts of an embedding are interpretable features - and what parts are179

noise - without the use of a local quality metric.180
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Sweeping Across Scale Reveals Spectral Structures in the Data181

The previous result highlights one of the difficulties of working with real data: that we don’t know182

whether the data are spread throughout the high-dimensional space with a uniform spatial scale.183

To deal with this, t-SNE applies a similarity measure between data points where the scale of that184

measure is tuned to the size of each individual point’s local neighborhood. Similarly, UMAP builds185

a similarity graph by only considering the distances to a sample’s : nearest neighbors. The effect186

of these choices is to maintain an equal weighting of local scales across an embedding, which is187

ideal because it allows for both densely-packed regions of the data space to be examined with equal188

standing to more diffuse regions. However, this balancing of scales comes at the cost of specifying a189

neighborhood size in the form of an algorithmic hyperparameter: either perplexity for t-SNE or190

n_neighbors for UMAP. Considerable effort has been dedicated to disentangling the effect of this191

hyperparameter or eliminating it altogether [29, 30, 45, 48, 49, 81], but we demonstrate in Figure 3192

that examining the embedding quality over many scales reveals important structure in the data.193

First, we note that sweeping across t-SNE’s perplexity parameter can be used to find a scale194

at which most of the samples in a data set are well embedded. In the case of the Tabula Muris195

FACS Marrow data, (3A) shows that this occurs at perplexity≈1200, which is considerably higher196

than most recommendations for the hyperparameter [25, 45]. Considering neighborhood sizes197

considerably smaller or larger than this results in embeddings that have neighborhoods that are198

indistinguishable from noise (3A left and right insets).199

While 3A shows how we can summarize the effect of choosing a neighborhood size, our local200

statistical approach also allows for the examination of different portions of the data independently.201

Examining cells according to their annotated labels as in 3B-E, shows that different cell types might202

have different characteristic structures that are better represented at certain neighborhood sizes203

than others (See Figure S8 for all annotated cell types). This suggests that examining embedding204

“power” as a function of scale - a sort of spatial power spectrum - might be a useful way to explore205

scRNA-seq data even if cell type annotations are not available.206

10
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Figure 3: A Spectral View of the Data Reveals Biological Structure: Sweeping across t-SNE’s
scale parameter (”perplexity”) reveals significantly different embedding quality at different scales
(Panel A). Setting the scale parameter too large or small results in embeddings that are not much
better structured than noise (Left and Right insets). Setting the perplexity parameter to that of
the smallest average ?-value shows indicates a potential consensus scale at which to examine the
embedding (Middle inset). Examining previously annotated cell types’ embedding quality as a
function of perplexity suggests that cell types might be able to be characterized by their scale spectra
(Panels B-E). PCA analysis of the scale spectra in Figure S7 indicate two spectral modes, with peaks
near ∼100 and ∼2200. Applying the statistical approach at each mode (left sides of Panels F and G,
respectively) reveals new biologically relevant structure, especially when compared to the expert
annotations from the Tabula Muris project [8] (right side of Panels F and G).
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We can use these spectra to select interesting scales at which to examine the data. For example,207

(3B, D) suggest that these cell types are best embedded at large perplexity (∼1500), while (3C, E)208

suggest that perplexity ∼100 may be more appropriate. A more rigorous approach that applies PCA209

to the scale spectra is shown in Figure S7, and suggests that perplexity ∼100 and ∼2200 may be210

more "natural" scales for the data. Applying perplexity = 97 and 2197 yields Figures 3F and 3G,211

respectively.212

Interestingly, the large perplexity 3G indicates that three large clusters of cells are well-embedded,213

and the labels in the right half confirm that these are biologically consistent clusters corresponding214

to B Cells, Progenitor Cells, and Granulocytes. However, examination of these clusters at a smaller215

neighborhood scale in 3F shows that much of the apparent structure in the B cells and progenitor216

cells is not as well resolved as at the higher scale, except for the Late Pro-B cells, which have broken217

off into their own well-embedded cluster. On the other hand, the granulocytes also have a different218

apparent structure at the smaller perplexity, with the granulopoeitic cells breaking off into their219

own cluster and the granulocytes separating into a well-embedded hourglass shape. In this way, we220

can examine how meaningful biological differences show up at different scales - the B cells seem221

to be similar at a wider scale, but are less distinguishable at a narrower resolution. Meanwhile,222

granulocytes are also well-grouped at a large scale, but might actually be composed of several223

distinct sub-types, as suggested by examination at a smaller scale.224

A Statistical Approach Allows for Comparisons of Data and Algorithms225

The statistical approach to dimensionality reduction also provides a rigorous method to evaluate and226

compare data analysis protocols or the performances of dimensionality reduction algorithms on227

specific data sets. These topics have been the subject of significant debate [10, 11, 13, 37, 44, 45,228

82] because, as Figure 1 shows, these choices can significantly impact analysis and interpretation.229

In Figure 4, a comparison between embeddings of the Tabula Muris marrow tissue generated by230

PCA, t-SNE, and UMAP at their default parameters are all shown. Rather than making heuristic231

arguments, it can now be seen quantitatively that the structures in PCA and t-SNE are better232
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representations of the original data’s structure than UMAP, when using default parameters. Applying233

the procedure in Figure 3A suggests a methodology for choosing algorithmic parameters, regardless234

of the specific algorithm being used.235
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Figure 4: The Statistical Approach Allows for Algorithmic Comparison and Facilitates Cell-
Clustering: Applying the statistical approach to assessing the quality of embeddings generated by
PCA (A), t-SNE (B), and UMAP (C), reveal significantly different results between algorithms. All
embeddings were generated with default parameters [19, 25], where applicable. Clustering with
DBSCAN [83] at the scales suggested by Figure S7 (Panels D and E) using the empirical ?-values as
weights suggests that the statistical approach also has use in quantitative downstream applications.

A Statistical Approach Can Be Used Upstream of Unsupervised Clustering236

Since the statistical approach is able to summarize each cell’s neighborhood-fidelity with a ?-value,237

we can leverage this quantity in downstream applications that depend on the geometry of the238

low-dimensional representations, such as unsupervised clustering. In the bottom of Figure 4 the239

results of applying DBSCAN [83] to embeddings at the two scales from Figure 3 are compared240
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to the cell ontology annotations generated by the Tabula Muris consortium. In generating these241

clusterings, the ?-values, ?8, for each cell were leveraged in two ways: first, cells that are never242

embedded well at any scale are omitted from the clustering process, then the inverse of the ?-values,243

1/?8 are used as weights in the DBSCAN algorithm, allowing for more high fidelity regions of244

the embedding to take priority in the clustering process. Comparing the unsupervised clustering245

to the expert annotations reiterates some of the observations made about Figure 3 concerning the246

annotated cell types that appear to be part of larger, coherent structures detected by the statistical247

method applied to t-SNE. However, on a more fundamental level, Figure 4 indicates the immediate248

and obvious utility of our statistical approach in a variety of contexts.249

Discussion250

Dimensionality reduction is a complicated procedure, even in the best of circumstances. Single-cell251

RNA sequencing offers a path towards untold biological discovery, but its high-dimensional nature252

and relatively noisy measurements require the careful application of dimensionality reduction253

algorithms in order to make progress. Unfortunately, the state of the art in dimensionality reduction254

currently rests on ever-changing heuristics to a degree that limits data analysis.255

The statistical approach presented in this work provides a rigorous approach to the evaluation256

of these heuristics, and at the same time unearths information about data sets that is of immediate257

utility to biological researchers. The statistical approach is relatively simple (Figure 2), and can258

be applied and utilized in a variety of contexts (Figure 4). Perhaps more importantly, statistically259

analyzing the EES promises to reveal previously hidden structures and scales in data sets (Figure 3).260

This paper presents a broad view of the approach and its applications, but there are a few261

limitations that will require further consideration. Most practically, the code as written rests on the262

speed of current implementations of DR algorithms that can be chained together to generate many263

(null) embeddings of the same data. This is somewhat slow, requiring several hours to run a full264

scale-parameter sweep, however the structure of the method is obviously parallelizable, so there is265
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some optimism that this can be improved.266

This efficiency concern directly relates to the fact that because the statistics are performed267

empirically, there is a finite resolution to the calculated ?-values. This is not a huge practical268

concern except that it also provides a lower-bound on the ?-values, as there will often be cells whose269

embedding statistics are completely outside the support of the null distribution. Other than improved270

computational efficiency, remedies may include theoretical work to describe the tails of these null271

distributions or a principled method for parameterizing the null distribution. Because of this effect,272

in this work, we have refrained from making more precise interpretations of these ?-values (we do273

not make any significance assessments or cutoffs, nor do we do any ordered analysis of the cells by274

?-value), instead leveraging the fact that the ?-values definitely convey strong relative information275

within the context of a data set and DR algorithm.276

Moving forward, it is clear that this information can be leveraged in a variety of ways not presented277

in this work. Several of these directions are suggested in Figure 4, where more comprehensive278

efforts could be undertaken to assess the quality of DR algorithms generically, such as in [36, 37],279

or to incorporate the statistical approach into an unsupervised clustering algorithm more directly.280

Non-computationally, Figure 3 suggests that this approach may be of widespread utility in the281

analysis of high-dimensional biological data sets in order to detect and to assess the stability of282

biologically relevant structures. The ability of the method to form model-free, non-parametric scale283

spectra presents a new way to look at these data sets that may reveal heretofore unseen phenomena.284
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Figure S1: Dimensionality Reduction Algorithms Generate Heterogeneous and Unpredictable
Distortions in Lower-Dimensional Embeddings: The classic “Swiss Roll” data set is embedded
in two-dimensions by several DR algorithms. The variability and quality of the results varies
significantly even for this simple data set. All methods shown here were run at default parameters
using the scikit-learn Python package.
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Figure S2: Tabula Muris Marrow Tissue Cell Ontology Labels: Legend for cell ontology classes
in Figures 1, 3, and 4. Cell types were identified by the Tabula Muris project [8].
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Figure S3: The Statistical Approach with More Details: an illustration of the method using the
MNIST digits [76]. (A, Left) The neighboring samples of a digit in the high-dimensional space is
identified and quantified via an array of “affinities”, ?8 9 , which are calculated as in [25], but are
normalized per sample, rather than over all samples. (A, Middle) The data set is embedded #�<143
times and the affinities in the low-dimensional space between each sample and its neighbors are again
calculated as in [25]. Again, the normalization of these affinities is performed sample-wise, rather
than across the entire data set. (A, Right) The high- and low-dimensional affinities for each cell
are compared using the Kullback-Leibler divergence, which measures differences between discrete
distributions. This value, ��(8,= is stored for each sample in the data set for each embedding of the
data. (B) The process in panel A is repeated for null data sets generated via marginal resampling
(see S5 for an illustration), resulting in the calculation of ��(∗

8,=
. Examples of resampled MNIST

digits are shown (B, Left). (C) The EES values calculated from the null embeddings are aggregated
into a distribution, here shown in purple, and the ��(8,= for each 8th sample in the =th embedding of
the data (shown in red) is compared to this null distribution to generate an empirical ?-value. (D)
The ?-values for each sample can be summarized across embeddings using Simes’ method [84].
These summary ?-values can be indicated on any particular embedding using a custom colormap.
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Figure S4: The Empirical Embedding Statistic Varies Between Embeddings: Examples of
the EES distribution for several t-SNE embeddings of the Tabula Muris marrow data set at three
perplexity values. The left column shows the EES distributions, with each of 5 embeddings denoted
by a different color. The distributions appear similar, but the middle and right columns show the
inter-quartile range (IQR) of each sample’s EES (middle column) or ?-value (right column) as a
function of the median EES or ?-value. These plots show that for some samples, the EES and
?-value can vary significantly between embeddings.
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Figure S5: Illustration of Marginal Resampling for Generating Null Data Sets: The null data
sets are generated via marginal resampling, which is a process by which “null” cells are created by
randomly selecting from the distribution for each measurement (gene) independently. This results in
data sets that have the same marginal distributions for each gene as the original data, but have no
correlative structure (compare the left and right panels).
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Figure S6: Comparing Single Null Embeddings Shows Relative Stability of the EES Null
Distribution: 100 null distributions are generated for the MNIST digits data at perplexity of 50.
The left panel shows a random selection of these distributions, while the right panel shows the
?-value from a Kolmogorov-Smirnov test between each pair of null distributions. The right panel
shows that most pairs display a high ?-value, suggesting close agreement between these distributions.
Based on this and other tests (not shown), we recommend combining between 5-20 null data sets in
order to form a stable null distribution for the EES.
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Figure S7: PCA Analysis of Scale Spectra Reveals "Natural" Data Scales: Performing PCA
on the scale-spectra from Figure 3 reveals three significant principal components, of which two
are extremely significant (Top Left). Examining these components (Bottom Left) indicate several
natural scales at which to examine the data. Plotting the spectra in PC space (Middle) show a
ring-like structure. Colors indicate cell ontology annotations from Figure S2. Examining the spectra
with the top loadings in each principal component (Positive in Top Right and Negative in Bottom
Right; PC1 in blue, PC2 in orange, and PC3 in green) show that perplexities of 100 and 2000 may
be natural and interesting scales at which to examine the data.
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Figure S8: Sweeping Across Perplexity Reveals Different Natural Scales for Different Cell
Types: Examining the scale-spectra of each cell type as in Figure 3 suggests that some cell types
may have characteristic spectra or characteristic scales at which they are well resolved in a 2D
embedding.
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