1	
2	
3	
4	Mixing the Message: Do Dung Beetles (Coleoptera: Scarabaeidae) Affect Dung-Generated
5	Greenhouse Gas Emissions?
6	
7	Fallon Fowler ¹ , Christopher J. Gillespie ^{2*} , Steve Denning ¹ ¶, Shuijin Hu ² ¶, and Wes Watson ¹ ¶
8	
9	
10 11	¹ Department of Entomology and Plant Pathology, North Carolina State University, Grinnells Animal Health Laboratories, Raleigh, North Carolina, United States of America
12 13	² Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United
14	States of America
15	
16	*Corresponding author
17	Email: cjgilles@ncsu.edu(CG)
18	
19	
20	[¶] These authors contributed equally to this work.
21	
22	
23	
24	
25	
26	
27	
28	

29 Abstract

30 By mixing and potentially aerating dung, dung beetles may affect the microbes producing the greenhouse gases (GHGs): carbon dioxide (CO_2), methane (CH_4), and nitrous oxide (N_2O). Here, 31 their sum-total global warming effect is described as the carbon dioxide equivalent (CO₂e). Our 32 literature analysis of reported GHG emissions and statistics suggests that most dung beetles do 33 not, however, reduce CO₂e even if they do affect individual GHGs. Here, we compare the GHG 34 signature of homogenized ("premixed") and unhomogenized ("unmixed") dung with and without 35 dung beetles to test whether mixing and burial influence GHGs. Mixing by hand or by dung 36 beetles did not reduce any GHG – in fact, tunneling dung beetles increased N₂O medians by 37 38 \geq 1.8x compared with dung-only. This suggests that either: 1) dung beetles do not meaningfully mitigate GHGs as a whole; 2) dung beetle burial activity affects GHGs more than mixing alone; 39 or 3) greater dung beetle abundance and activity is required to produce an effect. 40

41

Keywords: Dung Beetle, Tunneling, Dwelling, Greenhouse Gas, Dung Decomposition
 43

44 Introduction

Dung beetles (Coleoptera: Scarabaeidae) provide beneficial ecosystem services including improved nutrient recycling, competitive exclusion of pests and parasites, reduced animal disease incidence, and improved soil percolation and plant growth (Nichols et al. 2008). These arthropods also mitigate damaging ecological impacts such as water and soil pollution, and increased GHG production such as found in animal agriculture. These impacts are the result of excessive land-use, heavy reliance on fossil fuels, and concentrated animal waste that destroy

51	and damage wildlife habitats (Steinfeld et al. 2006). In fact, animal agriculture produces 37%
52	and 65% of global anthropogenic CH_4 and N_2O emissions (Steinfeld et al. 2006), with manure
53	management accounting for 4.3% (not including deposited dung emissions) and $\sim 17\%$ of
54	livestock-produced CH_4 and N_2O , respectively (Gerber et al. 2013). Thriving dung beetle
55	communities combat and sustainably restore dung-polluted habitats (Doube 2018), and so are
56	ideal animals with which to study the GHG-resource recycling connection (Sylvia et al. 2005).
57	
58	Recently, researchers investigated how dung beetles affect individual GHGs (Penttilä et al. 2013,
59	Iwasa et al. 2015, Hammer et al. 2016a, Slade et al. 2016a, Piccini et al. 2017, Evans et al. 2019).
60	Very often they reported net beneficial dung beetle effects (Iwasa et al. 2015, Hammer et al.
61	2016a, Slade et al. 2016a, Piccini et al. 2017) despite not reducing the total CO ₂ e calculated from

62 CH_4 , CO_2 , and N_2O (Table 1).

Literature	Group	CH ₄	CO ₂	N ₂ O	CH ₄ +N ₂ Oe	CO ₂ e
Evans et al. 2019	DB	-0.0 ± 0.1 a	8.3 ± 0.2 a	0.6 ± 0.1 a	$178 \pm 32\mathbf{a}^*$	$8,478 \pm 232a^*$
	DO	-0.2 ± 0.1 b	8.1 ± 0.2 a	0.2 ± 0.1 b	$56 \pm 32\mathbf{b}^*$	8,156 ± 232 a *
Hammer et al. 2016a	DB	919 ± 55 a	1,160,184 ± 56,762 a	$312 \pm 48a$		1,253,019 ± 67,039 a *
	DO	1,457 ± 205 b	1,088,054 ± 40,750 a	103 ± 20 b		1,160,216 ± 42,231 a *
Iwasa et al. 2015	DB	1.66 ± 0.068 a	270.8 ± 61.4 a	0.23 a		379.9 ± 63.1 a *
	DO	$2.88 \pm 0.12 \mathbf{b}$	$72.5 \pm 36.9 \mathbf{b}$	0.18 b		112.94 ± 4.62 b *
Penttilä et al. 2013	DB	1.071 ± 0.246 a	$2,924 \pm 297\mathbf{a}$	0.136 ± 0.037 a		2,991 ± 297 a
	DO	1.770 ± 0.376 b	2,956 ± 236 a	$0.028 \pm 0.020 \mathbf{b}$		3,009 ± 231 a
Slade et al. 2016ab	DB	2,342 ± 70 a *	a	467 ± 38 a*	217,421 ± 11,845 a *	
Differing letters remove	DO	2,746 ± 220 a *	a	476 ± 98 a*	235,200 ± 34,306 a *	

 Table 1. A summary of the exact GHG fluxes between dung beetles (DB) and dung-only (DO) from data and analyses of past authors.

Differing letters represent significant differences (p<0.05) between groups.

Piccini et al. 2017 not shown since only 1 of 6 dung beetle groups decreased CO₂e.

For Evan et al. 2019's, we assumed DB ~ 0.044 (rounded down to 0) and DO ~ 0.151 (rounded up to 2) for a conservative CH_4 analysis for Table 4.

* Data was manually entered, where CH_4 (=25 CO₂e), CO_2 (=1 CO₂e), and N_2O (=298 CO₂e). CO₂e represents the sum of CH_4 , CO_2 , and N_2O ;

 CH_4+N_2Oe represents the sum of CH_4 and N_2O .

63

64

Less than half of current studies reported total CO₂e (Penttilä et al. 2013, Piccini et al. 2017, 65 Fowler et al. 2020c) which unintentionally obscures an important component: dung beetles' 66 overall atmospheric effect (Yokoyama et al. 1991ab, Iwasa et al. 2015, Hammer et al. 2016a, 67 Slade et al. 2016b, Evans et al. 2019). Reporting CO₂e can inform funding agencies which 68 69 ecological projects may bring about the most benefit - so if CO₂e is unchanged, then climate change remains unmitigated and potentially no additional C- and/or N-based resources are 70 stored. To fully calculate CO₂e we suggest not only focusing on CH₄ and N₂O emissions (e.g. 71 72 Slade et al. 2016a) but also aerobic (CO_2 -based) phenomena as this can dramatically alter results (i.e. Iwasa et al. 2015, Evans et al. 2019). So, while studying individual GHGs will still help 73 inform resource recycling mechanisms, such as those found during microbial (Yokoyama et al. 74 1991a, Slade et al. 2016b) and chemical surveys (Yokoyama et al. 1991ab, Evans et al. 2019); 75 including a net atmospheric effect provides more information at no cost. Therefore, we have 76 complied and analyzed the literature to reevaluate dung beetles' aggregate GHG effects, report 77 conflicting patterns, and note interesting analyses. 78 79

Early research showed that dung beetle groups reduced CH₄, increased N₂O, but saw no effect on
CO₂ or CO₂e when reviewing their pairwise comparisons (see Penttilä et al. 2013 from Table 1)
instead of their general ANOVA's. They theorized that dung beetle activity could reduce
anaerobic-based GHGs, primarily methanogenesis (CH₄ production), by supporting aerobic
activity associated with low dung moisture and increased aeration (Penttilä et al. 2013).
Meanwhile, Yokoyama et al. (1991ab) showed dung beetles also increased N-release by
promoting ammonification, nitrification, and (incomplete) denitrification, thus generating the

anaerobic-based N_2O (Sylvia et al. 2005). Yet if dung beetles reduce CH_4 , but increase N_2O , and no CO_2e effect is observed, then are dung beetles climate neutral? By delving into the published literature, we see that dung beetles show no CO_2e reductions and argue their known effect is negligible (Table 1).

91

Slade et al. (2016a) reported that dung beetles reduced CH_4+N_2Oe (Fig 3 from Slade et al. 92 2016a) by reducing CH_4 , but not N_2O , via citing significant treatment by day interactions; 93 however, interactions indicate that treatments were changing differently over time rather than 94 95 showing overall main effect differences between treatments, which is a subtle, but important, distinction. Our goal is to see if dung beetles can decay dung and reduce dung-based GHGs 96 faster than time alone, which requires a stand-alone treatment effect. Using the reported standard 97 98 errors, the published data (Supp. Mat. from Slade et al. 2016a) show dung beetles appeared to significantly reduce CH₄ (dung beetles: 39.8 ± 1.22 vs. dung-only: 46.5 ± 3.73 mg gas/m²/d), but 99 not N₂O (dung beetles: 7.91 ± 0.641 vs. dung-only: 8.07 ± 1.66 mg gas/m²/d), leading to no 100 overall CH₄+N₂Oe effect (dung beetles: $3,709 \pm 210$ vs. dung-only: $3,986 \pm 581$ mg gas/m²/d). 101 Understandably, non-overlapping standard errors usually suggest significant differences, but this 102 103 rule is assumed and does not apply (Skidmore and Thompson 2013) when using unequal sample 104 sizes (n=30: dung beetles vs. n=3: dung-only). Therefore, we retrieved the raw data (Slade, personal communication) and saw there was no overall dung beetle effect (see Supp. Table D7 105 106 for the statistical details) for CH₄ (t=-1.75; df=1,32; p=0.23), N₂O (t=-0.09; df=1,32; p=0.94), or CH_4+N_2Oe (t=-0.49; df=1,32; p=0.64), nor did Slade et al. (2016b) show any differences for CO₂ 107 for which no raw data was available to analyze (Table 1). Therefore, dung beetles are climate 108 109 and carbon neutral – not positive. By including main effect analyses and by visibly showing and

reporting the extrapolated variation graphically (adding upper and lower variation limits to Fig 3 from Slade et al. 2016a) and numerically (mean \pm variation) in the main journal body – we can enhance data analysis and suggest interesting, alternative interpretations.

113

Hammer et al. (2016a) studied how dung beetles influenced and were influenced by dung from

115 cattle, with and without antibiotics. They also measured dung beetles' impact on GHG

emissions. They saw dung beetles decreased CH_4 , increased N_2O , and had no effect on CO_2

emissions relative to the non-antibiotic dung-only (Table 1). Interested in the overall warming

effects, we also analyzed the supplemental data supplied online (Hammer et al. 2016b) and saw

no dung beetle effect (t=1.17; df=1,19; p=0.25: see Supp. Table D7 for statistical details) when

120 comparing non-antibiotic dung pats with and without dung beetles, respectively (Table 1).

121

Piccini et al. (2017) investigated whether dung beetle diversity affected GHGs differently as our 122 experimental design currently does. The authors favored using the unadjusted p-value rather than 123 the adjusted p-value (which accounts for familywise error and reduces the number of false 124 positives – Wilcox et al. 2013) though both were supplied. Using their reported p-adjusted values 125 126 for their general ANOVA's, an alternative interpretation shows that the dung beetles (treatment only) had no cumulative effect on CH_4 , CO_2 , or N_2O fluxes, though there were CO_2e differences 127 (Supp. Table F from Piccini et al. 2017). Even so, the modified GLS model (Supp. Table I from 128 129 Piccini et al. 2017) and multiple pairwise comparison tests (Supp. Table H from Piccini et al. 2017) showed that only the one of the six dung beetle treatment, the most diverse group, reduced 130 131 CO₂e. This alternatively suggests that most experimental dung beetle groups are climate neutral.

132

Some studies found beneficial effects, others found negative effects or conflicting patterns. Iwasa 133 et al. (2015) reported that dung beetles reduced CH₄, but greatly increased CO₂, N₂O, and, when 134 approximated, CO₂e (Table 1). Evans et al. (2019) found dung beetles increased CO₂ on specific 135 days and, surprisingly, CH₄ overall – even though these gases are frequently produced under 136 radically different conditions. Regardless, dung beetles had an increased (climate warming) 137 138 effect on N₂O, CH₄+N₂Oe (Evans et al. 2019), but not on CO_2 or CO₂e when approximated (Table 1). The pattern becomes that Penttilä et al. (2013), Hammer et al. (2016a), Slade et al. 139 140 (2016ab), Piccini et al. (2017), and Evan et al. (2019) found dung beetle activity to be climate 141 neutral, while Iwasa et al. (2015) found dung beetle activity to be climate negative (i.e. a GHG source). 142

143

We initially studied (Supp. Table D1, Supp. Fig G's) whether different dung beetle activities 144 (tunneling vs. dwelling) under field chamber conditions influenced GHGs differently, but 145 discovered negligible CO₂e effects. The reexamined literature also suggests this. One 146 methodological aspect common within all of these studies, including our original experiment, is 147 that we homogenized and standardized the dung prior to adding dung beetles – but if mixing 148 149 (homogenizing) aerates the dung and reduces GHG-producing microbes, what is the difference between mixing the dung by hand or with dung beetles? We hypothesize that: 1) mixing dung 150 151 obscures a dung beetle's effect on GHGs, and 2) that dung beetles can reduce CO_{2e} . By 152 including a homogenization (unmixed dung-only) control, repeating the experiment, and increasing our replicates, we asked whether the negligible dung beetle effect was because of 153 154 randomness, methodology, or incomplete theory.

155

156 Materials and methods

157 Experimental Design

Here we report two designs and perspectives from a single dataset: the combined 2016-2017 158 design (Supp. Table D1, Figs G1-G4) and the 2017 unmixed design (Supp. Table D2, Figs 3-6). 159 The combined design asks if dung beetle activity (tunneling vs. dwelling) affects the mixed 160 dung-only using more replicates, while the **unmixed design** asks if mixing (homogenization) 161 itself confounds the results. Since it is unknown whether mixed versus unmixed dung produces 162 different GHG fluxes, dung beetles were added only to the standardized, mixed dung to reduce 163 labor/costs, redundancy, and unwanted assumptions. The results from the combined and unmixed 164 designs are practically identical (see Supp. Section A for minute differences) and so we will 165 focus only on the more extensive unmixed design, which also forms a part of the combined 166 design (see Table 2's footnotes). 167

Treatment	Beetle	Dung	Grass	Purpose
Tunn	~	~	~	To visualize if different dung behaviors
Dwell	~	~	~	(tunneling vs. dwelling) affects dung generated
TunnDwell	~	~	~	GHGs in different ways.
Mixed Dung		~	~	The standardized treatment controls allow for
Grass			~	comparison and environmental monitoring.
Unmixed Dung		~	~	The homogenization controls assess if this
Pasture			~	methodology confounds results.

Table 2. The experimental designs used in 2016 and 2017

Where Tunn (=Tunneler, Onthophagus taurus) and Dwell (=Dweller, Labarrus pseudolividus)

Combined design (=Standard treatments only from both 2016 & 2017); n=21 rep/treatment/day.

Unmixed design (=Pasture + Standard treatments from 2017 only); n=12 rep/treatment/day.

Vegetative Controls = Pasture or Grass-only treatments.

Unmixed Dung = unhomogenized, unstandardized, untouched, variable.

Mixed Dung = homogenized (mixed), standardized, set amount.

168

169

170	We repeated our experiments once per month (n=4 experiments) during the summer totaling 12
171	replicates per treatment for the unmixed design (June to September 2017) and 21 replicates for
172	the combined design (May to September 2016, June to September 2017). Using a randomized
173	complete block design (n=3 blocks/experiment), we measured GHGs (CH ₄ , CO ₂ , N ₂ O) over the
174	course of two weeks (0, 1, 3, 7, 14d) using GHG chambers (n=1 treatment/block; Fig 1) at the
175	grassy pastures of the beef unit (Lat. 35°43'47.40"N, Long. 78°41'15.50"W) at NCSU Lake
176	Wheeler Road Field Lab (Raleigh, North Carolina, USA). On both 0d and 14d, we: 1) collected
177	and dried dung and soil cores in the oven at 55°C to measure moisture loss (Supp. Table D6; for
178	both data and method descriptions), and 2) visually monitored dung damage (see photographs in
179	Fig 2) to track dung beetle-induced abiotic changes. The dataset included a variety of pasture
180	sites, weather conditions, dung compositions, and dung beetle populations as is naturally
181	expected when replicating across various seasons, years, and herds, and this helps increase
182	scientific rigor and applicability (Casler 2015).

183

184 Fig 1. Layout and chamber positioning.

The standard site consists of a mowed field outside of cattle pastures, while the pasture site
consists of a recently used cattle pasture. See Supp. Section A for more detail about site
differences.

188

The unmixed design called for two distinct sampling locations and treatments (Table 2) using cattle dung from the same beef herd: the **standard** site and the **pasture** site (Fig 1) of which detailed differences are described in Supp. Section A. The standard site required we bury GHG chambers outside of cattle pastures, such that the anchor wall was five inches tall, at least 3

193	weeks pre-experiment to mimic published designs (e.g. Penttilä et al. 2013, Slade et al. 2016a).
194	On 0d, we added ~1000g of fresh (<5min old), premixed (by hand, dung only) cattle dung (Supp.
195	Fig A) and the appropriate treatments. Meanwhile, the pasture site measured arbitrarily lain dung
196	pats within cattle pastures using mobile GHG chambers alongside netted cages (Fig 1), which: a)
197	avoided chamber-induced microclimates, b) reduced destructive chamber burial on pastures, and
198	c) prevented dung arthropod entry. Both sites used the same sampling equipment (Fig 2). Fowler
199	et al. (2020b) discusses and analyzes the physical chamber designs and the gas sampling
200	strategies.
201	
202	Fig 2. Visual comparison of experimental treatments.
203	Examples of the (A) Tunn; (B) Dwell; (C) TunnDwell; (D) Mixed Dung; and (E) Unmixed Dung
204	treatments; including a naturally colonized dung pat (F). Similarities between the dung beetle
205	occupied treatments and the native dung pat suggests study treatments were representative of
206	natural dung beetle activity.

207

Dung Beetle Collection & Treatment Layout

209 Dung beetles were grouped by nesting behaviors: endocoprids ("dwellers" or Dwell),

210 paracoprids ("tunnelers" or Tunn), and telecoprids ("rollers"). Dwellers 'shred' or 'mix' the dung

from within; tunnelers bury dung ('brood') balls beneath the pat; rollers roll the dung ball away

and bury it elsewhere (Bertone et al. 2004). We focused specifically on dwellers and tunnelers

- 213 because: 1) In North Carolina, the tunneler, *Onthophagus taurus* (Schreber), and dweller,
- 214 *Labarrus (Aphodius) pseudolividus (Balthasar), are abundant on cattle pastures (Bertone et al.*
- 215 2005) this ensured adequate replication across seasons and years; 2) both tunnelers and rollers

exhibit burial activity, thus studying dwellers and tunnelers fully represent our desired behavioral 216 repertoire. Following an additive design, we measured each dung-use group together and apart, 217 while also including mixed dung-only, unmixed dung-only, and grass/pasture-only ('vegetative') 218 controls (Table 2). Labor and material constraints restricted additional replicates solely for the 219 pasture-only control (n=4), but this unbalanced design was accounted for statistically by using 220 221 more conservative analyses (see *Statistics*). We collected dung beetles by floating and sorting them (see Fowler et al. 2020a for methodology, stats, and other details) within 48 hrs pre-222 experiment and held them in incubators at 12°C (L:D 16:8) with moistened towelettes until use. 223 We measured 3 grams of dung beetles³ per treatment (Table 2) to avoid confounding dung beetle 224 size and number. This biomass was selected because the damaged dung of our treatments (Fig 225 2A-C) was similar to the dung damage found naturally in the field (Fig 2F), which indicated an 226 optimal representation of dung beetle activity. Additionally, we conducted small-scale 227 respiration studies pre-0d to examine if dung beetles produced ample greenhouse gases, but dung 228 beetles were found only to respire elevated CO_2 and so will only be briefly discussed (see Supp. 229 Section B for more detailed methods and analyses). 230 231

Statistics. First, we conducted power tests (packages: "pwr", "pwr2") in the R statistical program (R Development Team, Geneva, Switzerland; <u>http://www.r-project.org</u>) to estimate the required sample sizes for 60% power given our number of contrasts (Supp. Mat. P). Second, we acknowledged any heterogeneous variation, extreme outliers, and positive skewness (Erceg-Hurn and Mirosevich 2008) using Wilcox's Robust Statistics (package: WRS) (Wilcox 2013) by:

A. Winsorizing extreme outliers to allow focus on gas majority representation,

B. identifying skewed outliers using modified M-estimators,

240 C. bootstrapping the data (n_{boot} =500 to 600) to calculate the proportion showing p≤0.05, and

- 241 D. using the Benjamini–Hochberg procedure to account for familywise error, which creates
- Type II errors ("false positives") by chance when evaluating multiple comparisons.
- 243

We did this for both mean-based (ANOVA) and median-based (Effect Size) analyses for both the combined (Supp. Table D1, Supp. Figs G1-G4) and unmixed designs (Supp. Table D2, Figs 3-6). Lastly, we provided a simplified treatment layout (Figs 3-6) which combined all dung beetle treatments (Tunn, Dwell, and Tunn + Dwell otherwise known as TunnDwell) into a single group (Beetle) for ease-of-use since the results were identical (Supp. Table D1 vs. Supp. Table D2).

249

250 **Conversions, Tables, & Graphs**

We converted our original GHG measurements (ppm) into fluxes (mg $gas/m^2/d$) using sampling 251 time, headspace volume (Chamber Volume - Dung Volume), and temperature expansion ratios, 252 and by applying the modified Hutchinson and Mosier method (package: HMR) to calculate 253 254 linear/nonlinear HMR fluxes (Venterea and Parkin 2012). Total CO₂e were calculated as the sum of the global warming potential impact factor over 100 years (IPCC 2007) as follows: CH₄ (=25 255 CO₂e), CO₂ (=1 CO₂e), and N₂O (=298 CO₂e). We have included treatment, time, and 256 257 treatment: time interactions (marginal means), graphs, and tables for both the combined design (Supp. Figs G1-4, Supp. Table D1) and unmixed design (Figs 3-6, Supp. Table D2). Relevant 258 statistics (ANOVA's + effect sizes) are presented on all figures, but we also provided 259 supplemental statistics (Supp. Section D), power analyses (Supp. Section P), respiratory analyses 260 (Supp. Section B), and graphs (Supp. Section G). 261

262

263 **Results**

264 By using the unmixed design (Figs 3-6) we tested if mixing obscured a dung beetle effect, and by using the combined design (Supp. Figs G1-4) we tested if dung beetles had any effect. Any 265 treatment differences reported here are not due to site or vegetative (Grass-only vs. Pasture-only) 266 differences as we found no overall vegetative differences for CH_4 (t=0.05, p=0.96), CO_2 (t=0.99, 267 p=0.33), N₂O (t=1.98, p=0.054), or CO₂e (t=0.82, p=0.42) nor dung-to-chamber volume ratios 268 269 between sites (Supp. Fig G6). We will examine two types of statistics here to present a more nuanced view of our data: the p-value and effect sizes. The p-value is the likelihood that the 270 between-group mean difference $(\neq 0)$ seen is potentially a false positive a certain percentage 271 (~5% when α =0.05) of the time given accurate ANOVA assumptions and sufficient power 272 273 (Colquhoun 2014). Meanwhile the effect size reflects the magnitude of reported differences to help aid interpretative conclusions (a small/weak, medium, and large/strong explanatory measure 274 of effect is considered at least E=0.15, 0.30, and 0.50, respectively – Wilcox et al. 2012). 275 276

277 Methane

- Treatment had no effect on CH_4 fluxes in the combined (E=0.008, Supp. Fig G1) or unmixed
- design (E=0.09, Fig 3); meanwhile time steadily reduced CH_4 by >200x by 7d (E=0.91-0.98,
- Figs 4, G2) showing time as the strongest predictor. Only TunnDwell groups reduced CH₄ by
- 281 2.31x compared with mixed dung-only on 3d alone (Supp. Fig G3). Similarly, unmixed dung-
- only produced 2.83x and 3.71x more CH₄ (Supp. Table D2) than dung beetles and mixed dung-
- only groups (Fig 5) solely on 1d revealing that neither dung beetles nor hand-mixing

284	meaningfully affected weekly CH ₄ fluxes compared to natural decay. Although the unmixed
285	dung-only produced 1.50x (mean) and 1.38x (median) more than the mixed dung-containing
286	treatments overall (Supp. Table D2), the general effect was negligible (Fig 3). This increase
287	could be because:

288

289	Fig 3. Violin box plots of HMR Flux by Treatment.
290	Each quadrant represents a GHG including CH_4 (top left), CO_2 (top right), N_2O (bottom left), and
291	CO_2e (bottom right) with their respective omnibus mean-based ANOVA's ($F_{df num, df den}$) and
292	median-based Explanatory Effect (E) Sizes shown above. Pairwise comparisons of ANOVA's
293	(lowercase letters) are shown within the graph. Sample sizes (n) are shown underneath each
294	treatment and total samples (N) are shown along the x-axis. Differing letters between groups
295	show differences ($p \le 0.05$). Exact means, medians, and measures of variations are found in Supp.
296	Table D2.
297	
298	1) <i>site-based vegetative differences</i> : however, the grass-only and pasture-only controls (Table 2)
299	produced <1 mg $CH_4/m_2/d$ on any given day, so all CH_4 fluxes are dung-based;
300	
301	2) <i>different chamber and dung volumes between sites</i> : this could theoretically bias certain
302	treatments toward greater fluxes, but given that unmixed dung-only sizes were random (often
303	larger) and measured using field-based chamber methods (larger volume) - the total dung-to-
304	chamber volume ratios between sites were similar (see Supp. Section A for a more in-depth
305	discussion of calculations and analyses). After all, any biases would show up on 0d if the

ratios were different, but this did not occur (Supp. Fig G6); and

307

308	3) <i>between-site variances</i> : mixed (homogenized) dung in the semi-permanent (buried) chambers
309	could have reduced variation compared with unmixed dung (non-homogenized) of the non-
310	standardized (unburied) pastured treatments, thus resulting in reduced power to detect
311	differences. Yet no variation differences were found between the unmixed and mixed dung-
312	only (p>0.05) across a week (Supp. Fig G8).
313	
314	If mixing itself was a factor in affecting GHGs we would expect to see differences between the
315	mixed and unmixed dung-only treatments on 0d. However, there were no differences and the
316	mixed dung-only treatment produced slightly more CH ₄ despite being presumably more aerated.
317	Likely it is because fresh cattle dung is liquid-like, and so mixed dung easily reforms and inhibits
318	aeration. However, dung beetles physically affected the dung (Fig 2) through more constant
319	mixing, enhanced desiccation (Supp. Table D6), and presumably greater aeration; yet, we
320	observed no dung beetle advantage in reducing CH ₄ , thereby suggesting time and dung-presence
321	are the only meaningful factors for CH ₄ generation.

322

323 **Carbon Dioxide**

324 Treatment had no effect on CO_2 fluxes in either the combined (Supp. Fig G1) or unmixed design

325 (Fig 3). Comparatively, time had a strong reductive effect (E=0.70-0.80) compared with

treatments (E=0.07-0.10), as CO₂ fluxes declined by >1.9x from 0d to 7d (Supp. Fig G2) or 14d

- 327 (Fig 4). Oddly, we expected dung beetles to increase CO_2 fluxes given their own respiration and
- 328 aerating/aerobic-based activities, but our (Supp. Fig B) and Piccini et al. (2017)'s respiration
- studies showed that dung beetle respiration was <1.5% of a single day's CO₂ emissions (see

330 Supp. Section B for further discussion). Curiously, while treatments mostly showed no

differences (Supp. Fig G3), the unmixed dung-only produced less CO_2 fluxes than the mixed

dung groups on 0d (Fig 5) and showed slower week-long declines (Fig 6). This was,

respectively, due to the pasture-control influencing the unmixed dung-only's reported fluxes, for

334 example:

335

Fig 4. Violin box plots of HMR Flux by Time.

Each quadrant represents a GHG including CH₄ (top left), CO₂ (top right), N₂O (bottom left), and

338 CO₂e (bottom right) with their respective omnibus mean-based ANOVA's ($F_{df num, df den}$) and

339 median-based Explanatory Effect (E) Sizes shown above. Pairwise comparisons of ANOVA's

340 (lowercase letters) and Effect Sizes (uppercase letters) are shown within the graph. Sample size

341 (n) and total samples (N) are shown along the x-axis. Differing letters between groups show

differences ($p \le 0.05$). Exact means, medians, and measures of variations are found in Supp. Table

- 343 D2.
- 344

Fig 5. Violin box plots of HMR Flux by Treatment within Time.

Each quadrant represents a GHG including CH_4 (top left), CO_2 (top right), N_2O (bottom left), and CO₂e (bottom right) with their respective omnibus mean-based ANOVA's ($F_{df num, df den}$) and median-based Explanatory Effect (E) Sizes shown above. Pairwise comparisons of ANOVA's (lowercase letters) are shown within the graph. Sample sizes (n) are shown underneath each treatment and total samples (N) are shown along the x-axis. Differing letters between groups show differences (p≤0.05). Exact means, medians, and measures of variations are found in Supp. Table D2.

353	Fig 6. Violin box plots of HMR Flux by Time within Treatment.
354	Each quadrant represents a GHG including CH_4 (top left), CO_2 (top right), N_2O (bottom left), and
355	CO_2e (bottom right) with their respective omnibus mean-based ANOVA's ($F_{df num, df den}$) and
356	median-based Explanatory Effect (E) Sizes shown above. Pairwise comparisons of ANOVA's
357	(lowercase letters) are shown within the graph. Sample sizes (n) are shown underneath each
358	treatment and total samples (N) are shown along the x-axis. Differing letters between groups
359	show differences (p \leq 0.05). Exact means, medians, and measures of variations are found in Supp.
360	Table D2.
361	
362	1) by producing 1.62x less CO_2 (t=0.19, p=0.08) than the grass-only on 0d (Supp. Table D2),
363	and
364	
365	2) by producing 1.07x more CO_2 (t=2.41, p=0.056) over time (Fig 6) because it was not
366	regularly cut as the grass-only was and grew over time. Thus, the drop in CO_2 for the
367	unmixed dung-only group was similar to other mixed dung groups and was masked initially,
368	thus the decline appeared more slowly – regardless, any small differences were negligible
369	(p>0.05).
370	
371	In all, dung-containing groups produced >1.69x the CO_2 compared with their vegetative controls,
372	thus showing dung-presence enhances CO_2 . Overall, dung beetles had no CO_2 effect, while only
373	time and dung-presence had strong, reliable effects (Fig 4).
374	

Nitrous Oxide. Unlike the other gases, treatment showed a small-to-medium effect on median 375 N_2O fluxes for both the unmixed design (E=0.21, Fig 3) and when combining years (E=0.30, 376 Supp. Fig G1), while time had a small-to-strong effect (E=0.22, Supp. Fig G2; E=0.54, Fig 4). 377 As with all main effect analyses, data aggregated across time or treatment obscures differences 378 between high-performance treatments and strong time effects, therefore day-by-day analysis was 379 380 required for differentiation. For the treatments: the unmixed design showed dung beetle groups producing an average of 2.6x more N_2O than the mixed dung-only on 3d alone (Fig 5, E=0.62). 381 This increase was due to the Tunn and TunnDwell groups producing >2.6x and >1.86x the 382 383 average N_2O of the mixed dung-only and Dwell, respectively (Supp. Fig G3, E=0.44). This suggests specific dung beetle behavior matters. Interestingly, while there were no variation 384 differences (p>0.05) between the unmixed and mixed dung-only (Supp. Fig G8), the dung beetle 385 groups produced a greater frequency of larger fluxes (p=0) and a smaller frequency of minimums 386 (p=0) (Supp. Fig G7) reflecting the significant omnibus and effect size analyses (Fig 3). This 387 suggests tunneler-activity, but not mixing nor dwelling-activity, specifically generated more N₂O 388 (1.57x) than unmixed dung-only despite its weak effects (Fig 3). Curiously, our vegetative 389 controls did not show N₂O spikes following rain events, as they do in agricultural soils (Sylvia et 390 391 al. 2005), perhaps because vegetation retains moisture more consistently across time than bare soil, and so produces consistent low-emissions in grassy pastures. 392

393

Nevertheless, the strongest effects on N_2O were time and dung-presence, especially relative to the vegetation-only controls. Grass and pasture-only treatments produced similar, low-emission trends across time (Supp. Table D2) (Fig 6), often generating 0.10-0.50x the amount of the dungcontaining treatments on any given day. Across time, the dung-containing groups produced 2.59-

7.26x more N_2O than their respective vegetative controls, thus showing dung's propensity for 398 N₂O generation (Fig 6) until complete decay (see the desiccated dung in Fig 2). Dung (Supp. Fig. 399 G9) and soil (Supp. Fig G10) moisture loss regressions showed that greater soil moisture was 400 positively correlated ($R^2=0.33$, p=0) with greater N₂O fluxes as expected, but there was 401 surprisingly no relationship with dung moisture content ($R^2=0.02$, p=0.98) – in contrast, CH_4 , 402 CO_2 , and CO_2e were positively correlated with dung moisture loss (Supp. Fig G9, p ≤ 0.01), but 403 not soil moisture loss (Supp. Fig G10, $p \ge 0.05$), despite the positive correlations between soil and 404 dung moisture loss. Understandable given that CH₄ is generated almost solely by dung (dung-405 presence generated 622.8x more CH₄ than vegetation-only), while CO_2/CO_2e is heavily 406 influenced by dung moisture simply because it is also correlated with dung decay, gradual 407 aeration, and other time-related variables (multicollinearity effect). But N₂O offers a different 408 picture: dung-containing treatments held 1.22x more soil moisture than the vegetation-only 409 (Supp. Table D6), with Tunnelers reducing dung moisture content by 1.78x compared with 410 mixed dung-only (Supp. Table D6, p=0). In short, drier dung correlated with increased soil 411 moisture, likely from dung leaching both moisture and nutrients to the surrounding soil, with 412 active dung-burial species potentially enhancing this process and increasing their N_2O fluxes due 413 to soil activity (Supp. Fig G3). 414

415

Each quadrant represents a GHG including CH_4 (top left), CO_2 (top right), N₂O (bottom left), and CO₂e (bottom right) with their respective omnibus mean-based ANOVA's ($F_{df num, df den}$) and median-based Explanatory Effect (E) Sizes shown above. Pairwise comparisons of ANOVA's (lowercase letters) and Effect Sizes (uppercase letters) are shown within the graph. Sample size (n) and total samples (N) are shown along the x-axis. Differing letters between groups show differences (p≤0.05). Exact means, medians, and measures of variations are found in Supp. Table
D2.

423

424 **Total Greenhouse Gas Effect**

425 CO₂e is calculated by determining the relative effects of each GHG. For example, 98.87% of all

426 GHGs collected was solely CO_2 , but since CH_4 and N_2O enjoy a larger greenhouse effect, they

respectively contributed to 23.07 and 7.28% of the total effect (Supp. Fig G5). Even so, CO₂

428 commands 69.65% of the sum-total CO₂e which is why CO₂e graphs (Figs 3-6, Supp. Figs G1-

429 G4) predominately follow CO_2 trends. Treatment had no effect (~1x) on CO_2e (E<0.12, Fig 3),

and the small reduction of CO_2e on 0d was attributed to the vegetative differences as described in

the *Carbon dioxide* section. Comparatively, time steadily reduced CO₂e by 3.24x (Fig 6) over the

432 course of a week (E=0.85, Fig 4). Ultimately, dung beetles were climate neutral and carbon

433 neutral (neither storing nor releasing resources).

434 In summary, we see that neither dung beetles nor mixing affected the average CH_4 , CO_2 , N_2O_2 ,

and CO_2e , though dung beetles did increase N_2O medians. Time, meanwhile, drastically reduced

436 CH_4 , CO_2 and CO_2e across a week, while inconsistently increasing N₂O resulting from dung

beetle interactions. Ultimately, we eliminated our hypothesis that mixing masked dung beetle

438 effects and found no dung beetle effect on GHGs.

439

440 **Discussion**

441 Since the early 1980s, an increasing number of researchers studied how arthropods and annelids

442 – such as termites (Sugimoto et al. 2000), dung beetles (Yokoyama et al. 1991ab), and

earthworms (Lubbers et al. 2013) – affected the GHG emissions of plant litter, soil, and/or dung.

444	These arthropods affected the decomposition rates and microbial pathways driving carbon (C)
445	and nitrogen (N) storage/release throughout the environment. For example, by reducing C and N
446	lost to the atmosphere, it is instead used and stored terrestrially (Sylvia et al. 2005).
447	Theoretically, dung beetles are capable of similarly affecting GHGs, but lacked supportive
448	research (see Introduction). By improving the power of our study (combined-years design) and
449	testing potential methodological problems (unmixed design), we suggest that dung beetles are
450	ultimately carbon neutral and that the physical 'mixing' of dung may not be a significant
451	mechanism in reducing GHGs.

452

453 GHG trends and their potential causes

As the pat ages, the constant decay physically alters the dung by leaching/evaporating water (by 454 1.89x from 0-14d, Supp. Table D6) and loosening the dung structure – a process aided by the 455 disturbance and disassembly of dung pats by dung beetles (Fig 2). The disintegrating and 456 desiccating dung allows for deeper oxygen (O_2) penetration and permeation such as seen in soil 457 (Sylvia et al. 2005). If true, we would predict decreased CH_4 , increased N_2O , and increased CO_2 458 459 over time. However, we saw both dung-based CH_4 and CO_2 (and so CO_2e) decline permanently over time until they mirrored the vegetative-control fluxes (Fig 6). Though expected for CH₄, 460 CO_2 's decline was a surprise. Presumably transitioning from an anaerobic to an aerobic dung pat 461 by mixing or aging should predictably increase CO_2 emissions via environmental respiration or 462 enhanced gas transport, though not dung beetle respiration (Iwasa et al. 2015). After all, we 463 (Supp. Section B) and Piccini et al. (2017) showed that dung beetle respiration was less <1.5% of 464 the total CO₂, and that dung beetles did not release more CH_4 and N_2O than the control (Supp. 465 Fig B), despite consuming methanogen and denitrifier-rich dung (Yokoyama et al. 1991a). 466

467	Ultimately, no CO_2 differences existed between any treatments (Fig 3) even after two weeks of
468	decomposition and desiccation (Fig 2). Meanwhile, $\mathrm{N_2O}$ followed our predictions but offered a
469	surprise.

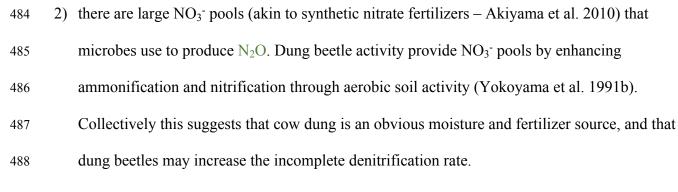
470

471 Generally, N₂O emissions result from incomplete byproducts of denitrification (Sylvia et al.

472 2005), nitrate reduction (Penttilä et al. 2013, Slade et al. 2016a, Piccini et al. 2017), nitrification

473 (Iwasa et al. 2015), from increased microbial abundance and activity (Yokoyama et al. 1991ab),

and/or increased gas transport – such as when dung beetles microtunnel into wet dung (Evans et


al. 2019). However, the greatest (>90%) N_2O production is formed by incomplete denitrification,

476 when:

477

1) there is sufficient O_2 -disrupting amounts – too little O_2 forms the benign, atmospheric N_2 ; too much O_2 forms the pre-GHG cursor, NOx; and just the right amount forms N_2O due to oxygen-inhibited microbial enzymes (Sylvia et al. 2005). O_2 competes with water to fill soil pores, and so a substrate's moisture can inhibit aeration – hence why N_2O emissions spike after rainfall (Sylvia et al. 2005);

483

489

The increased N_2O fluxes from 1-7d and the sharp 14d decline in dung-based treatments suggest 490 that our treatments supported large enough N-pools and a mostly anaerobic state sufficient for 491 N_2O production until 14d. However, we wondered if dung or soil was the main source of 492 denitrifier activity. Consider that: higher soil moisture, but not dung moisture (Supp. Fig G9), 493 predicted higher N_2O emissions (Supp. Fig G10) despite dung and soil moisture content being 494 495 correlated (r=0.36 to 0.64 depending on the gas, Supp. Table D8). This suggests that dung leaches moisture and resource-rich fluids to the surrounding soil and so soil microbes may be 496 generating N₂O. In support, research shows that both C and N-based water-soluble nutrients 497 increased with dung-presence (Yokoyama et al. 1991a, Evans et al. 2019) and all soil-based, N-498 acting bacterial and fungal groups (Yokoyama et al. 1991a) increased in dung-containing groups. 499 Thus, soil microbes possess all the necessary prerequisites for N₂O generation. We also see that 500 dung-only treatments possessed higher soil and dung moisture contents (Supp. Table D6) 501 resulting in treatments growing moisture-loving white fungus or mushrooms, but curiously also 502 had lower N₂O fluxes than the tunneler-containing groups that sported lower dung soil moisture 503 contents (Supp. Table D6). Combined, this suggests that though tunneler burial activity 504 decreases dung and soil moisture through churning – the soil disturbance, dung incorporation, 505 and aeration likely generate more N₂O than dung-presence alone. 506

507

In short, we suggest the higher N_2O generation associated with dung-presence is likely due to soil-generation. The dung provides the fertilizer, the moisture or rain leach the dung-rich resources, and any additional soil churning, particularly by the burial-heavy tunneler groups, aerate and trap dung-resources for greater microbial consumption. After all, dung beetles increase C, N, and other soil analytes (Nichols et al. 2008), and although resource-deposition

514 materials likely remain available until microbial-digestion conditions are ideal. Altogethe	;
	r, dung-
presence, increased soil moisture, and tunneler-presence each increased soil-based N_2O f	uxes.
These processes mirror common N_2O spiking agriculture practices such as: applied fertile	zers
517 (Akiyama et al. 2010), rain-filled soils (Sylvia et al. 2005), farmer pre-rain fertilizer appl	cations
(Singh and Sekhon 1979), churning compost (Lim et al. 2016), and tilling soils (Snyder a	nd
519 Hendrix 2008).	

520

521 **Comparing Dung Beetle Activity**

Through a literature review, we sought to uncover if the dung beetle effect was consistent despite
a diversity of methods, environmental conditions, sample sizes, treatments, dung beetle
activity/biomass, and statistical focuses (Table 4).

525

Methane. Of our combined studies: 3/7's presumed dung beetles decreased CH₄ over time 526 because of aeration, 3/7's showed no effect, and 1/7th presumed dung beetles increased CH₄ 527 when they created alternative gas pathways (microtunnels) in wet dung. Periodic CH₄ increases 528 are not uncommon (Penttilä et al. 2013, Slade et al. 2016a, Evans et al. 2019) and highly suggest 529 methanogen-preferred anaerobic conditions attributed to wet conditions. Thus, as pats dried, 530 531 most studies showed extinguished CH₄ fluxes by 7d (Piccini et al. 2017, Fowler et al. 2020c) or 30d (Penttilä et al. 2013, Slade et al. 2016a). Even Evan's et al. (2019)'s study showed decreased 532 dung-generated CH₄ relative to the pasture-only by 7d despite the meadow being a strong CH₄ 533 sink. 534 535

536	<i>Carbon dioxide.</i> Of our combined studies: $1/7$ th presumed dung beetles increased CO_2 flux from
537	either dung-beetle respiration (Iwasa et al. 2015) or enhanced gas transport on particular days
538	(Evans et al. 2019), while 6/7's showed no effect (Table 4). Interestingly all dung-only controls
539	followed negative distributions (linear, exponential, Gaussian) for CO ₂ over time – suggesting
540	decreased biological respiration is very common unless enhanced by other factors (e.g. dung
541	beetles; Iwasa et al. 2015, Evans et al. 2019).
542	
543	Nitrous oxide. Of our combined studies: 4/7's of studies showed no dung beetle effect (including
544	ours, though we showed a median increase), while $3/7$'s showed large N_2O increases based on
545	numerous explanations. Like CH ₄ , most dung-containing treatments saw periodic increases,
546	except for Piccini et al. (2017). This suggests that dung-presence and dung-beetle presence can
547	spike N_2O fluxes. Interestingly, in every study where CH_4 was significantly influenced, so was
548	N ₂ O.

- 550 Despite this information, time is the strongest predictor in all studies and consistently decreased
- CH_4 and CO_2 's emissions and increased N_2O 's emissions (Table 3).

Table 3. A summary of reported GHG flux differences (+: increase, -: decrease, 0: no effect) and their overall trajectory surrounding aggregate time effects of ANOVAs (p<0.05) of the dung-containing treatments (DC), or on the dung-only treatments (DO).

			CH	ļ	CC) ₂	N ₂ C)	CO ₂ e
Article	Group	Time (d) ^a	Flux	Traj.	Flux	Traj.	Flux	Traj.	
Penttilä et al. 2013§	DO	50	>-100x	+BC	-2.8x	-L	~1x	+G	
Iwasa et al. 2015 [¥]	DO	6	-2x	-L	-5x	-L	+2x	-BC	Fo
Slade et al. (2016ab) [§]	DC	60,60	>-1000x	+BC	-10.67	+BC	+5x	+G	Follows
Hammer et al. 2016	DO	43	-		-		-		$CO_2 t$
Piccini et al. 2017 [¥]	DC	32	>-25x	-L	-3x	-E	>-13x	-E	trajectory
Evans et al. 2019 [¥]	DO	56	~1x	A	-1.36x	-BC	-2.5x	S	огу
Fowler et al. 2020c [¥]	DC	7,14	>-200x	-L	>-2x	-L	+1.25x	+E	

BC, Skewed Bell Curve; L, Linear; G, Gaussian; E, Exponential; S, Sine; A, Alternating.

^a Calculated difference of groups that represent the ratio of the means of (Day 0)/(DayX), where DayX=Time (d) reported here.

§ Statistical tests not reported in the published paper thus 'significant' differences based on visual means and standard errors as shown in graphs.

 Ψ Omnibus ANOVA's reported (p<0.05).

In our study, CH₄, CO₂, and CO₂e explained 84%, 72%, and 79% of the total variation (8-10x the 553 variation explained by treatment alone). Only for N₂O did the time:treatment interaction fit 1.64x 554 more variation than either variable alone, explaining a total of 17% variation. This suggests that 555 time, rather than treatment, affects the interaction effect most strongly (except in the case of 556 N_2O) which explains why dung beetles in our study affected only one out of five sampling days 557 558 (Fig 5) – a miniscule effect. It is likely that time may possess such a strong effect because it is multicollinear: other variables such as dung moisture, soil moisture, decay, and other unknown 559 time-related variables drastically and simultaneously change (Supp. Table D8) as the pat ages 560 (Fig 2). However, by comparing dung beetle treatments to time, we can more easily deduce if 561 dung beetle activity, despite all other pressures, is a more powerful GHG predictor – it wasn't. 562 We also hypothesized that premixing dung, an activity reflecting dung beetle activity, might 563 obscure the dung beetle effect – it didn't. 564

565

Mixing the Message. While the unmixed dung-only saw minor increases in CH₄, N₂O, and 566 CO₂e relative to the mixed dung-only (Figs 5 and 6), these differences did not affect aggregate 567 fluxes (Fig 3) nor did they compare to time's strong effects (Fig 4). In fact, Evans et al. (2019)'s 568 suggestion that dung tunnels may increase CH₄'s release from the pat applies only to dung wet 569 enough for anaerobic maintenance, but chunky/dry enough to support sturdy microtunnels. When 570 571 mixing fresh dung, the dung reforms and reconnects when wet, so likely there was no aeration in 572 the mixed dung-only without O_2 for confirmation. At the outset we hypothesized that mixing multiple dung pats and relocating them alters GHGs, but this was not borne out – however, it 573 574 does question whether mixing itself (Table 4) is an influential factor, especially compared to 575 time-based decay (Table 3).

Table 4. A summary of reported GHG differences (+: increase, -: decrease, 0: no effect) focused on aggregate treatment effects of ttests and ANOVAs (p<0.05) that exclude strong and effect-masking predictors such as time or vegetation.

Article	n _{dung} /d	Abundance	Biomass (g)	Dung	CH ₄	CO ₂	N ₂ O	CO ₂ e
Yokoyama et al. 1991ab	2-3	T: 4	-	100g (~.097l)	-	-	+1.93x	-
Penttilä et al. 2013	10	D: 153	1.29	1.21	-1.65x	0	+27.2x	0
Iwasa et al. 2015§	3	T: 30	-	11	-2.61x	+7.87x	+10.81x	+1.91x
Slade et al. (2016ab)§	30,20*	-	-	1.21	0	0 [¤]	0	0
Hammer et al. 2016	10†	D: 12	-	11	-1.59x	0	+3.02x	0§
Piccini et al. 2017¥	8	T: 2-13 D: 11-31 R: 2-6	T: 0.40 D: 0.31 R: 0.30	300g (~.271)	04	0 ^в	0 ^c	0 ^D
Evans et al. 2019	32	1-24	-	1.51	+3x	0	+3x	0
Fowler et al. 2020c	24	T: 41 T/D: 21/249 D: 498	3	1,000g (~.97l)	0	0	0	0

- ^a Based on Fig A2 from Slade et al. 2016b, all other GHGs come from Slade et al. 2016a's Supplemental Materials
- † Considering only the non-antibiotic dung to avoid confounding effects
- * Numbers represent dung beetle treatments, dung-only was n=3 for both 2016a and b
- § Traditional t-test not reported in the published paper. Based on reported and overlapping SE values or a t-test was performed on the available raw data (Supp. Table D7)
- ¥ Based only on the reported p-adj. value (Family-Wise Error Corrected)
- A 5 of 6 dung beetle treatment reported no difference, 1 trt increased CH₄ emissions (T4)
- B 5 of 6 dung beetle treatments reported no difference, 1 trt decreased CO_2 emissions (T4)
- C 6 of 6 dung beetle treatments reported no difference for N_2O
- D 5 of 6 dung beetle treatments reported no difference, 1 trt decreased CO₂e emissions (T6)

Thus, studying dung beetle populations that can accelerate dung decay faster than time alone
may answer what behavior(s) strongly alter GHG pathways. Varying dung beetle abundances in
future studies may answer this question.

580

581 Conclusion

Our major findings revealed that: 1) dung-presence always increased GHG (CH_4 , CO_2 , N_2O) 582 production relative to vegetation-only – likely because the sudden deposition of a rich and 583 readily available nitrogen, carbon, and mineral source (fertilization) sparked microbial activity in 584 the form of gases; 2) that time was the single strongest predictor of GHG trends for reducing 585 CH_4 , CO_2 , and CO_2e , and steadily increasing N₂O over time with the potential help of burial 586 activity. These trends may generally be explained by decreased dung moisture, increased soil 587 moisture, and/or dung beetle tunneling behavior that exposes dung to greater oxygenic/microbial 588 consumptive conditions; and 3) that neither physically mixing nor dung beetle activity, when 589 compared with time or in aggregate, affected the total greenhouse gas effect (CO_2e) in a practical 590 manner, though dung beetles periodically decreased CH₄ and increased N₂O. Thus, while dung 591 beetles occasionally influenced individual GHGs in small ways (Table 4), dung-presence and 592 time was a much stronger predictor (Table 3), and thus forces researchers to ask: what kind of 593 impact would we want to see from dung beetles? Future research may help answer whether dung 594 beetles have no GHG effect or if an effect is only observed at greater abundances and activities 595 than currently seen. 596

597

598 Acknowledgements

599	Thank you, Amelia Weaver and Tashiana Wilcox for assisting with field experiments and beetle
600	capture. We appreciate Cong Tu for conveying the basic concepts of GHG collection and
601	measurement, as well as the NCSU Lake Wheeler Road Field Lab for collaborating with us on
602	cattle pasture use. Lastly, we appreciate the crucial edits and thoughts of Meredith Spence
603	Beaulieu and Bradley Mullens in the drafting of this manuscript.
604	
605	This material is based upon work supported by the National Science Foundation Graduate
606	Research Fellowship Program under Grant No. (DGE-1746939). Any opinions, findings, and
607	conclusions or recommendations expressed in this material are those of the author(s) and do not
608	necessarily reflect the views of the National Science Foundation. This research was also
609	supported by the Center for Environmental Farming Systems Graduate Student Fellowship at
610	North Carolina State University.
611	
612	

613

615 **References**

616	Akiyama H, Yan X, and Yagi K. Evaluation of effectiveness of enhanced-efficiency
617	fertilizers as mitigation options for $\mathrm{N}_2\mathrm{O}$ and NO emissions from agricultural soils: meta
618	analysis. Global Change Biol. 2010; 16:1837-1846.
619	
620	Bertone M, Green J, Washburn S, Poore M, Sorenson C, and Watson DW. Seasonal activity and
621	species composition of dung beetles (Coleoptera: Scarabaeidae and Geotrupidae) inhabiting
622	cattle pastures in North Carolina. Ann. Entomol. Soc. Am. 2005; 98:309-321.
623	
624	Bertone M, Watson W, Stringham M, Green J, Washburn S, Poore M, et al. Dung beetles of
625	central and eastern North Carolina cattle pastures. North Carolina Cooperative Extension, North
626	Carolina State University, Raleigh, NC; 2014.
627	
628	Casler MD. Fundamentals of experimental design: Guidelines for designing successful
629	experiments. 2015; Agron. J. 107:692-705.
630	
631	Colquhoun D. An investigation of the false discovery rate and the misinterpretation of p-values.
632	2016; Royal Society open science 1:140216.
633	
634	Davies GM, and Gray A. Don't let spurious accusations of pseudoreplication limit our ability to
635	learn from natural experiments (and other messy kinds of ecological monitoring). 2015; Ecology
636	and Evolution 5:5295-5304.

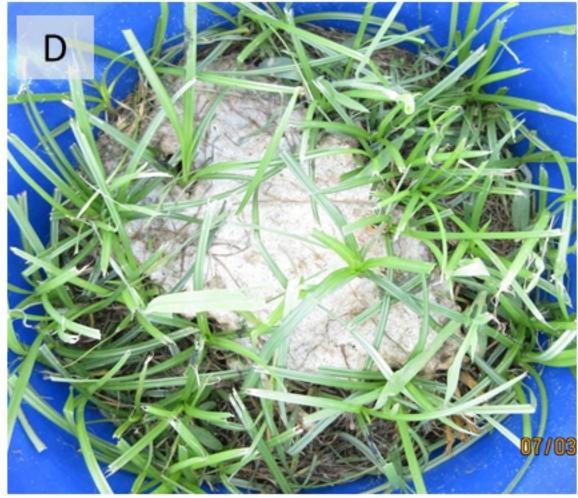
637	Doube BM. Ecosystem services provided by dung beetles in Australia. 2018; Basic Appl. Ecol.
638	26:35-49.
639	
640	Erceg-Hurn DM, and Mirosevich VM. Modern robust statistical methods: an easy way to
641	maximize the accuracy and power of your research. 2008; Am. Psychol. 63:591.
642	
643	Evans KS, Mamo M, Wingeyer A, Schacht WH, Eskridge KM, Bradshaw J, et al. Dung Beetles
644	Increase Greenhouse Gas Fluxes from Dung Pats in a North Temperate Grassland. 2019; J.
645	Environ. Qual. 48:537-548.
646	
647	Fowler F, Wilcox S, Nuss S, and Watson W. Sampling Efficacy and Survival Rates of Labarrus
648	pseudolividus (Coleoptera: Scarabaeidae) and Onthophagus taurus (Coleoptera:
649	Scarabaeidae) Using Flotation and Sieve-Separation Methodology. 2020a; J. Insect Sci.
650	20:6.
651	
652	Fowler F, Denning S, and Watson W. "Chapter 2: Gases on the Go: Mobile Chamber Designs
653	and Gas Techniques for Field Research" in How Dung Beetles affect Dung-Generated
654	Greenhouse Gases in Cattle Pastures: Experimental Studies and Literature Review. PhD
655	Dissertation, North Carolina State University, Raleigh. 2020b. Available from:
656	https://repository.lib.ncsu.edu/bitstream/handle/1840.20/37418/etd.pdf?sequence=1
657	

658	Hammer TJ., Fierer N, Hardwick B, Simojoki A, Slade E, Taponen J, et al. Treating cattle with
659	antibiotics affects greenhouse gas emissions, and microbiota in dung and dung beetles.
660	2016a; Proc.R.Soc.B 283:20160150.
661	
662	Hammer TJ., Fierer N, Hardwick B, Simojoki A, Slade E, Taponen J, et al. Dataset for: Treating
663	cattle with antibiotics affects greenhouse gas emissions, and microbiota in dung and dung
664	beetles. 2016b; Proc.R.Soc.B: 283:20160150.
665	
666	Hanski I, and Cambefort Y. Dung beetle ecology. Vol. 1195. Princeton University Press; 2014.
667	
668	IPCC. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to
669	the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Geneva,
670	Switzerland. 2020 April 10 [Cited 2020 November 15]. Available from:
671	https://www.ipcc.ch/report/ar4/syr/
672	
673	Iwasa M, Moki Y, and Takahashi J. Effects of the activity of coprophagous insects on
674	greenhouse gas emissions from cattle dung pats and changes in amounts of nitrogen, carbon,
675	and energy. 2015; Environ. Entomol. 44:106-113.
676	
677	Lim SL, Lee LH, and Wu TY. Sustainability of using composting and vermicomposting
678	technologies for organic solid waste biotransformation: recent overview, greenhouse gases
679	emissions and economic analysis. 2016; J. Clean. Prod. 111:262-278.
680	

681	Lubbers IM., Van Groenigen KJ, Fonte SJ, Six J, Brussaard L, and Van JW Groenigen.
682	Greenhouse-gas emissions from soils increased by earthworms. 2013; Nature Climate
683	Change 3:187.
684	
685	Nichols E., Spector S, Louzada J, Larsen T, Amezquita S, and Favila ME. Ecological functions
686	and ecosystem services provided by Scarabaeinae dung beetles. 2008; Biol. Conserv.
687	141:1461-1474.
688	
689	Penttilä A., Slade EM, Simojoki A, Riutta T, Minkkinen K, and Roslin T. Quantifying beetle-
690	mediated effects on gas fluxes from dung pats. 2013; PLoS One 8:e71454.
691	
692	Piccini I, Arnieri F, Caprio E, Nervo B, Pelissetti S, Palestrini C, et al. Greenhouse gas emissions
693	from dung pats vary with dung beetle species and with assemblage composition. 2017; PloS
694	one 12:e0178077.
695	
696	Singh B, and Sekhon GS. Nitrate pollution of groundwater from farm use of nitrogen
697	fertilizers—a review. 1979; Agriculture and Environment 4:207-225.
698	
699	Skidmore ST, and Thompson B. Bias and precision of some classical ANOVA effect sizes when
700	assumptions are violated. 2013; Behavior research methods 45:536-546.
701	
702	Slade EM, Riutta T, Roslin T, and Tuomisto HL. The role of dung beetles in reducing
703	greenhouse gas emissions from cattle farming. 2016a; Scientific reports 6:18140.

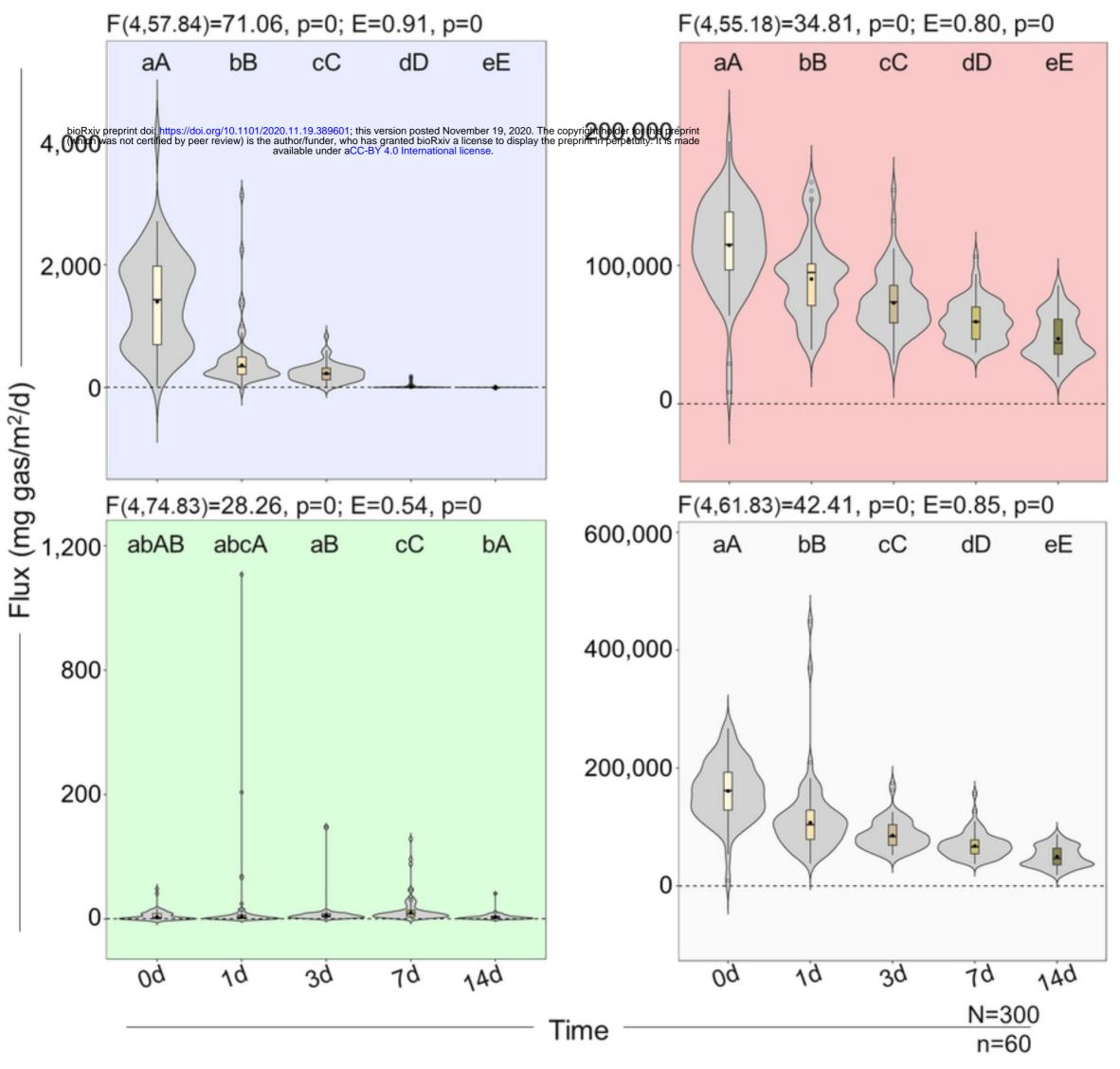
_		
7	1	1
- 1	U	4

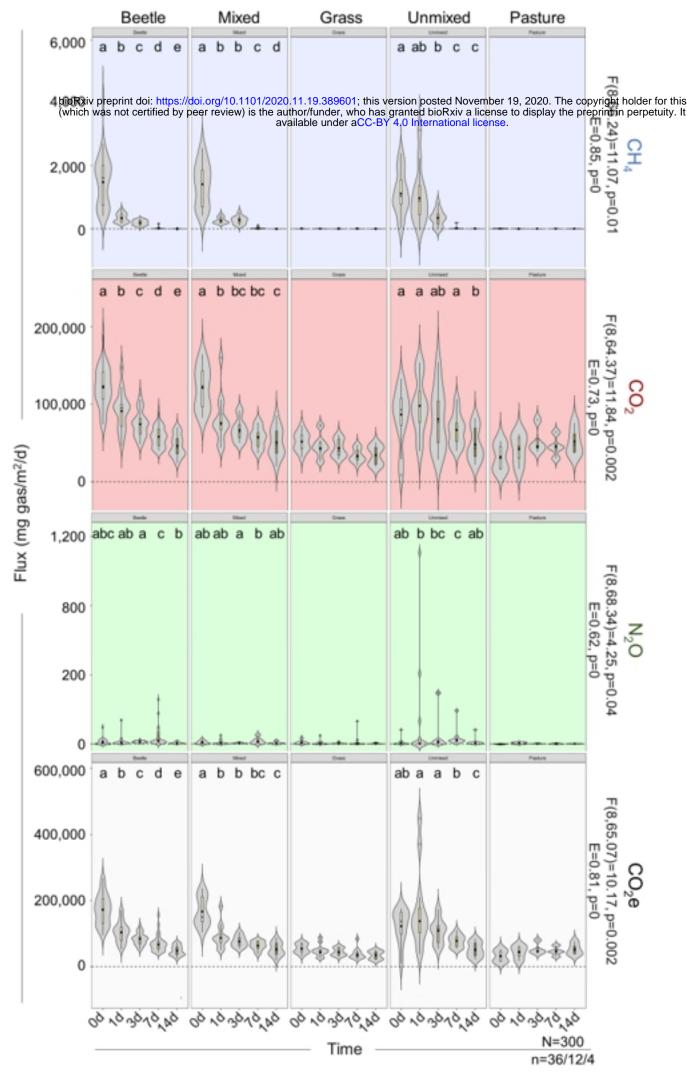
705	Slade EM, Roslin T, Santalahti M, and Bell T. Disentangling the 'brown world' faecal-detritus
706	interaction web: dung beetle effects on soil microbial properties. 2016b; Oikos 125:629-635.
707	
708	Snyder CS, Bruulsema TW, Jensen TL, and Fixen PE. Review of greenhouse gas emissions from
709	crop production systems and fertilizer management effects. 2009; Agric. Ecosyst. Environ.
710	133:247-266.
711	
712	Steinfeld H, Gerber P, Wassenaar TD, Castel V, M. Rosales, and de Haan C. Livestock's long
713	shadow: environmental issues and options. 2006; Food & Agriculture Org.
714	
715	Sugimoto A, Bignell DE, and MacDonald JA. Global impact of termites on the carbon cycle and
716	atmospheric trace gases. In Termites: evolution, sociality, symbioses, ecology. Springer.
717	2000; pp. 409-435
718	
719	Sylvia DM, Fuhrmann JJ, Hartel PG, and Zuberer DA. Principles and applications of soil
720	microbiology. Pearson Prentice Hall Upper Saddle River, NJ; 2005.
721	
722	Venterea RT., and Parkin TB. Quantifying biases in non-steady state chamber measurements of
723	soil-atmosphere gas exchange. Managing agricultural greenhouse gases. Elsevier, Boston.
724	2012; pp. 327-343.
725	


726	Wilcox R. Introduction to Robust Estimation and Hypothesis Testing. 3rd ed. Elsevier Science;
727	2013.
728	
729	Yokoyama K, Kai H, Koga T, and Aibe T. Nitrogen mineralization and microbial populations in
730	cow dung, dung balls and underlying soil affected by paracoprid dung beetles. 1991a; Soil
731	Biol. Biochem. 23:649-653.
732	
733	Yokoyama K, Kai H, and Tsuchiyama H. Paracoprid dung beetles and gaseous loss of nitrogen
734	from cow dung. 1991b; Soil Biol. Biochem. 23:643-647.
735	
736	
737	Acknowledgements
738	S1 File. Supplementary Materials.
739	
740	
741	
742	
743	
744	
745	

Standard Site

Pasture Site


Fig 2

F(2,58.87)=0.47, p=0.61; E=0.07, p=0.68 F(2,60.47)=0.62, p=0.56; E=0.09 p=0.65 5,000 аA aA aA aA aA aA 4 bioExv preprint doi: https://doi.org/10.1101/2020.11.19.389601; this version posted November 19, 2020. The copyright holden fon this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the proprint in perpetuity of available under a CC-BY 4.0 International license. 3,000 2,000 100,000 1,000 Flux (mg gas/m²/d) 0 0 F(2,62.79)=4.03, p=0.04; E=0.21, p=0.008 F(2,58.03)=0.97, p=0.41; E=0.11, p=0.52 600,000 aA 1,200 aAB aA aВ aA aA 400,000 800 200,000 200 0 (20) Pasture Grass Unmixed 0 (60)(180)(60)(180)(60)(60)(20)Beetle Mixed Grass Unmixed Pasture Beetle Mixed N=300 Treatment

