
 

1 

Efficient and precise single-cell reference atlas mapping with Symphony 1 

Joyce B. Kang1-5, Aparna Nathan1-5, Fan Zhang1-5, Nghia Millard1-5, Laurie Rumker1-5, D. Branch 2 
Moody3, Ilya Korsunsky1-5**, Soumya Raychaudhuri1-6** 3 
1 Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA 4 
2 Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical 5 
School, Boston, MA, USA 6 
3 Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and 7 
Women’s Hospital and Harvard Medical School, Boston, MA, USA 8 
4 Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA 9 
5 Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 10 
USA 11 
6 Versus Arthritis Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Manchester 12 
Academic Health Science Centre, The University of Manchester, Manchester, UK 13 
 14 
** These authors jointly supervised this work. 15 
 16 
Correspondence to: 17 
Ilya Korsunsky 18 
Harvard New Research Building 19 
77 Avenue Louis Pasteur 20 
Boston, MA 02115 21 
ikorsunskiy@bwh.harvard.edu 22 
 23 
Soumya Raychaudhuri 24 
Harvard New Research Building 25 
77 Avenue Louis Pasteur, Suite 250 26 
Boston, MA 02115 27 
soumya@broadinstitute.org 28 
Ph: 617-525-4484 Fax: 617-525-4488  29 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2020.11.18.389189doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.18.389189


 

2 

Abstract 30 

Recent advances in single-cell technologies and integration algorithms make it possible to construct 31 

comprehensive reference atlases encompassing many donors, studies, disease states, and sequencing 32 

platforms. Much like mapping sequencing reads to a reference genome, it is essential to be able to map 33 

query cells onto complex, multimillion-cell reference atlases to rapidly identify relevant cell states and 34 

phenotypes. We present Symphony (https://github.com/immunogenomics/symphony), an algorithm for 35 

building integrated reference atlases of millions of cells in a convenient, portable format that enables 36 

efficient query mapping within seconds. Symphony localizes query cells within a stable low-dimensional 37 

reference embedding, facilitating reproducible downstream transfer of reference-defined annotations to 38 

the query. We demonstrate the power of Symphony by (1) mapping a multi-donor, multi-species query 39 

to predict pancreatic cell types, (2) localizing query cells along a developmental trajectory of human 40 

fetal liver hematopoiesis, and (3) inferring surface protein expression with a multimodal CITE-seq atlas 41 

of memory T cells. 42 
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Introduction 45 

Advancements in single-cell RNA-sequencing (scRNA-seq) have launched an era in which individual 46 

studies can routinely profile 104-106 cells1–3, and multimillion-cell datasets are already emerging4,5. 47 

Single-cell resolution enables the discovery and refinement of cell states across diverse clinical and 48 

biological contexts6–11. To date, most studies redefine cell states from scratch, making it difficult to 49 

compare results across studies and thus hampering reproducibility. Coordinated large-scale efforts, 50 

exemplified by the Human Cell Atlas (HCA)12, aim to establish comprehensive and well-annotated 51 

reference datasets comprising millions of cells that capture the broad spectrum of cell states. Building 52 

these reference atlases requires integrating multiple datasets that may have been collected under 53 

different technical and biological conditions. Hence, reference construction requires application of one 54 

of many recently developed single-cell integration algorithms13–19. Our group previously developed 55 

Harmony15, a fast, accurate, and well-reviewed method20 that is able to explicitly model complex study 56 

design, a property that makes it suitable for integrating complex datasets into reference atlases21–24. 57 

The potential to define common cell states using reference maps has already been demonstrated25,26. 58 

For example, we built an integrated reference of ~80,000 single-cell profiles of fibroblasts from human 59 

lung, synovium, salivary gland, and intestine and successfully mapped fibroblasts from human skin and 60 

mouse synovium, lung, and intestine to analyze conserved states across tissues and species25. Once 61 

such reference atlases are painstakingly constructed, interpretation of new datasets requires the ability 62 

to quickly map single-cell profiles into these reference atlases. This enables interpretation of new 63 

datasets by transferring annotations and metadata of interest from nearby reference cells. 64 

Fast mapping of query cells against a large, stable reference is a well-recognized open 65 

problem27 and active area of research28–30. One inefficient but accurate approach to project reference 66 

and query cells into a joint embedding is to integrate both sets of cells together de novo, resulting in 67 

what might be considered a “gold standard” embedding. While this approach is reasonable for relatively 68 

small reference datasets, it is intractable for atlas-sized references with millions of cells. It requires 69 

users to “rebuild” the reference for each analysis, which may be computationally challenging and 70 
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require administratively cumbersome exchanges of large-scale datasets. Furthermore, de novo 71 

integration may corrupt the reference embedding once a reference is carefully constructed and 72 

annotated. It is instead preferable to freeze the reference when mapping new query cells onto it. 73 

Here, we define reference mapping to mean placing query cells within the same embedding as 74 

integrated reference cells without requiring access to the raw data on all individual reference cells. 75 

Importantly, this embedding does not take advantage of any particular annotation, such as cell type 76 

labels, which may be refined or updated over time. This is in contrast to automated cell type classifiers, 77 

such as scmap31, which assign rigid annotations based on reference datasets in a supervised manner. 78 

Reference mapping approaches introduced so far include Seurat v430, which is compatible with Seurat 79 

integration18, and scArches, which is compatible with autoencoders such as scANVI32 and trVAE33. 80 

These approaches separate reference building, which integrates datasets in the reference into a low-81 

dimensional embedding, from query mapping, which uses a compressed version of the reference to 82 

efficiently map cells into the reference embedding. They further contrast with de novo integration 83 

methods like BBKNN34, Seurat v318, and Harmony17, which enable reference building but are slow and 84 

require access to the raw data and batch information on individual reference cells. High-quality 85 

reference mapping requires both a framework to efficiently store an integrated reference, and a fast and 86 

accurate procedure to map query datasets. 87 

An ideal reference mapping algorithm must meet four key requirements. First, similar to de novo 88 

integration algorithms, they must be able to remove confounding signals due to complex study design 89 

in both the reference and query. In addition, they must be able to scale to large datasets, map with high 90 

accuracy, and enable inference of diverse query cell annotations based on reference cells. We present 91 

Symphony, a novel algorithm to compress a large, integrated reference and map query cells to a 92 

precise location in the reference embedding within seconds. Through multiple real-world dataset 93 

analyses, we show that Symphony can enable accurate downstream inference of cell type, 94 

developmental trajectory position, and protein expression, even when the query itself contains complex 95 

confounding technical and biological effects. 96 
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Results 97 

Symphony compresses an integrated reference for efficient query mapping 98 

Symphony comprises two main algorithms: reference compression and mapping (Methods, Fig. S1a). 99 

Symphony reference compression captures and structures information from multiple reference datasets 100 

into an integrated and concise format that can subsequently be used to map query cells (Fig. 1a-b). 101 

Symphony builds upon the linear mixture model framework first introduced by Harmony17. Briefly, in a 102 

low-dimensional embedding, such as principal component analysis (PCA), the model represents cell 103 

states as soft clusters, in which a cell’s identity is defined by probabilistic assignments across one or 104 

more clusters. For de novo integration of the reference, cells are iteratively assigned soft cluster 105 

memberships, which are used as weights in a linear mixture model to remove unwanted covariate-106 

dependent effects. To store the reference efficiently without saving information on individual reference 107 

cells, Symphony computes summary statistics learned in the low-dimensional space (Fig. 1b, 108 

Methods), returning computationally efficient data structures containing the “minimal reference 109 

elements” needed to map new cells. These include the means and standard deviations used to scale 110 

the genes, the gene loadings from PCA (or another low dimensional projection, e.g. canonical 111 

correlation analysis [CCA]) on the reference cells, soft-cluster centroids from the integrated reference, 112 

and two “compression terms” (a k x 1 vector and k x d matrix, where k is the number of clusters and d is 113 

the dimensionality of the embedding) (Methods, Supplementary Equations, Fig. S1b). 114 

To map new query cells to the compressed reference, we apply Symphony mapping. The 115 

algorithm approximates integration of reference and query cells de novo (Methods), but uses only the 116 

minimal reference elements to compute the mapping (Fig. S1c). First, Symphony projects query gene 117 

expression profiles into the same uncorrected low-dimensional space as the reference cells (e.g. PCs), 118 

using the saved scaling parameters and reference gene loadings (Fig. 1c). Second, Symphony 119 

computes soft cluster assignments for the query cells based on proximity to the reference cluster 120 

centroids. Finally, to correct unwanted user-specified technical and biological effects in the query data, 121 

Symphony assumes the soft cluster assignments from the previous step and uses stored mixture model 122 
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Figure 1. Symphony Overview. Symphony comprises two algorithms: Symphony compression (a-b) and Symphony 
mapping (c-d). (a) To construct a reference atlas, cells from multiple datasets are embedded in a lower-dimensional 
space (e.g. PCA), in which dataset integration (Harmony) is performed to remove dataset-specific effects. Shape indicates 
distinct cell types, and color indicates finer-grained cell states. (b) Symphony compression represents the information 
captured within the harmonized reference in a concise, portable format based on computing summary statistics for the 
reference-dependent components of the linear mixture model. Symphony returns the minimal reference elements needed 
to efficiently map new query cells to the reference. (c) Given an unseen query dataset and compressed reference, 
Symphony mapping precisely localizes the query cells to their appropriate locations within the integrated reference 
embedding (d). Reference cell locations do not change during mapping. (e) The resulting joint embedding can be used for 
downstream transfer of reference-defined annotations to the query cells. See Fig. S1. 
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components to estimate and regress out the query batch effects (Fig. 1d). Importantly, the reference 123 

cell embedding remains stable during mapping. Embedding the query within the reference coordinates 124 

enables downstream transfer of annotations from reference cells to query cells, including discrete cell 125 

type classifications, quantitative cell states (e.g. position along a trajectory), or expression of missing 126 

genes or proteins (Fig. 1e). 127 

Symphony approximates de novo integration of PBMCs without reintegration of 128 

reference datasets 129 

As we demonstrate in the Methods, Symphony is equivalent to running de novo Harmony integration if 130 

three conditions are met: (I) all cell states represented in the query data set are captured by the 131 

reference dataset, (II) the number of query cells is much smaller than the number of reference cells, 132 

and (III) the query dataset has a design matrix that is independent of reference datasets (i.e. non-133 

overlapping batches in reference and query). As the scope of available single-cell atlases continues to 134 

grow, it is reasonable to assume that reference datasets are large and all-inclusive, making conditions 135 

(I) and (II) well-supported. Condition (III) is also typically met if the query data was generated in 136 

separate experiments from the reference. 137 

To demonstrate that Symphony mapping closely approximates running de novo integration on 138 

all cells, we applied Symphony to 20,792 peripheral blood mononuclear cells (PBMCs) assayed with 139 

three different 10x technologies: 3’v1, 3’v2, and 5’. We performed three mapping experiments. For 140 

each, we built an integrated Symphony reference from two technologies, then mapped the third 141 

technology as a query. The resulting Symphony embeddings were compared to a gold standard 142 

embedding obtained by running Harmony on all three datasets together. Visually, we found that the 143 

Symphony embedding for each mapping experiment (Fig. 2a) closely reproduced the overall structure 144 

and cell type information of the gold standard embedding (Fig. 2b). To quantitatively assess the 145 

degrees of dataset mixing we use the Local Inverse Simpson’s Index (LISI)17 metric. For a given 146 

categorical label assigned to each cell (in this case, technology), LISI indicates the effective number of 147 

categories represented in the local neighborhood of each cell; higher LISI scores correspond to better 148 
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Figure 2. Symphony approximates de novo integration without reintegration of the reference cells. Three PBMC 
datasets were sequenced with different 10x protocols: 5’ (yellow, n=7,697 cells), 3’v2 (blue, n=8,380 cells), and 3’v1 (red, 
n=4,809 cells). We ran Symphony three times, each time mapping one dataset onto a reference built from integrating the 
other two. (a) Symphony embeddings generated across the three mapping experiments (columns). Top row: cells colored 
by query (yellow, blue, or red) or reference (gray), with query cells plotted in front. Bottom row: cells colored by cell type: B 
cell (B), dendritic cell (DC), hematopoietic stem cell (HSC), megakaryocyte (MK), monocyte (Mono), natural killer cell 
(NK), or T cell (T), with query cells plotted in front. (b) For comparison, gold standard de novo Harmony embedding 
colored by dataset (top) and cell type (bottom). (c) Distribution of technology LISI scores for query cell neighborhoods in 
the Symphony, gold standard, and a standard PCA embeddings on all cells. (d) Distribution of k-NN-corr (Spearman 
correlation between the similarities between the neighbor-pairs in the Harmony embedding and the similarities between 
the same neighbor-pairs in the Symphony embedding) across query cells for k=500, colored by query dataset. (e) 
Classification accuracy as measured by cell type F1 scores for query cell type annotation using 5-NN on the Symphony 
embedding. See Fig. S2. 
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mixing of cells across batches. LISI scores in Symphony embeddings (mean LISI 2.16, 95% CI [2.16, 149 

2.17]) and de novo integration embeddings (mean LISI 2.14, 95% CI [2.13, 2.15]) were nearly identical 150 

(Fig. 2c, Methods). 151 

To directly assess similarity of the local neighborhood structures, we computed the correlation 152 

between the local neighborhood adjacency graphs generated by Symphony and de novo integration. 153 

We define a new metric called k-nearest-neighbor correlation (k-NN-corr), which quantifies how well the 154 

local neighborhood structure in a given embedding is preserved in an alternative embedding by looking 155 

at the correlation of neighbor cells sorted by distance (Fig. S2a-e). Anchoring on each query cell, we 156 

calculate (1) the pairwise similarities to its k nearest reference neighbors in the gold standard 157 

embedding and (2) the similarities between the same query-reference neighbor pairs in the alternate 158 

embedding (Methods), then calculate the Spearman correlation between (1) and (2). k-NN-corr ranges 159 

from -1 to +1, where +1 indicates a perfectly preserved sorted ordering of neighbors. We find that for 160 

k=500, the Symphony embeddings produce a k-NN-corr >0.4 for 77.3% of cells (and positive k-NN-corr 161 

for 99.9% of cells), demonstrating that Symphony not only maps query cells to the correct broad cluster 162 

but also preserves the distance relationships between nearby cells in the same local region (Fig. 2d). 163 

As a comparison, we calculated k-NN-corr for a simple PC projection of the query cells (with no 164 

correction step) using the original reference gene loadings prior to integration and observed 165 

significantly lower correlations (Wilcoxon signed-rank p<2.2e-16), with k-NN-corr >0.4 for 39.9% of cells 166 

(Fig. S2f). 167 

Symphony enables accurate cell type classification of PBMCs across technologies 168 

If Symphony is effective, then cells should be mapped close to cells of the same cell type, enabling 169 

accurate cell type classification. To test this, we performed post-mapping query cell type classification 170 

in the 10x PBMCs example from above. We used a 5-NN classifier to annotate query cells across 7 cell 171 

types based on the nearest reference cells in the harmonized embedding and compared the predictions 172 

to the ground truth labels assigned a priori with lineage-specific marker genes (Methods, Table S2). 173 

Across all three experiments, predictions using the Symphony embeddings achieved 99.5% accuracy 174 
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overall, with a median cell type F1-score (harmonic mean of precision and recall, ranging from 0 to 1) of 175 

0.99 (Fig. 2e, Table S3). This indicates that Symphony appropriately localizes query cells in 176 

harmonized space to enable the accurate transfer of cell type labels. 177 

Automatic cell type classification represents an open area of research31,35–38. Existing 178 

supervised classifiers assign a limited set of labels to new cells based on training data and/or marker 179 

genes. To benchmark Symphony-powered downstream inference against existing classifiers, we 180 

followed the same procedure as a benchmarking analysis in Abdelaal et al. (2019)35. The benchmark 181 

compared 22 cell type classifiers on the PbmcBench dataset consisting of two PBMC samples 182 

sequenced using 7 different protocols39. For each protocol train-test pair (42 experiments) and donor 183 

train-test pair (additional 6 experiments) (Methods), we built a Symphony reference from the training 184 

dataset then mapped the test dataset. We used the resulting harmonized feature embedding to predict 185 

query cell types using three downstream models: 5-NN, SVM with radial kernel, and multinomial logistic 186 

regression. The Symphony-based classifiers achieve consistently high cell type F1-scores (average 187 

median F1 of 0.79-0.83) comparable to the top three supervised classifiers for this benchmark 188 

(scmapcell, singleCellNet, and SCINA, average median F1 of 0.77-0.83) (Fig. S3a). Notably, as 189 

discussed in Abdelaal et al., the median F1-score alone can be misleading given that some classifiers 190 

(including SCINA) leave low-confidence cells as “unclassified”, whereas we used Symphony to assign a 191 

label to every cell. This benchmark is also arguably suboptimal in that the reference in each experiment 192 

is comprised of a single dataset (no reference integration involved). 193 

Symphony maps against a large reference within seconds 194 

To demonstrate scalability to large reference atlases, we evaluated Symphony’s computational speed. 195 

We downsampled a large memory T cell dataset40 to create benchmark reference datasets with 20,000, 196 

50,000, 100,000, 250,000, and 500,000 cells (from 12, 30, 58, 156, and 259 donors, respectively). 197 

Against each reference, we mapped three different-sized queries: 1,000, 10,000, and 100,000 cells 198 

(from 1, 6, and 64 donors) and measured total elapsed runtime (Fig. 3, Table S4). The speed of the 199 

reference building process is comparable to that of running de novo integration since they both start 200 
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Figure 3. Symphony scales mapping to large references within seconds. Total elapsed time (in secs) required to run 
Symphony reference building starting from gene expression (left), Symphony query mapping starting from query gene 
expression (middle), or de novo Harmony integration (right) for different-sized reference (x-axis) and query (colors) 
datasets downsampled from the memory T cell CITE-seq dataset. See Table S4. 
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with expression data and require a full pipeline of scaling, PCA, and Harmony integration. However, a 201 

reference need only be built and saved once in order to map all subsequent query datasets onto it. For 202 

instance, initially building a 500,000-cell reference with Symphony took 5,163 seconds (86.1 min) and 203 

mapping a subsequent 10,000-cell query onto it took only 0.99 secs, compared to 4,806 secs (80.1 204 

mins) for de novo integration on all cells. Symphony offers a 5000x speedup in this application. These 205 

results show that Symphony scales efficiently to map against multimillion-cell references, enabling it to 206 

power potential web-based queries within seconds. 207 

Importantly, Symphony mapping time does not depend on the number of cells or batches in the 208 

reference since the reference cells are modeled post-batch correction (Methods); however, it does 209 

depend on the reference complexity (number of centroids k and dimensions d) and number of query 210 

cells and batches (Table S4) since the query mapping algorithm solves for the query batch coefficients 211 

for each of the reference-defined clusters. 212 

Symphony maps multi-donor, multi-species study to reference of human pancreatic 213 

islet cells 214 

A query dataset might include data from multiple donors, species, and perturbations that create 215 

confounding signals obscuring biological signal of interest. Integration algorithms remove these signals 216 

in de novo analysis, and it is essential that reference mapping removes them too. Therefore, we 217 

designed Symphony to simultaneously handle both tasks: mapping query to reference cells and 218 

integration within the query. To test the ability of Symphony to integrate query datasets during mapping, 219 

we analyzed reference and query datasets of pancreatic islet cells in which both the reference and 220 

query have complex experimental structure (Fig 4a). The reference contained 5,887 pancreatic islet 221 

cells from 32 human donors across four independent studies41–44, each profiled with a different plate-222 

based scRNA-seq technology (CEL-seq, CEL-seq2, Smart-seq2, and Fluidigm C1). We manually 223 

annotated cell types using cluster-specific marker genes within each reference dataset separately 224 

(Methods). The query contained 8,569 pancreatic islet cells from 4 human donors and 1,866 cells from 225 

2 mice, all profiled with inDrop, a droplet-based scRNA-seq technology absent in the reference45 (Fig 226 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2020.11.18.389189doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.18.389189


 

 

 
 

Figure 4. Symphony maps multi-donor, multi-species study to human pancreatic islet cell reference. (a) Schematic 
of mapping experiment with reference (n=5,887 cells, 32 donors) built from four human pancreas datasets and query 
dataset (n=10,455 cells, from 4 human donors and 2 mouse donors) sequenced on a new technology (inDrop). (b) Bar 
plot shows relative proportions of cell types per query donor. We integrated the reference datasets de novo using 
Harmony, Seurat anchor-based integration, or trVAE, then mapped the query onto the corresponding reference using 
Symphony, Seurat v4, or scArches, respectively. UMAP plots of resulting joint embeddings showing (c) density of 
integrated reference cells colored by cell type and (d) query cells colored by cell type as defined by Baron et al. (left) or 
donor (right) with reference densities plotted in the back in gray. Degree of integration for each method was measured by 
LISI metric between reference and query labels (e) and LISI between query donors (f) for each query cell neighborhood. 
Distributions of LISI scores for each method faceted by species and normalized to equal height. See Fig. S4 and S5. 
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4b). PCA of the query dataset alone demonstrated the magnitude of the confounding species and 227 

donor signals, emphasizing the need for within-query integration (Fig. S4a). 228 

Symphony mapped the multi-species, multi-donor, droplet-based query into the reference by 229 

effectively and simultaneously removing the effects of species, donor, and technology (Fig. 4c-d); 230 

reference mapping obtained superior integration compared to PCA (mean donor LISI=2.72 compared 231 

to 1.45). We predicted that integrating over three nested sources of variation would make it possible to 232 

accurately predict query cell types. Using a simple 5-NN classifier in the harmonized embedding, we 233 

observed accurate cell-type prediction. Using ground truth labels defined by the original publication45, 234 

we obtained a median cell type F1-score of 0.96 (overall accuracy 96%) for human and median cell 235 

type F1 of 0.95 (overall accuracy 91%) for mouse cells (Fig. S4c-d, Table S5), By mapping against a 236 

reference, Symphony is able to overcome strong species effects and simultaneously map analogous 237 

cell types between mouse and human. 238 

Next, we evaluated the ability of the other reference mapping algorithms, scArches and Seurat 239 

v4, to integrate the same query dataset. For each mapping method, we built a reference using its 240 

compatible de novo integration method (Methods, Fig. 4c, S4b). Symphony obtained higher levels of 241 

integration than did Seurat and scArches, both between reference and query as well as donors within 242 

the query (Fig. 4e-f). Symphony mapping achieves comparable donor mixing to that of Harmony de 243 

novo integration of all five datasets (mean mapping LISI=2.67 vs de novo LISI=2.55 in human, 2.91 vs 244 

2.7 in mouse). In contrast, the other mapping methods return less integrated embeddings, when 245 

compared to their corresponding de novo methods (mean mapping LISI=2.09 vs de novo LISI=2.83 for 246 

Seurat in human, 2.43 vs 2.67 in mouse; 1.12 vs 2.52 for scArches/trVAE in human, and 1.24 vs 3.05 in 247 

mouse; Table S6). We then evaluated the accuracy of each mapping with 5-NN cell type classification 248 

(Methods). We observed that Symphony and Seurat performed comparably well, and both 249 

outperformed scArches on both human and mouse cell type prediction (Fig. S4c-d, Table S5). 250 

Symphony was 1-2 orders of magnitude faster (1.4 s) than either Seurat (31.7 s) or scArches (381.5 s) 251 

mapping on this example (Table S6). 252 
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Localizing query cells along a reference-defined trajectory of human fetal liver 253 

hematopoiesis 254 

A successful mapping method should position cells not only within cell type clusters but also along 255 

smooth transcriptional gradients, commonly used to model differentiation and activation processes over 256 

time (Fig. 5a). To test Symphony in a gradient mapping context, we built and mapped to a reference 257 

atlas profiling human fetal liver hematopoiesis, containing 113,063 liver cells from 14 donors spanning 258 

7-17 post-conceptional weeks of age and 27 author-defined cell types, sequenced with 10x 3’ chemistry 259 

(Fig. 5b, Fig. S6a)46. Trajectory analysis of immune populations with the force directed graph (FDG) 260 

algorithm46 highlights relationships among progenitor and differentiated cell types (Fig. 5c). Notably, the 261 

hematopoietic stem cell and multipotent progenitor population branches into three major trajectories, 262 

representing the lymphoid, myeloid, and megakaryocyte-erythroid-mast (MEM) lineages. This reference 263 

contains two forms of annotation for downstream query inference: discrete cell types and positions 264 

along differentiation gradients. 265 

We mapped a query consisting of 21,414 new cells from 5 of the original 14 donors, sequenced 266 

with 10x 5’ chemistry. We first inferred query cell types with k-NN classification (Methods) and 267 

confirmed accurate cell type assignment based on the authors’ independent query annotations46 268 

(median cell type F1=0.92 across 14 held-out donor experiments within 3’ dataset only, median cell 269 

type F1=0.83 for the 5’-to-3’ experiment; Fig. S7, Table S7). To evaluate query trajectory inference, we 270 

used the Symphony joint embedding to position query cells from the MEM lineage (n=5,141) in the 271 

reference-defined trajectory by averaging the 10 nearest reference cell FDG coordinates. The inferred 272 

query trajectory (Fig. 5d) recapitulated known branching from MEM progenitors (MEMPs, brown) into 273 

distinct megakaryocyte (green), erythroid (blue, pink), and mast cell (yellow) lineages. Moreover, 274 

transitions from MEMPs to differentiated types were marked by gradual changes in canonical marker 275 

genes (Fig. 5e): PPBP for megakaryocytes, HBB for erythrocytes, and KIT for mast cells. These 276 

gradual expression patterns are consistent with correct placement of query cells along differentiation 277 

gradients. 278 
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Figure 5. Localizing query cells along a trajectory of fetal liver hematopoiesis. (a) Symphony can precisely place 
query cells along a reference-defined trajectory. The reference (n=113,063 cells, 14 donors) was sequenced using 10x 3’ 
chemistry, and the query (n=25,367 cells, 5 donors) was sequenced with 10x 5’ chemistry. (b) Symphony reference 
colored by cell types as defined by Popescu et al. (2019). Contour fill represents density of cells. Black points represent 
soft-cluster centroids in the Symphony mixture model. (c) Reference developmental trajectory of 3’-sequenced immune 
cells (FDG coordinates obtained from original authors). Query cells in the MEM lineages (n=5,141 cells) were mapped 
against the reference and query coordinates along the trajectory were predicted with 10-NN (d). The inferred query 
trajectory preserves branching within the MEM lineages, placing terminally differentiated states on the ends. (e) 
Expression of lineage marker genes (PPBP for megakaryocytes, HBB for erythroid cells, and KIT for mast cells). Cells 
colored by log-normalized expression of gene. See Fig. S6 and S7. 
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Inferring query surface protein marker expression by mapping to a reference assayed 279 

with CITE-seq 280 

Recent technological advances in multimodal single-cell technologies (e.g., CITE-seq) make it possible 281 

to simultaneously measure mRNA and surface protein expression from the same cells using 282 

oligonucleotide-tagged antibodies47,48. With Symphony, we can construct a reference from these data, 283 

map query cells from experiments that measure only mRNA expression, and infer surface protein 284 

expression for the query cells to expand possible analyses and interpretations (Fig. 6a). 285 

To demonstrate this, we used a CITE-seq dataset that measures the expression of whole-286 

transcriptome mRNA and 30 surface proteins on 500,089 peripheral blood memory T cells from 271 287 

samples40. We leveraged both mRNA and protein features to build a multimodal reference from 80% of 288 

samples (n=217) and map the remaining 20% of samples (n=54). Instead of using PCA, which is best 289 

for one modality49, we used canonical correlation analysis (CCA) to embed reference cells into a space 290 

that leverages both. Specifically, CCA constructs a pair of correlated low-dimensional embeddings, one 291 

for mRNA and one for protein features, each with a linear projection function akin to gene loadings in 292 

PCA. We corrected reference batch effects in CCA space with Harmony and built a Symphony 293 

reference (Fig. 6b), saving the gene loadings for the CCA embedding from mRNA features. Then, we 294 

mapped the held-out query using only mRNA expression to mimic a unimodal scRNA-seq experiment, 295 

reserving the measured query protein expression as a ground truth for validation. We accurately 296 

predicted the surface protein expression of each query cell using the 50-NN average from the reference 297 

cells in the harmonized embedding. For all proteins, we found strong concordance between predicted 298 

and (50-NN smoothed) measured expression (Pearson r: 0.88-0.99, Fig. 6c-d). For all but three 299 

proteins, we achieved comparable results with as few as 5 or 10 nearest neighbors (Fig. S8a). 300 

We note that it is also possible to conduct the same analysis with a unimodal PCA-based 301 

reference built from the cells’ mRNA expression only. This approach has slightly worse performance for 302 

some proteins (Pearson r: 0.65-0.97, Fig. S8b-d), demonstrating that a reference built jointly on both 303 

mRNA and protein permits better inference of protein expression than an mRNA-only reference, which 304 
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Figure 6. Mapping onto a multimodal reference to infer query surface protein expression in memory T cells. (a) 
Schematic of multimodal mapping experiment. The dataset was divided into training and test sets (80% and 20% of 
samples, respectively). The training set was used to build a Symphony reference, and the test set was mapped onto the 
reference to predict surface protein expression in query cells (pink) based on 50-NN reference cells (gray). (b) Symphony 
reference built from mRNA/protein CCA embedding. Contour fill represents density of reference cells. Black points 
represent soft-cluster centroids in the Symphony mixture model. (c) We measured the accuracy of protein expression 
prediction with the Pearson correlation between predicted and ground truth expression for each surface protein across 
query cells in each donor. Bar height represents the average per-donor correlation for each protein, and error bars 
represent standard deviation. (d) Ground truth and predicted expression of CD4, CCR6, and CD69 based on CCA 
reference. Ground truth is the 50-NN-smoothed expression measured in the CITE-seq experiment. Colors are scaled 
independently for each marker from minimum (blue) to maximum (yellow) expression. See Fig. S8. 
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is consistent with previous observations that mRNA expression is not fully representative of protein 305 

expression47,48. This analysis highlights how users can start with a low-dimensional embedding other 306 

than PCA, such as CCA, to better capture rich multimodal information in the reference. 307 

Discussion 308 

Mapping query cells into large, annotated references in real time and without the need to share 309 

sensitive information from the reference datasets is becoming increasingly important for reproducible 310 

single-cell analysis. We approached this inherently complex, big-data problem using well-established 311 

mathematical methods from integration analysis. We framed reference mapping as a specialized case 312 

of integration between one relatively small dataset and a second larger, more comprehensive, and 313 

previously integrated dataset. Because the reference is already integrated, it is natural to use the same 314 

mathematical framework from the integration to perform mapping. For instance, the scArches28 315 

algorithm uses an autoencoder-based framework to map to references built with autoencoder-based 316 

integration algorithms32,33. Similarly, Symphony uses the mixture modeling framework to map to 317 

references built with Harmony mixture modeling integration. Symphony compresses the reference by 318 

extracting relevant reference-derived parameters from the mixture model to map query cells in 319 

seconds. With this compression, references can be distributed without the need to share raw 320 

expression data or donor-level metadata, which enables data privacy50. Symphony compression greatly 321 

reduces the size of a reference dataset: for the memory T cell dataset of 500,089 cells, the raw 322 

expression matrix is 8.9 GB, whereas the Symphony minimal reference elements are 1.3 MB. 323 

Useful reference atlases contain annotations absent in the query, such as cell type labels (Fig. 324 

4), trajectory coordinates (Fig. 5), or multimodal measurements (Fig. 6). Transfer of these annotations 325 

from reference to query is an open area of research that includes algorithms for automated cell type 326 

classification31,35–38. We approach annotation transfer in two steps. We first learn a predictive model in 327 

the reference embedding, and then map query cells and use their reference coordinates to predict 328 

query annotations. In this two-step approach, Symphony mapping provides a feature space but is 329 

otherwise independent from the choice of downstream inference model. In PBMC type prediction (Fig. 330 
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S3), we used Symphony embeddings to train multiple competitive classifiers: k-NN, SVM, and logistic 331 

regression. In our analyses, we were encouraged to find that a simple k-NN classifier can achieve high 332 

performance with only 5-10 neighbors. In practice, users can choose more complex inference models if 333 

it is warranted for certain annotation types. Moreover, we expect prediction results to improve with more 334 

accurate and reproducible annotation methods, such as consistent cell type taxonomies provided by 335 

the Cell Ontology51 project and better modeling of multimodal expression data52.  336 

Because mapping is a special case of integration, we expected Symphony mapping to 337 

recapitulate the results of de novo Harmony integration. To this end, we defined three conditions under 338 

which Symphony and de novo integration with Harmony yield equivalent results. In subsequent 339 

examples, we showed that Symphony still performs well when the last two conditions are relaxed. The 340 

pancreas query contains more cells than its reference (condition II), while the liver hematopoiesis 341 

reference and query overlap in donors (condition III). Condition I, which requires comprehensive cell 342 

type coverage in the reference, is less flexible. When the query contains a brand new cell type, it will be 343 

aligned to its most transcriptionally similar reference cluster. Note that condition I only pertains to cell 344 

types and not clinical and biological contexts. For instance, we successfully mapped mouse pancreas 345 

query to an entirely human pancreas reference (Fig. 4), because the same pancreatic cell types are 346 

shared in both species. Mapping novel cell types is a current limitation and important direction for future 347 

work. For now, we advise users interested in novel cell type discovery to supplement a Symphony 348 

analysis with de novo analyses of the query alone. 349 

Instead of one monolithic reference for all cell types across all tissues and disease, we expect 350 

the proliferation of multiple, well-annotated specialized references that focus on fine-grained modeling 351 

of diverse biological systems. For instance, the memory T cell reference (Fig. 6) will be useful to 352 

annotate fine-grained T cell states, while an unsorted PBMC reference (Fig. 2) would better suit 353 

coarse-grained annotation of multiple immune populations. Similarly, a reference with only healthy 354 

individuals is useful for annotation of cell types, while a reference with both healthy and diseased 355 

individuals is useful for annotation of cell types and pathological cell states. We advise Symphony users 356 
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to carefully select the appropriate reference atlas for their study and potentially map to multiple 357 

references, as needed. For instance, one may use a PBMC reference to identify and isolate T cells and 358 

a memory T cell reference to assign fine-grained labels to query T cells.  359 

As large-scale tissue and whole-organism single-cell reference atlases become available in the 360 

near future, Symphony will enable investigators to leverage the rich information in these references to 361 

perform integrative analyses and transfer reference coordinates and diverse annotations to new 362 

datasets in a rapid and reproducible manner. 363 
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Figure Legends 383 

Figure 1. Symphony Overview. Symphony comprises two algorithms: Symphony compression (a-b) 384 

and Symphony mapping (c-d). (a) To construct a reference atlas, cells from multiple datasets are 385 

embedded in a lower-dimensional space (e.g. PCA), in which dataset integration (Harmony) is 386 

performed to remove dataset-specific effects. Shape indicates distinct cell types, and color indicates 387 

finer-grained cell states. (b) Symphony compression represents the information captured within the 388 

harmonized reference in a concise, portable format based on computing summary statistics for the 389 

reference-dependent components of the linear mixture model. Symphony returns the minimal reference 390 

elements needed to efficiently map new query cells to the reference. (c) Given an unseen query 391 

dataset and compressed reference, Symphony mapping precisely localizes the query cells to their 392 

appropriate locations within the integrated reference embedding (d). Reference cell locations do not 393 

change during mapping. (e) The resulting joint embedding can be used for downstream transfer of 394 

reference-defined annotations to the query cells. See Fig. S1. 395 

Figure 2. Symphony approximates de novo integration without reintegration of the reference 396 

cells. Three PBMC datasets were sequenced with different 10x protocols: 5’ (yellow, n=7,697 cells), 397 

3’v2 (blue, n=8,380 cells), and 3’v1 (red, n=4,809 cells). We ran Symphony three times, each time 398 

mapping one dataset onto a reference built from integrating the other two. (a) Symphony embeddings 399 

generated across the three mapping experiments (columns). Top row: cells colored by query (yellow, 400 

blue, or red) or reference (gray), with query cells plotted in front. Bottom row: cells colored by cell type: 401 

B cell (B), dendritic cell (DC), hematopoietic stem cell (HSC), megakaryocyte (MK), monocyte (Mono), 402 

natural killer cell (NK), or T cell (T), with query cells plotted in front. (b) For comparison, gold standard 403 

de novo Harmony embedding colored by dataset (top) and cell type (bottom). (c) Distribution of 404 
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technology LISI scores for query cell neighborhoods in the Symphony, gold standard, and a standard 405 

PCA embeddings on all cells. (d) Distribution of k-NN-corr (Spearman correlation between the 406 

similarities between the neighbor-pairs in the Harmony embedding and the similarities between the 407 

same neighbor-pairs in the Symphony embedding) across query cells for k=500, colored by query 408 

dataset. (e) Classification accuracy as measured by cell type F1 scores for query cell type annotation 409 

using 5-NN on the Symphony embedding. See Fig. S2. 410 

Figure 3. Symphony scales mapping to large references within seconds. Total elapsed time (in 411 

secs) required to run Symphony reference building starting from gene expression (left), Symphony 412 

query mapping starting from query gene expression (middle), or de novo Harmony integration (right) for 413 

different-sized reference (x-axis) and query (colors) datasets downsampled from the memory T cell 414 

CITE-seq dataset. See Table S4. 415 

Figure 4. Symphony maps multi-donor, multi-species study to human pancreatic islet cell 416 

reference. (a) Schematic of mapping experiment with reference (n=5,887 cells, 32 donors) built from 417 

four human pancreas datasets and query dataset (n=10,455 cells, from 4 human donors and 2 mouse 418 

donors) sequenced on a new technology (inDrop). (b) Bar plot shows relative proportions of cell types 419 

per query donor. We integrated the reference datasets de novo using Harmony, Seurat anchor-based 420 

integration, or trVAE, then mapped the query onto the corresponding reference using Symphony, 421 

Seurat v4, or scArches, respectively. UMAP plots of the resulting joint embeddings showing (c) density 422 

of integrated reference cells colored by cell type and (d) query cells colored by cell type as defined by 423 

Baron et al. (left) or donor identity (right) with reference densities plotted in the back in gray. Degree of 424 

integration for each method was measured by LISI metric between reference and query labels (e) and 425 

LISI between query donors (f) for each query cell neighborhood. Distributions of LISI scores for each 426 

method faceted by species and normalized to equal height. See Fig. S4 and S5. 427 

Figure 5. Localizing query cells along a trajectory of fetal liver hematopoiesis. (a) Symphony can 428 

precisely place query cells along a reference-defined trajectory. The reference (n=113,063 cells, 14 429 

donors) was sequenced using 10x 3’ chemistry, and the query (n=25,367 cells, 5 donors) was 430 
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sequenced with 10x 5’ chemistry. (b) Symphony reference colored by cell types as defined by Popescu 431 

et al. (2019). Contour fill represents density of cells. Black points represent soft-cluster centroids in the 432 

Symphony mixture model. (c) Reference developmental trajectory of 3’-sequenced immune cells (FDG 433 

coordinates obtained from original authors). Query cells in the MEM lineages (n=5,141 cells) were 434 

mapped against the reference and query coordinates along the trajectory were predicted with 10-NN 435 

(d). The inferred query trajectory preserves branching within the MEM lineages, placing terminally 436 

differentiated states on the ends. (e) Expression of lineage marker genes (PPBP for megakaryocytes, 437 

HBB for erythroid cells, and KIT for mast cells). Cells colored by log-normalized expression of gene. 438 

See Fig. S6 and S7. 439 

Figure 6. Mapping onto a multimodal reference to infer query surface protein expression in 440 

memory T cells. (a) Schematic of multimodal mapping experiment. The dataset was divided into 441 

training and test sets (80% and 20% of samples, respectively). The training set was used to build a 442 

Symphony reference, and the test set was mapped onto the reference to predict surface protein 443 

expression in query cells (pink) based on 50-NN reference cells (gray). (b) Symphony reference built 444 

from mRNA/protein CCA embedding. Contour fill represents density of reference cells. Black points 445 

represent soft-cluster centroids in the Symphony mixture model. (c) We measured the accuracy of 446 

protein expression prediction with the Pearson correlation between predicted and ground truth 447 

expression for each surface protein across query cells in each donor. Bar height represents the 448 

average per-donor correlation for each protein, and error bars represent standard deviation. (d) Ground 449 

truth and predicted expression of CD4, CCR6, and CD69 based on CCA reference. Ground truth is the 450 

50-NN-smoothed expression measured in the CITE-seq experiment. Colors are scaled independently 451 

for each marker from minimum (blue) to maximum (yellow) expression. See Fig. S8. 452 

 453 

Supplementary Figure 1. Overview of reference mapping pipeline and Symphony data 454 

structures. (a) The overall analysis pipeline comprises various functions (orange boxes) that each 455 

perform a transformation on the data. Symphony mapping takes in a query gene expression matrix and 456 
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a Symphony reference built from integrated reference datasets, and outputs the query cell locations in 457 

the harmonized feature embedding. Models trained on the reference feature embedding (e.g. cell type 458 

classifier) can transfer annotations to the query for various downstream tasks. (b) Steps of reference 459 

building algorithm. Reference datasets spanning multiple batches are aggregated into a single 460 

expression matrix on which PCA and Harmony integration is performed. The output of reference 461 

compression is the Symphony minimal reference elements, consisting of data structures !, #, U, Ycos, 462 

Nr, and C (red symbols). Zr_corr (the harmonized reference embedding) is not used for the mapping 463 

calculation but is saved for downstream annotation transfer. (c) Steps of query mapping algorithm, 464 

indicating where each reference element is used. Query cells are projected into reference PCA space, 465 

clustered to reference centroids, and corrected to harmonized space by removing query batch effects. 466 

Supplementary Figure 2. Nearest neighbor correlation (k-NN-corr) metric. The k-NN-correlation 467 

metric assesses how well an alternative embedding recapitulates the structure of a gold standard 468 

embedding. k-NN-corr is asymmetric in that it matters which of the two embeddings is selected as the 469 

gold standard. Consider a gold standard embedding (a) and two alternative embeddings (b) and (c), 470 

representing a good mapping and a bad mapping, respectively. For a given query cell q (red), we 471 

identify its top k nearest reference (gray) neighbors in the gold standard embedding (k = 3 depicted) 472 

and calculate the similarity between the query cell and each neighbor. The similarities between the 473 

same query-reference neighbor pairs are then calculated in the alternate embedding. k-NN-corr is the 474 

Spearman correlation between the similarities in the gold standard vs. alternative embedding, ranging 475 

from -1 to +1. Example k-NN-corr for one query cell and k = 500 for the (d) Symphony embedding and 476 

(e) PCA projection embedding. (f) k-NN-corr distribution across query cells for k=500 and a gold 477 

standard Harmony embedding, for either the Symphony embeddings (blue) or a simple PCA projection 478 

with no correction step (red), faceted by query dataset. 479 

Supplementary Figure 3. Symphony performance against automatic cell type classifiers. 480 

Following the cross-technology PBMC benchmarking experiment from Abdelaal et al. (2019), we ran a 481 

total of 48 train-test experiments per Symphony-based classifier. Two different versions of the 482 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2020.11.18.389189doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.18.389189


 

20 

Symphony feature embeddings were generated depending on variable gene selection method: top 483 

2000 variable genes (vargenes) or top 20 differentially genes (DEGs) expressed per cell type. 484 

Symphony embeddings were used to train 3 downstream classifiers: k-NN (k=5), SVM with radial 485 

kernel, and multinomial logistic regression (glmnet) with ridge. (a) Symphony (orange) median cell-type 486 

F1 score across 48 train-test experiments compared to supervised methods (green), demonstrating 487 

noninferiority to the top supervised methods and stable performance regardless of downstream 488 

classification method. Red dot indicates mean of median F1 scores across 48 experiments (used for 489 

ordering the methods along the x-axis). (b, c) Median cell type F1 score across 48 experiments for the 490 

5-NN classifier with variable gene selection (b) and DEG selection (c). Non-diagonal values represent 491 

train on one technology, test on another (42 experiments, all with donor 1). Values along the diagonal 492 

indicate train on donor 1, test on donor 2 of the same technology (6 experiments; missing square 493 

because donor 2 not sequenced with 10x v3). 494 

Supplementary Figure 4. Comparison of Symphony to alternative reference mapping methods 495 

on a cross-species pancreatic islet cell benchmark. (a) Standard PCA pipeline applied to the Baron 496 

et al. query dataset exhibits strong species and donor effects, demonstrating the need for within-query 497 

integration. We benchmarked Symphony mapping (on a Harmony-integrated reference), Seurat v4 498 

mapping (on a Seurat anchor-based-integrated reference), and scArches mapping (on a trVAE-499 

integrated reference). For each approach, we built an integrated reference (b), mapped the query, then 500 

predicted query cell types using a 5-NN classifier to transfer annotations using the respective reference 501 

embedding. (c) Query cell prediction accuracy by species for each method as measured by cell type F1 502 

score, with author-defined ground truth labels. Mouse samples did not have acinar or epsilon cells. The 503 

resulting joint cell embedding for each tool was visualized by UMAP (b, d): (b) Reference cells colored 504 

by dataset/technology. (d) Query cells colored by correct (green) or incorrect (red) cell type prediction. 505 

Supplementary Figure 5. Comparison of de novo integration methods for harmonizing all five 506 

pancreatic islet cell datasets. As a comparison to reference mapping (Fig 3), we integrated all five 507 

pancreatic islet cell technologies (n=16,342 cells) using 3 de novo integration methods: Harmony, 508 
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Seurat anchor-based integration, and trVAE. UMAP visualizations for the integrated embedding colored 509 

by batch (a) and cell types (b) for each method. Cell types for reference datasets (c1, celseq, celseq2, 510 

smartseq) were defined within each dataset separately based on marker genes. Query cell types were 511 

defined by Baron et al. Degree of mixing between reference and query datasets (c) and mixing 512 

between query donors (d) was measured with LISI metric on query cell neighborhoods for each 513 

method, demonstrating equivalent mixing among de novo integration methods (compare to Fig 3d-e). 514 

Supplementary Figure 6. Mapping to a fetal liver hematopoiesis trajectory. (a) Size and cell type 515 

composition of each donor sample in the 10x 3’ dataset across 27 author-defined cell types from 516 

Popescu et al. (2019). pcw = post-conception weeks. (b) Library complexity for each sample in 10x 3’ 517 

and 10x 5’ datasets, showing low complexity for donor F2 and F5 5’-sequenced samples (removed 518 

from further analysis). (c) UMAP projections of query cells into reference UMAP space after Symphony 519 

mapping, faceted by query donor, colored by cell type. Reference UMAP embedding in bottom-right. 520 

Supplementary Figure 7. Fetal liver hematopoiesis cell type classification confusion matrices. 521 

We performed two versions of the reference mapping experiments to assess cell type classification 522 

accuracy across 27 fine-grained cell types: (1) using exclusively 10x 3’ data, we mapped one held-out 523 

donor against a reference constructed from the remaining 13 donors (total 14 mapping experiments), 524 

(2) mapping all 10x 5’ cells against all 10x 3’ cells. Cell type confusion matrices are shown for a 30-NN 525 

cell type classifier (a) aggregated across the 14 held-out donor experiments using exclusively 3’ data 526 

and (b) the 5’-to-3’ experiment mapping the full 5’ query (n=21,414, n=5 donors) against the full 3’ 527 

reference (n=113,063 cells, 14 donors), colored by the proportion of the true cell type that was 528 

classified correctly. True cell type is defined by the original authors (Popescu et al., 2019). Rows (true 529 

query cell types) are sorted by hierarchical clustering on the average gene expression (all genes) for 530 

the cell types to order similar types together. Bar graph (right) shows population size for each cell type. 531 

Supplementary Figure 8. Inferring query surface protein expression in memory T cells. (a) Mean 532 

Pearson correlation for CCA reference between k-NN predicted protein expression and ground truth for 533 

different values of k. (b) Symphony reference built from a standard mRNA PCA embedding (reference 534 
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protein values were not used to build embedding but treated as annotations only). Contour fill 535 

represents density of reference cells. Black points represent soft-cluster centroids in the Symphony 536 

mixture model. (c) We measured the accuracy of protein expression prediction based on the PCA 537 

reference with the Pearson correlation between predicted and ground truth expression for each surface 538 

protein across query cells in each donor. Bar height represents the average per-donor correlation for 539 

each protein, and error bars represent standard deviation. (d) Ground truth and predicted expression of 540 

CD4, CCR6, and CD69 based on PCA reference. Ground truth is the 50-NN-smoothed expression 541 

measured in the CITE-seq experiment. Colors are scaled independently for each marker from minimum 542 

(blue) to maximum (yellow) expression. 543 

 544 

Supplementary Table 1. Links to datasets used in the study. 545 

Supplementary Table 2. Canonical lineage markers (Wilcoxon rank sum test and auROC statistic) and 546 

top 10 differentially expressed genes per cluster used to assign cell types in 10x PBMCs. 547 

Supplementary Table 3. Cell type classification confusion matrices for the three 10x PBMCs mapping 548 

experiments. 549 

Supplementary Table 4. Runtime scalability analysis results (downsampling memory T cell dataset), 550 

showing effect of reference and query size, number of query cells or donors, and number of reference 551 

centroids or embedding dimensions on elapsed time (in secs). 552 

Supplementary Table 5. Cell type classification confusion matrix for multi-donor, multi-species 553 

pancreatic islet cell benchmarking example (mapping Baron et al. 2016 as query) among the reference 554 

mapping methods evaluated. 555 

Supplementary Table 6. Degree of mixing between reference and query cells (ref_query LISI) and 556 

between donors within the query (query donor LISI) as well as runtime comparison across different 557 

reference mapping methods and corresponding de novo integration methods (Symphony/Harmony, 558 

Seurat v4/Seurat, and trVAE/scArches) for multi-donor, multi-species pancreas benchmarking example. 559 
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Supplementary Table 7. Cell type classification confusion matrix for mapping 10x 5’-sequenced fetal 560 

liver cells onto an atlas of 3’-sequenced fetal liver cells (Popescu et al. 2019). True labels provided by 561 

the original authors, and predictions were made using a 30-NN classifier.  562 
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Methods 563 

1. Symphony 564 

1.1 Symphony overview 565 

The goal of single-cell reference mapping is to embed newly assayed query cells into an existing 566 

comprehensive reference atlas, facilitating the automated transfer of annotations from the reference to 567 

the query. The optimal mapping method needs to be able to operate at various levels of resolution, 568 

capture continuous intermediate cell states, and scale to multimillion cells27. Consider a scenario in 569 

which we wish to map a query of m cells against reference datasets with n cells, where m<<n. 570 

Unsupervised integration of measurements across donors, studies, and technological platforms is the 571 

standard way to compare single cell datasets and identify cell types. Hence, a “gold standard” 572 

reference mapping strategy might be to run Harmony integration on all m+n cells de novo. However, 573 

this approach is impractical because it is cumbersome and time-intensive to process all the cell-level 574 

data for the reference datasets every time a user wishes to reharmonize it with a query. Instead, we 575 

envision a pipeline where a reference atlas need only be carefully constructed and integrated once, and 576 

all subsequent queries can be rapidly mapped into the same stable reference embedding. 577 

Symphony is a reference mapping method that efficiently places query cells in their precise location 578 

within an integrated low-dimensional embedding of reference cells, approximating de novo 579 

harmonization without the need to reintegrate the reference cells. Symphony is comprised of two 580 

algorithms: reference compression and mapping. Expanding upon the linear mixture model framework 581 

introduced in Harmony17, Symphony compression takes in an integrated reference and faithfully 582 

compresses it by capturing the components of the model into efficient data structures. The output of 583 

reference compression is the minimal set of elements needed for mapping (Fig. S1b). The Symphony 584 

mapping algorithm takes as input a new query dataset as well as minimal reference elements and 585 

returns the appropriate locations of the query cells within the integrated embedding (Fig. S1c). 586 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2020.11.18.389189doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.18.389189


 

25 

Once a harmonized reference is constructed and compressed using Symphony, subsequent mapping 587 

of query cells executes within seconds (Fig. 3). Efficient implementations of Symphony are available as 588 

part of an R package at https://github.com/immunogenomics/symphony, along with several 589 

precomputed references constructed from public scRNA-seq datasets. The following sections introduce 590 

the Symphony model, then describes Symphony compression and mapping in terms of the underlying 591 

data structures and algorithms. We also provide Supplementary Equations containing more detailed 592 

derivations for reference compression terms. 593 

Glossary 594 

We define all symbols for data structures used in the discussion of Symphony below, including their 595 

dimensions and possible values. Dimensions are in terms of the following parameters: 596 

• n: the number of reference cells 597 

• m: the number of query cells 598 

• N: the total number of cells (n + m) 599 

• g: the number of genes in the reference after any gene selection 600 

• d: the dimensionality of the embedding (e.g. PCs). d applies to both reference and query. 601 

• b: the number of batches in the reference 602 

• c: the number of batches in the query 603 

• k: the number of clusters in the mixture model for reference integration (representing latent cell 604 

states) 605 

Reference-related symbols: 606 

$% ∈ 	ℝ
)	×	+ Input reference gene expression matrix, prior to scaling. 

$%, ∈ 	ℝ
)	×	+ Scaled reference gene expression matrix. 

-% ∈ 	 {0, 1}
2	×	+ One-hot design matrix assigning reference cells (columns) to batches 

(rows). 

-%
3 ∈ 	 {0}4	×	+ Zero matrix assigning reference cells (columns) to query batches (rows). 

All values are 0 because reference cells do not belong to query batches. 

This term is used in the derivation for the reference compression terms. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2020.11.18.389189doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.18.389189


 

26 

! ∈ 	ℝ)	×	5 Reference gene means used to center each gene for PCA. 

# ∈ 	ℝ)	×	5 Reference gene standard deviations used to scale each gene for PCA. 

6 ∈ 	ℝ)	×	7 Gene loadings from the original PCA (before Harmony integration). 

8% ∈ 	ℝ
7	×	+ Original (non-harmonized) PC embedding for reference cells. 

89% ∈ 	ℝ
7	×	+ Integrated embedding for reference cells in harmonized PC (hPC) space, 

as output by Harmony. 

:% ∈ 	 [0, 1]
=	×	+ Soft cluster assignment of reference cells (columns) to clusters (rows), as 

output by Harmony. Each column is a probability distribution that sums to 

1. 

>4?, ∈ 	ℝ
7	×	= Cluster centroid locations in the harmonized embedding, L2 normalized. 

@% ∈ 	ℝ
=×	(5B2)	×	7 3D tensor of the estimated parameters (betas and intercepts) of the linear 

mixture model for each of k clusters for the reference cells. 

D% ∈ 	ℝ
=×5 First reference compression term. Vector containing the size of each of 

the E clusters, effectively the number of reference cells contained within 

them.  

F ∈ 	ℝ=×7 Second reference compression term. 

:GH = {!, #, 6, >4?,, D%, F	} Symphony minimal reference elements comprising !, #, 6, >4?,, 	D%, F. 

Query-related symbols: 607 

$J ∈ 	ℝ
)	×	K Input query gene expression matrix, prior to scaling. 

$J, ∈ 	ℝ
)	×	K Query gene expression matrix, scaled by reference gene means ! and 

standard deviations #. 

-J ∈ 	 {0, 1}
4	×	K Design matrix assigning query cells (columns) to query batches (rows). 

8J ∈ 	ℝ
7	×	K Query cell locations in original (non-harmonized) PC embedding. 

89J ∈ 	ℝ
7	×	K Approximate query cell locations in integrated embedding (hPC space). Output 

of Symphony reference mapping. 

:J ∈ 	 [0, 1]
=	×	K Soft cluster assignment of query cells (columns) to clusters (rows). Each 

column is a probability distribution that sums to 1. 

@J ∈ 	ℝ
=×	(5B4)	×	7 3D tensor of the estimated parameters (betas and intercepts) of the linear 

mixture model for each of k clusters. 

1.2 Symphony model and conditions for equivalence to Harmony integration 608 
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Symphony and Harmony both use a linear mixture model framework, but the two methods perform 609 

different tasks: Harmony integrates a reference, whereas Symphony compresses the reference and 610 

enables efficient query mapping. To motivate the Symphony model, it is helpful to first briefly review the 611 

mixture model, which serves as the basis. Harmony integrates scRNA-seq datasets across batches 612 

(e.g. multiple donors, technologies, studies) and projects the cells into a harmonized embedding where 613 

cells cluster by cell type rather than batch-specific effects. Harmony takes as input a low-dimensional 614 

embedding of cells (8) and design matrix with assignments to batches (-) and outputs a harmonized 615 

embedding (89) with batch effects removed. Briefly, Harmony works by iterating between two 616 

subroutines—maximum diversity clustering and linear mixture model correction—until convergence. In 617 

the clustering step, cells are probabilistically assigned to soft clusters with a variant of soft k-means with 618 

a diversity penalty favoring clusters represented by multiple datasets rather than single datasets. In the 619 

correction step, each cluster learns a cluster-specific linear model that explains cell locations in PC 620 

space as a function of a cluster-specific intercept and batch membership. Then, cells are corrected by 621 

cell-specific linear factors weighted by cluster membership to remove batch-dependent effects. The full 622 

algorithm and implementation are detailed in Korsunsky et al. (2019)17. 623 

In the scenario of mapping m query cells against n reference cells, the de novo integration strategy 624 

would model all cells as in (1), where the H subscript denotes the Harmony solution, in contrast to the 625 

Symphony model which is presented in (2). Let -L ∈ 	 {0,1}(4B2)×(KB+) represent the one-hot encoded 626 

design matrix assigning all cells across batches. -L∗  denotes -L augmented with a row of 1s for the 627 

batch-independent intercept term: -L∗ = 1||-L.	The intercept terms represent cluster centroids (location 628 

of “experts” in the mixture of experts model). 8L represents the low-dimensional PCA embedding of all 629 

cells. :L represents the probabilistic assignment of cells across k clusters, and PQRS(:L=) ∈ 	ℝT×T 630 

denotes the diagonalized Eth row of :L. For each cluster k, the parameters of the linear mixture model 631 

@= ∈ ℝ
(5B4B2)	×	7 can therefore be solved for as in (1), using ridge regression with ridge penalty 632 

hyperparameter U. Note that we do not penalize the batch-independent intercept term: UV = 0, 633 

∀X∈[5:(4B2)]UX = 1. 634 
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De novo Harmony model: 635 

@= = (-L
∗ 	PQRS(:L=)-L

∗Z + U\)]5-L
∗ PQRS(:L=)	8L

Z  (1) 

The goal of Symphony mapping is to add new query cells to the model in order to estimate and remove 636 

the query batch effects. Symphony mapping approximates de novo Harmony integration on all cells, 637 

except the reference cell positions in the harmonized embedding do not change. In order for Symphony 638 

mapping to be equivalent to de novo Harmony, several conditions must be met: 639 

I. All cell states represented in the query dataset are captured by the reference datasets—i.e. 640 

there are no completely novel cell types in the query. 641 

II. The number of reference cells is much larger than the query (m<<n). 642 

III. The query dataset is obtained independent of the reference datasets—i.e. the reference 643 

batch design matrix (-%) has no interaction with the query batch design matrix (-J). 644 

We consider these to be fair assumptions for large-scale reference atlases, allowing Symphony to 645 

make three key approximations: 646 

(1) With a large reference, the reference-only PCs approximate the PCs for the combined reference 647 

and query datasets. This allows us to project the query cells into the pre-harmonized reference 648 

PCA space using the reference gene loadings (6).  649 

(2) The cluster centroids (>) for the integrated reference cells approximate the cluster centroids 650 

from harmonizing all cells.  651 

(3) The reference cell cluster assignments (:%) remains approximately stable with the addition of 652 

query cells. 653 

Given these approximations, we can thereby harmonize the reference cells a priori and save the 654 

reference-dependent portions of the Harmony mixture model (Supplementary Equations). In 655 

Symphony, we model the reference cells as already harmonized with batch effects removed, so we can 656 

thereafter ignore the reference design matrix structure. The Symphony design matrix - ∈ [0, 1]4	×	T 657 

assigns all cells (reference and query) to query batches only. -∗ denotes - augmented with a row of 1s 658 
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(-[V,∙]∗ ) corresponding to the batch-independent intercepts (we model the intercepts for all cells). The 659 

remaining c rows (-[5:4,∙]∗
)	 represent the one-hot batch assignment of the cells among the c query 660 

batches. Note that for the reference cell columns, these values are all 0 since the reference cells do not 661 

belong to any query batches. The parameters (@J= ∈ 	ℝ(5B4)	×	7) of the model for each cluster k can 662 

then be solved for as in (2). Similar to Harmony, we use ridge regression penalizing the non-intercept 663 

terms, where UV = 0, ∀X∈[5:4]UX = 1. 664 

Symphony model: 665 

@J= ≈ (-∗	PQRS(:=)	-
∗Z + U\)]5-∗	PQRS(:=)	8

Z (2) 

The matrix : ∈ 	ℝ=×T denotes the assignment of query and reference cells (columns) across the 666 

reference clusters (rows). 8 ∈ 	ℝ7×T denotes the horizontal matrix concatenation of the uncorrected 667 

query cells in original PC space (8J) and corrected reference cells in harmonized space (89%). For each 668 

cluster k, let matrix @J= ∈	ℝ(5B4)	×	7 represent the query parameters to be estimated. The first row of 669 

@J= represents the batch-independent intercept terms, and the remaining c rows of @J= represent the 670 

query batch-dependent coefficients, which can be regressed out to harmonize the query cells with the 671 

reference. Note that the intercept terms from Symphony mapping should equal the cluster centroid 672 

locations from the integrated reference since the harmonized reference cells are modeled only by a 673 

weighted average of the centroid locations for the clusters over which it belongs (and a cell-specific 674 

residual). Hence, the reference cell positions should not change when removing query batch effects. 675 

The matrices -∗, :=, and 8 in (2) can be partitioned into query and reference-dependent portions. In the 676 

Supplementary Equations, we show in detail how the reference-dependent portions can be further 677 

simplified into a k x 1 vector and k x d matrix (D% and C), which we call “reference compression terms.” 678 

Intuitively, the vector D% contains the size (in cells) of each reference cluster. The matrix F = :%89%
Z does 679 

not have as intuitive an explanation but follows from the derivation (Supplementary Equations). These 680 

terms can be computed at the time of reference building and saved as part of the minimal reference 681 

elements to reduce the necessary computations during mapping. 682 
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1.3 Reference building and compression 683 

Reference compression is the key idea that allows for the efficient mapping of new query cells onto the 684 

harmonized reference embedding without the need to reintegrate all cells. To construct a Symphony 685 

reference with minimal elements needed for mapping, reference cells are first harmonized in a low-686 

dimensional space (e.g. PCs) to remove batch-dependent effects. Symphony then compresses the 687 

Harmony mixture model components to be saved for subsequent query mapping. 688 

Data structures 689 

Symphony takes as input a gene expression matrix for reference cells ($%) and corresponding one-hot-690 

encoded design matrix (-%) containing metadata about assignment of cells to batches. It outputs a set 691 

of data structures, referred to as the Symphony minimal reference elements, that captures key 692 

information about the reference embedding that can be subsequently used to efficiently map previously 693 

unseen query cells (Algorithm 1). These components include the gene mean (!) and standard 694 

deviation (#) used to scale the genes, the PCA gene loadings (6), the final L2-normalized cluster 695 

centroid locations (>4?,), and precomputed values which we call the “reference compression terms” (D% 696 

and F) that expedite the correction step of query mapping (Supplementary Equations). These 697 

elements are a subset of the components available once Harmony integration is applied to the 698 

reference cells. Note that other input embeddings, such as canonical correlation analysis (CCA), may 699 

be used in place of PCA as long as the gene loadings to perform query projection into those 700 

coordinates are saved. 701 

Table 1 lists the Symphony minimal reference elements required to perform mapping. Table 2 shows 702 

additional components of a “full” Harmony reference that are not included in the Symphony reference 703 

elements. Importantly, the dimensions of the Symphony data structures do not require information on 704 

the n individual reference cells and hence do not scale with the raw number of reference cells. Rather 705 

the components scale with the biological complexity captured (i.e. number of clusters k and 706 

dimensionality of embedding d). Conversely, the Harmony data structures store information on a per-707 

cell basis (n). Note that in practice the integrated embedding of reference cells (89%)  listed in Table 2 is 708 
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needed to perform downstream transfer of annotations from reference to query cells (e.g. k-NN), but it 709 

is not required during any computations of the mapping step. 710 

Table 1: Symphony minimal reference elements 711 

! ∈ 	ℝ)	×	5 Reference gene means used to center each gene for PCA. 

# ∈	ℝ)	×	5 Reference gene standard deviations used to scale each gene for PCA. 

6 ∈ 	ℝ)	×	7 Gene loadings to project from expression to PCA (or CCA) space 

>4?, ∈ 	ℝ
7	×	= Cluster centroid locations in harmonized PC space, L2 normalized. 

D% ∈ 	ℝ
=×5 First reference compression term. Vector containing the size of each of the E 

clusters, effectively the number of reference cells contained within them. 

F ∈ 	ℝ=×7 Second reference compression term. 

 712 

Table 2: Additional components of Harmony reference 713 

$% ∈	ℝ
)	×	+ Input reference gene expression matrix, prior to scaling. 

-% ∈ 	 {0, 1}
2	×	+ Design matrix assigning reference cells (columns) to reference batches (rows). 

@% ∈ 	ℝ
=×	(5B2)	×	7  3D tensor of the estimated parameters (betas and intercepts) of the linear 

mixture model for each of k clusters for the reference cells. 

89% ∈ 	ℝ
7	×	+ Integrated embedding for reference cells in harmonized PC (“hPC”) space, as 

output by Harmony. 

:% ∈ 	 [0, 1]
=	×	+ Soft cluster assignment of reference cells (columns) to clusters (rows), as output 

by Harmony. Each column is a probability distribution that sums to 1. 

 714 

Algorithm 715 

Starting from reference cell gene expression, we first perform within-cell library size normalization (if not 716 

already done) and variable gene selection to obtain $%, scaling of the genes to have mean 0 and 717 

variance 1 (saving ! and # for each gene), and PCA to embed the reference cells in a low-dimensional 718 

space, saving the gene loadings (6) (Implementation Details). Then, the PCA embedding (8%) and 719 

batch design matrix (-%) are used as input to Harmony integration to harmonize over batch-dependent 720 

sources of variation. Given the resulting harmonized embedding (89%) and final soft assignment of 721 
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reference cells to clusters (:%), the locations of the final reference cluster centroids > ∈ ℝ7	×	=  can be 722 

calculated as in (3) and saved. 723 

> = 89%:%
Z (3) 

Symphony then computes the reference compression terms D% (intuitively, the number of cells per 724 

cluster) and F, which does not have an intuitive explanation but can be directly computed as F = :%89%
Z. 725 

Refer to the Supplementary Equations for a complete mathematical derivation of the compression 726 

terms. Symphony reference building ultimately returns the minimal reference elements: !, #, 6, >4?,, D%, 727 

and F (Fig. S1a). 728 

Algorithm 1 Build Symphony reference 729 

    function BUILDREFERENCE($%, -%) 730 

        !, #, $%, ← SCALE($%) 731 

        6,8% ← PCA($%,) 732 

        89%, :% ← 	HARMONIZE(8%, -%) 733 

        >	 ← 89%:%
Z	734 

        >4?, ←
>[∙,a]

b>[∙,a]b
c

d     ⊳ fc	ghijRkQlG	mknopGi	mGgpihQPo 735 

         D% ← ihqrnjo(:%)     ⊳ sQiop	mhjtiGooQhg	pGij 736 

         F ← :%89%
Z             ⊳ rGmhgP	mhjtiGooQhg	pGij   737 

        :GH ← (!, #, 6, >4?,, D%, F) 738 

        return :GH     ⊳ :Gpnig	jQgQjRk	iGHGiGgmG	GkGjGgpo 739 

 740 

1.4 Symphony mapping 741 

The Symphony mapping algorithm localizes new query cells to their appropriate locations in the 742 

harmonized embedding without the need to run integration on the reference and query cells altogether. 743 

The joint embedding of reference and query cells can be used for downstream analyses, such as 744 

transferring cell type annotations from the reference cells to the query cells. 745 
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Data structures 746 

Symphony mapping takes as input the gene expression matrix for query cells ($J), query design matrix 747 

assigning query cells to batches (-J), and the precomputed minimal elements for a reference (:GH). It 748 

outputs a query object containing the locations of query cells in the integrated reference embedding 749 

(89J; Algorithm 2). Table 3 lists the components of the query object that is returned by Symphony. 750 

Table 3: Components of Symphony query 751 

$J ∈ 	ℝ
)	×	K Input query gene expression matrix, prior to scaling. 

-J ∈ 	 {0, 1}
4	×	K Design matrix assigning query cells (columns) to query batches (rows). 

8J ∈ 	ℝ
7	×	K Query cell locations in original (non-harmonized) PC embedding. 

89J ∈ 	ℝ
7	×	K Approximate query cell locations in integrated embedding (hPC space). 

:J ∈ 	 [0, 1]
=	×	K Soft cluster assignment of query cells (columns) to clusters (rows). Each 

column is a probability distribution that sums to 1. 

@J ∈ 	ℝ
=×	(5B4)	×	7 3D tensor of the estimated parameters (betas and intercepts) of the linear 

mixture model for each of k clusters. 

 752 

Algorithm 753 

The input to the query mapping procedure is a gene expression matrix ($J) and design matrix (-J) for 754 

query cells, and the output is the locations of the cells in the harmonized embedding (89J). At a high 755 

level, the mapping algorithm first projects the query cells into the original, non-harmonized PC space as 756 

the reference cells using the reference gene loadings (6) and assigns probabilistic cluster membership 757 

across the reference cluster centroid locations. Then, the query cells are modeled using the Symphony 758 

mixture model and corrected to their approximate locations in the integrated embedding by regressing 759 

out the query batch-dependent effects (Algorithm 2). 760 

Projection of query cells into pre-harmonized PC Space 761 

Symphony projects the query cells into the same original PCs (8%) as the reference. Symphony 762 

assumes that, given a much smaller query compared to the reference (m<<n), the PCs will remain 763 
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approximately stable with the addition of query cells. To project the query cells, we first subset the 764 

query expression data by the same variable genes used in reference building and scale the normalized 765 

expression of each gene by the same mean and standard deviations used to scale the reference cells 766 

(!, #). Let $J, denote the query gene expression matrix scaled by the reference gene means and 767 

standard deviations. We can then use the reference gene loadings (6) to project $J, into reference PC 768 

space. In (4), 8J ∈ ℝ7×K denotes the PC embedding for the query cells. Note that if an alternate 769 

starting embedding (e.g. CCA) is used instead of PCA, the gene loadings must be saved to enable this 770 

query projection step. 771 

8J = 6Z$J, = ΣJvJ
Z (4) 

Soft assignment across reference clusters 772 

Once the query cells are projected into PC space, we soft assign the cells to the reference clusters 773 

using the saved reference centroid locations (>4?,). Symphony assumes that the reference cluster 774 

centroid locations remain approximately stable with the addition of a much smaller query dataset since 775 

the query contains no novel cell types. Under these conditions, we use a previously published objective 776 

function for soft k-means clustering (5), which includes a distance term and an entropy regularization 777 

term over : weighted by hyperparameter #. This is the same objective function as the clustering step of 778 

Harmony, except it does not include the diversity penalty term. In Harmony, the purpose of the diversity 779 

term is to penalize clusters that are only represented by one or a few datasets (suggesting they do not 780 

represent true cell types). In contrast, Symphony does not require the use of a diversity penalty 781 

because the reference centroids have already been established. Furthermore, the query cell types can 782 

comprise a subset of a larger set of reference cell types, and therefore not all clusters are necessarily 783 

expected to be represented in the query. We can solve for :J, the optimal probabilistic assignment for 784 

query cells across each of the E reference clusters (Implementation Details). 785 

min
z,{

|:=a‖8a − >=‖
c + #

a,=

:=a log :=a (5) 
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s.t.	∀a∀=:=a > 0, ∀a 	|:=a

É

=Ñ5

= 1 

Mixture of experts correction 786 

The final step in Symphony mapping is to model then remove the query batch effects to obtain 89J, the 787 

approximate location of query cells in the harmonized reference embedding. In equation (2), we 788 

modeled the reference and query cells together and wish to solve for the query parameters	@J= ∈789 

ℝ(5B4)	×	7 for each cluster k. The reference-dependent terms in (2) were previously computed and 790 

saved in compressed form (D% and F). With :J and 8J calculated from query cell projection and 791 

clustering, we can finally solve for @J=. Similar to the correction step of Harmony, we obtain cell-specific 792 

correction values for the query cells by removing the batch-dependent terms captured in @J=[5:4,∙]. Note 793 

that the reference batch terms are neither modeled nor corrected during reference mapping, so the 794 

harmonized reference cells do not move. 795 

The final locations of the query cells in the harmonized embedding are estimated by iterating over all k 796 

clusters and subtracting out the non-intercept batch terms for each cell weighted by cluster membership 797 

(6). Intuitively, the query centroids are moved so that they overlap perfectly with the reference centroids 798 

in the harmonized embedding. 89J[a] denotes the approximate location in harmonized PC space for 799 

query cell i. 800 

8J[a] =|:J[=,a]

=

Ö@J=[V,∙]
Z

+	@J=[5:4,a]
Z

-JÜ + á  

89J[a] = 8J[a] −|:J[=,a]

=

@J=[5:4,∙]
Z

-J (6) 

89J[a] =|:J[=,a]

=

@J=[V,∙]
Z

+ á  

Algorithm 2 Map query cells onto reference 801 

    function QUERYMAPPING($J,-J, :GH) 802 

        $J, ← SCALE($J,:GH$!, :GH$#)  ⊳ $	PGghpGo	RmmGooQgS	R	mhjthgGgp	hH	:GH  803 
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        8J ← PCAPROJECTION($J,, :GH$6)  804 

       	:J ← CLUSTER(8J,:GH$>4?,) 805 

        89J ← 8J 806 

        for E ← 1…E do 807 

            ä	 ← -J
∗:J

(=)
-J
∗Z   ⊳ -J

∗:	ãnGiå	PGoQSg	jRpiQç	RnSjGgpGP	qQpℎ	ihq	hH	1o 808 

            ä[V,V] ← ä[V,V] + :GH$D%(=) 809 

            s	 ← -J
∗:J

(=)
8J
Z 810 

            s[V,∙] ← s[V,∙] + :GH$F[=,∙] 811 

            @J= ← (ä + 	U\)]5(s) 812 

            @J=[V,∙] ← 	0    ⊳ èh	ghp	mhiiGmp	pℎG	QgpGimGtp	pGijo  813 

            89J ← 	89J − @J=Z -J∗:J
(=) 814 

    return 89J      ⊳ :Gpnig	ãnGiå	khmRpQhgo 815 

 816 

1.5 Implementation details 817 

Reference building and compression 818 

Variable gene selection and scaling 819 

Starting with the gene expression matrix for reference cells, we perform log(CP10K) library size 820 

normalization of the cells (if not already done), subset by the top S variable genes by the vst method 821 

(as provided in Seurat18), which fits a line to the log(variance) and log(mean) relationship using local 822 

polynomial regression, then standardizes the features by observed mean and expected variance, 823 

calculating gene variance on the standardized values, which is re-implemented as a standalone 824 

function at https://github.com/immunogenomics/singlecellmethods. The data is scaled such that the 825 

expression of each gene has a mean expression of 0 and variance of 1 across all cells. 826 

PCA 827 

We perform dimensionality reduction on the scaled gene expression $%,  using principal component 828 

analysis (PCA). PCA projects the data a low-dimensional, orthonormal embedding that retains most of 829 
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the variation of gene expression in the dataset. Singular value decomposition (SVD) is a matrix 830 

factorization method that can calculate the PCs for a dataset. Here, we use SVD (irlba package in R53) 831 

to perform PCA. SVD states that matrix $%,	with dimensions S × g can be factorized as: 832 

$%, 	= 6ΣvZ (7) 

In (7), S	vZ = 8% (dimensions P × g) represents the embedding of reference cells in PC space, after 833 

truncating the matrix on the first P (by default, P = 20) PCs. The gene loadings (6 ∈ 	ℝ)	×	7) are saved. 834 

Note that an alternative embedding, such as canonical correlation analysis (CCA) may be used in place 835 

of PCA, as long as the gene loadings are saved. 836 

Harmony integration 837 

The PCA embedding (8%) is then input to Harmony for dataset integration. By default, Symphony uses 838 

the default parameters for the cluster diversity enforcement (ë = 2), the entropy regularization 839 

hyperparameter for soft k-means (# = 0.1), and the number of clusters E = min í100, +
ìV
î. We save the 840 

L2-normalized cluster centroid locations >4?, to the reference object since query mapping employs a 841 

cosine distance metric. If the reference has a single-level batch structure, no integration is performed, 842 

and the clusters are defined using soft k-means. 843 

Query mapping 844 

Normalization and scaling 845 

The gene expression for query cells are assumed to be library size normalized in the same manner that 846 

was used to normalize the reference cells (e.g. log(CP10K)). During scaling, the query data is subset 847 

by the same variable genes from the reference datasets, and query gene expression is scaled by the 848 

reference gene means and standard deviations. Any genes present in the query but not the reference 849 

are ignored, and any genes present in the reference but not the query have scaled expression set to 0. 850 

Clustering step uses cosine distance 851 
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As in Harmony, in practice we use cosine distance rather than Euclidean distance in the clustering step. 852 

For the computation of the distance term, we L2-normalize the columns (cells) of 8 and columns 853 

(centroids) of >= such that the squared values sum to 1 across each column. Let the terms 8J_ñóò	[∙,a] and 854 

>ñóò	[∙,ô]	represent the L2-normalized locations of query cell Q and the reference centroid for cluster E in 855 

PC space, respectively. We compute the cosine distance between the cells and centroids. Since all 856 

8J_ñóò	[∙,a]  and >ñóò	[∙,ô] each have unity norm, the squared Euclidean distance b8J_ñóò	[∙,a] − >ñóò	[∙,ô]b
c is 857 

equivalent to the cosine distance 2ö1 − cos( >ñóò	[∙,ô], 8J_ñóò	[∙,a])ù = 2(1 − >ñóò	[=,∙]
Z

8J_ñóò	[∙,a]). Therefore, the 858 

objective function for query assignment to centroids becomes: 859 

min
z,{

|2:J[=,a](1 − >ñóò	[=,∙]
Z

8J_ñóò	[∙,a]) + #

a,=

:J[=,a] log :J[=,a] 

s.t.	∀a∀=:J[=,a] > 0, ∀a 	|:J[=,a]

É

=Ñ5

= 1 

(8) 

We can solve the optimization problem using an expectation-maximization framework. Following the 860 

same strategy as Korsunsky et al. (2019), we calculate :a, the optimal probabilistic assignment for each 861 

query cell Q across each of the E reference clusters. In (9), we can interpret :J[=,a] as the probability that 862 

query cell Q belongs to cluster E. The denominator term simply ensures that for any given cell Q, the 863 

probabilities across all E clusters sum to one. By default, sigma=0.1 864 

:J(=,a) = 	
exp í−2

#
(1 − >ñóò	[=,∙]

Z
8J_ñóò	[∙,a])î

∑ expí−2
#
(1 − >ñóò	[=,∙]

Z 8J_ñóò	[∙,a])î
É
=Ñ5

 
(9) 

2. Analysis details 865 

2.1 10x PBMCs analysis 866 

Preprocessing scRNA-seq data 867 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2020.11.18.389189doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.18.389189


 

39 

The three 10x PBMCs datasets were previously preprocessed by our group as part of the Harmony 868 

publication. We used the same log(1+CP10K) normalized expression data, filtered as described in 869 

Korsunsky et al. (2019)17. The PBMCs consist of cells from three technologies: 3’v1 (n=4,808 cells), 870 

3’v2 (8,372 cells), and 5’ (7,612 cells). 871 

Symphony mapping experiments 872 

To construct each of three references for subsequent mapping, we aggregated two reference datasets 873 

into a single normalized expression matrix and identified the top 2,000 variable genes across all cells 874 

using the variance stabilizing transformation (VST) procedure18. We ran Harmony on the top 20 PCs 875 

and default 100 clusters, harmonizing over ‘technology’ with default parameters. For Symphony 876 

mapping, we specified query ‘technology’ covariate. 877 

Constructing gold standard embedding 878 

To construct the gold standard de novo Harmony embedding, we concatenated all three datasets 879 

together into a single expression matrix, subsetted by the top 2,000 variable genes over all cells, and 880 

ran Harmony integration on the top 20 PCs, harmonizing over ‘technology’ with default parameters. 881 

Assigning ground truth cell types 882 

We clustered the cells in the gold standard embedding using the Louvain algorithm as implemented in 883 

the Seurat functions BuildSNN and RunModularityClustering18. For PBMCs, we used nn_k = 5 (to 884 

capture rare HSCs), nn_eps = 0.5, and resolution = 0.8. We labeled clusters with ground truth cell types 885 

according to expression of canonical lineage marker genes (Table S2). PBMCs were assigned across 886 

7 types: T (CD3D), NK (GNLY), B (MS4A1), Monocytes (CD14, FCGR3A), DCs (FCER1A), 887 

Megakaryocytes (PPBP), and HSCs (CD34). Clusters were labeled if the AUC (calculated using 888 

presto54) for the corresponding lineage marker was >0.62. For clusters that did not express a specific 889 

lineage marker, we manually assigned a cell type based on the top differentially expressed genes 890 

(Table S2). PBMCs cluster 20 was identified as low-quality cells (high in mitochondrial genes; Table 891 
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S2). We removed all cells in this cluster (n=94) from further analyses. The final ground truth labels were 892 

used in downstream analyses and cell type classification accuracy evaluation. 893 

Evaluation of mixing and cell type classification accuracy 894 

To compare dataset mixing between de novo integration and mapping, we calculated Local Inverse 895 

Simpson Index (LISI) using the compute_lisi function from https://github.com/immunogenomics/LISI. 896 

For each mapping experiment, we calculated dataset LISI on all cells, then subsetted the results for 897 

query cell neighborhoods only to measure the effective number of datasets in the local neighborhood of 898 

each query cell. 899 

We predicted query cell types by transferring reference cell type annotations using the knn function in 900 

the ‘class’ R package (k=5). We calculated overall accuracy across all query cells and cell type F1 901 

scores (the harmonic mean of precision and recall, ranging from 0 to 1). Precision = TP/(TP+FP), recall 902 

= TP/(TP+FN), F1 = (2 * precision * recall) / (precision + recall). Cell type F1 was the metric Abdelaal et 903 

al. used to benchmark automated cell type classifiers35. We used their evaluate.R script to calculate 904 

confusion matrices and F1 scores by cell type. 905 

Quantifying local similarity between two embeddings 906 

k-NN-correlation (k-NN-corr) is a new metric that quantifies how well a given alternative embedding 907 

preserves the local neighborhood structure with respect to a gold standard embedding. Anchoring on 908 

each query cell, we calculate (1) the pairwise similarities to its k nearest reference neighbors in the gold 909 

standard embedding and (2) the similarities between the same query-reference neighbor pairs in an 910 

alternate embedding (Methods), then calculate the Spearman (rank-based) correlation between (1) 911 

and (2). For similarity, we use the radial basis function kernel: similarity(x,y) = exp(-ǁx-yǁ2/(2#2)). For 912 

each query cell, we obtain a single k-NN-corr value capturing how well the relative similarities to its k 913 

nearest reference neighbors are preserved. Note that k-NN-corr is asymmetric with respect to which 914 

embedding is selected as the gold standard and which is selected as the alternative because the 915 

nearest neighbor pairs are fixed based on how they were defined in the gold standard. The distribution 916 
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of k-NN-corr scores for all query cells can measure the embedding quality, where higher k-NN-corr 917 

indicates greater recapitulation of the gold standard. Lower values for k assess more local 918 

neighborhoods, whereas higher k assesses more global structure. 919 

We calculated k-NN-corr between the gold standard Harmony embedding and two alternative 920 

embeddings: (1) the full Symphony mapping algorithm (projection, clustering, and correction) and (2) 921 

PCA-projection only as a comparison to a batch-naïve mapping. PCA-projection refers to the first step 922 

of Symphony mapping, where query cells are projected from gene expression to pre-harmonized PC 923 

space: Zq = UTGq. 924 

2.2 Benchmarking against automatic cell type classifiers 925 

We downloaded the PbmcBench benchmarking dataset used by a recent comparison of automatic cell 926 

type identification methods35,39. For each of 48 train-test experiments previously described35, we used 927 

the same evaluation metrics (median cell type F1 score) to evaluate Symphony in comparison to the 22 928 

other classifiers. We obtained the numerical F1-score results for the other classifiers for all 48 929 

experiments directly from the authors in order to determine Symphony’s place within the rank ordering 930 

of classifier performance. 931 

During reference building, we explored two different gene selection methods: (1) unsupervised (top 932 

2000 variable genes) and (2) supervised based on identifying the top 20 differentially expressed (DE) 933 

genes per cell type. Option (2) was included to give Symphony the same information as prior-934 

knowledge classifiers (e.g. SCINA with 20 marker genes per cell type). We used the ‘presto’ package54 935 

for DE analysis. No integration was performed because the reference had a single-level batch structure 936 

(clusters were simply assigned using soft k-means). Onto each of 7 references (each representing 1 937 

protocol for donor pbmc1), we mapped either a second protocol for donor pbmc1 (6 experiments) or the 938 

same protocol for donor pbmc2 (1 experiment). Given the resulting Symphony joint feature 939 

embeddings, we used three downstream classifiers to predict query cell types: 5-NN, SVM with a radial 940 

kernel, and glm_net with ridge55. A total of 6 Symphony-based classifiers were tested (2 gene selection 941 

methods * 3 downstream classifiers). 942 
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2.2 Pancreas benchmark 943 

Constructing the pancreas query with mouse and human 944 

The pancreas query dataset (Baron et al., 2016; inDrop, n=8,569 human and 1,886 mouse cells) along 945 

with author-defined cell type labels were downloaded from https://hemberg-946 

lab.github.io/scRNA.seq.datasets/human/pancreas/. In order to combine the human and mouse 947 

matrices into a single aggregated query, we “humanized” the mouse expression matrix by mapping 948 

mouse genes to their orthologous human genes. This mapping was computed using the biomaRt R 949 

package56, mapping mgi_symbol from the mmusculus_gene_ensembl database to hgnc_symbol 950 

from the hsapien_gene_ensembl database. We added additional ortholog pairs from HomoloGene 951 

(https://ftp.ncbi.nih.gov/pub/HomoloGene/build37.2/homologene.data) to obtain a total of 22,578 human 952 

to mouse gene ortholog pairs. We represented this map as a matrix, with mouse genes as rows, human 953 

genes as columns, and values in {0,1} assigned to denote whether a mouse gene maps to a human 954 

gene. We then normalized the matrix to have each column sum to one, effectively creating a count-955 

preserving probabilistic map from d mouse to D human genes M ∈ RD×d. Mapping from mouse to 956 

human genes is then performed with matrix multiplication: Uhuman= MUmouse. Note that while the mouse 957 

gene expression matrix Umouse contains only integers (Umouse∈ Zd×N), the many-to-many mapping means 958 

that the mapped human gene expression matrix Uhuman may contain non-integers (Uhuman∈ RD×N). For 959 

any human orthologs that were missing in the mouse expression data, we filled in the expression with 960 

zeroes. We then log(CP10K+1) normalized the query cells.  961 

Preprocessing reference scRNA-seq data 962 

The pancreas reference datasets were each sequenced with a different technology: Fluidigm C1 963 

(n=638 cells), CEL-seq (946 cells), CEL-seq2 (2,238 cells), Smart-seq2 (2,355 cells). We obtained the 964 

log(1+CP10K) normalized data from the Harmony publication17. The pancreas cells were previously 965 

assigned across 9 types within each dataset individually according to cluster-specific expression of 966 

marker genes: alpha (GCG), beta (MAFA), gamma (PPY), delta (SST), acinar (PRSS1), ductal 967 
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(KRT19), endothelial (CDH5), stellate (COL1A2), and immune (PTPRC). We removed 290 cells that 968 

were left unassigned as part of ambiguous or outlier clusters during within-dataset annotation, leaving 969 

5,887 reference cells. 970 

We benchmarked three reference mapping methods as follows: 971 

Symphony mapping onto a Harmony reference 972 

We calculated the top 1,000 variable genes within each of the four reference dataset separately using 973 

VST then pooled them (total 2,236 variable genes) for PCA. For reference integration, we ran Harmony 974 

on the top 20 PCs, harmonizing over ‘donor’ (ë = 2) and ‘technology’ (ë = 4), with ü = 5. For Symphony 975 

mapping, we specified query ‘donor’, ‘species’, and ‘technology’ covariates. 976 

As a comparison with de novo integration, we ran Harmony integration on all 5 datasets together. We 977 

pooled the top 1,000 variable genes within each dataset (total 2,650 genes), calculated the top 20 PCs, 978 

and harmonized over ‘species’ (ë = 2), ‘donor’ (ë = 2), and ‘technology’ (ë = 2). 979 

Seurat v4 mapping onto a Seurat reference 980 

We ran Seurat version 4 (beta)30 (Seurat_3.9.9.9024) and followed the steps from the author’s tutorial 981 

(https://satijalab.org/seurat/v3.2/integration.html) to integrate the reference datasets given that the 982 

FindIntegrationAnchors and IntegrateData functions for de novo integration are equivalent between 983 

Seurat v3 and v4 to our understanding. We used the same 2,236 variable genes as above and 20 PCs. 984 

We followed the tutorial (https://satijalab.org/seurat/v4.0/reference_mapping.html) to map each donor 985 

dataset from the query individually. We used the FindTransferAnchors function with reduction = 986 

’pcaproject’ and MapQuery function with reference.reduction = ‘pca’ (as the documentation 987 

recommends for unimodal analysis). 988 

As a comparison with de novo integration, we ran Seurat v3/4 integration (FindIntegrationAnchors and 989 

IntegrateData) on all 5 datasets (integrating over plate-based technologies and Baron donors as 990 

batches) with the same 2,650 variable genes as above. 991 
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scArches mapping onto a trVAE reference 992 

We ran scArches28 version 0.3 with trVAE33  using default parameters provided in the authors’ 993 

notebooks (https://github.com/theislab/scarches/tree/master/notebooks). For the pancreas analysis, we 994 

only had access to normalized expression data and therefore ran scArches with trVAE using the mse 995 

reconstruction loss function. We included query batch information in the condition_key parameter.  996 

As a comparison with de novo integration, we ran trVAE on all 5 datasets with default parameters, 997 

specifying batch as ‘dataset’ for the 4 plate-based datasets and ‘donor’ for the Baron et al. dataset. 998 

Evaluation metrics 999 

We used the resulting joint (reference and query) cell embedding to predict query cell types from 1000 

reference cells using a 5-NN classifier and calculated cell type prediction F1 scores, as described 1001 

above. Note that for the cell type prediction and cell type F1 score calculation, we excluded query 1002 

Schwann cells from the accuracy metrics because that cell type is not present in the reference. 1003 

To assess degree of mixing, we calculated ref_query LISI and query donor LISI on query cell 1004 

neighborhoods using the compute_lisi function as above. ref_query LISI measures how well the 1005 

reference and query datasets are mixed (max ref_query LISI = 2), whereas query donor LISI measures 1006 

how well the individual donors within the query dataset are mixed (max = 6). 1007 

We measured mapping runtime and corresponding de novo integration runtime for each method as 1008 

elapsed time starting from gene expression. Symphony and Seurat were run in interactive Jupyter 1009 

notebooks on a Linux server (Intel Xeon E5-2690 v.3 processors), whereas scArches/trVAE was run on 1010 

GPUs (graphics card GP100GL [Tesla P100 PCIe 16GB]) to speed up runtime. 1011 

2.3 Fetal liver hematopoiesis trajectory inference example 1012 

We obtained post-filtered, post-doublet removal data directly from the authors46 along with author-1013 

defined cell type annotations for 113,063 cells sequenced with 10x 3’ end bias and a separate 25,367 1014 

cells sequenced with 10x 5’ end bias. For building the harmonized reference from all 3’ cells, we 1015 
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followed the same variable gene selection procedures as the original authors, using the Seurat 1016 

variance/mean ratio (VMR) method with parameters min_expr = .0125, max_expr = 3, and 1017 

min_dispersion = 0.625 (resulting in 1,917 variable genes). For each of 14 held-out donor experiments 1018 

within the 3’ dataset, we integrated the reference with Harmony on 13 donors (ë = 3). During Symphony 1019 

mapping, we specified query ‘donor’ covariate. For mapping 5’ cells against a 3’ reference, we removed 1020 

two donors (F2 and F5, n=3,953) from the 5’ query based on low library complexity (Fig. S5b), leaving 1021 

n=21,414 cells from 5 donors. We integrated the reference (all 14 donors sequenced with 3’ end bias) 1022 

with Harmony over ‘donor’ (ë = 3). During Symphony mapping, we specified both ‘donor’ and 1023 

‘technology’ as covariates. We predicted query cell types by transferring reference cell type annotations 1024 

using the knn function in the ‘class’ R package (k=30). We visualized the aggregated confusion matrix 1025 

across all 14 held-out donor experiments as well as the confusion matrix for the single 5’-to-3’ 1026 

experiment using ComplexHeatmap R package57. 1027 

For the trajectory inference analysis, we obtained trajectory coordinates from the force directed graph 1028 

(FDG) embedding of all 3’-sequenced cells from the original authors46, forming a reference trajectory. 1029 

We restricted the trajectory to immune cell types only (excluding hepatocytes, fibroblasts, and 1030 

endothelial). We then mapped a subset of the query cells belonging to the MEM lineage (MEMPs, 1031 

megakaryocytes, mast cells, early-late erythroid; n=5,141) to the reference-defined trajectory by 1032 

averaging the FDG coordinates of the 10 reference immune cell neighbors in the Symphony 1033 

embedding. 1034 

2.4 Memory T cell surface protein inference example 1035 

We used a memory T cell CITE-seq dataset collected from a tuberculosis disease progression cohort of 1036 

259 individuals of admixed Peruvian ancestry40. The dataset includes expression of the whole 1037 

transcriptome (33,538 genes) and 30 surface protein markers from 500,089 memory T cells isolated 1038 

from PBMCs. Including technical replicates, 271 samples were processed across 46 batches. 1039 

To assess protein prediction accuracy using Symphony embeddings, we randomly selected 217 1040 

samples (411,004 cells), normalized the expression of each gene (log2(CP10K)) and built a Symphony 1041 
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reference based on mRNA expression, correcting for donor and batch. The held-out 54 samples 1042 

comprised the query that we mapped onto the reference. We predicted the expression of each of the 30 1043 

surface proteins in each of the query cells by averaging the protein’s expression across the cell’s 50 1044 

nearest reference neighbors. Nearest neighbors were defined based on Euclidean distance in the 1045 

batch-corrected low-dimensional embedding. As a ground truth for each protein in each query cell, we 1046 

computed a smoothed estimate of the cells’ measured protein expression by averaging the protein’s 1047 

expression across the cell’s 50 nearest neighbors in the batch-corrected complete PCA embedding of 1048 

all 259 donors. We did not use the cells’ raw measured protein expression due to dropout. We 1049 

computed the Pearson correlation coefficient between our predicted expression and the ground truth 1050 

expression across all cells per donor for each marker. 1051 

To assess protein prediction accuracy based on mapping to a joint mRNA and protein-based 1052 

Symphony reference, we first built an integrated reference by using canonical correlation analysis 1053 

(CCA) to project cells into a low-dimensional embedding maximizing correlation between mRNA and 1054 

protein features. We randomly selected 217 samples (395,373 cells) to comprise this reference, and 1055 

normalized the expression of each gene (log2(CP10K)), selected the top 2,865 most variable genes, 1056 

and scaled (mean = 0, variance = 1) all mRNA and protein features. We computed 20 canonical 1057 

variates (CVs) with the cc function in the CCA R package58 and corrected the mRNA CVs for donor and 1058 

batch effects with Harmony. Then, we used Symphony to construct a reference based on the batch-1059 

corrected CVs, gene loadings on each CV, and mean and standard deviation used to scale each gene 1060 

prior to CCA. The held-out 54 samples comprised the query that we mapped onto the reference. As 1061 

described above, we predicted the expression of each of the 30 surface proteins in each of the query 1062 

cells based on the cell’s 5, 10, or 50 nearest neighbors in the reference, estimated the smoothed 1063 

ground truth expression of each protein in each query cell (now based on the batch-corrected CCA 1064 

embedding of all 259 donors) and computed the Pearson correlation coefficient for each marker. 1065 

2.5 Visualization 1066 
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For visualizing the embeddings using UMAP59 (and included as the default in Symphony), we used the 1067 

‘uwot’ R package with the following parameters: n_neighbors=30, learning_rate=0.5, init = ‘laplacian’, 1068 

metric = ‘cosine’, min_dist=0.1 (except min_dist=0.3 for pancreas and fetal liver examples). For each 1069 

Symphony reference, we saved the uwot model at the time of UMAP using the uwot::save_uwot 1070 

function and saved the path to the model file as part of the Symphony reference object. Saving the 1071 

reference UMAP model allows for the fast projection of new query cells into reference UMAP space 1072 

from the query embedding from Symphony mapping using the function uwot::transform. 1073 

For the pancreas benchmarking, we computed a de novo UMAP embedding on the joint reference and 1074 

query embedding because a UMAP projection can potentially obscure differences between the 1075 

projected data and dataset used to construct the UMAP model. For general purposes, we recommend 1076 

UMAP projection when the reference cell UMAP coordinates are desired to remain stable. 1077 

To distinguish the reference plots from query plots, we visually present the reference embedding as a 1078 

contour density instead of individual cells. The density plots were generated using ggplot2 function 1079 

stat_density_2d with geom = ‘polygon’ and contour_var = ‘ndensity’. We provide custom functions to 1080 

generate these plots as part of the Symphony package. 1081 

2.6 Runtime scalability analysis 1082 

We downsampled a large memory T cell dataset40 to create benchmark reference datasets with 20,000, 1083 

50,000, 100,000, 250,000, and 500,000 cells. For each, we built a reference (20 PCs, 100 centroids) 1084 

integrating over ‘donor’ and mapped three different-sized queries: 1,000, 10,000, and 100,000 cells. To 1085 

isolate the separate effects of number of query cells and number of query batches on mapping time, we 1086 

mapped against the 50,000-cell reference: (1) varying the number of query cells (from 1,000 to 10,000 1087 

cells) while keeping the number of donors constant and (2) varying the number of query donors (6 to 1088 

120 donors) while keeping the number of cells constant (randomly sampling 10,000 cells). We also 1089 

performed separate experiments varying the number of reference centroids (25 to 400) and number of 1090 

dimensions (10 to 320 PCs) while keeping all other parameters constant. We ran all jobs on Linux 1091 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2020.11.18.389189doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.18.389189


 

48 

servers allotted 4 cores and 64 GB of memory (Intel Xeon E5-2690 v.3 processors) and used the 1092 

system.time R function to measure elapsed time. 1093 

Data availability 1094 

Datasets for all analyses were obtained from the links in Table S1. All datasets are publicly available 1095 

except the memory T cell CITE-seq data, which will be available at GEO accession GSE158769. 1096 

Code availability 1097 

We provide an efficient implementation of Symphony at https://github.com/immunogenomics/symphony 1098 

along with documentation, tutorials, and pre-built references. Scripts reproducing figures for all 1099 

examples will be made available at https://github.com/immunogenomics/symphony_reproducibility. 1100 

References 1101 

1. Klein, A. M. & Treutlein, B. Single cell analyses of development in the modern era. Development 1102 

146, (2019). 1103 

2. Han, X. et al. Construction of a human cell landscape at single-cell level. Nature (2020) 1104 

doi:10.1038/s41586-020-2157-4. 1105 

3. Svensson, V., da Veiga Beltrame, E. & Pachter, L. A curated database reveals trends in single-cell 1106 

transcriptomics. Database  2020, (2020). 1107 

4. Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 1108 

496–502 (2019). 1109 

5. Jerber, J. et al. Population-scale single-cell RNA-seq profiling across dopaminergic neuron 1110 

differentiation. bioRxiv 2020.05.21.103820 (2020) doi:10.1101/2020.05.21.103820. 1111 

6. Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by 1112 

integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019). 1113 

7. Reyes, M. et al. An immune-cell signature of bacterial sepsis. Nat. Med. 26, 333–340 (2020). 1114 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2020.11.18.389189doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.18.389189


 

49 

8. Kotliarov, Y. et al. Broad immune activation underlies shared set point signatures for vaccine 1115 

responsiveness in healthy individuals and disease activity in patients with lupus. Nat. Med. 26, 1116 

618–629 (2020). 1117 

9. Schafflick, D. et al. Integrated single cell analysis of blood and cerebrospinal fluid leukocytes in 1118 

multiple sclerosis. Nat. Commun. 11, 247 (2020). 1119 

10. Smillie, C. S. et al. Intra- and Inter-cellular Rewiring of the Human Colon during Ulcerative Colitis. 1120 

Cell 178, 714-730.e22 (2019). 1121 

11. Litviňuková, M. et al. Cells of the adult human heart. Nature (2020) doi:10.1038/s41586-020-2797-1122 

4. 1123 

12. Rozenblatt-Rosen, O., Stubbington, M. J. T., Regev, A. & Teichmann, S. A. The Human Cell Atlas: 1124 

from vision to reality. Nature 550, 451–453 (2017). 1125 

13. Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell RNA-1126 

sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36, 421–1127 

427 (2018). 1128 

14. Hie, B., Bryson, B. & Berger, B. Efficient integration of heterogeneous single-cell transcriptomes 1129 

using Scanorama. Nat. Biotechnol. 37, 685–691 (2019). 1130 

15. Welch, J. D. et al. Single-Cell Multi-omic Integration Compares and Contrasts Features of Brain 1131 

Cell Identity. Cell 177, 1873-1887.e17 (2019). 1132 

16. Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Deep generative modeling for single-1133 

cell transcriptomics. Nat. Methods 15, 1053–1058 (2018). 1134 

17. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. 1135 

Methods 16, 1289–1296 (2019). 1136 

18. Stuart, T. et al. Comprehensive Integration of Single-Cell Data. Cell 177, 1888-1902.e21 (2019). 1137 

19. He, Z., Brazovskaja, A., Ebert, S., Camp, J. G. & Treutlein, B. CSS: cluster similarity spectrum 1138 

integration of single-cell genomics data. Genome Biol. 21, 224 (2020). 1139 

20. Tran, H. T. N. et al. A benchmark of batch-effect correction methods for single-cell RNA 1140 

sequencing data. Genome Biol. 21, 12 (2020). 1141 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2020.11.18.389189doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.18.389189


 

50 

21. Zhang, Q. et al. Landscape and Dynamics of Single Immune Cells in Hepatocellular Carcinoma. 1142 

Cell 179, 829-845.e20 (2019). 1143 

22. Wei, K. et al. Notch signalling drives synovial fibroblast identity and arthritis pathology. Nature 582, 1144 

259–264 (2020). 1145 

23. Kirita, Y., Wu, H., Uchimura, K., Wilson, P. C. & Humphreys, B. D. Cell profiling of mouse acute 1146 

kidney injury reveals conserved cellular responses to injury. Proc. Natl. Acad. Sci. U. S. A. 117, 1147 

15874–15883 (2020). 1148 

24. Sandu, I. et al. Landscape of Exhausted Virus-Specific CD8 T Cells in Chronic LCMV Infection. 1149 

Cell Rep. 32, 108078 (2020). 1150 

25. Korsunsky, I. et al. Cross-tissue, single-cell stromal atlas identifies shared pathological fibroblast 1151 

phenotypes in four chronic inflammatory diseases. bioRxiv 2021.01.11.426253 (2021). 1152 

26. Zhang, F. et al. IFN- γ and TNF- α drive a CXCL10 + CCL2 + macrophage phenotype expanded in 1153 

severe COVID-19 and other diseases with tissue inflammation. bioRxiv (2020) 1154 

doi:10.1101/2020.08.05.238360. 1155 

27. Lähnemann, D. et al. Eleven grand challenges in single-cell data science. Genome Biol. 21, 31 1156 

(2020). 1157 

28. Lotfollahi, M. et al. Query to reference single-cell integration with transfer learning. bioRxiv (2020). 1158 

29. Cao, Z.-J., Wei, L., Lu, S., Yang, D.-C. & Gao, G. Searching large-scale scRNA-seq databases via 1159 

unbiased cell embedding with Cell BLAST. Nat. Commun. 11, 3458 (2020). 1160 

30. Hao, Y. et al. Integrated analysis of multimodal single-cell data. bioRxiv 2020.10.12.335331 (2020). 1161 

31. Kiselev, V. Y., Yiu, A. & Hemberg, M. scmap: projection of single-cell RNA-seq data across data 1162 

sets. Nat. Methods 15, 359–362 (2018). 1163 

32. Xu, C. et al. Probabilistic harmonization and annotation of single-cell transcriptomics data with 1164 

deep generative models. Mol. Syst. Biol. 17, e9620 (2021). 1165 

33. Lotfollahi, M., Naghipourfar, M., Theis, F. J. & Wolf, F. A. Conditional out-of-distribution generation 1166 

for unpaired data using transfer VAE. Bioinformatics 36, i610–i617 (2020). 1167 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2020.11.18.389189doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.18.389189


 

51 

34. Polański, K. et al. BBKNN: fast batch alignment of single cell transcriptomes. Bioinformatics 36, 1168 

964–965 (2020). 1169 

35. Abdelaal, T. et al. A comparison of automatic cell identification methods for single-cell RNA 1170 

sequencing data. Genome Biol. 20, 194 (2019). 1171 

36. Zhang, Z. et al. SCINA: A Semi-Supervised Subtyping Algorithm of Single Cells and Bulk Samples. 1172 

Genes  10, (2019). 1173 

37. Alquicira-Hernandez, J., Sathe, A., Ji, H. P., Nguyen, Q. & Powell, J. E. scPred: accurate 1174 

supervised method for cell-type classification from single-cell RNA-seq data. Genome Biol. 20, 264 1175 

(2019). 1176 

38. Tan, Y. & Cahan, P. SingleCellNet: A Computational Tool to Classify Single Cell RNA-Seq Data 1177 

Across Platforms and Across Species. Cell Syst 9, 207-213.e2 (2019). 1178 

39. Ding, J. et al. Systematic comparative analysis of single cell RNA-sequencing methods. bioRxiv 1179 

632216 (2019) doi:10.1101/632216. 1180 

40. Nathan, A. et al. Multimodal memory T cell profiling identifies a reduction in a polyfunctional Th17 1181 

state associated with tuberculosis progression. bioRxiv 2020.04.23.057828 (2020) 1182 

doi:10.1101/2020.04.23.057828. 1183 

41. Segerstolpe, Å. et al. Single-Cell Transcriptome Profiling of Human Pancreatic Islets in Health and 1184 

Type 2 Diabetes. Cell Metab. 24, 593–607 (2016). 1185 

42. Lawlor, N. et al. Single-cell transcriptomes identify human islet cell signatures and reveal cell-type-1186 

specific expression changes in type 2 diabetes. Genome Res. 27, 208–222 (2017). 1187 

43. Grün, D. et al. De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data. Cell 1188 

Stem Cell 19, 266–277 (2016). 1189 

44. Muraro, M. J. et al. A Single-Cell Transcriptome Atlas of the Human Pancreas. Cell Syst 3, 385-1190 

394.e3 (2016). 1191 

45. Baron, M. et al. A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals 1192 

Inter- and Intra-cell Population Structure. Cell Syst 3, 346-360.e4 (2016). 1193 

46. Popescu, D.-M. et al. Decoding human fetal liver haematopoiesis. Nature 574, 365–371 (2019). 1194 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2020.11.18.389189doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.18.389189


 

52 

47. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. 1195 

Methods 14, 865–868 (2017). 1196 

48. Peterson, V. M. et al. Multiplexed quantification of proteins and transcripts in single cells. Nat. 1197 

Biotechnol. 35, 936–939 (2017). 1198 

49. Luecken, M. D. & Theis, F. J. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol. 1199 

Syst. Biol. 15, e8746 (2019). 1200 

50. Berger, B. & Cho, H. Emerging technologies towards enhancing privacy in genomic data sharing. 1201 

Genome Biol. 20, 128 (2019). 1202 

51. Wang, S., Pisco, A. O., Karkanias, J. & Altman, R. B. Unifying single-cell annotations based on the 1203 

Cell Ontology. bioRxiv 810234 (2019) doi:10.1101/810234. 1204 

52. Gayoso, A. et al. A Joint Model of RNA Expression and Surface Protein Abundance in Single Cells. 1205 

bioRxiv 791947 (2019) doi:10.1101/791947. 1206 

53. Baglama, J. & Reichel, L. Augmented Implicitly Restarted Lanczos Bidiagonalization Methods. 1207 

SIAM Journal on Scientific Computing vol. 27 19–42 (2005). 1208 

54. Korsunsky, I., Nathan, A., Millard, N. & Raychaudhuri, S. Presto scales Wilcoxon and auROC 1209 

analyses to millions of observations. bioRxiv 653253 (2019) doi:10.1101/653253. 1210 

55. Friedman, J., Hastie, T. & Tibshirani, R. Regularization Paths for Generalized Linear Models via 1211 

Coordinate Descent. J. Stat. Softw. 33, 1–22 (2010). 1212 

56. Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the integration of 1213 

genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 4, 1184–1191 (2009). 1214 

57. Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in 1215 

multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016). 1216 

58. Leurgans, S. E., Moyeed, R. A. & Silverman, B. W. Canonical Correlation Analysis When the Data 1217 

are Curves. J. R. Stat. Soc. Series B Stat. Methodol. 55, 725–740 (1993). 1218 

59. McInnes, L., Healy, J. & Melville, J. UMAP: Uniform Manifold Approximation and Projection for 1219 

Dimension Reduction. arXiv [stat.ML] (2018). 1220 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2020.11.18.389189doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.18.389189

