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Abstract: Estimating the controllability of the environment enables agents to better predict upcoming 

events and decide when to engage controlled action selection. How does the human brain estimate 

controllability? Trial-by-trial analysis of choices, decision times, and neural activity in an explore-and-

predict task demonstrate that humans solve this problem by comparing the predictions of an “actor” 

model with those of a reduced “spectator” model of their environment. Neural BOLD responses within 

striatal and medial prefrontal areas tracked the instantaneous difference in the prediction errors generated 

by these two statistical learning models. BOLD activity in the posterior cingulate, temporoparietal, and 

prefrontal cortices covaried with changes in estimated controllability. Exposure to inescapable stressors 

biased controllability estimates downward and increased reliance on the spectator model in an anxiety-

dependent fashion. Taken together, these findings provide a mechanistic account of controllability 

inference and its distortion by stress exposure. 
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INTRODUCTION 

 
Influential theories suggest that the human brain navigates its environment by building predictive 

models of the world, which in turn fuel cognitive processes such as directed exploration, goal-directed 

decisions, and forward planning1–3. While these internal models can take diverse mathematical forms, 

their efficiency always depends on the use of task-relevant and cost-efficient state spaces4–6. Most often, 

these state spaces are state-action spaces in which the actions of the agent actively contribute to the 

prediction of upcoming events. For example, a driver must take into account the movement of their hands 

to predict the future position of their car. By contrast, a passenger worried for their safety should ignore 

their own hands and instead focus on the hands of the driver to anticipate potential hazards. 

Determining whether an environment is controllable or not is key to deciding to which extent 

one’s actions should influence the prediction process since only controllable environments afford causal 

influence over state transitions. Controllable contexts thus prompt the use of “actor” models including 

one’s own actions as predictors, whereas uncontrollable contexts prompt the use of simpler “spectator” 

models linking past and future states of the environment. By gating the causal influence of action 

selection, controllability likely plays a central role in the engagement of elaborate action selection 

mechanisms. Supporting this idea, it is well established that prior exposure to controllable contexts 

promotes proactive and goal-directed strategies in a vzariety of cognitive tasks7,8. Conversely, the lack of 

perceived control over events, especially stressful ones, constitutes a well-established correlate and a 

potential predictor of prevalent psychiatric disorders involving an increased influence of reactive and 

habitual behaviours, such as depression, anxiety, post-traumatic stress, or obsessive-compulsive 

disorders9–13.  

Numerous studies have shown that exposure to uncontrollable stressors can induce a state of 

learned helplessness characterized by the generalization of passive reactions to subsequent challenges7,8. 

Evidence indicates that this maladaptive state largely depends on functional changes within the medial 

prefrontal cortex (mPFC) and the serotonin system14–18. In humans, a handful of neuroimaging 

experiments have further suggested that the anterior insula and cingulate cortex contribute to the 

detrimental effects of uncontrollable stressors19,20. Beyond stress induction studies, the sense of being in 

control of one’s own actions and their outcomes is known to modulate hemodynamic responses parietal 

and prefrontal cortices21–23 and the right temporoparietal junction (TPJ) was found to track the divergence 

of action-outcome transitions, a feature of controllable environments24.  

Yet, little is known about the algorithms by which the brain estimates dynamically to what degree 

a task is controllable. A general strategy is to estimate controllability by computing the causal effect the 

agent's own actions have over the environment. Formally, a task can thus be deemed controllable when 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2022. ; https://doi.org/10.1101/2020.11.19.390393doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.19.390393
http://creativecommons.org/licenses/by-nd/4.0/


 

4 

the transfer entropy (TE) —a generalization of Granger causality to non-linear and discrete systems— 

linking state and action time-series is positive25,26. By comparing the entropy of observed states given 

previous states and actions [H(S’|S,A)] to the entropy of observed states given previous states only 

[H(S’|S)], this information-theoretic quantity isolates the effective causal influence of actions over state 

transitions (Figure 1a, Supplementary Note 1). In the vocabulary of causal mediation analysis27, 

positive TE values entail the existence of a natural direct effect linking actions to future states of the 

environment (Supplementary Note 2). Here, we develop a computational model that tracks a dynamic 

approximation of TE and we use it to shed light on the cognitive and neural mechanisms supporting the 

ability to infer task controllability and adapt behaviour accordingly.  

 

 

Figure 1. Theoretical framework and experimental protocol. a, Controllability can be inferred from transfer entropy, an 

information-theoretic measure quantifying to which extent a time series causally influences another one. b, Time course of a 

novel explore-and-predict task divided in short mini-blocks. Each mini-block consists of a series of exploratory trials (violet) 

followed by two counterfactual prediction trials (green) used to assess learning and subjective controllability. c, Representation of 

the 2 uncontrollable rules (U1, U2) and the 2 controllable (C1, C2) rules, which alternate covertly to govern the evolution of the 

environment. Note that rule C2 was the only rule allowing state repetition, a feature that was taken into account in our analyses. 

d, Simulations showing the dissociation of controllability, as indexed by TE, and predictability, as indexed by the mutual 

information (MI) shared between successive state-action pairs (random exploration policy). e, Simulations under controllable rule 

C2 showing that TE requires exploration to be used as a proxy for controllability. In the complete absence of exploration, the 

conditional entropies H(S’|S) and H(S’|S,A) are both null because the agent maintain itself indefinitely in a single preferred state 

(see also Supplementary Figure 1C). f, Synthetic overview of the algorithm able to derive an online approximation of TE 

(termed Ω) by comparing on each trial the transition probabilities of an actor (SAS’) and a spectator (SS’) model of the world. By 

thresholding Ω, the algorithm could in turn arbitrate between spectator and actor models when making predictions depending on 

current controllability estimates (ω). This architecture was compared to other controllability estimation schemes and a standard 

model-based learning model tracking only SAS’ transitions.  

 

Based on this information-theoretic formalism, we designed an explore-and-predict task that 

allowed us to manipulate controllability and assess the resulting changes in terms of subjective 
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controllability and prediction accuracy. This new task was first used in behavioural (n=50) and fMRI 

(n=32) experiments which aimed at: (a) demonstrating that humans infer task controllability by estimating 

an approximation of transfer entropy; (b) establishing the dissociation of spectator and actor models 

predicted by the transfer entropy hypothesis at the behavioural and neural levels; and (c) unraveling the 

neural substrates underlying the representation of controllability itself and its influences on behaviour. In 

a subsequent stress experiment (n=54), we exposed participants to either uncontrollable or controllable 

electric shocks before administering the explore-and-predict task in order to (d) provide causal evidence 

supporting a dissociation of the spectator and actor models and (e) test whether learned helplessness can 

be characterized by an increased reliance on the former relative to the latter. 

 

RESULTS 

 

Experimental paradigm and computational model 

Healthy human participants were invited to explore an abstract environment composed of three 

states (square, circle, triangle) and three actions (yellow, blue, magenta). A hidden transition rule always 

determined upcoming states, either dependent on the action of the participants (controllable rules, C) or 

the previous state only (uncontrollable rules, U) (Figure 1b). The transition rules were probabilistic and 

reversed covertly, so participants needed to explore and accumulate evidence in order to tell which rule 

was operative. From time to time, the participant was asked to predict the most likely upcoming state 

given a state-action pair (e.g. “blue” action in “circle” state), and its counterfactual (e.g. “yellow” action 

in “circle” state). This procedure yielded a direct yet implicit assessment of their subjective sense of 

controllability because counterfactual predictions should only differ in controllable contexts, where 

selected actions determine upcoming states (Figure 1c). A novel and distinguishing feature of our task is 

that controllability varied independently of uncertainty (Figure 1d), a methodological improvement over 

earlier paradigms where the two constructs covary systematically13,24,28. Another key difference from 

previous studies is that we did not include any reinforcers: participants were merely instructed to explore 

their environment to perform accurate predictions when asked to. Here, controllability estimation can 

interact with but does not depend on reward and punishment processing7,29,30, the only requirement being 

to maintain a minimal level of exploration, or noise in the action selection process (Figure 1e, 

Supplementary Note 1).  

To untangle the mechanisms of controllability estimation in this task, we designed a 

computational architecture for dynamically tracking an approximation of TE (for a detailed description, 

see Supplementary Figure 1a, Methods). Paralleling the standard computation of TE, two sets of 

transition probabilities were monitored, one corresponding to an “actor” model (tracking state-action-state 
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transition, SAS’) and the other to a “spectator” model (tracking state-state transition, SS’, Figure 1f,i). 

Following each transition, an approximation of TE (hereafter termed Ω) was updated in proportion to the 

difference between ‘actor’ and ‘spectator’ transition probabilities pSAS’-pSS’ (Figure 1f,ii). Intuitively, this 

difference term can be understood as an instantaneous causality signal, reflecting how likely the last state 

transition towards S’ was due to the influence of action A rather than state S. By integrating pSAS’-pSS’ 

over time, Ω thus reflects the causal influence of actions on recent state transitions (Supplementary 

Figure 1b). 

This causality signal Ω is at the core of the proposed algorithm, which arbitrates between the 

actor and the spectator model when making predictions about upcoming states. Specifically, the relative 

weight of the actor versus spectator model is set by an arbitrator (hereafter termed ⍵) whose value can be 

interpreted as an estimate of controllability. Two parameters influence the mapping between Ω and ⍵: a 

threshold determining how much causal evidence is required to infer controllability and a slope 

determining how fast controllability estimates change around that threshold (Figure 1f,iii). This SAS’-

SS’-Ω algorithm was contrasted with a conventional model-based learning algorithm2,31 and with two 

models estimating controllability based on the uncertainty —as indexed by the conditional entropy 

H(S’|A,S)— or divergence of SAS’ transition probabilities bound to different actions (as indexed by the 

Jensen-Shannon divergence).  Importantly, this simpler algorithm could still learn transition probabilities 

from both uncontrollable and controllable conditions in stable environments, but the lack of 

controllability-dependent arbitration makes it less efficient in volatile environments alternating rapidly 

between controllable and uncontrollable rules.  

 

Controllability drives learning and predictive decisions 

Participants performed well on the task: in all experiments, the average prediction accuracy was 

substantially above chance (Figure 2a). In the fMRI experiment, for which participants received more 

training, accuracy was also stable across conditions and time (Supplementary Table 1). Prediction 

accuracy dropped and then rapidly recovered after covert reversals in transition rules: it already exceeded 

chance levels on the first pair of prediction trials after reversal (Figure 2b). Prediction accuracy also 

correlated positively with working memory capacity as indexed by d-primes in a standard 2-back task 

(Figure 2c), consistent with the engagement of a model-based learning process32.  

In line with our prediction that humans solve the task by estimating Ω, Bayesian model 

comparisons demonstrated that SAS’-SS’-Ω schemes outperformed the conventional model-based 

learning algorithm (SAS’ alone) in all experiments (Figure 3a; Supplementary Figure 2a). Simulation 

analyses confirmed that the model was identifiable and that most of its parameters could be recovered 

accurately (Supplementary Figure 2b-d). As expected, the arbitrator ⍵ captured quantitative changes in 
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subjective controllability, indexed by the proneness of participants to predict that different actions would 

lead to different states in counterfactual prediction trials (Figure 3b). Critically,  the SAS’-SS’-Ω scheme 

which included an arbitration mechanism accounted better for the dynamics of subjective controllability 

changes around reversals than did the SAS’ model alone (Figure 3c, correct prediction of subjective 

controllability: 72.1% versus 66.5%, N=50, z(49)=3.90, d=0.64, p=9.7x10-5, 95% CI (0.004,0.028)). As 

compared to other controllability estimation schemes (i.e. SAS’-SS’-H and SAS’-SS’-JS), its arbitrator 

variable ⍵ also predicted variations in subjective controllability more accurately (Supplementary Figure 

2e-f). The benefits of monitoring controllability are further illustrated by the finding that the likelihood of 

using the SAS’-SS’-Ω scheme over the SAS scheme increased with accuracy across subjects 

(Supplementary Figure  2g). 

 

Figure 2. Behavioral performance. a, Accuracy in the prediction 

trials was above chance for both conditions in each of the 

experiment (behavioural: n=50, t(49)=11.31, p=2.9x10-15, d=1.60, 

95% CI=(0.20,0.29), fMRI: n=32, t(31)=12.67, p=8.5x10-14, d=2.24, 

95% CI=(0.24,0.33), stress: n=54, t(49)=11.64, p=3.1x10-16, d=1, 

95% CI=(0.20,0.28); see also Supplementary Table 1). b, Rapid 

recovery of predictive accuracy for all reversal types (first pair of 

predictions after reversal: n=50, t(49)=6.64, p=2.4x10-8, d=0.94, 

95% CI=(0.11,0.20)). Accuracies were split by reversal type for 

visual purpose (U denotes uncontrollable rules and C denotes 

controllable rules). c, Positive correlation between working memory 

capacity indexed by a 2-back task (see Supplementary Methods) and 

predictive accuracy in the explore-and-predict task for controllable 

(blue: n=46, ρ=0.52, p=1.9x10-4, 95% CI (0.18,0.67)) and 

uncontrollable (orange, n=46, ρ=0.40, p=0.006, 95% CI (0.13,0.62)) 

contexts. Shaded areas represent standard errors of the mean (SEM). 

 

Importantly, since only one controllable rule (and none of the uncontrollable rules) allowed 

immediate state repetitions (rule C2), state repetition events provided a salient psychological cue that 

contributed to controllability detection. Accordingly, rule C2 was associated with a higher frequency of 

subjective controllability responses than rule C1 across the three experiments (behaviour: N=50, 82.3+/-

13.3% vs 75.6+/-14.0%, t(49)=4.1, p=1.5x10-4, d=0.58, 95% CI (0.03,0.10); fMRI: N=32, 88.7+/-14.5% 

vs 69.3+/-15.4%; t(31)=6.29, p=5.5x10-7, d=0.55, 95% CI (0.13,0.26) ; stress: N=27 , t(53)=4.03, 

p=1.8x10-4, d=0.55, 95% CI (0.04,0.13)). On average, participants also chose more frequently the actions 

which could lead to state repetition whenever rule C2 was active, thereby indicating that they leveraged 

this feature of our task to refine controllability inferences in all experiments (behavioural: 53+/-8%, 

t(49)=2.6, p=0.012, d=0.37, 95% CI (0.007,0.05); fMRI: 51.5+/-4.6% t(31)=1.85, p=0.07, d=0.33, 95% 

CI (-0.001,0.03); stress: 53.2+/-10.3%, t(53)=2.29, p=0.025, d=0.31, 95% CI (0.004,0.06)). 

Computational models took this factor into account by allowing prior knowledge about transition rules —
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as derived from the instruction phase— to constrain the update of actor and spectator models (see 

Supplementary Information, modelling subsection for more details). 

 

Figure 3. Computational modeling and decision times. a, Bayesian 

group model comparison pooled over three experiments showed the 

advantage of the model estimating controllability using an 

approximation of TE (SS’-SAS’-Ω) over the actor model (SAS’) 

alone and two models estimating controllability based on the 

uncertainty (SS’-SAS’-H) or the Jensen-Shannon divergence (SS’-

SAS’-H) of SAS’ transitions (see Methods and Supplementary Figure 

1-2). b, Normalized distribution of the arbitrator variable ⍵ (grey bar) 

and its linear relationship with subjective controllability (pink line). 

Pairs of prediction trials were labelled as “subjectively controllable” 

when counterfactual predictions differed (e.g. different responses for 

blue and yellow actions in the circle state). c, The SS’-SAS’-Ω 

scheme captured the dynamics of subjective controllability around 

reversals better than the SAS’ model. d, Coefficients of the regression 

predicting log-transformed reaction times in the behavioural 

experiment using actor and spectator prediction errors as well as ⍵ 

(N=50; δSAS’: t(49)=6.17, p=1.1x10-6, d=0.79, CI (0.6,0.12); δSS’: 

t(49)=4.39, p=0.001, d=0.49, CI (0.3,0.11); ⍵: z=4.10, p=4.1x10-5, 

d=0.74, CI (0.08,0.18)). f, Positive correlation between the effect of 

⍵ on reaction times and predictive accuracy across participants 

(N=50, ρ=0.67, p=1.1x10-7, CI (0.45,0.81)). Error bars and shaded 

areas represent SEM. ***p<0.001. ###pexceedance > 0.999, #pexceedance > 

0.95. BIC: Bayesian Information Criterion. AIC: Akaike Information 

Criterion. F: Free Energy.  

 

Dissociation of actor and spectator models 

Model comparison results are consistent with our proposal that subjects estimate the subjective 

controllability of an environment by separately tracking and comparing an actor and a spectator model. In 

order to further test the dissociation of the actor and spectator models, we used subject-level GLMs to 

assess trial-by-trial fluctuations of decision times. It is known that decision times slow down following 

state prediction errors33,34. The large amount of exploratory trials per participant thus allowed us to 

analyze decision times as a proxy of model updating and to evaluate to which extent controllability per se 

influences the speed of action selection [behaviour: 562+/-163 trials; fmri: 550+/-115; stress: 519+/-84]. 

To do so, we extracted the prediction errors derived from both the actor and spectator models (hereafter 

termed δSAS’ and δSS’, average correlation: 0.22+/-0.17). We found that both types of prediction errors 

slowed responding (Figure 3d) and independently explained variance in decision times (Supplementary 

Figure 3). We also observed that in periods of higher estimated environmental controllability (i.e. higher 

⍵), decision times were slower. This controllability-dependent slowing correlated positively with 

predictive accuracy (Figure 3e), suggesting that learning in controllable contexts is supported by a more 

controlled action selection process even when no reinforcement is at stake.  
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Figure 4. Neuroimaging. a, A conjunction analysis revealed brain regions whose activity encoded both δSS’ and δSAS’ positively. 

b-c, Parametric analysis of BOLD responses showed that the mPFC and the nucleus accumbens encoded negatively the 

difference term δSS’ - δSAS’ used to update controllability. Both regions encoded δSAS’ positively, but showed no clear-cut 

modulation by δSS’. At a more lenient voxel-wise threshold (p<0.005UNC), the right TPJ also survived correction for multiple 

comparisons (see Table S3 and Figure 4e). d, Brain regions encoding signed the second-order prediction errors δΩ. All areas 

surviving correction for multiple comparisons showed a negative effect, implying greater activity when actions appeared less 

causal than expected. e, Decoding of subjective controllability from brain data. A searchlight analysis based on the six 

exploratory trials preceding a prediction pair revealed that the mPFC, the posterior dmPFC, the right TPJ, and the precuneus were 

sensitive to upcoming reports of controllability (pink). Decodability extended to the dlPFC and ACC in participants who 

displayed slower reaction times in controllable contexts (red). f, Spatial overlap (yellow) between the decodability of subjective 

controllability (4e), controllability prediction errors (4d), and the difference term δSS’ - δSAS’ (4b-c).  The right TPJ and the mPFC 

were the only regions highlighted by each of these analyses (threshold of each map: pUNC<0.005). 

The time courses are shown below (A-D) were only used for robustness checks and visualization. Statistical inferences were 

based on whole-brain effects at standard thresholds (voxel-wise: p<0.001, uncorrected; cluster-wise: p<0.05FWE). Shaded areas 

represent SEM. 

 

Separable neural correlates should therefore exist for the prediction errors generated by the actor 

and spectator probability tracking processes, δSAS’ and δSS’. A conjunction analysis first revealed that both 

types of prediction errors activated the typical set of bilateral brain areas commonly associated with state 

prediction errors2,31, such as the frontoparietal network and the pre-supplementary motor area (Figure 4a, 

Supplementary Table 2). Testing directly the effect of δSS’-δSAS’ (mathematically equivalent to pSAS’-pSS’) 

using a conventional parametric analysis at the whole brain level showed that the mPFC and the nucleus 

accumbens encoded negatively this signal required for the update of controllability. In both cases, ROI 

analyses indicated a positive response to δSAS’ and an absence of a relationship with δSS’ (Figure 4b-c,  

Supplementary Table 3). A similar pattern was observed in the right TPJ (pFWE=0.09) and in the 

dopaminergic nuclei of the brainstem at a more lenient threshold (Supplementary Figure 4c). In order to 
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ascertain this dissociation, we performed two additional analyses which fully circumvented the 

collinearity issues which might arise due to the correlation of prediction errors (average r=0.56+/-0.057). 

First, we contrasted events where only δSS’ or only δSAS’ were above their respective 66th percentile. 

Second, we contrasted the parametric effects of δSS’ and δSAS’ derived from two separate first-level GLMs. 

These analyses confirmed that the NAcc and the mPFC significantly dissociated the two prediction error 

terms, although only the mPFC systematically survived correction for multiple comparisons 

(Supplementary Figure S4a-b, Supplementary Table 3, for robustness checks).  

 

Neural correlates of dynamic controllability 

Having established the dissociation of δSAS’ and δSS’ at the behavioural and neural levels, we next 

probed the correlates of the prediction error δΩ governing changes in estimated controllability (δΩ=δSS’-

δSAS’-Ωt-1). This second-order learning mechanism is key to accumulate, over time, evidence in favor or 

against the controllability of the ongoing rule. Whole-brain analyses revealed a significant negative 

relationship between δΩ and neurovascular responses in the posterior cingulate (PCC), the right dorsal 

anterior insula (dAI), the right temporoparietal junction (TPJ), and the mPFC (Figure 4d, 

Supplementary Table 4). Mixed-effects ROI analyses including decision times and Ω confirmed that 

these effects reflected a genuine response to controllability prediction error, peaking 4-8 seconds after 

trial onset.  

In order to unravel the neural correlates of controllability with maximal sensitivity, we performed 

a multivoxel pattern analysis (MVPA). A support vector machine classifier was trained at predicting 

whether streaks of consecutive exploratory trials would result in an implicit report of subjective 

controllability or not in the upcoming pair of prediction trials (i.e. different or identical responses for each 

counterfactual). Whole-brain maps of classification accuracy were obtained using the searchlight method 

(leave-one-run-out cross-validation). Local patterns of activity in the precuneus, the right TPJ, the 

supplementary motor area (SMA), the left premotor cortex, the left dlPFC  (Figure 4e, Supplementary 

Table 5) contained information relative to subjective controllability. Interestingly, the decoding 

performance in the ACC and the right dlPFC scaled with the lengthening of decision times in controllable 

contexts from one participant to another. The dorsal bank of the mPFC and the right TPJ were the only 

two regions whose activity was simultaneously sensitive to subjective controllability (as probed by 

MVPA), to controllability prediction errors and to the instantaneous difference between δSAS’ and δSS’ 

(Figure 4f). 
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Uncontrollable stressors promote the spectator model 

We applied this new paradigm to better understand the computational mechanisms underlying 

learned helplessness. More precisely, we hypothesized that exposure to uncontrollable stressors might 

bias controllability estimation mechanisms to promote reliance on the spectator model relative to the actor 

model.  We invited participants to perform an active avoidance task exposing them to mild electric shocks 

before completing the explore-and-predict task (Figure 5a). Participants in the controllable group learned 

to avoid the shock following one of the three possible cues by pressing the correct response button (out of 

six alternatives). Shocks received by participants in the uncontrollable group were yoked to the former so 

that their decisions did not influence shock probability. As expected, this procedure induced a dissociation 

between actual shock frequency, matched across groups by design, and reported shock expectancy 

(Figure 5b), so that shock expectancy remained high until the end of the induction phase in the 

uncontrollable group.  

 

Figure 5. Stress experiment. a, Induction of controllable and yoked 

uncontrollable stress followed by the explore-and-predict task. b, 

Temporal evolution shock expectancy during the induction phase, 

split by condition. c, Impact of induction type on the parameter 

thresΩ and the average value of the arbitrator ⍵. The value above 

which Ω was treated as evidence for a controllable environment 

increased significantly following uncontrollable stressors (N=27 per 

group, t(52)=4.56, p=2.7x10-4, d=1.1, 95% CI (0.120.39)), resulting 

in increased reliance on the spectator model when making 

predictions, as indexed by the reduction of ⍵ at the group level 

(N=27 per group, z=2.60, p=0.009, d=0.77, 95% CI (0.08,0.29)) see 

also Supplementary Figure S5 and Table S6). d, State anxiety 

moderated the effect of induction type on the arbitrator variable (⍵) 

reflecting controllability estimation. Higher state anxiety was 

associated with greater reliance on the spectator model after 

exposure to uncontrollable stressors (dark pink, N=27, r=-0.46, p=0.015, 95% CI (-0.70,-0.08)) but not after controllable stressors 

(bright pink, N=27, r=0.30, p=0.12, CI (-0.16,0.61)). Correlation coefficients were significantly different between uncontrollable 

and controllable group (z=2.87, p=0.002). e, The impact of induction type on the slowing of decision times induced by δSS’, δSAS’ 

(average correlation of the two first-order prediction errors: 0.45+/-0.17) was consistent with this increased reliance on the 

spectator model (interaction group by PE type: F(1,52)=5.97, p=0.018, η2=0.07, 95% CI (0.005,0.20)).  

All error bars and shaded areas represent SEM. *p<0.05,**p<0.01. 

 

Despite the absence of aversive reinforcers in the explore-and-predict task, we observed clear 

carry-over effects from the shock experiment when analyzing the model parameters governing 

controllability estimation (Figure 5c, Supplementary Table 6). In particular, the threshold parameter 
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increased significantly in the uncontrollable group compared with the controllable group (Figure 5c, left). 

This parameter determines how much causal evidence is required before controllability is inferred. 

Therefore, when making predictions, participants exposed to uncontrollable stressors relied more on the 

spectator model, demonstrated by the reduced average value of the arbitrator ⍵ (Figure 5c, right) as well 

as the direct analysis of subjective controllability estimates, revealing that counterfactual predictions were 

more often identical in the uncontrollable group (z=1.69, p=0.045, d=0.48, 95% CI (0.006,0.10), one-

tailed).  

We found no statistically significant evidence that the stress manipulation affected the overall 

motivation of ability to perform the task. Accuracies (U=0.61+/-0.16; C=0.65+/-0.16%; t(52)=0.81, 

p=0.43, d=0.22, 95% CI (-0.05,0.13)) and decision times (U=2.07+/-0.73s; C=1.97+/-0.65s; t(52)=0.56, 

p=0.59, d=0.14, 95% CI (-0.48,0.27)) did not differ significantly across groups in prediction trials. 

Furthermore, when restricting our analysis to the uncontrollable group, the SAS’-SS’-Ω model still 

outperformed a variety of simpler models, including the standard SAS’ model (actor only), a SS’ model 

(spectator only), and a RL model which only learned through the feedback delivered on predictive trials 

(Supplementary Figure 5a). Exposure to uncontrollable stressors thus elicits an imbalance between actor 

and spectator mechanisms for transition probability learning consistent with a sustained shift in 

controllability expectations. This finding provides a parsimonious account of the cross-contextual 

generalization of passive strategies, a core feature of helpless states7,8. Interestingly, state anxiety, as 

assessed before the experiment, moderated the induction of controllability estimation biases. It predicted 

the average value of the arbitrator only in participants exposed to uncontrollable stressors (Figure 5d). 

Since uncontrollable stressors promoted increased reliance on the spectator model and decreased 

reliance on the actor model, we expected PE-dependent slowing effects to follow a similar pattern. 

Confirming this prediction, the type of stress induction profoundly altered the slowing of decision times 

by actor and spectator prediction errors (Figure 5e). Post-hoc tests showed that the effect of δSAS’ was 

significantly lower (t(52)=-2.45, p=0.018, d=0.65, 95% CI (-0.13,-0.1)) and that the impact of δSS’ was 

marginally higher (δSS’: t(52)=1.86, p=0.068, d=0.51, 95% CI (-0.006,0.16)) in the uncontrollable group 

compared with the controllable group (Figure 5e). 

 

DISCUSSION 

 

Taken together, these findings shed light on one of the most fundamental aspects of human 

experience: the ability to estimate to which extent our actions affect our environment and to adjust our 

decisions accordingly. Our results demonstrate that this ability involves the comparison of actor and 

spectator models of the ongoing task, which are dissociable computationally, behaviourally and neurally. 
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In turn, controllability estimates can be used to arbitrate between these models when making predictions 

about future events. The mPFC and the striatum encode the difference between the prediction errors 

generated by each model, while signals related to the update of controllability estimates are found in a 

more posterior brain network encompassing the TPJ and the PCC. Furthermore, exposure to 

uncontrollable stressors biases this process assessed by the explore-and-predict task, hence establishing its 

relevance for the study of psychiatric disorders involving altered perceptions of controllability 9,12,13,35.  

Historically, the concept of task controllability has been heavily influenced by learned 

helplessness studies in which animals granted the ability to actively terminate stressors are compared to 

yoked animals exposed to the exact sequence of stressors, but whose actions are made independent from 

stressor termination8,14,15. In this line of research, focused on the long-lasting consequences of stress 

exposure, more controllable contexts were defined as those in which the mutual information linking the 

timings of actions and stressor offsets is higher36. However, a positive mutual information linking an 

organism’s actions and upcoming states of the environment is a necessary but not sufficient condition to 

declare a task controllable. For example, the highly positive mutual information linking the statements of 

a weather forecaster with the occurrence of rain should obviously not be interpreted as a sign that the 

forecaster controls the weather because the statements of the forecaster and the occurrence of rain are 

both conditioned by past meteorological states. Moreover, following this incomplete definition, variations 

of task controllability were often obtained by manipulating uncertainty about future states17,20,28, hence 

leading to ambiguous conclusions regarding the mechanisms underlying the estimation of controllability 

per se and its downstream influence on behaviour. 

Formalizing controllability using transfer entropy (TE) rather than mutual information allowed us 

to design a task in which controllability varied independently from uncertainty. In addition, this approach 

provided an algorithm for detecting genuine changes in task controllability. Model comparisons showed 

that, across the three experiments, algorithms monitoring controllability using an approximation of TE (i.e 

SAS’-SS’-Ω scheme) accounted better for participants’ choices than a simpler SAS’ learning algorithm. 

While the neural correlates of state prediction errors elicited by the explore-and-predict task were 

remarkably similar to those reported in two-step decision tasks analyzed using SAS’ (or actor) 

learning2,37,38, model comparisons revealed the concomitant engagement of SS’ (or spectator) learning. 

Crucially, the SAS’-SS’-Ω model also outperformed two architectures in which controllability was 

derived from statistical features of the SAS’ transition probabilities only: namely, they exploited the 

uncertainty (SAS’-SS’-H) or the divergence of counterfactual SAS’ transitions (SAS’-SS’-JS) to 

discriminate between controllable and uncontrollable contexts. While they predicted qualitatively similar 

behaviours (e.g. dynamics of subjective controllability change around reversals), these alternative models 

were less efficient at capturing the dynamic fluctuations of subjective controllability during the task. 
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Finally, the analysis of reaction times confirmed that participants were sensitive to the prediction errors 

generated by the spectator and actor models, whose comparison governed the update of controllability 

estimates in the SAS’-SS’-Ω scheme only.  

The actor and the spectator can be viewed as two state-spaces competing to structure the learning 

of statistical contingencies. When controllability estimates are low, the spectator model representing only 

the successive states of the environment dominates. In contrast, when controllability estimates are high, 

the actor model representing both states and actions takes over. By defining the most appropriate state 

space dynamically, controllability estimation improves predictions about the future states of one’s 

environment and can therefore contribute to maximizing utility when reward or punishment rates depend 

on such predictions. And by promoting reliance on a simpler spectator model when the environment is 

deemed uncontrollable, it can also minimize the metabolic cost and subjective effort associated with 

controlled action selection39,40. These hypotheses could be tested directly by introducing reinforcers in the 

explore-and-predict task, but it is already worth noting that the controllability-dependent arbitration logics 

can readily explain why Pavlovian (equivalent to SS’) and instrumental (equivalent to SAS’) learning 

mechanisms are respectively promoted in uncontrollable and controllable contexts28. Furthermore, the 

preferential encoding of actor prediction errors by the mPFC, the striatum, and the dopaminergic midbrain 

is consistent with earlier findings showing that the mesolimbic pathway preferentially encodes reward 

prediction errors in instrumental learning tasks6,41–43. The finding that the actor and spectator models only 

dissociated in these deep structures close to the midline is consistent with a recent MEG study showing 

that the human brain exploits shared “neural codes” to address sensorimotor and perceptual demands in 

controllable and uncontrollable contexts44.  

By comparing the predictions emanating from the actor and spectator models, one can derive an 

instantaneous causality signal (i.e how likely did the last action cause the last state transition). Encoded by 

mPFC and striatal BOLD responses, this instantaneous signal can then be integrated over time, hence 

reflecting the causal influence of actions over recent transitions. A signature of the second-order 

prediction errors supporting this integration was found in the right TPJ, the dorsal mPFC, the right insula, 

and the PCC. The right TPJ and the mPFC were the only regions sensitive to the difference of the two 

first-order prediction errors, to these second-order prediction errors used to update controllability, as well 

as to subjective controllability as assessed by the decoding analysis. They are thus strong candidates for 

the implementation of controllability monitoring in our task. Supporting this view, the right —but not 

left— TPJ has previously been found to encode the divergence in action-outcome distributions24 and the 

discrepancy between expected and actual outcome timings in a simple sensorimotor task alternating 

controllable and uncontrollable trials23. It is also consistent with a study showing that mPFC lesions can 

alter the perception of controllability in simple instrumental learning tasks45. Given that the mPFC and the 
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uncertainty of SAS’ transitions are involved in the trade-off between model-based and model-free 

decision-making systems46, these results support the emerging hypothesis7,47 that perceived or expected 

controllability may play a role in the relative influence of these systems as assessed by two-step tasks31,48.  

Other prefrontal areas were sensitive to variations in subjective controllability according to the 

decoding analysis, likely reflecting adaptations of brain networks to task controllability49 or the 

contribution to controllability estimation of cognitive processes which were not captured by the SAS’-

SS’-Ω scheme. For example, the ACC and the anterior insula —which encoded controllability prediction 

errors— play an established role in the signaling of state uncertainty or task volatility, which may both 

participate in controllability estimation28,50,51. Strikingly, a higher sensitivity of the dlPFC and dmPFC 

(extending ventrally to the dorsal ACC) to controllability was also associated with a stronger influence of 

controllability on decision times. This finding suggests that controllability detection may foster a form of 

proactive response inhibition previously linked with dlPFC and dmPFC activity52,53. The engagement of 

more elaborate action selection processes may ultimately depend on the valuation of control itself, which 

is known to involve dorsal ACC activity54. Indeed, while this process is usually studied by varying task 

difficulty, it is clear that, by gating the causal influence of actions, variations of task controllability 

moderate the expected benefits of exerting cognitive control. 

Having described the computational principles and outlined neural correlates of controllability 

estimation, we sought to test whether an experimental manipulation could alter this process and 

simultaneously contribute to a better understanding of the learned helplessness phenomenon. Indeed, 

exposure to uncontrollable stressors is known to induce passive responses to subsequent controllable 

stressors, but the origins of this maladaptive strategy remain poorly understood. In particular, it is unclear 

whether prior exposure to uncontrollable stressors induces an increased sensitivity to future aversive 

events, reduces the expectation of control with respect to future stressors, or reduces expectations of 

control in general8,29. Our results support the latter hypothesis by showing sustained alterations of 

controllability estimation in human participants previously exposed to uncontrollable versus controllable 

stressors. More precisely, the specific increase observed for the threshold parameter implies that the 

former group needed to integrate more causal evidence before considering a given rule as controllable in 

the explore-and-predict task. The dorsal anterior insula (dAI) is involved in the modulation of pain 

perception by controllability20 and it was found to encode controllability prediction errors in our fMRI 

experiment. Therefore, prior exposure to uncontrollable stressors may have altered dAI excitability to 

distort subsequent controllability estimation mechanisms. Supporting this idea, a study showed that a 

lower perception of control mediates the exacerbation of dAI responses to physical threats in more 

anxious individuals, who also displayed lower controllability estimates following uncontrollable stressors 

in our data19. Yet, this increased reliance on the spectator relative to the actor model following 
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uncontrollable stressors likely involves several other brain areas, including the mPFC and the dorsal raphe 

nucleus, both highly sensitive to stressor controllability14–16. 

In sum, the explore-and-predict task allowed us to isolate the core computations supporting the 

inference of task controllability by excluding reinforcers and matching uncertainty across contexts. The 

mPFC and the right TPJ emerged as the two most promising candidates for the neural implementation of 

controllability inference and it would therefore be interesting to confirm their causal contribution using 

brain stimulation methods in the future. By showing that the human brain can compute an approximation 

of transfer entropy, our study may help to bridge the gap between neuroscience and artificial intelligence 

research, where transfer entropy plays an important role in solving unsupervised learning problems55,56. 

Investigating in greater detail the interactions between controllability estimation and model-based 

reinforcement learning mechanisms will constitute an important step in this direction. More invasive 

techniques will also be required to understand how these computations are implemented within local 

neural circuits and how neuromodulators such as dopamine or serotonin mediate their broad impact on 

stress responses and mental health7,14,15,57.  

 

METHODS 

 

Participants 

For the behavioural experiment, fifty young adult participants (mean age: 24.7, range: 18—43, 27 

women) were recruited via the Sona system (human subject pool management system) of the Radboud 

University (The Netherlands). All participants were included in the data analysis. For the fMRI 

experiment, thirty-two young adult participants (mean age: 25.1, range: 20—43, 18 women) were 

recruited through the same system. For the stress experiment, a total of 62 participants (mean age = 21.8; 

range: 18-27, 52 women) were recruited via the Sona system of Leiden University. One additional 

participant was excluded a posteriori from the fMRI experiment and four participants were excluded from 

the stress experiments, together with their yoked counterparts (see Supplementary Methods for details on 

exclusion and inclusion criteria). The behavioural and fMRI experiments were approved by the local 

ethics committee (CMO region Arnhem/Nijmegen, The Netherlands, CMO2001/095). The stress 

experiment was approved by the Psychology Research Ethics Committee (CEP17-0905/282) at Leiden 

University. All participants provided written informed consent, in line with the declaration of Helsinki 

and were compensated for their participation in the study (10€/hour for the behavioural and fMRI 

experiments, 7.5€/hour for the stress experiment). 
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Explore-and-predict task  

In the 3 experiments, the overall structure of the task was identical. Participants performed 6 

(fMRI and stress experiment) or 7 (behavioural experiment) exploratory trials before a pair of predictions 

were required. Pairs of predictions always probed the two actions available for a given state (e.g blue 

followed by yellow in the circle state), to derive subjective controllability from counterfactual responses. 

Participants received feedback about their predictions in 50 percent (fMRI and stress) or 100 percent 

(behavioural experiment) of the trails. In the fMRI and stress tasks, feedback was delivered only after one 

of the two counterfactual predictions in order to prevent participants from inferring whether the rule was 

controllable or not based on feedback.  

On each exploratory trial, two identical geometrical shapes were displayed side by side. The color 

of each shape determined the action corresponding to left and right button presses (side randomly 

assigned in each trial). An urgency signal was displayed after 1.5s. Transitions to the next state were 

always governed by one of the four rules, as displayed in Figure 1c. In order to maximize the variation of 

prediction errors, the transitions were stochastic (noise: 0.05 to 0.2).  

The first prediction trial of each pair was simply displayed at the end of the ITI of the previous 

exploratory trial. An urgency signal was displayed after 4s. The hypothetical state action pair was 

displayed at the centre of the screen, just below a question mark, and the 3 possible next states were 

displayed as white geometrical shapes at the top of the screen. The selected state was then highlighted and 

the feedback was displayed when applicable.  

The ongoing rule was never changed before 4 pairs of predictions were completed. In the 

behavioural experiment, the rule changed from then as soon as 5 correct responses were provided in the 

last 6 predictions or if the last 4 predictions were accurate. In the fMRI experiment, the rule was changed 

as soon as the p-value of a binomial test indicated that accuracy was significantly below chance (p<0.05, 

one-tailed, chance level: 1/3), hence making the accuracy threshold more lenient as the number of 

predictions made for a given rule increased. In all experiments, the rule changed after 10 pairs of 

predictions, even if performance did not meet the learning criterion. Prediction trials were pseudo-

randomly ordered with the constraint that each state would be tested a similar number of times. An 

exhaustive description of instructions, counterbalancing, reversal schedules, transition noises, and timings 

is available in Supplementary Methods.  

 

Stress induction task  

To test the impact of prior controllability over stress on subsequent controllability estimations, 

participants underwent a stressor controllability manipulation before the explore-and prediction task in a 

between-subjects design. Critically, we employed a between-subjects yoked control procedure to match 
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the amount and order of aversive outcome stimuli between the controllable and uncontrollable conditions. 

We randomized participants in blocks of four where the controllable condition of a yoked pair was always 

administered first in order to create the schedule for the yoked counterpart in the uncontrollable condition.  

Electric stimuli served as stressors in the manipulation task and were delivered by a Digitimer DS7 

stimulator. First, individual levels of intensity of the electric stimulus for the manipulation task were 

determined using a stepwise procedure in which the intensity of the stimulus was gradually increased 

until participants reported a ‘just bearable, but not yet painful’ experience of shock. A yoked control-

design with pre-programmed pseudorandomized schedule enabled us to match the amount and order of 

electric stimuli between the conditions.  

In the controllable condition, a total of four cues (different in shape and color) were presented for 

at least six repetitions each following a pre-programmed pseudorandomized schedule. Participants could 

learn by trial-and-error the correct response corresponding to the cue (a key between 1 and 6) to avoid the 

electric stimulus. Critical trials on which participants would be able to prevent the electric stimulus for the 

first time according to the schedule were repeated until the participants arrived at a correct response. As 

such, all participants underwent the whole schedule with a minimum of 24 trials and were able to acquire 

the correct response for each cue.  

The uncontrollable condition was yoked to the controllable condition, such that participants 

experienced a comparable pattern of events across conditions. However, in the uncontrollable condition, 

participants were not able to acquire these action-outcome contingencies to prevent the shocks, whose 

sequences were merely replayed from the yoked participants performing the controllable condition. Data 

collection and analysis were not performed blind to the conditions of the experiments. An exhaustive 

description of counterbalancing, instructions and procedures is available in Supplementary Methods.  

 

Computational modelling 

The main purpose of all SAS’-SS’-Ω algorithms is to provide a way to dynamically estimate the 

causal influence of actions over state transitions by updating a variable termed Ω. In all models, S 

represents the previous state of the environment, A represents the previous action and S’ represents the 

current state of the environment. The local causality estimate Ω can only be used as a proxy for 

controllability, which is not a property of actions but of the environment. It is this “inferred 

controllability” variable, termed ω, which can then be used to decide (arbitrate) whether one should make 

predictions using learned S-S’ transitions or learned SA-S’ transitions. Ω is homologous to transfer 

entropy (TE, which is itself a generalization of Granger causality to discrete and non-linear domains). See 

Supplementary Methods for a detailed explanation of the differences between TE and Ω. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2022. ; https://doi.org/10.1101/2020.11.19.390393doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.19.390393
http://creativecommons.org/licenses/by-nd/4.0/


 

19 

In order to demonstrate that participants used a dynamic estimate of transfer entropy to solve the 

task, we compared the SAS’-SS’-Ω algorithm to a standard model-based architecture tracking SAS’ 

transitions2. This latter algorithm corresponds to the actor model alone. Its asymptotic performance in 

stable environments is identical to that of SAS’-SS’-Ω algorithms. We also compared the SAS’-SS’-Ω 

algorithm to alternative controllability estimation schemes based solely on statistical features of SAS’ 

transitions: namely, the uncertainty of SAS’ transitions (SAS’-SS’-H, lower during periods of high 

controllability) and the Jensen-Shannon divergence of counterfactual SAS’ transitions (SAS’-SS’-JS, 

higher during periods of high controllability). These two alternatives schemes are fully described in 

Supplementary Information. 

The actor model tracks transitions linking state-action pairs to newly encountered states (i.e. 

SAS’). It updates transition probabilities in the following fashion. 

Realized transitions:  

𝑃(𝑠′|𝑠, 𝑎) ← 𝑃(𝑠′|𝑠, 𝑎) + 𝛼(1 − 𝑃(𝑠′|𝑠, 𝑎)) 

Unrealized transitions: 

𝑃(𝑠′|𝑠, 𝑎) ← 𝑃(𝑠′|𝑠, 𝑎)(1 − α) 

Where α ∈ [0,1] controls to which extent learned transition probabilities are determined by the most 

recent transitions. The prediction error 1−P(s’| s,a) is noted δSAS’ in the main text.  

The spectator model tracks transitions linking states to newly encountered states (i.e. SS’). Therefore, it 

updates transition probabilities exactly like the actor model, except that only states are represented: P(s’| 

s,a) is simply replaced by P(s’| s) in the two equations above, and the prediction error 1−P(s’| s) is noted 

δSS’ in the main text.  

Following the update of the actor and spectator models, we allowed prior transition probabilities 

derived from the instruction phase to constrain the update of each model. This was done by multiplying 

(element-wise) the relevant vector of probabilities by the corresponding vector of prior probabilities. For 

example, after a transition from a blue circle (state 2, action 2), the transition probabilities of the spectator 

model were multiplied by [0.5 λ 0.5] (reflecting the fact that states did not repeat under uncontrollable 

rules) and those of the actor model were multiplied by  [λ 0.5 0.5] (reflecting the fact that the triangle 

state never appeared after choosing blue under uncontrollable rules). Thus, for any λ<0.5, this prior 

injection step constrained the update of the spectator and actor model in a way that reflected the 

transitions a priori possible under uncontrollable and controllable rules, respectively. By altering the 

prediction errors elicited by each model, prior injection had an indirect influence on controllability 

estimation. For example, a lower value of λ leads to a greater increase of estimated controllability 

following state repetition events, by reducing the prediction error generated by the actor model relative to 

the spectator model (see below). 
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The variable Ω supports the controllability estimation process by tracking the expected difference 

P(s’| s,a) − P(s’| s) dynamically (or, equivalently, δSS’ − δSAS’). The logic of this process is that, in a 

controllable environment, actions contribute to predicting the upcoming states and therefore P(s’| s,a) > 

P(s’| s). Higher values of Ω, therefore, imply higher evidence that the environment is controllable. The 

update of Ω is governed by the following equation:  

Ω ← Ω + 𝛼Ω(𝑃(𝑠′|𝑠, 𝑎) − 𝑃(𝑠′|𝑠) − Ω) 

Where αΩ ∈ [0,1] is the learning rate controlling to which extent Ω is determined by the most recent 

observations.  

Since Ω reflects the causal influence of one’s action over state transition, it can be used as a 

proxy to infer whether the environment is likely controllable or uncontrollable. In order to form the 

arbitration term reflecting this inference and accommodate inter-individual differences at this step, Ω is 

thus transformed using a parametrized sigmoïd function:  

ω =  1/(1 +  exp (− β_{Ω}(Ω −  𝑡ℎ𝑟𝑒𝑠_{Ω})) 

Where thresΩ ∈ [−1,1] corresponds to the threshold above which Ω is interpreted as evidence that the 

environment is controllable and where βΩ ∈ [0,Inf] determines to which extent evidence that the 

environment is controllable (i.e. Ω − thresΩ > 0) favors reliance on learned SAS’ transitions when 

making predictions (and vice-versa for SS’ transitions when Ω−thresΩ < 0). Thus, the variable ω 

implements the arbitration between the "actor" and the "spectator" model.  

When only SAS’ learning is considered, the probability that a given state S’=i will be observed given S 

and A is directly given by:  

𝑝(𝑆′ = 𝑖) = 𝑝(𝑆′ = 𝑖|𝑆, 𝐴) 

When the SS’-SAS’-Ω architecture is used, the probability that a given state S’=i will be 

observed given S, A, and ω is directly given by:  

𝑝(𝑆′ = 𝑖) = ω𝑝(𝑆′ = 𝑖|𝐴, 𝑆) + (1 − ω)𝑝(𝑆′ = 𝑖|𝑆) 

In turn, the probability that the participant predicts the next state would be i (e.g. a square) when 

confronted to the hypothetical state-action pair S,A (e.g. circle state, blue action) is given by:  

𝑝(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 =  𝑖)  =  𝑒𝑥𝑝𝑝(𝑆′=𝑖)∗β𝑐ℎ𝑜𝑖𝑐𝑒 / ∑ 𝑒𝑥𝑝𝑝(𝑆′=𝑗)∗β𝑐ℎ𝑜𝑖𝑐𝑒3
𝑗=1  

Where βchoice ∈ [−Inf,Inf] determines to which extent the participants will systematically select the most 

likely transition (i.e. the highest p(S’=i), according to what has been learned) to make their predictions. A 

very positive βchoice implies that the participant systematically selects this most likely transition. A βchoice 

around 0 implies that the participant mostly makes random guesses. And a βchoice very negative would 

imply that the participant mostly goes against what he/she has learned.  
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The full model space was composed of SAS’ alone (2 parameters), SAS’-SS’-Ω (6 parameters), SAS’-

SS’-H (5 parameters), and SAS’-SS’-JS (5 parameters). An exhaustive description of these models is 

available in Supplementary Information.  

 

Model fitting procedures  

Model fitting was performed using a Variational Bayesian (VB) estimation procedure using the 

well-validated VBA toolbox58. The fitting procedure only attempted to explain decisions made in 

prediction trials. In other words, the decisions made in exploratory trials only indirectly constrained the fit 

by determining the information gleaned between pairs of prediction trials. For the behavioural 

experiments, the prior distributions of the various learning rates and the threshold parameter were innately 

defined as Gaussian distributions of mean 0 and variance 3, which approximates the uniform distribution 

over the interval of interest after sigmoid transformations. The prior distributions of βchoice and βω 

parameters were defined as Gaussian distribution of mean 0 and variance 10. For the fMRI and the stress 

experiments, the prior distributions of every parameter were defined using the posterior mean and 

variance obtained from the 50 participants who passed the behavioural experiment. Hidden states 

corresponding to transition probabilities were systematically initialized at 1/3 (equiprobability prior), 

while Ω was initialized at 0. Detailed information about parameter transformation, model fitting, model 

comparison, and simulation procedures is available in Supplementary Information.  

 

fMRI: acquisition  

All images were collected using a 3T Siemens Magnetom Prismafit MRI scanner (Erlangen, 

Germany) with a 32-channel head coil. A T2*-weighted multiband echo-planar imaging sequence with 

acceleration factor 8 (MB8) was used to acquire BOLD-fMRI whole-brain covered images (TR = 700 ms, 

TE = 39 ms, flip angle = 52, voxel size = 2.4 × 2.4 × 2.4 mm3 , slice gap = 0 mm, and FOV = 210 mm). 

This state-of-the-art sequencing protocol was optimized from the recommended imaging guidelines of the 

Human Connectome Project, with the fast acquisition speed facilitating the detection and removal of non-

neuronal contributions to BOLD changes (protocols.humanconnectome.org/HCP/3T/imaging-protocols).  

The experiment was divided into 4 blocks lasting on average 7.7+/-2.1 minutes (662+/-179 volumes). We 

recorded participants’ heartbeats using the scanner’s built-in photoplethysmograph, placed on the right 

index finger. Respiration was measured with a pneumatic belt positioned at the level of the abdomen. 

Anatomical images were acquired using a T1-weighted MPRAGE sequence, using a GRAPPA 

acceleration factor of 2 (TR = 2300ms, TE = 3.03 ms, voxel size = 1x1x1mm, 192 transversal slices, 8° 

flip angle). Field magnitude and phase maps were also acquired.  
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fMRI: preprocessing  

fMRI data processing and statistical analyses were performed using statistical parametric 

mapping (SPM12; Wellcome Trust Centre for Neuroimaging, London, UK). For each session, the first 4 

volumes were automatically discarded by the scanner. Functional images were slice-time corrected, 

unwarped using the field maps, and realigned to the mean functional image using a rigid-body 

registration. Functional images were then coregistered to the anatomical T1. Next, the anatomical images 

were segmented based on tissue prior probability maps for spatial normalisation using the DARTEL 

algorithm, and the resulting normalization matrix was applied to all functional images. Finally, all images 

were spatially smoothed with a 6mm Gaussian kernel, except in the decoding analysis for which 

unsmoothed images were used.  

 

fMRI analyses  

Statistical analyses of fMRI signals were performed using a conventional two-levels random-

effects approach in SPM12. All general linear models (GLM) described below included the 6 

unconvolved motion parameters from the realignment step. We also included the eigenvariate of signals 

from cerebrospinal fluid (CSF) in our GLM (fourth and lateral ventricular). Moreover, we used a 

retrospective image correction (RETROICOR) method to regress out physiological noise, using 10 

cardiac phase regressors and 10 respiratory phase regressors obtained by expanding cosines and sines of 

each signal phase to the 5th order. We also included time-shifted cardiac rates (lag: +6, +10 and +12s) 

and respiratory volume (-1 and +5s) as nuisance regressors. All regressors of interest were convolved 

with the canonical hemodynamic response function (HRF). All GLM models included a high-pass filter to 

remove low-frequency artifacts from the data (cut-off = 96s) as well as a run-specific intercept. Temporal 

autocorrelation was modeled using an AR(1) process. All motor responses recorded were modeled using a 

zero-duration Dirac function. We used standard voxel-wise threshold to generate SPM maps (p<0.001 

uncorrected), unless notified otherwise. All statistical inferences based on whole-brain analyses satisfied 

the standard multiple comparison threshold (p(FWE)<0.05) at the cluster level unless notified otherwise. 

The cluster-size correction was based on random field theory. Prediction error and (log-transformed) 

decision time regressors were systematically z-scored within individual blocks to exclude scaling effects. 

All GLM models included separate onset regressors for motor responses, for prediction trials, and for the 

first trial of each exploratory sequence (where no prediction error was elicited). All models also included 

parametric regressors for reaction time and ω (reflecting controllability estimates) on prediction trials. A 

detailed description of the GLMs used to analyze neuroimaging data is available in Supplementary 

Methods. These GLMs only differ in the way exploratory trials were treated.  
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In order to verify the robustness of our whole-brain results and inspect the time course of our 

parametric effects of interest, we performed mixed-effects analyses on BOLD signals filtered and 

adjusted for nuisance regressors. This adjusted signal was extracted from the functional clusters 

uncovered by whole-brain analyses and segmented into trial epochs from -3 to +16 seconds around the 

onset of each exploration trial (excluding the first of each streak). We then estimated the effect of each 

regressor of interest, at each time point, for all subjects simultaneously. Subject identity was included as a 

random effect and a subject-specific intercept was included. Parametric regressors were z-scored in the 

same way as in the mass univariate analyses. Importantly, this approach was not used for statistical 

inference — since doing so would constitute double-dipping — but merely for visualization purposes.  

Decoding analyses were performed using the TDT toolbox59. Each mini-block of 6 exploratory trials was 

arbitrarily coded as +1 (controllable) or -1 (uncontrollable) based on the responses given in the upcoming 

prediction pair (identical responses = uncontrollable ; different responses = controllable). We used a 

leave-one-run out cross-validation scheme with 100 permutations per subject, so that classes remained 

balanced for training. The training was performed on the beta values associated with each mini-block 

using a Support Vector Machine (SVM) classifier (L2-loss function, cost parameter set to 1, Liblinear, 

version 1.94), without feature selection or feature transformation. Since we did not constrain the testing 

sets to have balanced classes, balanced accuracies were used when reporting the results of the searchlight 

analysis (performed within an 8mm sphere) at the whole-brain level. 

 

Statistical procedures  

Model selections relied on Bayesian model comparisons and exceedance probabilities, as 

implemented by the VBA toolbox58. The analysis of predictive accuracies over time and across conditions 

relied on a 2-way repeated measure ANOVAs or one-sample t-tests, assuming normal distribution of the 

data following arcsin transformation. In order to assess whether predictive performance was significantly 

superior to chance, we permuted correct responses for each hypothetical state independently and 

compared these permuted responses with actual predictions (1000 permutation per participants). The 

resulting empirical chance levels were indeed higher than the theoretical level of ⅓ in all experiments 

(behavioural: 38.0+/-2.5%; fMRI: 39.4+/-1.6%; stress: 38.6+/-2.6%), reflecting the fact that participants 

knew that 3 transition rules out of 4 did not allow state repetitions.  

The analysis of decision times was performed in two steps: first, a logistic regression was 

performed on binarized decision times (median-split) ; second, group-level significance was assessed by 

means of one-sample t-tests. For the analysis of decision times, we excluded trials in which decision 

times were 3 standard deviations above the mean. Comparison between conditions relied on paired t-

tested and comparison between groups (stress experiments) relied on two-sample t-tests, unless normality 
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assumptions were violated, in which case non-parametric equivalents were used (Wilcoxon signed rank 

and rank sum tests, respectively). All t-tests were two-sided unless notified otherwise. Correlations were 

based on Pearson coefficients unless normality assumptions were violated, in which case Spearman rank 

coefficients were used. Confidence intervals were computed using a bootstrapping approach (2000 

permutations). 

DATA AVAILABILITY 

The experimental paradigm and the code used to generate the figures is available at the following address: 

github.com/romainligneul/NHBcontrollability. Second-level SPM images are available at the following 

address: identifiers.org/neurovault.collection:8810. Anonymized data can be accessed at the following 

address using ORCID identification: data.donders.ru.nl/collections/di/dccn/DSC_3017049.01_905?5. 

CODE AVAILABILITY 

The scripts used to collect and analyse data is available upon publication at the following address 

github.com/romainligneul/NHBcontrollability. 
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