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Abstract

Recombination is a fundamental process in molecular evolution, and the identification of

recombinant sequences is of major interest for biologists. However, current methods for

detecting recombinants only work for aligned sequences, often require a reference panel, and do

not scale well to large datasets. Thus they are not suitable for the analyses of highly diverse

genes, such as the var genes of the malaria parasite Plasmodium falciparum, which are known to

diversify primarily through recombination.

We introduce an algorithm to detect recombinant sequences from an unaligned dataset. Our

approach can effectively handle thousands of sequences without the need of an alignment or a

reference panel, offering a general tool suitable for the analysis of many different types of

sequences. We demonstrate the effectiveness of our algorithm through extensive numerical

simulations; in particular, it maintains its accuracy in the presence of insertions and deletions.

We apply our algorithm to a dataset of 17,335 DBLα types in var genes from Ghana,

enabling the comparison between recombinant and non-recombinant types for the first time. We

observe that sequences belonging to the same ups type or DBLα subclass recombine amongst

themselves more frequently, and that non-recombinant DBLα types are more conserved than

recombinant ones.

Author summary

Recombination is a fundamental process in molecular evolution where two genes exchange

genetic material, diversifying the genes. It is important to properly model this process when

reconstructing evolutionary history, and to do so we need to be able to identify recombinant

genes. In this manuscript, we develop a method for this which can be applied to scenarios where

current methods often fail, such as where genes are very diverse.

We specifically focus on detecting recombinants in the var genes of the malaria parasite

Plasmodium falciparum. These genes influence the length and severity of malaria infection, and

therefore their study is critical to the treatment and prevention of malaria. They are also highly

diverse, primarily because of recombination. Our analysis of genes from a cross-sectional study

in Ghana study show fundamental relations between the patterns and prevalence of

recombination in these genes and other important biological categorisations.
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Introduction 1

Recombination, the exchange of genetic materials between two molecular sequences, is a 2

fundamental evolutionary process in viruses, prokaryotes, eukaryotes, and even between 3

kingdoms [1]. The biological mechanisms of recombination, which differ across different 4

species, lead to the creation of novel ‘mosaic’ sequences in which different regions have distinct 5

evolutionary histories [2–4]. 6

In human population genetics, recombination plays a central role in shaping the patterns of 7

linkage disequilibrium, and thus recombination identification is of importance for estimating 8

recombination rates, quantitative trait loci and association studies [5, 6]. Recombination also 9

explains a considerable amount of the genetic diversity of human pathogens [7–9], such as 10

malaria [10] or protozoan parasites [11, 12]. It plays a central role for parasites to escape from 11

host immune pressures, or adapt to the effects of antiparasitic drugs. Therefore, the 12

characterisation of recombination events is critical to the clinical treatment and prevention of 13

such diseases. 14

In phylogenetics, recombination breaks a central assumption, that evolution is tree-like. Not 15

acknowledging recombination can result in severely misleading inferred phylogenies, e.g., the 16

overestimation or underestimation of branch lengths [13–15]. This can be mitigated by the 17

application of phylogenetic network reconstruction methods [16]; however, these methods are 18

still in their infancy. An accurate identification of recombinant sequences would benefit these 19

methods. 20

Many methods have been developed for identifying recombination events and/or 21

recombinants [3, 5, 17–20]. They can be roughly characterised into four paradigms: 22

1. Distance-based methods [1, 21–24] look for inversions of distance patterns among the 23

sequences. They usually employ a sliding-window approach to estimate distances and are 24

generally computationally efficient. 25

2. Phylogenetic methods [8, 25–30] look for discordant topologies in adjacent sequence 26

segments, which is taken as a sign of recombination. 27

3. Compatibility methods [2] test for phylogenetic incongruence on a site-by-site basis. This 28

type of method can be biased by many closely related sequences. 29

4. Substitution distribution-based methods [31–34] use a test statistic to examine the 30
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adjacent sequence segments. 31

Nearly all available methods require a multiple sequence alignment, which is commonly 32

available for population genetic datasets which have relatively low intra-population diversity. 33

Likewise, many methods (e.g., [21, 23, 29, 30, 35]) require a reference panel of known 34

non-recombinant sequences, which potential recombinants can be compared against. In the 35

absence of both an alignment and a reference panel, the available methods for detecting 36

recombinants are limited. Finally, most of the available methods do not scale well to very large 37

datasets. 38

We focus on the specific application of detecting recombinants in the var genes of the 39

malaria parasite Plasmodium falciparum. These genes express the Plasmodium falciparum 40

erythrocyte membrane protein 1 (PfEMP1), which is the main target of the human immune 41

response to the blood stages of infection. PfEMP1 is expressed on the surface of infected red 42

blood cells and serves to bind host endothelial receptors [36]. It is therefore crucial for the 43

successful proliferation and transmission [37, 38] of P. falciparum. The var genes are a large 44

gene family (up to 60 copies per genome) [39], and high levels of diversity in the var genes have 45

been observed in a single parasite genome, as well as small local populations [40–44]. This 46

diversity is driven primarily by recombination [10], and so an accurate identification of var 47

recombinants is critical to understanding the evolution of the system. 48

Briefly, the study of var genes has revealed a strong domain structure, including multiple 49

Duffy-binding like domains (DBLα,β ,δ ,ε,γ , and x) and cysteine-rich interdomain regions 50

(CIDRα,β ,γ) [45]. The structure of the gene itself is highly variable in both the number and the 51

composition of these domains. Population genetic studies of var genes have focused on 52

sequencing the DBLα domain, which almost always appears exactly once in a var gene. This 53

domain has been found to be immunogenic [46] and is crucial to understanding acquired 54

immunity and potential for vaccination [47]. Unfortunately, the DBLα domain is highly 55

variable, with many thousands of disparate sequences identified. This prevents the construction 56

of a reliable multiple sequence alignment, let alone a phylogenetic tree, and so little is known 57

about their evolutionary history. 58

Recent evidence [4, 47, 48] suggests that recombination is uniformly distributed throughout 59

the DBLα domain. The first systematic attempt to map out recombination in this domain was 60

performed by Zilversmit et al. [4], who developed a method based on a jumping hidden Markov 61
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model (JHMM) to align a sequence to its nearest relations in a reference dataset, allowing jumps 62

between sequences which represent recombination events. They used this method to “paint” 63

each sequence according its nearest relations. This was further exploited by Tonkin-Hill et 64

al. [48], who studied a large dataset of var genes around the world. They found a strong 65

geographic population structure among the genes coming from different countries. 66

Although these works were valuable in uncovering the recombination structure of var genes, 67

there is still much work to be done. The method of Zilversmit et al. does not identify 68

recombinant sequences, only recombination events; by identifying the sequences themselves, we 69

can investigate the differences between the recombinants and non-recombinants, and thus 70

determine the effect of recombination on the structure and function of the gene. However, the 71

diversity of the sequences and lack of an alignment and reference panel make it difficult to apply 72

current methods for this task. 73

In this paper, we develop a new method to identify recombinants in a large dataset of 74

unaligned sequences. This method exploits the information produced by the JHMM method, 75

combining it with a distance-based comparison to identify recombinants. We have applied this 76

method to a large dataset of DBLα sequences, producing several new biological results 77

concerning the patterns of recombination in this domain. Extensive simulations also confirm the 78

accuracy and applicability of our method. 79

Methods 80

We propose a novel method to detect recombinant sequences in a set of unaligned protein or 81

DNA sequences. This method is specifically designed to handle sequences for which it is 82

difficult to construct a multiple sequence alignment. It takes as input a set of homologous 83

sequences, and outputs the sequences that are identified as recombinant, their putative parents, 84

and the corresponding breakpoints. Note that extant sequences are identified as the ‘parents’ of 85

the recombinant; more accurately, we identify the descendants of the ancestral sequences which 86

were the parents of the recombination. 87

Our method combines several previous methods (the JHMM method of [4] and the MAFFT 88

algorithm of [49]) with a novel distance-based approach to identify recombinant sequences. The 89

method consists of the following steps; see Fig 1 for a graphical overview. 90

1. We apply the JHMM method of Zilversmit et al. [4] to represent each sequence as a 91
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Identify triples

Fig 1. A schematic of the algorithm. From an input set of unaligned sequences, we first use
the JHMM method to represent each sequence as a mosaic of other sequences. Next, we identify
triples of segments, consisting of a recombinant segment and its two parents, and complete their
alignment with the MAFFT algorithm. Finally, we identify the recombinant in each triple using
a distance-based approach.

‘mosaic’ of segments from other sequences in the dataset. 92

2. From the mosaic representations, we identify triples of segments which contain a 93

recombinant segment and its two parents. The mosaic representations provide pairwise 94

alignments for each of these triples, which we then complete to three-way alignments with 95

the MAFFT algorithm [49]. 96

3. Using a distance-based approach, we identify the recombinant sequence in each triple. 97

We discuss each step in detail in the following sections. 98

Calculating mosaic representations 99

In this step, we use the jumping hidden Markov model of Zilversmit et al. [4] to express each 100

sequence as a ‘mosaic’ combination of the other sequences in the dataset. This model was 101

designed to uncover the patterns of recombination in a set of unaligned sequences. 102

In this model, each character in a ‘target’ sequence is considered to be a copy from a 103

character in a sequence in a reference set (‘source’ sequences). The hidden state of the Markov 104

model is the (position of the) character which is copied. The copy may be imperfect, 105

representing mutation. After a character is copied, the next character in the target sequence is 106
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usually copied from the next character in the same source sequence. However, with small 107

probabilities: 108

• the source character may switch to any character in any position in another sequence, 109

representing recombination; 110

• the model switches to an ‘insertion’ state, where the target character is chosen randomly 111

and the source character does not move; 112

• the model switches to a ‘deletion’ state, where the source character moves forward 113

without being copied. 114

If the models is in an insertion or deletion state, it continues in this state until (with a small 115

probability per character) we return to copying characters from the current source sequence. 116

We note that this model is descended from the seminal HMM of Li and Stephens [6], which 117

has seen wide usage in many different applications involving recombining sequences. This 118

model is largely similar, but only works on aligned sequences, and recombination can only 119

switch between characters in the same position in the alignment. This restriction results in a 120

more efficient model with fewer hidden states, but one which cannot be used for unaligned 121

sequences. 122

We use the Zilversmit et al. model here by taking each sequence in our dataset in turn as the 123

target sequence and using every other sequence in our dataset as the source sequences. We first 124

estimate the parameters of the model, following Tonkin-Hill et al. [48]. The parameters are the 125

probability of gap initiation δ , the probability of gap extension ε , and the probability of 126

recombination ρ . We first set ρ to zero, and compute maximum likelihood estimates for δ and ε 127

with the Baum-Welch algorithm (see [50]). We then calculate the composite likelihood of all 128

sequences for all values of ρ over the interval [0,0.1] under the estimated δ̂ and ε̂ , and choose 129

the value of ρ which maximises this likelihood as our estimate ρ̂ . 130

Finally, we calculate the Viterbi path for each target sequence to find the most probable 131

sequence of hidden states (copied characters, insertions, and deletions). The result is a ‘mosaic’ 132

alignment for each sequence to a series of segments from the other sequences in the dataset. An 133

example of this can be seen in [4, Figure 2A]. 134

For large-scale datasets, training the JHMM model is a significant bottleneck for our method. 135

We again follow [48], and use the Viterbi training algorithm [51] in place of the Baum-Welch to 136
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estimate δ and ε , and calculate the composite likelihood over 1000 randomly selected sequences 137

to estimate ρ . This allows us to analyse large datasets (such as the DBLα dataset in Section 138

“Analysis of DBLα sequences from a cross-sectional study in Ghana”) in a practical timeframe 139

with only a small loss in accuracy. 140

Identifying recombinant triples and calculating multiple sequence 141

alignments 142

For each sequence, the JHMM method produces an alignment of that sequence to segments from 143

the other sequences. Whenever the source segment changes, we consider this to represent a 144

recombination event at that breakpoint. It is not necessarily the case (see below) that the target 145

sequence in this case is the recombinant sequence, and the two source segments come from the 146

parents of the recombination. However, we do know that the target sequence and the two source 147

sequences form a ‘recombinant triple’, that is, are the two parents and the child of a 148

recombination. 149

Therefore, for each breakpoint in each sequence, we identify the triple of the target sequence 150

and the two sequences which contain the source segments before and after the breakpoint as a 151

recombinant triple. We do this for all target sequences, resulting in a list of recombinant triples, 152

some of which may refer to the same recombination event. Sequences which do not infer a 153

breakpoint do not generate any triples. 154

We will apply a distance-based method to these triples to identify the true recombinant 155

sequence for each one. To calculate distances, we require a multiple alignment of the segments 156

from these three sequences. However, the JHMM method only provides a pairwise alignment of 157

each target segment to one source segment. We take these pairwise alignments and add the 158

corresponding segment from the remaining source sequence in the triple, using the MAFFT 159

algorithm [49]. For each triple, this results in a multiple alignment of the segments surrounding 160

the breakpoint. See Fig 2 for an overview of this process. 161

Note that we require a sufficient sequence length on either side of the breakpoint in order to 162

calculate distances accurately. Moreover, we observe in practice that short source segments 163

resulting from the JHMM method tend to be artifacts of the method, rather than representing 164

multiple consecutive recombinations (see S1 Fig). To address this, we exclude triples for which 165

the aligned segment on either side of the breakpoint is less than 10AA, which we found to be a 166
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a

b

c

(a)

a

b

c

(b)

a

b

c

(c)

Fig 2. An example of calculating a multiple sequence alignment with MAFFT. (a): A
segmental pairwise alignment generated by the JHMM method. Segments from sequence a are
aligned to segments from sequences b and c respectively. (b): Using MAFFT, we include the
corresponding segment from the third sequence into the pairwise alignment on either side of the
breakpoint. (c): By trimming the alignments, we generate a multiple alignment.

suitable threshold in practice. 167

Identifying recombinant sequences 168

Identifiability: a phylogenetic perspective 169

The main novelty in our method is the ability to identify which member of a triple is the true 170

recombinant. It is important to note that the JHMM method does not identify the recombinant, 171

but instead finds the (segments of) extant sequences which are the most closely related to the 172

target sequence. 173

This can be illuminated by considering an explicit phylogenetic network [16] with three 174

aligned sequences and one recombination as an example, as shown in Fig 3. Here, we can 175

translate a phylogenetic network to the corresponding mosaic representations, assuming the 176

JHMM method estimates the distances between sequences perfectly. It can be seen that the same 177

mosaic structure can result from networks with different recombinants. 178

In fact, as discussed at length in [52], this is an unavoidable problem with the identifiability 179

of phylogenetic networks; networks cannot be distinguished solely by the topologies of 180

displayed trees, which the output of the JHMM method is dependent on. The solution, as given 181

in [52], is to use (inferred) branch lengths to distinguish between the networks, and thereby 182

identify the recombinant. 183

When the phylogenetic network only consists of three sequences and one recombination (as 184

in Fig 3), it is easy to translate the network to the JHMM output, and thus use it to find the 185

recombinant. However, the problem rapidly becomes much more complicated with more 186
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ba c ba c a b c

a

b

c

segment 1 segment 2

(a) sequence b is the recombinant

b ca a b c a b c

a

b

c

segment 1 segment 2

(b) sequence a is the recombinant

Fig 3. Identifiability of networks from the JHMM output. Here, two networks with
different recombinants produce the same profile tree topologies, and thus the same JHMM
output. The JHMM output is depicted below the profile trees, with arrows from each target
segment pointing to the matching source segment (so, for example, if b is the target sequence, it
is matched to source sequence a in segment 1 and c in segment 2 in both cases). Both cases
produce identical JHMM output: in particular, sequence b is matched to two different source
sequences even though it is not necessarily the recombinant.

sequences and/or recombinations, and indeed for ancestral recombinations (predating a 187

divergence) it’s not even clear how to define an extant ‘true recombinant’. To avoid this problem, 188

we only identify triples of sequences as in Section “Identifying recombinant triples and 189

calculating multiple sequence alignments”, and assume that only one recombination occurs in 190

10/38

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.18.389262doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.18.389262
http://creativecommons.org/licenses/by-nc-nd/4.0/


the recent evolutionary history of each triple. For large datasets, we are essentially assuming that 191

recombinations are ‘sufficiently far apart’ either in the network or in the genome that they do not 192

interact with each other. 193

From a phylogenetic perspective, we can see that when this assumption holds, identifying 194

only triples breaks down a complicated network into repeated cases of a three sequence–one 195

recombination network, for which we can identify the recombinant. See Fig 4 for an example of 196

this. 197

ba c

a

b

c

segment 1 segment 2

d

segment 3

d

db c a cb d a cb da

Fig 4. Decomposing a network into triples. At the first breakpoint, the triple {b,c,d} is
identified from target sequence b, while at the second breakpoint, {a,b,c} is identified from
sequence b, and {b,c,d} from sequences c and d. In all cases, distance-based recombinant
identification will obtain the correct recombinant (b at both breakpoints).

Distance-based recombinant identification 198

Our algorithm is based on the well-known principle [1, 17, 32, 53] that two non-recombinant 199

sequences will have a similar evolutionary distance all along the sequence; that is, the distance 200

between the two sequences does not change before and after a recombination breakpoint in a 201

third sequence. Conversely, the distance between a recombinant sequence and another sequence 202

does change at a breakpoint. Using a distance-based method here allows us to avoid an 203

expensive tree or network inference step and thus scale our method to many sequences. 204

We thus calculate, for each recombinant triple {a,b,c}, the evolutionary distance between 205

each pair of segments before and after the breakpoint. We use here the BLOSUM62 206

distance [54, 55] for amino acids and Hamming (mismatch) distance for DNA sequences (these 207

could in principle be substituted by a large variety of ways to calculate evolutionary distance). 208

We denote these distances by D1 and D2 for the first (pre-breakpoint) and second 209
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(post-breakpoint) segment respectively. 210

We then compare the distances for each pair of sequences in the triple before and after the 211

breakpoint; the pair with the smallest absolute difference in distance are inferred to be the two 212

non-recombinant sequences, while the third is inferred to be recombinant. Formally, we have 213

recombinant = {a,b,c}\ argmin
{x,y}⊂{a,b,c}

|D1(x,y)−D2(x,y)|.

This method identifies one recombinant from each recombinant triple; note that one 214

recombination may generate one or more triples, but the identified recombinant from each of 215

these triples should be the same. We apply this to all triples identified above, generating a list of 216

recombinants in the entire dataset and their putative parents. 217

Calculating support values 218

In addition to identifying recombinant sequences, we can also measure the uncertainty in our 219

identification by using bootstrapping. Bootstrapping in phylogenetics is a standard statistical 220

tool [56], widely used to assign uncertainties to branches on a phylogenetic tree. We use the 221

same basic idea here. 222

For each multiple alignment of a triple, we resample characters in the alignment (columns) 223

within each segment, with replacement. This provides us with a resampled alignment, and we 224

generate 100 replicates per triple. We then run our distance-based method to identify the 225

recombinant for each replicate. The proportion of replicates which infer the same recombinant 226

as the original alignment is the support value of this detection. The larger the support value, the 227

more certain we are of the detection. 228

Efficiency The complexity of the method is dominated by the first step of estimating the 229

parameters via the Baum-Welch algorithm. As shown in [4], each iteration of the algorithm is 230

O(n2l2) in time and memory, where n is the number of sequences and l the length of each 231

sequence. The number of iterations required is not constant, but is generally small (less than 10). 232
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Results 233

Analysis of DBLα sequences from a cross-sectional study in Ghana 234

Dataset We applied our method to detect recombinants and breakpoints in a dataset of DBLα 235

sequences collected from individuals with microscopically confirmed P. falciparum infections 236

(isolates) living in the Bongo District, in the Upper East region of Ghana (GenBank BioProject 237

Number: PRJNA396962) [57, 58]. Details on the study population, data collection procedures, 238

and epidemiology have been published elsewhere [59–61]. This dataset consists of 35,591 239

previously published DBLα sequences collected from 161 isolates. 240

Preprocessing We follow the standard pipeline used in [43, 48]. The DNA sequences were 241

first translated into protein sequences, and removed if the resulting sequence contained a stop 242

codon. The protein sequences were then clustered with the Usearch software (v8.1.1861) [62] 243

with a 96% sequence similarity cutoff. The cluster centroids were then taken as a representative 244

sequence for the clusters, which are known as DBLα types. This results in a dataset of 17,335 245

types, each of which may appear in several isolates. 246

Identifying recombinants We applied our method to this dataset to detect recombinant types. 247

We detected 14,801 (85.4%) of the DBLα types to be recombinant. 248

The analysis was run on a high performance cluster at the University of Melbourne (72 249

Intel(R) Xeon(R) Gold 6254 CPU cores @ 3.10GHz, 768GB RAM). For estimating parameters, 250

we split the data into 578 subsets of 30 sequences each at every iteration of the Viterbi training 251

algorithm, which were executed in parallel. This was also done for estimating Viterbi paths and 252

identifying recombinants. The time and memory usage is summarised in Table 1. By far the 253

largest bottleneck is the computation of the mosaic representations of the sequences (both 254

parameter estimation and computation of the Viterbi paths); once this was completed, the 255

remaining steps are very efficient even for a dataset of this size. 256

Table 1. Time and memory consumption per subset (30 sequences).
Parameter estimation Viterbi paths Recombinant identification

Time (minutes) 644.8 294.9 2.7
Memory (GB) 21.3 21.2 0.1
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DBLα sequences from the same ups type recombine more frequently 257

The upstream promoter sequences of each var gene can be classified into three main ups types, 258

upsA, upsB, and upsC [41]. These ups types (not to be confused with DBLα types; instead, they 259

are analogous to DBLα subclasses) are associated with disease severity and clinical 260

significance [63], and thus it is crucial to investigate the behaviour of recombinants and 261

recombinations within and between ups types. 262

Earlier studies on a much smaller dataset [64], based on sequence similarity, proposed that 263

var gene recombination preferentially occurs within the same ups type. Using our method, 264

which to our knowledge is the first systematic attempt to detect recombinants in var genes in 265

natural parasite populations, we found considerable evidence supporting this hypothesis. Our 266

results are summarised in Table 2. 267

Table 2. Proportions of recombinations from the same ups types. Theoretically expected
proportions, based on the base frequencies of the ups types, are given in brackets. All p-values
are highly significant (< 2.2×10−16).

Parent-child Parents Family
UpsA vs. upsB/C 99.7% (85.0%) 98.9% (85.0%) 98.5% (77.6%)
UpsA, B and C 85.3% (50.9%) 65.5% (50.9%) 51.1% (30.5%)

Following the method of [41], we classified each DBLα type into one of 32 subclasses. The 268

subclasses were then classified into either upsA or upsB/C types (the latter two being difficult to 269

distinguish based on subclasses alone). For greater precision, we also developed a method to 270

distinguish between all three types: we used BLASTP [65] to match each sequence to the closest 271

reference sequence in [41], and then classified that sequence to the ups type of the closest 272

reference sequence. 273

Having identified recombinant sequences and their putative parents, we then calculated the 274

proportion of recombination triplets which have one parent and the child, both parents, and both 275

parents and the child belonging to the same ups type (‘Parent-child’, ‘Parents’, and ‘Family’ in 276

Table 2). In all cases, we found that the parents and/or the child of a recombination were 277

significantly more likely (p < 2.2×10−16 from χ2 tests) to belong to the same ups type. This 278

effect was most strongly noticeable when we divided the sequences only into ups A and B/C 279

types; for example, the two parents and the child were in the same type 98.5% of the time, 280

compared to a theoretical expectation of 77.6%. Similar conclusions were reached when we 281

divided the sequences into three types. Our results strongly reinforce the conclusions of earlier 282

studies, and provide more precision with the division into three ups types. 283
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We also considered the proportions of identified recombinants in each ups type. We found 284

that there was a significant difference in the proportions of recombinants in the three types 285

(p = 2.193×10−7 from a χ2 test), with upsA having the least proportion of recombinants, and 286

upsC the most (82.3%, 84.9%, and 87.6% from A, B, and C respectively). 287

Proportions of recombination differ among DBLα subclasses 288

DBLα sequences can be classified according to sequence similarity into 33 subclasses 289

(DBLα0.1–24, DBLα1.1–8, DBLα2). These subclasses are strongly associated with ups types; 290

however, they also provide greater resolution in dividing the sequences. We thus repeated our 291

earlier analyses with regards to the subclasses. 292

As with ups type, we found a significant (all p < 2.2×10−16) increase in recombinations 293

with one parent and the child (58.8% vs. 7.9% expected), parents (31.0% vs. 7.9% expected), 294

and both parents and the child (20.6% vs. 1.0% expected) from the same subclass. 295

We next considered the proportions of identified recombinants in each subclass (Fig 5). We 296

identified seven subclasses (DBLα0.1, 5 and 11 were too high, while DBLα0.3, 8, 9 and 23 297

were too low) which were significantly different from the average under a Bonferroni correction 298

for multiple testing. Of particular note is the DBLα0.1 subclass, which has been noted to involve 299

more recombinations than other subclasses [10]. We suggest that these subclasses should be 300

explored further to determine if there are some biological factors that may explain these results. 301
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Fig 5. Proportions (and 95% confidence intervals) of recombinants for each DBLα

subclass. Subclasses which are significantly different from the overall average are highlighted
in red. The horizontal dashed line displays the overall proportion of recombinant sequences in
the entire dataset.
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We also investigated the proportion of recombinants among individual isolates, and among 302

the two broad catchment areas in the Bongo District (Soe and Vea/Gowrie) that the isolates were 303

collected from. We did not detect any significant differences here, see S1 File and S2 Fig for 304

more details. 305

Non-recombinant DBLα types are more conserved than recombinant types 306

It is well known [43, 66] that some DBLα types are highly conserved, i.e., that they appear in 307

many different isolates. On the other hand, many other types only appear rarely (or even once, in 308

our large dataset). We hypothesise that non-recombinant types are more “stable” than 309

recombinants, and thus may be more highly conserved. 310

We investigated this hypothesis via the recombinants identified by our method. Firstly, we 311

compared the observed frequencies of the recombinants to the non-recombinants; we found that 312

non-recombinants occurred significantly more often in the dataset (average 4.2 vs. 3.7, 313

p = 0.021 from a Wilcoxon rank sum test). 314

We also considered if there is a difference in the proportions of frequent DBLα types in 315

recombinants and non-recombinants. As the frequencies of types are highly right-skewed (see 316

S3 Fig), thus, we thresholded the frequencies at various levels to determine if there were 317

particular frequencies where an effect could be noticed. The results are in Table 3. We found 318

that for a threshold frequency of 5, there were significantly fewer frequent recombinants than 319

non-recombinants; however, this effect becomes less noticeable for larger thresholds. This 320

suggests that there is a high proportion of recombinants which appear very few times in the 321

dataset; these are potentially relatively recent recombinants, which may have not been fixed in 322

the population. 323

Table 3. Proportions of frequent (larger than the threshold) recombinant and
non-recombinant DBLα types for different thresholds.

Threshold 5 10 15 20
Recombinants 17.5% 4.5% 2.1% 1.3%
Non-recombinants 21.0% 6.0% 2.3% 1.6%
P-value (χ2 test) 0.006 0.047 0.666 0.634

Breakpoint positions are associated with homology blocks 324

It is known that a number of semi-conserved homology blocks (HBs) occur frequently in var 325

genes [41]. These HBs recombine at exceedingly high rates [67, 68], and are known to be useful 326
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in predicting disease severity [36]. We thus investigated the patterns of recombination in DBLα 327

types in relation to these homology blocks. 328

The positions of recombination breakpoints, as found by the JHMM method, are shown in 329

Fig 6. Of particular note is: 330

• The recombination rate is not constant throughout the sequence, but displays three distinct 331

peaks spaced in roughly equal intervals. These peaks clearly correspond to the three most 332

frequent homology blocks, HB5, 14, and 36, with the height of the peak also 333

corresponding to the frequency of the HB. 334

• The frequency of breakpoints drops sharply towards either end of the sequence. This is an 335

artifact of the method and does not imply that the recombination rate is lower there; we 336

cannot recognise a recombination which is close to one end of the sequence. 337

This reinforces the biological theory that recombination occurs within short identical 338

segments [69]. 339

We also investigated the occurrence of HBs in the recombinant and non-recombinant 340

sequences identified by our algorithm. We discovered that the number of HBs in recombinant 341

sequences were significantly higher than in non-recombinant sequences (5.5 vs. 5.3, 342

p < 2.2×10−16 from Wilcoxon rank sum test). Furthermore, the proportion of sequences 343

containing “important” HBs (5, 14, and 36) were also significantly different between the two 344

groups (83.9% vs. 78.5%, p = 1.859×10−11 from χ2 test), indicating that recombinants tend to 345

have more conserved building blocks. Finally, we found that recombinant sequences had higher 346

pairwise HB similarities [36] with each other than non-recombinants (0.629 vs. 0.618, 347

p < 2.2×10−16 from Wilcoxon rank sum test). For more details, see S2 File. 348

Simulations 349

Simulation design 350

We conducted extensive simulations to evaluate the effectiveness of our method. Our simulation 351

protocol is as follows: 352

1. Simulate a tree (genealogy) under the coalescent (without recombination) using 353

msprime [70]. 354
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Fig 6. Positions of recombination breakpoints. (Top) The histogram of relative breakpoint
positions of recombinations. (Bottom) The position of the most common homology blocks, with
circle size proportional to frequency. The three most frequent homology blocks (HB5, 14, and
36) are highlighted in blue.

2. Evolve amino acid sequences from a common ancestor along the tree using Pyvolve [71]. 355

If insertions and/or deletions are required, we use INDELible [72] instead. 356

3. Generate recombinant sequences from two or more randomly chosen sequences in the 357

dataset, with breakpoints chosen uniformly at random along the genome. The parent 358

sequences are removed from the dataset. 359

Note that we do not evolve our sequences further after the recombination step; however, 360

since we remove the parents from the dataset, this is indistinguishable from having earlier 361

recombinations in sequences that do not diverge. 362

In our simulations, we simulate both equal-length sequences (no indels, see Table 4), and 363
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unequal-length sequences with indel events (see Table 5), generating unaligned input. 364

Table 4. General simulation parameters (no indels). We vary each parameter in turn while holding the others
fixed at the default values (in bold).

Parameter Values
1© Proportion of recombinant sequences (%) 10, 20, 30, 40, 50, 60, 70, 80, 90
2© Average number of recombinations per recombinant sequence 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0
3© Dataset size (sequences) 100, 150, 200, 250, 300, 350, 400, 450, 500
4© Sequence length (AA) 100, 150, 200, 250, 300, 350, 400, 450, 500
5©Mutation rate (substitutions/site/coalescent unit) 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
6© Amino acid evolution model AB [73], DAYHOFF [74], JTT [75], LG [76], MTMAM [77], WAG [78]

Table 5. Indel simulation parameters (default values in bold). Insertions and deletions are
simulated at the same rate, with lengths according to a negative binomial distribution with
variance 10.

Parameter Values
7© Indel rate (expected number of indels/site/coalescent unit) 0.1, 0.2, 0.3, 0.4, 0.5
8©Mean indel size (AA) 3.7, 5.2, 6.0, 6.6, 7.0

There are a wide variety of parameters which could potentially affect the performance of the 365

method. Some of these are laid out in Tables 4 and 5. To keep our simulations tractable, we only 366

vary one parameter at a time, keeping the remainder fixed at default values. For each parameter 367

combination, we simulate 100 datasets and run our method on each dataset in turn. 368

To assess the performance of our algorithm, we calculate the sensitivity and specificity of our 369

method for each dataset. The sensitivity is defined as the proportion of true recombinants that 370

are correctly detected, while the specificity is the proportion of true non-recombinants that are 371

correctly detected. 372

Results 373

Our results are shown in Figs 7–14. Overall, it can be seen that the method enjoys good 374

performance, with most parameter settings offering both sensitivity and specificity above 70% 375

(and often much higher). We briefly consider the effect of each parameter in turn. 376

Recombinant proportion As the proportion of recombinants increases, sensitivity is stable at 377

around 80%, while specificity decreases (Fig 7). Here, more recombinant sequences result 378

(correctly) in a higher number of recombinations detected. It appears that the proportion of true 379

recombinants extracted from the recombinant triples remains largely the same (constant 380

sensitivity); however, there are proportionally more false detections as the number of 381
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non-recombinants decreases, resulting in a lower specificity. 382
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Fig 7. Mean sensitivity and specificity (with 95% confidence intervals) for varying
proportions of recombinant sequences.

Number of recombinations per recombinant As shown in Fig 8, the datasets where there 383

are more recombinations per recombinant sequence appear to have a higher sensitivity, and 384

slightly lower specificity. As for recombinant proportion, an increase in the number of 385

recombinations results (correctly) in more inferred recombinations; unlike that case, the number 386

of true recombinants remains the same here. It appears that the ‘extra’ detections are mostly 387

correct, which results in a greater proportion of true positives (sensitivity increases) and a 388

relatively stable specificity. 389

We also conducted a further analysis by matching the distribution of the number of 390

recombinations per recombinant to the Ghana dataset from Section “Analysis of DBLα 391

sequences from a cross-sectional study in Ghana” (see S3 File and S4 Fig for more details). Our 392

results indicate that, despite a low specificity (40.0%), a high sensitivity (89.0%) still 393

demonstrates the applicability of our algorithm to real data. 394

Dataset size Dataset size does not appear to have a drastic effect on the sensitivity of the 395

method, while specificity increases slightly (see Fig 9). It is to be expected that performance 396

increases slightly as information accumulates across a larger dataset, but it is unclear why this is 397

only expressed in the specificity here. 398
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Fig 8. Mean sensitivity and specificity (with 95% confidence intervals) for varying
numbers of recombinations per recombinant sequence.
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Fig 9. Mean sensitivity and specificity (with 95% confidence intervals) for varying
dataset size.

Sequence length Datasets with longer sequence length have much higher sensitivity, and 399

slightly lower specificity (Fig 10). It seems (S5 Fig) that as sequence length increases, the 400

number of recombinations detected also increases, even though the true number of 401

recombinations remains the same. This increase in detections, combined with a fixed percentage 402

of recombinants, results in a effect similar to that seen for the “number of recombinations per 403

recombinant”: an increase in sensitivity and a slightly decreasing specificity. 404
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Fig 10. Mean sensitivity and specificity (with 95% confidence intervals) for varying
sequence length.

Mutation rate As the mutation rate increases, the sensitivity of the method rapidly increases 405

before levelling out (Fig 11). This makes sense, as if the number of substitutions is too low, the 406

sequences are difficult to distinguish from each other, which makes the results from the JHMM 407

unreliable. Conversely, as the number of substitutions grows, it also becomes more difficult to 408

identify sequences which are closely related to each other, resulting in a decrease in specificity. 409
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Fig 11. Mean sensitivity and specificity (with 95% confidence intervals) for varying
mutation rate.

Insertion/deletion parameters An important feature of our method is its ability to accept 410

unaligned sequences as input. When we include indels in the generating process, we can see 411
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(Figs 12, 13) that both sensitivity and specificity remain relatively unaffected, with a moderate 412

decline in specificity as indel rate increases. This indicates that our method is robust to indels 413

even when the indel rate or fragment size is large. In these scenarios, existing methods which 414

only accept aligned sequences would be unable to cope. 415
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Fig 12. Mean sensitivity and specificity (with 95% confidence intervals) for varying indel
rate.

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

Mean indel size (AA)

S
en

si
tiv

ity

(a)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

Mean indel size (AA)

S
pe

ci
fic

ity

(b)

Fig 13. Mean sensitivity and specificity (with 95% confidence intervals) for varying indel
size.

Other parameters The method appears to be robust to the stochastic model of amino acid 416

evolution (Fig 14). 417

23/38

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.18.389262doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.18.389262
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

AB DAYHOFF JTT LG MTMAM WAG

Amino acid evolution model

S
en

si
tiv

ity

(a)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

AB DAYHOFF JTT LG MTMAM WAG

Amino acid evolution model

S
pe

ci
fic

ity

(b)

Fig 14. Mean sensitivity/specificity (with 95% confidence intervals) for each model of
amino acid evolution.

Support values 418

In addition to detecting recombinants, we also show above how to calculate support values for 419

each detection using bootstrapping. Here, we verify that the calculated values are indeed 420

effective for this purpose. For our simulations, we calculate the support values for each of the 421

correct detections, as well as each of the false positives. The distributions of the support values 422

for the default parameters are shown in Fig 15. Here, we can see that there is a clear separation 423

between the distributions of support values for the true and false positives; while the values for 424

both are relatively high, the support values for true detections are overall much higher. Similar 425

patterns are seen among all the remaining parameter settings (S6 Fig–S13 Fig). 426

This suggests that we can use a threshold on the support value to refine our detections. This 427

is reasonable if we wish to reduce false positives; however, in practice we found that applying a 428

threshold also reduced true positives (as expected) to an extent which lowered the overall 429

accuracy of the method, so we have elected not to apply it here. Instead, we suggest that the 430

support value be used to assess the confidence which should be placed in individual recombinant 431

detections of interest. 432

Accuracy of the JHMM method 433

The JHMM method of [4] forms a key part of our method to detect recombinants. Until now, 434

there has not been a systematic study of the accuracy of this method. Two key outputs of this 435
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Support value

Fig 15. Distributions of support values under default parameters without indel events.

method are the locations of the inferred recombination breakpoints, and the estimated 436

recombination parameter ρ . Here, we study the accuracy of these inferences for our simulated 437

datasets. 438

Recombination breakpoints For each recombination, we calculate the distance between the 439

true and inferred breakpoints. For ease of comparison, we restrict this analysis to the case where 440

each recombinant sequence has exactly two parents (one recombination), which avoids the 441

problems of matching breakpoints in the same sequence to each other. 442

We find in general (see Fig 16) that the breakpoints are very accurately inferred, with 38.4% 443

of all breakpoints inferred exactly, and 75.0% being at most 5AA from the true value. There is 444

also a slight but noticeable positive bias, where the inferred breakpoints tend to be slightly larger 445

than the true breakpoints (S14 Fig). This can be best explained by noting that the JHMM method 446

infers the best (Viterbi) path from left to right, and recombinations are considered relatively 447

unlikely; hence a recombination will tend to be inferred slightly later than it actually is, 448

particularly if both parents’ sequences are identical around the breakpoint. 449

Finally, we note that the breakpoint accuracy appears to be very robust to indel events; this is 450

expected, since the method explicitly accounts for these events. 451

Recombination rate The parameter ρ is directly related to the recombination rate in the 452

dataset (although it does not provide a rate in terms of time dimension). As such, an accurate 453

estimate of ρ is valuable for molecular phylogeneticists. We observe in our simulated datasets 454
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Fig 16. Breakpoint inference error of the JHMM method under default simulation
parameters.

(S15 Fig-S18 Fig) that the inferred values of ρ provide an accurate estimate of the recombinaton 455

rate. 456

On the other hand, the inferred ρ can also be affected by mutation rate (Fig 17) and (to a 457

lesser extent) indel events (S19 Fig-S20 Fig); here, an increasing rate of non-recombination 458

events leads to some of them being mistaken for recombination, distorting the inference of the 459

recombination rate. This indicates that the use of the JHMM to infer the true recombination rate 460

has the potential to be inaccurate. 461
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Fig 17. Estimated ρ (and 95% CI) with varying mutation rate (but constant number of
recombinations).
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Discussion 462

In this paper, we have developed a statistical method to detect recombinant sequences from a 463

large set of unaligned genetic sequences without a reference panel. We can also assess the 464

reliability of the inferred recombinants with a bootstrapping-based tool. Comparisons between 465

recombinant and non-recombinant DBLα types reveal a series of biologically meaningful 466

results; for example, recombination is more frequent within ups types and DBLα subclasses, 467

and non-recombinants are more conserved than recombinants. Simulations show that our 468

method performs very well even when there is a high recombination rate, long sequences, or a 469

large dataset. Crucially, it maintains its accuracy in the presence of insertions and deletions, 470

where methods which require an alignment would normally fail. 471

We note that our method is set up to detect only recent recombinants; for example, if a more 472

ancient recombination produces a sequence that diverges into two lineages, the lineages will be 473

preferentially matched to each other by the JHMM, and it is possible that no recombination will 474

be detected. Note that ‘recent’ in this context only means that the recombinant sequence has not 475

yet diverged; it is uncertain what timescale this corresponds to. For example, although 476

recombination events have been reported on epidemiologically relevant timescales of several 477

years [10], a recombinant may continue to be ‘recent’ for far longer than that. The Ghana dataset 478

studied in this paper is the first of a longitudinal dataset collected over several seasons, which 479

may give insight into the frequency and patterns of recombination on epidemiological 480

timescales; this is the subject of current work. 481

Furthermore, there is an implicit assumption that recombinations do not ‘interact’ with each 482

other, i.e., that they are sufficiently far apart either in the evolutionary network or in the genome 483

that we can decompose the dataset into recombinant triples and assess those independently. This 484

is a strong (and perhaps unrealistic, in the context of genes which have a high recombination 485

rate) assumption which we make in order to obtain a tractable algorithm. As seen from our 486

results, we do appear to obtain good accuracy with our detections even in cases where this 487

assumption might not hold; assessing the exact impact of this assumption on our results is also 488

the subject of future work. 489

This algorithm opens up new avenues for further analysis of var genes. In particular, the 490

detection of (recent) recombinants and their parents will aid in the construction of phylogenetic 491

networks. The ability to infer such a network of var genes may have important implications for 492
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monitoring, intervention, and diagnosis of malaria in the future. 493

Finally, although our methods are motivated primarily by the highly recombinant var genes, 494

our approach is not restricted to these genes, but could be used for any genes which are 495

recombinant but lack a reliable alignment or reference panel (e.g., detecting gene fusions in the 496

context of RNA sequencing in human cancer bioinformatics). The scalability of our method 497

means that it will be applicable even to large datasets, thus holding great promise for broader 498

applications. 499

Supporting information 500

S1 File. Recombinant proportions across isolates and catchment areas. 501

S2 File. Detection of HBs in recombinant and non-recombinant DBLα types. 502

S3 File. Matching recombination numbers to real data 503

S1 Fig. Distribution of source segment length in mosaic representations of Ghana data. 504

There is a peak of source segments which less than 5AA, which appear to be the artifacts of the 505

JHMM method. 506

S2 Fig. Proportions (and 95% confidence intervals) of recombinants for each isolate. 507

The horizontal dashed line displays the overall proportion of recombinant sequences in the entire 508

dataset. 509

S3 Fig. Frequency of DBLα types in the isolates of the Ghana dataset. 510

S4 Fig. Distribution of source segment count from the JHMM output in the Ghana 511

data. 512

S5 Fig. The number of recombinant triples detected by our algorithm for varying 513

sequence length. The reference line indicates the true number of recombinant triples in the 514

dataset. 515
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S6 Fig. Distribution of support values for varying proportions of recombinant 516

sequences. Red points represent the median of support values (same hereinafter). 517

S7 Fig. Distribution of support values for varying numbers of recombinations per 518

recombinant sequence. 519

S8 Fig. Distribution of support values for varying dataset size. 520

S9 Fig. Distribution of support values for varying sequence length. 521

S10 Fig. Distribution of support values for varying mutation rate. 522

S11 Fig. Distribution of support values for different models of amino acid evolution. 523

S12 Fig. Distribution of support values for varying indel rate. 524

S13 Fig. Distribution of support values for varying indel size. 525

S14 Fig. Breakpoint inference of the JHMM method under default simulation 526

parameters. Most points cluster around the line y = x, indicating a high accuracy of breakpoint 527

inference. However, this is a slight positive bias in the identified breakpoint location, particularly 528

for breakpoints which occur later in the sequence. 529

S15 Fig. Estimated ρ (and 95% CI) for varying proportions of recombinant sequences. 530

Some CIs are too short to be visible (similarly for S16 Fig-S18 Fig. ρ̂ appears to grow linearly 531

with the proportion of recombinant sequences, as expected. 532

S16 Fig. Estimated ρ (and 95% CI) for varying number of recombinations per 533

recombinant sequence. ρ̂ appears to grow linearly with the number of recombinants per 534

sequence, as expected. 535

S17 Fig. Estimated ρ (and 95% CI) for varying dataset size. ρ̂ decreases slightly with 536

increasing dataset size, although the recombination rate remains constant. 537
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S18 Fig. Estimated ρ (and 95% CI) for varying sequence length. ρ̂ decreases in inverse 538

proportion to the sequence length, as expected. 539

S19 Fig. Estimated ρ (and 95% CI) for varying indel rate. There is a moderate increase in 540

ρ̂ as indel rate increases. This is unsurprising, as some of indel events are mistaken for 541

recombinations, distorting the inference of the recombination rate. 542

S20 Fig. Estimated ρ (and 95% CI) for varying indel size. Indel size (but constant indel 543

rate) does not appear to have a drastic effect on estimated ρ . 544

Data accessibility 545

All sequence data used in this study is available at DDBJ/ENA/GenBank: BioProject Number 546

PRJNA396962; Accession number SAMN08902792. All the source code of proposed algorithm 547

with test data and manuals are available from Github repository 548

(https://github.com/qianfeng2/detREC program). 549
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