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Abstract Modern life science relies heavily on fluorescent mi-
croscopy and subsequent quantitative bio-image analysis. The
current rise of graphics processing units (GPUs) in the context
of image processing enables batch processing large amounts
of image data at unprecedented speed. In order to facilitate
adoption of this technology in daily practice, we present an ex-
pert system based on the GPU-accelerated image processing
library CLIJ: The CLIJ-assistant keeps track of which opera-
tions formed an image and suggests subsequent operations. It
enables new ways of interaction with image data and image
processing operations because its underlying GPU-accelerated
image data flow graphs (IDFGs) allow changes to parameters
of early processing steps and instantaneous visualization of
their final results. Operations, their parameters and connec-
tions in the IDFG are stored at any point in time enabling the
CLIJ-assistant to offer an undo-function for virtually unlimited
rewinding parameter changes. Furthermore, to improve repro-
ducibility of image data analysis workflows and interoperability
with established image analysis platforms, the CLIJ-assistant
can generate code from IDFGs in programming languages such
as ImageJ Macro, Java, Jython, JavaScipt, Groovy, Python and
C++ for later use in ImageJ, Fiji, Icy, Matlab, QuPath, Jupyter
Notebooks and Napari. We demonstrate the CLIJ-assistant for
processing image data in multiple scenarios to highlight its gen-
eral applicability. The CLIJ-assistant is open source and avail-
able online: https://clij.github.io/assistant/

1 Introduction

The availability of image analysis algorithms exploiting the
computational power of graphics processing units (GPUs) to

a broader audience boosts the need for accessible tools for
building GPU-accelerated image analysis workflows; in the
life sciences and in adjacent imaging-dependent research fields.
Typically, designing data analysis procedures utilizing GPUs
involves expertise in programming and knowledge of GPU-
specific programming languages such as the Open Comput-
ing Language (OpenCL) [1]. We demonstrate how one can
construct complete image analysis workflows without writing
a single line of OpenCL by assembling workflows from op-
erations provided by the CLIJ framework [2]. We called the
user interface CLIJ-asssistant because it allows interactive de-
sign of image data flow graphs (IDFGs) in ImageJ [3] or Fiji
[4], while guiding the user with automatic suggestions. De-
pending on previously executed operations, it only shows op-
erations that are suitable to the currently selected image, as
shown in Figure 1. Automatic suggestions, semi-automated
parameter optimization, and the immediate view of results en-
abled by GPU-acceleration allow rapid assembly of complex
image analysis procedures on screen. IDFGs can also be stored
to disc, reloaded, and version controlled. Furthermore, code-
generation in multiple programming languages enables deploy-
ment of the same workflow to multiple collaborators working
with different programming languages on different platforms.

2 Methods

Image data flow graph We implemented the CLIJ-assistant
under the hood of the established ImageJ user-interface so that
ImageJ users can adopt it without changing their habits to
much. In the background, CLIJ-assistant manages an image
data flow graph (IDFG): Data flow graphs are a technical ab-
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Figure 1: An IDFG allows assembly of image processing workflows and display of intermediate results in real-time. The pre-
sented graph takes a 4D image stack (a), pushes the current frame to the GPU memory (b), applies a top-hat filter for background
subtraction (c), spot detection (d), thresholding (e), binary AND (f) spot labeling (g) and labeled spot extension (h). To fa-
cilitate examination of intermediate results, maximum intensity projections for intermediate results of pushing (i), background
subtraction (j), thresholding (k) and label extension (l) are shown. The GPU memory display (m) allows to monitor available
memory while setting up an IDFG. From any step in the graph, the user can select suitable subsequent operations using the shown
right-click menu. The example shows the menu for the binary AND operation.

straction of processing workflows where graph nodes represent
operations and connections between nodes, so called edges,
represent data, which is sent from operation to successor oper-
ations. In our IDFGs, images are the edges as image data flows
from operation to operation. Image windows on screen rep-
resent image processing operations and thus, the nodes of the
graph. Technically, we implemented a directed acyclic graph.
This means that image data are propagated in the graph in one
direction only and no loops can be constructed. Basic usage of
IDFGs is demonstrated in Supplementary Figure S1. Our ap-
proach is similar to the user-interfaces of Icy [5] and Knime [6].
An advantage is that intermediate results of the whole graph
are always images which can be updated instantly in ImageJ’s
user-interface while the user changes parameters. On the other
hand, this limits available functionality compared to Knime and
Icy data flow graphs: CLIJ-assistant focuses on image process-
ing and analysis. In order to further optimize performance, the
image stacks are kept in the GPU’s memory while minimizing
pushing and pulling image data to/from GPU memory. Config-
uration dialogs of multiple steps can be open on screen. If the
user changes a parameter, the affected operation and all subse-
quent operations are computed. In order to visualize the state
of the graph, IDFG windows appear differently than standard
ImageJ windows by their frame color, visualizing the graph’s
execution state: A window with a red frame indicates that the
shown image is invalid and will be computed as soon as in-
termediate results higher in the graph hierarchy are available.
A yellow frame shows that computation is currently ongoing.

A green frame indicates that computation is finished. Further-
more, when moving a window, all downstream windows also
move. This gives the user an impression of connections be-
tween graph nodes. This intuitive way of interacting with image
data allows users to learn image processing, analysis and rela-
tionships between operations efficiently because it keeps tech-
nical implementation details out of sight.

For every processed image, the CLIJ-assistant can backtrack
which original images, subsequent operations and correspond-
ing parameters were involved in forming the image. Thus, it
is not necessary to store intermediate results of various param-
eter configurations in the computer memory. The original im-
age, the graph structure and the parameters of operations are
sufficient to recompute a result. By storing the settings before
every change, a history of settings is collected. The possibil-
ity of rewinding to former parameter settings brings a virtually
unlimited undo functionality to Fiji. Users can select earlier pa-
rameter settings from a menu and get results back from former
graph configurations, as shown in Supplementary Figure S2.
Furthermore, users can save IDFGs to disc and reopen them
in Fiji in a text file format. This allows application of version
control systems to document parameter changes within and be-
tween specific projects.

Available operations and extensibilty After installation of
the CLIJ-assistant, about 249 image processing operations are
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available. They include classic image filtering, spatial projec-
tions and transformations, namely rigid and affine transforma-
tions and image warping. For image segmentation, processing
steps like thresholding, spot detection, binary post-processing
and labeling operations can be chosen by the IDFG designer.
Furthermore, machine learning tools for pixel classification and
labelled object classification based on the Waikato Environment
for Knowledge Analysis (Weka) [7] and the Trainable Weka
Segmentation [8] can be assembled in the graph. An exam-
ple workflow utilizing label classification is shown in Supple-
mentary Figure S3. Tools for analyzing labelled objects, their
neighbor relationships and topological parameters of adjacency
graphs derived from images can be used as well.

The CLIJ-assistant uses the ImageJ2 plugin mechanism [9]
to automatically discover additional CLIJ-compatible plugins.
In that way, custom third-party operations can be introduced as
graph nodes. These plugins do not necessarily need to be GPU-
accelerated. To demonstrate the extensibility, about 50 addi-
tional image processing operations, utilizing the open-source li-
braries ImageJ, ImageJ2, Imglib2 [10], BoneJ [11], MorpholibJ
[12], the ImageJ 3D Suite [13] and SimpleITK [14], are avail-
able for installation and testing via a separate Fiji update site.

Expert system State-of-the-art image analysis teaching
courses introduce beginners to the concept of image analy-
sis workflows as an assembly of operations. Concatenated
operations stream input images via intermediate filtered im-
ages and regions of interest to quantitative measurements in
arrays and tables. Typically, early processing steps are de-
noising, background removal, edge enhancement and image
normalization. Afterwards, procedures in categories like seg-
mentation, binarization, regionalization, detection and labeling
follow. Finally, feature extraction and quantitative analysis
follow to determine spatio-temporal properties of the imaged
objects using descriptive statistics of pixel, region and topo-
logical properties. To facilitate accessibility and application
of those steps, a search-bar and auto-completion of commands
in the script editor were introduced in the recent years in Fiji.
These tools allow the user to read in the graphical user-interface
what certain operations do and how they can be applied to im-
ages. However, neither the search bar nor the auto-completion
suggest what to do next. The user still needs to know the right
terms to search for and thus, requires substantial knowledge of
image analysis terminology. In order to overcome this limita-
tion, we implemented an expert system in the CLIJ-assistant.
Expert systems are an early form of artificial intelligence devel-
oped half a decade ago to model computationally for example
the decision making processes clinicians used to reason un-
der imperfect knowledge [15]. Our implementation of such
an expert system guides users in choosing the right operations
step-by-step by making context-dependend suggestions based
on previously executed operation. The user interacts with it
via the right-click menu of image windows as shown in Fig-
ure 1. For example, connected component labeling is typically

applied after the image has been binarized, e.g. using Otsu’s
thresholding method [16]. Since this connection is known, the
CLIJ-assistant suggests connected component labeling after
Otsu-thresholding. Proposed suggestions are derived from a
knowledge base which consists of 1) typically subsequent op-
erations and 2) technically compatible operations. The first part
is derived from expert knowledge by extracting pairs of follow-
ing operations from existing ImageJ macros. This knowledge
base is delivered to end-users via the installation and update
process. Furthermore, users can extend the local knowledge
base by extracting additional pairs of subsequent operations
from a local folder containing macro files. The knowledge
base is a human-readable text file that can be exchanged and
version control can be applied. With the underlying extraction
process, experienced CLIJ-users can share their knowledge in
an abstract representation without the need to disclose their po-
tentially confidential image processing scripts. We encourage
CLIJ power users to take part in the open call for contributions1

in order to combine knowledge from multiple experts and build
up a community-driven knowledge base. The knowledge ex-
traction and the deployment processes are both open-source
and opt-in.

The second part of the knowledge base is implemented in-
side the CLIJ2 library and compatible libraries. It is based on
the classification of operations and their inputs and output data
types. For example, thresholding operations take images of any
kind as input and produce binary images as an output. Thus, a
category called ’Binarize’ contains all operations with the same
characteristic. Another ’Labeling’ category holds operations
that take images of any kind and assigns object-affiliation as
pixel intensity values, also known as label images. The right-
click menu only suggests operations that are applicable to the
current image depending on the context as shown in Figure 2.
Furthermore, when viewing the options for processing 2D im-
ages, no 3D-operations are shown and no 3D-to-2D projections.
This reduces the number of suitable operations offered by the
user-interface to a minimum, easing exploration of potential
next processing steps.

If an expert applied a non-suitable operation in an earlier
workflow, which was part of the knowledge-extraction pro-
cess explained above, this operation will be suggested neverthe-
less. Furthermore, all operations are available under all circum-
stances from Fiji’s search bar giving the end-user full access to
all available CLIJ-assistant compatible operations.

Semi-automated parameter optimization Professional im-
age analysts set up data analysis workflows according to their
experience. This can be straightforward if the expert has ana-
lyzed images of a similar kind before. Determining the opti-
mal parameter configuration of such a workflow can be more
complicated and is hindered by necessary additional efforts for
determining the quality of results, for example if reference an-
notations are yet missing. Therefore, we introduce a simple

1 https://clij.github.io/usage-miner/
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Figure 2: A built-in expert system suggests possible subsequent processing steps depending on the former steps applied in the
workflow. Different operations are suggested when working with a grey value images (left) compared with a binary images
(right).

annotation tool based on ImageJ’s ROI Manager and an auto-
matic parameter optimization tool based on the simplex opti-
mizer [17] and the gradient descent method implemented in the
Apache Commons Math library [18]. For operations resulting
in binary images, the parameter optimization can be used as
demonstrated in Supplementary Figure S4. Therefore, all nu-
meric parameters in the graph are considered for the optimiza-
tion. The right-click menu also offers advanced options, for
example to exclude parameters from the optimization process.
As such a straightforward optimization approach may converge
in a local optimum in parameter space, it is recommended to
start the optimization with a good manual initial guess.

Code generation for automation, documentation and
knowledge exchange The well-known Macro Recorder is one
of the key features of ImageJ [3]. If the recorder is shown on
screen while the user applies operations to images, it records
code in ImageJ’s Macro programming language, which corre-
sponds to the actions of the user. World-wide, a large number
of users self-taught the principles of programming image anal-
ysis procedures by observing what is recorded in ImageJ. Also,
the recording of object-oriented programming languages, such
as JavaScript and Java, is available. Advanced programming
skills are typically necessary to make these recorded scripts
executable. Fiji [4] additionally introduced more advanced
scripting languages such as Groovy, Jython, Clojure and Bean-
shell. However, macro recording capabilities for those scripting
languages were not implemented. While the macro recorder
contributed substantially to knowledge-transfer on how to use
ImageJ Macro for automation of quantitative image analysis,
adoption of the more modern and capable languages still has
potential. To approach this aspect, we implemented code gen-
eration capabilities in the CLIJ-assistant using an IDFG as start-
ing point. After an IDFG has been set up, configured and opti-
mized, the graph can be exported in various programming lan-
guages. As the user chooses the language to export the IDFG
to after setting it up, it is also possible to compare scripts in

multiple languages as shown in Figure 3.

The exported scripts allow the user to go beyond ImageJ and
Fiji, because they also offer programming languages applicable
in other platforms. Currently supported languages are ImageJ
Macro, Icy [5] Javascript, Matlab (Mathworks, United States
MA), Fiji Groovy, ImageJ JavaScript, and Fiji Jython. Further-
more, a Java-plugin generator for Fiji, shown in Supplementary
Figure S5, an Icy protocol generator, shown in Supplementary
Figure S6, and script export for QuPath [19] Groovy, shown in
Supplementary Figure S7, are available for testing. Support for
Python [20] and C++ are under development and prototypes can
be tested as well. Even though the set of implemented GPU-
accelerated image processing functions available in Python and
C++ are limited yet, we encourage early adopters to explore
these technologies and provide feedback to guide further de-
velopment. Through the introduced Python compatibility, the
multi-dimensional image data explorer napari [21] and Jupyter
notebooks [22] can be utilized as shown in Supplementary Fig-
ures S8 and S9, respectively. Interoperability is ensured with
Python and C++ on a low code-level. In order to implement
IDFG operations as similar as possible in ImageJ, in Python
and in C++, the underlying GPU-accelerated OpenCL code is
identical. Maintenance of the native code base is done as part
of the clEsperanto2 project.

Fostering reproducibility of image analysis procedures by
clear documentation, human-readable protocols of the IDFG
can be exported as shown in Supplementary Figure S10. These
protocols can be used to communicate the applied image pro-
cessing workflow with scientists who are used to other plat-
forms and to people without coding experience. Hence, we see
this feature as a potential supplementary methods section gen-
erator. ImageJ Macro Markdown notebooks [23] can be gener-
ated from an IDFG as well. These notebooks present a hybrid
between human-readable protocols and macro executable code,

2 https://clesperanto.net
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Figure 3: The IDFG shown on the left can be exported in multiple scripting languages. This enables users to compare scripts
which execute the same workflow in different languages, for example in ImageJ Macro (center) and Python (right).

as shown in Supplementary Figure S11.

3 Results

The introduced toolkit for designing IDFGs allows to setup
complex image processing routines without coding. To demon-
strate the capabilities, we chose four typical use cases from gut
neuroscience, developmental biology and cancer research. For
all three example workflows, raw data and IDFGs can be found
in the supplementary material.

Projections from cylindrical specimen of mouse gut The
gut is essential for life-sustaining processes, including diges-
tion of food, absorption of nutrients and water, and excretion
of waste [24]. The interactions between the enteric nervous
system (ENS) and the resident immune cells are important for
the normal functioning of the gut [25, 26]. In disease condi-
tions, the spatial organisation of these cells can be disrupted
affecting intercellular communication and promoting gut dys-
function. Thus, it is important to understand the cellular organ-
isation in healthy tissue to gain insights into disease-associated
changes. Light sheet fluorescence microscopy (LSFM) allows
us to study the global distribution of neurons and immune cells
across the different layers of the gut wall. This provides greater
insight into the spatial organisation of cells in comparison to
confocal images of gut wholemounts, which give larger cov-
erage but fewer layers, or widefield images of sections, which
have low coverage but include all layers [27]. We used a com-

bination of LSFM and optical clearing [28] to acquire images
of an optically cleared mouse colon. The tissue was labelled
using DAPI for the nuclei, and with antibodies against Iba1 for
macrophages and calcitonin gene-related peptide (CGRP) for
the neuronal fibres. The challenge with this approach is the dif-
ficulty in separating the different layers of the gut within the
image, and the ability to view cell types within each layer. The
procedures involving mice were approved by the Monash In-
stitute of Pharmaceutical Sciences Animal Ethics Committee
(approval number 13229).

In order to study these layers in detail, spatial transforma-
tions can be applied to convert the cylindrical volume into im-
age stacks ranging from the inside to the outside containing
images which correspond to mucosa and muscularis externae
layers respectively. Cartographic projections are the method of
choice for visualising intensities along three-dimensional sur-
faces into two dimensions [29–31]. One simple form of such
a projection is a maximum intensity projection along lines go-
ing from the center axis of a cylinder to its surface. There-
fore, the two-channel image stack is made isotropic first, fol-
lowed by a rigid transformation, which allows us to shift and
rotate the volume in three-dimensional space, so as to visualize
it from different perspectives. The isotropic transformed stack
is subsequently processed by a cylinder transform producing an
image stack where the first image corresponds to a line in the
center of the colon. The images within the following slices of
the stack each correspond to intensities at a given distance to
that center line, going from the inner layer towards the outer
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layer of the gut wall. In order to get pixels at the inner sur-
face in a two-dimensional image, the Z-position of that tissue
in the cylinder stack must be determined. Therefore, we use an
arg-maximum projection, also called a Z-position of maximum
projection, and a Gaussian blur with a large sigma to ignore lo-
cal signal intensities. After determining the Z-position of the
gut wall, a corrected image stack can be determined. From
this stack, we can generate two maximum projection images:
One of the inner surface of the colon and one of the outer sur-
face. As DAPI labels the nuclei of all the cells within the gut
wall, the corresponding channel was used for determining the
Z-position of the different layers of the gut wall. To view the
macrophages within the mucosal layer (inner layer) and muscle
layer (outer layer) separately, two maximum intensity projec-
tions of the corrected cylindrical projection image stacks were
generated. The whole procedure is shown in Figure 4 and cor-
responding data and scripts are available in Supplementary Ma-
terial M1.

Studying neighborhood relationships between cells in devel-
oping Tribolium embryos Gastrulation is unarguably the ma-
jor developmental event in an organism’s life. A number of 2D
cell shape changes as well as 3D volumetric shape changes are
seen as tissues in an embryo acquire their final shapes [32]. To
understand the contribution of cell behaviors to tissue morpho-
genesis, it is required to provide in toto quantitative descriptions
of cell behaviors in developing embryos. Advancements in mi-
croscopy techniques such as multi-view LSFM have enabled
imaging of developing tissues with high spatial and temporal
resolutions [33–35]. However, quantification of cell behaviors
from such large-scale imaging data necessitates the develop-
ment of fast and adaptable image analysis workflows which can
be easily configured for different types of imaging data from
variable biological samples and without much prior expertise in
coding and programming. To demonstrate processing of such
data, we acquired multi-view LSFM data set of a transgenic
Tribolium castaneum embryo that uniformly expresses GFP in
the nuclei.

An alternative to the above-mentioned strategy for cylindrical
projections from a 3D volume into a 2D plane, is directly ana-
lyzing the 3D data. Therefore, GPU-accelerated image process-
ing is beneficial to deal with the increased number of image vol-
ume elements, called voxels, which need to be processed. One
basic technical challenge when analyzing such data is deriving
an abstract representation of the animal’s shape. For this, it is
worthwhile to use operations such as spot detection and mesh
generation. In Supplementary Figure S12, an IDFG for this is
set up which is available together with the used data in Sup-
plementary Material M2. It uses background subtraction, spot
detection, thresholding, binary operations, connected compo-
nent labeling, label post-processing operations, mesh genera-
tion, and projections to visualize intermediate and final results.

Digital serosa removal to study Tribolium embryo develop-
ment In many insect embryos the gastrulating embryonic re-

gion develops inside an outer extra-embryonic protective layer,
called serosa, that forms a shell around the embryo [36, 37].
The Tribolium serosa shows a gradation of cell shapes and me-
chanical properties along the dorsal to ventral axis as the serosa
shell wraps around the embryo and closes on the ventral side of
the egg [38]. Once the serosa window closure is completed, the
tissue stabilizes and all subsequent morphogenetic events occur
in the developing embryo. Analyzing the dynamics of embry-
onic development have thus remained challenging. To quantify
such events in Tribolium and potentially in other samples, we
developed the IDFG shown in Figure 5 to identify a selective
layer of tissue, such as the outer serosa, and digitally remove
the selected layer. We remove the serosa by segmenting all nu-
clei and extend them virtually so that the serosal nuclei form
a closed surface. Next, we use ray-tracing to identify nuclei
which are selectively part of the outer surface. Deriving a bi-
nary mask, which contains all pixels except those identified as
nuclei on the outer surface allows us to filter out those nuclei
from the original data set. The IDFG used for this operation
can be exported as script, e.g. ImageJ Macro, and modified to
process all time points of the loaded data set. The generated and
modified scripts are given as Supplementary Material M3. The
manual addition of scale bars and timer leads to Supplemen-
tary Figure S13 showing the developing animal side by side a
version of the data set where the serosa was virtually removed.

Cell classification on large 2D histological mouse brain sec-
tions Cancer treatment applies various approaches to cure or
delay tumor growth. For example, radiotherapy induces DNA
damage, which inactivates dividing tumor cells and can in-
duce cell death. Unfortunately, treatment may also affect sur-
rounding normal tissue, leading to potential long-term side ef-
fects in surviving patients. Suitable preclinical models are
crucial to investigate these side effects, find potential predic-
tors, and test new treatment approaches. A recently estab-
lished mouse model to study radiation injury in brain tissue
[39] uses γH2AX, a protein formed during the DNA double-
strand repair mechanism, to visualize immediate effects. Co-
staining with DAPI, a marker for cell nuclei, offers the possi-
bility to investigate the damaged cell fraction and correlate the
result with the applied radiation dose. Mouse irradiation ex-
periments were performed respecting European (EU Directive
2010/63/EU) and national animal welfare guidelines under ap-
proval number 24.1- 5131/394/50 (Landesdirektion Sachsen).

For image analysis of large 2D histological specimen it is rec-
ommended to be performed tile-by-tile by extracting a smaller
part from the large 2D image and splitting the channels. Af-
terwards, segmentation is applied to both channels individually.
Then, counts can be determined per channel and tile to estimate
DNA damage [39]. Alternatively, overlap measurements such
as the Jaccard Index can be used to derive a per-cell probability
of detected DNA-damage. This approach, visualized as IDFG
in Figure 6, allows an instant comparison of different regions
of the tissue. The corresponding data and scripts are available
in Supplementary Material M1. After exporting the IDFG as
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Figure 4: The original multi-channel image stack of a mouse colon (a) is shown labeled with DAPI in blue for the nuclei and with
antibodies against Iba1 (green channel) for macrophages. The image data is pushed to the GPU (b), made isotropic (c) and rigid
transformed (d). From the rigid transformed stack maximum intensity projections along y (l) and z (m) are drawn. Furthermore,
the same stack is processed by a cylindrical transform (e) from which the DAPI channel is extracted (f), blurred (g) and Z-position
projected (h). Together with the cylinder transfomed Iba1 channel (i), this allows users to generate corrected cylinder transformed
stack of the muscularis externae of the colon (j) and mucosa (k) separately, and corresponding maximum intensity projections (n,
o), respectively. The making of this IDFG is documented in Supplementary Video colon_cylindrical_projection.mp4

Figure 5: Analyzing Tribolium embryo development post serosa window closure: From the original 3D+time image stack (a), a
3D stack is pushed to the GPU memory (b) and thresholded (c). Then, connected component labeling is applied (e) before labels
sitting on the embryo’s surface are identified (f). The thresholded image and the surface labels are combined using a binary AND
operation (g) to retrieve a binary image where a binary NOT operation (h) and a binary erosion (i) are applied. The resulting
binary image masks the original image (j) yielding an image stack, in which pixels of surface nuclei are set to zero. To inspect
intermediate results, maximum projection of the original 3D stack (k), thresholding (l), labeling (m), binary surface nuclei (n) and
the embryo data set with removed surface nuclei (o) are shown. See also Supplementary Video tribolium_surface_removal.mp4

7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.19.386565doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.19.386565
http://creativecommons.org/licenses/by/4.0/


Figure 6: Exploring a multi-channel mouse brain slice to determine DNA damage, from the original 2D image (a), a regions is
cropped out (b) and the two channels are extracted (c, d). Starting from the DAPI channel (magenta), Gaussian blur (e), spot
detection (f), connected components labeling (g), label extension (h) and exclusion of labels at the image border (j) are applied.
The γH2AX channel (cyan) is binarized using a binary Weka pixel classifier. The label map and the binary image are then used
to compute the amount of overlap between individual nuclei labels and the binary image. This measure can be interpreted as
surrogate parameter for DNA damage. Such an IDFG allows to explore a large 2D slice tile-by-tile, as shown in Supplementary
Video mouse_brain_cell_classification_dna_damage.mp4

script, the procedure can potentially be executed on the whole
brain slice, in order to derive a map of DNA damage. There-
fore, additional coding efforts are required.

4 Discussion

We have presented an overview of CLIJ-assistant, a user-
friendly tool for designing GPU-accelerated image analysis
workflows in ImageJ. Across multiple sample types and imag-
ing technologies, our approach enables visualization and quan-
tification of tissue and cellular behaviors with an interactive
and configurable toolkit. The necessary user actions towards a
well-suited image analysis workflow are facilitated using auto-
matic suggestions by an expert system, pre-selection of suitable
subsequent operations and automatic parameter optimization.
While workflow design does not involve programming skills,
it is possible to export workflows in various programming lan-
guages and to deploy them to other platforms. This approach
bridges communities such as biologists and computer scientists,
and users of different image analysis platforms.

The presented user-interface for GPU-accelerated IDFG de-
sign has one major limitation: GPU memory. It limits the num-
ber of image stacks which can be handled on screen - which
is limited by screen size anyway. This suggests to think about
necessary number of processing steps: The smaller the num-

ber of processing steps, the easier the justification of a work-
flow. Furthermore, the built-in Fiji-plugin generator allows or-
ganizing memory consumption of workflows: If the users em-
ploy a chain of n operations in multiple projects blocking n
times image size in GPU memory, they can generate a Fiji plu-
gin from this chain. When this plugin is introduced in future
workflows, it spares n−1 times image size compared to earlier
workflows. In that way, users learn how to structure workflows
into sub-routines and how to reuse these sub-routines in larger
workflows. For processing images larger than available GPU-
memory, tile-by-tile processing strategies similar to the demon-
strated mouse-brain cell classification workflow need to be de-
veloped. These strategies can be straight-forward: for exam-
ple simple image filtering can be done tile-by-tile with overlap-
ping margins and a result image can be assembled right away.
If operations such as watershed, skeletonization or connected
component analysis are part of the workflow, tiled processing
is not trivial and thus, efficient GPU-accelerated strategies for
this will part of our future work.

The used CLIJ plugin system is a mixture of the ImageJ2
[9] and ImageJ [3] extension systems, including conceptual
ideas from the Insight ToolKit (ITK) project [40]. First of all,
plugin-discovery is driven by ImageJ2’s plugin system. With
this mechanism custom plugins on the Java class path can be
discovered and offered to the user in right-click menus, the
search bar and in the auto-completion of the script editor. Sec-
ondly, ImageJ’s Macro Extensions are used to drive the macro-
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compatibility. The underlying architecture suggests using ar-
rays of objects as parameter lists. This approach was chosen
because it paves the path towards compatibility with QuPath
and Icy. Furthermore, passing arrays of objects allows pass-
ing of one image over to two CLIJ plugins: The first plugin
receives the image as output image; the second plugin receives
it as input. In that way, plugins can be chained together in a
fashion similar to the mechanism used in ITK. Thus, CLIJ op-
erations have a state. They are not just functions that are ex-
ecuted once. They are parameterized functional objects. This
allows repeated execution of operations without the need for
allocating and freeing memory repeatedly. One potential dis-
advantage of the approach is the limited number of supported
types of parameters: Only numbers, strings, arrays and images
are supported. On the one hand this may be perceived to be
limiting by software developers. On the other hand it simplifies
image processing for the end-user.

Another aspect of interoperability is the frontier between
Java, Python and C++ based image processing libraries. Also
other image processing libraries, such as SimpleITK, support
all three developer communities by providing access to its func-
tionality in these three languages. We are about to extend
CLIJ towards Python and C++ as demonstrated above in the
clEsperanto project to make it available to a broader audience.
Therefore, the re-implementation of filters for the Python and
C++ side might appear like a lot of effort. However, there are
substantial benefits to the community: Programmers used to
ImageJ’s scripting languages can copy over code snippets to
Python driven Jupyter notebooks, and Python programmers can
provide code snippets from their workflows to users of ImageJ,
Icy or QuPath. This approach bridges communities and facil-
itates knowledge exchange. Most importantly, it allows work-
flow designers to focus on the scientific question rather than
technical implementation details of analysis procedures. Fur-
thermore, as increased efforts are required for automated testing
and deployment of the Python, Java and C++ environments of
clEsperanto, the project has the chance to achieve high quality
implementations of image processing operations.

The user-interface of the CLIJ-assistant is under develop-
ment, and this preprint serves as a base for discussion between
the user and developer communities. Thus, the interface may
change in the future. We want to highlight that if users gen-
erate code using CLIJ-assistant employing CLIJ2 operations to
process their images in ImageJ, Fiji, Icy or Matlab, these work-
flows will continue to work even if the CLIJ-assistant changes.
This is also true for generated Java-based Fiji-plugins as long
as they are limited to CLIJ2 operations. A strong delimita-
tion between CLIJ2 operations and the presented IDFG user
interface ensures that. CLIJx operations may also be subject to
change, as the x in CLIJx stands for ’experimental’. Neverthe-
less we would emphasize that user feedback on these operations
is guiding us towards the next generation of CLIJ and allows us
to make decisions on which CLIJx functionality should be in-
cluded in future releases.

5 Conclusions

The presented CLIJ-assistant enables interweaving of common
image analysis operations for comprehensive workflow con-
struction. Interactive design of image data flow graphs with in-
stant feedback through GPU-accelerated image processing en-
ables new ways of intuitive learning and teaching image anal-
ysis in life-sciences and beyond. Therefore, we expect a swift
adaptation by many research fields beyond the examples shown
here. Further, using the suggested concept of IDFG design
enables sharing image processing routines between experts in
a programming language-independent fashion. Users can ex-
port code for multiple platforms. This compatibility enables
the exploration of other platforms in individual projects and,
thus, bridges communities with the aim to solve the underlying
analysis questions rather than platform-specific implementation
related technical challenges.
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A Supplementary material

Figure S1: Basic IDFG assembly involves setting up connected image processing operations step by step. In contrast to classic
ImageJ, all configuration dialogs can stay open to change parameters and the resulting impact on the graph can be observed.
In this example, the blobs.gif ImageJ example image is pushed to GPU and smoothed using a Gaussian blur. Afterwards, a
binarization is applied. The procedure is shown in detail in Supplementary Video basic_usage.mp4

Figure S2: Before every parameter change, all parameters are stored internally in the parameter history. Later on, the user can go
back to a parameter configuration at arbitrary time points from the shown right-click menu.
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Figure S3: Weka based label classification can be incorporated into IDFGs, for example to differentiate embryo and serosa
in Tribolium castaneum. The random forest takes the background subtracted image stack (Second column), a correspond-
ing label image stack (third column) and pre-defined annotation to train a model to differentiate embryo and serosa based
on intensity and topological properties of segmented objects. By multiplying a neighbor mesh (fourth column) with pre-
dicted classification image (fifth column), a classified mesh can be generated (sixth column). See also Supplementary Video
weka_label_classifier_short.mp4

Figure S4: After annotation of an input image, parameter optimization can be used to configure the graph to minimize the
error in a given binary result image. The processed image data was taken from the Broad BioImage Challenge [41]. See also:
optimize.mp4
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Figure S5: IDFGs can be converted into Fiji plugins. For this, Java code is generated, inserted into a Maven based CLIJx/Fiji
plugin template and compiled. The user could also open the generated code in an integrated development environment and refine
it. The fully automatic compilation and installation procedure is shown in Supplementary Video fiji_plugin_generator.mp4
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Figure S6: IDFGs can be exported as Icy protocols via the right-click menu, as shown in the top row. If Icy is configured
correctly in ImageJ, it opens the Icy-protocol, which corresponds to the IDFG immediately. The procedure is demonstrated in
blobs_icy_export.mp4
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Figure S7: IDFGs which result in two dimensional binary images can be exported as QuPath compatible Groovy script to produce
regions of interest in QuPath as demonstrated in clupath_script_export.mp4

Figure S8: IDFGs can be exported as a Python script, which uses napari to visualise image processing results of intermedi-
ate steps as layers, as shown in the center. Napari can be opened from configured IDFGs as shown in Supplementary Video
tribolium_spot_detect_napari.mp4
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Figure S9: IDFGs can be exported as Python 3 Jupyter notebook as shown in the center which contains the image processing
steps as code cells. See also Supplementary Video tribolium_spot_detect_max_proj_jupyter.mp4

Figure S10: A human readable protocol generator turns IDFGs (left) into documentation text (right).
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Figure S11: An IDFG (left) can be exported as an ImageJ Macro Markdown notebook (right), which is a hybrid between an
executable script and a human readable documentation of the workflow in a notebook fashion. See also Supplementary Video
ijmmd.mp4

Figure S12: Setting up an IDFG which takes raw light sheet microscopy time lapse image stacks as input and derives meshes
connecting neighboring nuclei is shown in Supplementary Video tribolium_cell_neighborhood_distance_visualization.mp4
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Figure S13: By removing the outer layer of detected nuclei, presumably serosa, improved visualization of Tribolium embryo
development is achieved. See also video: tribolium_surface_removal_result_video.gif

19

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.19.386565doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.19.386565
http://creativecommons.org/licenses/by/4.0/


Figure M1: Supplementary material: Mouse colon data + scripts

Figure M2: Supplementary material: Tribolium data + scripts for the neighborhood relationship classification

Figure M3: Supplementary material: Tribolium data + scripts for the serosa removal example

Figure M4: Supplementary material: Mouse brain data + scripts
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