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ABSTRACT

Exploration of genetically modified organisms, developmental processes, diseases or responses to

various treatments require accurate measurement of changes in gene expression. This can be done for

thousands of genes using high throughput technologies such as microarray and RNAseq. However,

identification of differentially expressed (DE) genes poses technical challenges due to limited sample

size, few replicates, or simply very small changes in expression levels. Consequently, several methods

have been developed to determine DE genes, such as Limma, RankProd, SAM, and DeSeq2. These
methods identify DE genes based on the expression levels alone. As genomic co-localization of genes is

generally not linked to co-expression, we deduced that DE genes could be detected with the help of

genes from chromosomal neighbourhood. Here, we present a new method, DELocal, which identifies

DE genes by comparing their expression changes to changes in adjacent genes in their chromosomal

regions. Our results show that DELocal provides distinct benefits in the identification of DE genes.

Furthermore, our comparative analysis of the dispersal of genes with related functions suggests that

DELocal is applicable to a wide range of developmental systems. With increasing availability of genomic

data, gene neighbourhood can become a powerful tool to detect differential expression.

INTRODUCTION

One key aspect of development and differentiation is regulation of gene expression. During

development, genes are expressed highly dynamically, and perturbations of the expression dynamics

underlie many diseases and developmental defects. Developmental regulation of gene expression
through time can be examined by quantifying gene expression levels at two or more time points. In

general, expression dynamics of genes under the same regulation, or expression of genes involved in

the same biological function can be expected to correlate to some extent. In fact, this is commonly the

case in prokaryotes, in which co-functioning genes are expressed under a single promoter in a shared
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operon (1). In eukaryotes, it is not completely understood how thousands of genes are precisely

regulated (2). Gene expression is initiated by transcription factors interacting with enhancers which are

usually located at different distances from the target genes. In vertebrates, there are only few large gene

clusters, such as Hox genes and immunoglobulin genes, whose spatial organization on the chromosome
is crucial to their regulation and function. This kind of concerted expression of adjacent genes has

generally thought to have evolved via tandem duplications of ancestral genes. In some cases co-

regulated or co-expressed genes have been reported to be also co-localized within the same genomic

regions and chromosomes, or be nearby to each other in three-dimensional space due to folding of the

DNA (3-5). Nevertheless, a strict spatial co-localization of co-regulated genes is not the general pattern

(6), and neighbouring genes may show highly distinct expression dynamics.

In this paper we first investigate the differential expression and the spatial distribution of genes

regulating a specific organ system, the mammalian tooth. Genes required for normal progression of
tooth development are well characterized (7) and references therein), and the developmental regulation

of teeth shares many similarities with other epithelial organs, such as feathers and hair. Our aim is to

test whether inclusion of gene neighbourhood in the analyses provides additional benefits in detection of

differential expression. For the analyses, we developed an algorithm, called DELocal to identify

differentially expressed (DE) genes based on their neighbours’ expression patterns. Using embryonic

mouse dental transcriptomes obtained with both microarray and RNAseq, we show how DELocal

compares favourably to other methods to identify DE genes (8-13). Finally, we show that genes sharing

the same gene ontology terms are dispersed in the chromosomal regions of mice and humans,
suggesting the general potential for using gene neighbourhood to detect differential expression.

MATERIALS AND METHODS

Ethics statement

All mouse studies were approved and carried out in accordance with the guidelines of the Finnish

national animal experimentation board under licenses KEK16-021, ESAVI/2984/04.10.07/2014 and

ESAV/2363/04.10.07/2017.

RNAseq library preparation

Developing mouse molar teeth from embryonic days 13.5 (E13) and 14.5 (E14) were dissected from wild

type C57BL/Ola embryos. For RNAseq, five biological replicates were used. The samples were stored in

RNAlater (Qiagen GmbH, Hilden, Germany) in -75°C. RNA was extracted first twice with guanidinium
thiocyanate-phenol-chloroform extraction and then further purified using RNeasy Plus micro kit (Qiagen

GmbH, Hilden, Germany) according to manufacturer’s instructions. RNA quality of representative

samples was assessed with 2100 Bioanalyzer (Agilent, Santa Clara, CA) and the RIN values were 9 or

higher. The RNA concentrations were determined by Qubit RNA HS Assay kit (Thermo Fisher Scientific,
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Waltham, MA). The cDNA libraries were prepared with Ovation RNAseq System V2 (Nugene, Irvine,

CA), and sequenced with NextSeq500 (Illumina, San Diego, CA).

Microarray library preparation

Mouse E13 and E14 teeth were dissected from wild type NMRI embryos. Five biological replicates were

used. The amount of RNA available in each sample was measured with 2100 Bioanalyzer (Agilent,

Santa Clara, CA). Only the samples showing a RIN value above 9 were used for the microarray

analysis.

Gene Expression analysis

Gene expression was measured both in microarray (platform: GPL6096, Affymetrix Mouse Exon Array
1.0) and RNAseq (platforms GPL19057, Illumina NextSeq 500). The microarray gene signals were

normalized with aroma.affymetrix (14) package using Brainarray custom CDF (Version 19, released on

Nov 13, 2014) (15). The RNAseq reads (84 bp) were evaluated and bad reads were filtered out using

FastQC (16), AfterQC (17) and Trimmomatic (18). This resulted in on average 63 million reads per

sample. Then good reads were aligned with STAR (19) to

Mus_musculus.GRCm38.dna.primary_assembly.fa genome and counts for each gene was performed by

HTSeq (20) tool using Mus_musculus.GRCm38.90.gtf annotation. On average 89% reads were uniquely

mapped to Mus musculus genome. Additionally, RNAseq count values were normalized using DESeq2
(13). All the transcriptomic data are available in GEO under the accession number GSE142201.

DELocal

In DELocal, it is hypothesized that differentially expressed genes have different expression dynamics
compared to their neighbouring genes. We used a similar logic to ESLiM (21), an algorithm which

detects changes in exon usage. In an analogy, a neighbourhood could be assumed as a single gene

and genes in the neighbourhood are equivalent to exons of the gene. Then identifying a DE gene is

comparable to detecting alternative splicing.

In this algorithm, gene’s expression is modelled as a linear relationship with median expression of

neighbourhood genes, such as,

iijiij bwgNsg +´= ~ˆ      ……. (i),

where ො݃ is expected expression of i-th gene in j-th sample, ෞݓ݃ܰ  is median expression of N nearest

neighbouring genes within 1 Mb window of the i-th gene from j-th sample and ܾ is base line expression

level of gene ݃. The slope  of every geneݏ ݃ depends on its neighbouring genes. Therefore, the

difference between expected and observed values or residual,

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.20.390930doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.20.390930
http://creativecommons.org/licenses/by-nc-nd/4.0/


4

ijijij ggr ˆ-=  …… (ii)

where ݃ is observed value. For DE genes, these residual values will be significantly different in

different biological conditions.

Furthermore, with the aid of the residuals  observedݎ ݃ could be formulated as follow,

ijiijiij rbwgNsg ++´= ~    …. (iii)

Noticeably, this relationship Eq. (iii) is independent of experimental condition and only dependent on

neighbouring gene. Therefore, similar to ESLiM, DE genes are detected through significantly deviated

residual values between the desired contrasts using Empirical Bayes statistics, available from Limma

package (11). We tested the performance of DELocal using from 1 to 14 neighbouring genes (N

in Eq. (iii)). The log-normalized and normalized count values were used in DELocal respectively for

microarray and RNAseq data. There are 334 protein coding genes in mouse genome which do not have

any other protein coding gene in their 1Mb neighbourhood. Therefore, we also used available non-

protein coding genes from the neighbourhood in DELocal analysis. However, after the inclusion of non-

protein coding genes there are still 17 protein coding genes without any neighbours within 1 Mb.

Performance measures

DELocal was compared with different publicly available tools applicable both for microarray  or RNAseq :

RankProd(8), SAM(9), DEMI(10), Limma(11), edgeR(12) and DESeq2 (13). All these programs were

executed with default parameters. Genes reported with p-value <= 0.05 by these tools were marked as

differentially expressed gene and used to evaluate the performance of each tool using the following

metrices and receiver operating characteristic (ROC) curves.

· Sensitivity (Recall) - TPR, true positive rate TPR = TP / (TP + FN)

· Specificity - SPC, true negative rate SPC = TN / (TN + FP)

· Precision - PPV, positive predictive value PPV = TP / (TP + FP)

· Accuracy - ACC = (TP + TN) / (TP + FP + FN + TN)

· F1 score F1 = 2TP / (2TP + FP + FN)

· Mathews correlation coefficient (MCC)  =
்  × ்ேିி × ிே

ඥ[(்ାி)(்ାிே)(்ேାி)(்ேାிே)]

where TP, true positive; FP, false positive; TN, true negative; FN, false negative

302 genes linked to tooth development were used to find the true and false positive rate for the

analyses (Supplementary Table S1 and refs (7,22)). The areas under the ROC curves were calculated

with ROCR (23). The biotypes and chromosome locations of genes are downloaded from ensemble
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Biomart using R script (24). Throughout the study starting locations of the genes are used as the

position of the gene in the chromosome and used to measure the distances.

RESULTS AND DISCUSSION

As our focus of interest is developmental regulation, we first obtained an overall pattern of distribution of

developmental genes by tabulating how closely genes are located in the genome. For example, the

human genome (GRCh38.p13) is 4.5*10-9 base pairs long and has 20,449 protein coding genes, which

means, on average, one gene for every 220,060 bases (Ensembl release 99). Similarly, for the mouse
genome, this number is 154,290 (GRCm38.p6). Consequently, on average, 5 to 6 genes should reside

in each 1 Mb window in the mouse genome. To express these statistics as a neighbourhood, we can

state that each gene has 4 to 5 neighbouring genes within a 1Mb window. This observation is obviously

a broad generalization, but it does indicate that genes tend to have some neighbours within 1 Mb. To

examine the neighbourhood patterns in more detail, we examined the 1Mb neighbourhoods of protein

coding genes of the mouse genome. For every gene, number of neighbouring genes within 1 Mb window

was counted (Figure 1A, Supplementary Figure S1). This simple calculation shows that majority of
protein coding genes in mouse have more than 4 neighbours, the median number of neighbours being

15 (Supplementary Figure S2). This tabulation indicates that there is some level of clustering of genes in

the eukaryotic genome, a pattern well established in the literature (25).

Next, we examined genes associated with the development of the mouse tooth. This single organ

focus allowed us to test whether genes participating in the regulation of the same organ are also located

close to each other. Here mouse molar development provides a good example because its gene

regulation is relatively well understood, and because tooth development itself is relatively autonomous

process (7,26). We analysed the 1 Mb neighbourhoods of the tooth developmental genes (TDG,
Supplementary Table S1) and the number of TDGs that are sharing the same neighbourhood. The

results show that TDGs are mostly located far from each other, suggesting that genes regulating this

specific developmental process are not co-localized (Figure 1B). Taken together, although majority of

protein coding genes are to some extent clustered in the mouse genome, TDGs tend to be located far

from each other (Figure 1).
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Figure 1. Although protein-coding genes typically have neighbours, tooth genes lack other tooth
gene neighbours within 1 Mb windows around each gene. (A) The number of neighbouring genes
within 1 Mb window around each gene tabulated from the mouse genome for all protein coding genes
and (B) genes involved in tooth development. Majority of 21,971 protein coding genes have at least five
neighbours whereas most of 302 tooth developmental genes lack tooth genes as neighbours. This
pattern suggests that genes with specific functions are sparsely distributed.

DELocal method to detect differentially expressed genes

Because genes linked to tooth development do not appear to be co-localized in the genome, we decided

to examine whether DE genes could be identified by comparing their level of gene expression with their

neighbouring genes. We examined differential expression of genes at the onset of tooth crown
formation, between embryonic day 13.5 (E13) and 14.5 (E14) when many of the TDGs are known to be

upregulated (7,27). For example, Ctnna1, Shh, Foxi3 and Sostdc1, all genes required for normal tooth

developmental (28), show prominent upregulation between E13 and E14 compared to the other genes in

their neighbourhoods (Figure 2). Building from this observation, next we developed a new algorithm,

DELocal, to identify DE genes based on their neighbours’ expression dynamics. To evaluate its

performance, we used gene expression data from embryonic mouse dental tissues generated by both

microarray and RNAseq.
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Figure 2. Only tooth developmental genes are differentially expressed within 1 Mb windows in
developing mouse molar. Median expression levels of the tooth developmental genes Ctnna1, Shh,
Foxi3 and Sostdc1 and their neighbouring genes at developmental stages E13 and E14. Regardless of
the expression level, the surrounding genes show little change between the two stages, compared to the
tooth developmental genes. Egr1 in the 1 Mb window of Ctnna1 is also a tooth developmental gene.

Optimizing the number of neighbours

Our hypothesis of neighbouring genes being informative in the detection of differential expression is

dependent on the definition of 'neighbourhood'. Therefore, it is important to determine the right number

of neighbours to include in the analysis by the DELocal algorithm. To define the optimal number of

neighbours we tested different numbers (1-14) of closest genes within a fixed window (1 Mb)

surrounding the gene of interest. We evaluated the performance of DELocal with different numbers of

closest neighbours in identifying the genes involved in tooth development (TDGs). Again we contrasted
the expression levels between E13 to E14 molar teeth, or so-called bud stage to cap stage transition,

when many TDGs are known to be active (7). The Matthews correlation coefficient (MCC) scores were

measured for different numbers of neighbours to examine the strength of DELocal to identify TDGs (true

positive;TP) as well as non-TDGs (true negatives; TN). The MCC score was chosen to optimize the

model due to very few TPs, or imbalanced dataset. The results show that DELocal produces similar and

stable MCC scores on both microarray and RNAseq datasets, even though RNAseq data produces

slightly higher MCC scores than microarray (Figure 3). We note that only one nearest gene is enough to
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obtain close to the highest MCC score. However, for RNAseq the best MCC score corresponds to 5

nearest neighbours. Because there are fewer genes available in microarray analyses compared to

RNAseq, in the rest of the study we used DELocal with 5 neighbours both for the RNAseq and

microarray data.

Figure 3. DELocal performance is not strongly dependent on the number of gene neighbours
used in the analysis. Every gene is evaluated in relation to its neighbouring genes. In the absence of
any “gold standard” for the number of neighbours, different numbers of nearest genes (within 1 Mb
window) were used to identify the DE genes. The overall performances were measured using MCC. The
performance of DELocal using RNAseq data was slightly better than with microarray data.

Comparison with other methods

Microarray is one of the earliest successful high throughput technologies to measure a large number of

gene expressions, and consequently there are a good number of statistical methods to identify DE

genes from datasets generated by this platform. Hence, the performance of DELocal can be evaluated

by comparisons to these methods using a microarray dataset. However, microarray is limited to only the

genes which have been targeted by microarray probes. Therefore, the expression of all the genes

cannot be accessed, resulting in fewer neighbouring genes being sampled. To obtain a more

comprehensive readout of DE genes, RNAseq was also used to evaluate DELocal performance. The
performance of all these methods was measured by the ability to identify differentially expressed TDGs.

For analysis of performance, we used the receiver operating curve (ROC) (23) depicting the true

positive rate against the false positive rate of DE genes. The analyses show that DELocal outperforms

other methods in identifying TDGs using both microarray and RNAseq (Figure 4A, B). The performance
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is most similar to Limma/DEMI (microarray) and Limma/DESeq (RNAseq). We used also other metrices

like specificity, recall (sensitivity), precision and MCC to evaluate and compare the different methods.

DELocal shows high specificity and accuracy compared to other methods for microarray data

(Supplementary Figure S3).

Figure 4. Compared to other methods, DELocal is powerful in detecting differentially expressed
genes. Receiver operating characteristic (ROC) curves and areas under the curves (within the
parenthesis) show that DELocal outperforms other methods on both microarray and RNAseq data.

In RNAseq data, DELocal outperforms other methods except in recall (sensitivity) (Figure 5). The

MCC scores remain equivalent to each other. The TDG dataset is imbalanced due to the large number

of non-TDGs (true negatives), which hinders the evaluation of accuracy, but does not affect F1 or MCC.
Considering that the objective of many experiments is to find true positives, the F1 score, which is a

compound-term of precision and recall, is an important metrics. The F1 score ranges from zero (bad) to

one (good), and the F1 scores of all of the methods remain suboptimal. Nevertheless, DELocal using

RNAseq clearly outperforms other methods also in F1 score. Below we discuss the results from RNAseq

only.
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Figure 5. Comparison of DELocal with earlier methods of identifying differential expression.
Evaluation matrices show that, except for recall (sensitivity), DELocal outperforms earlier methods in
every matrix. However due to large number of true negatives, the significance scores of precision, F1
and MCC remained negligible. The evaluation matrices are explained in materials and method section.
The analysis was done using RNAseq data. For microarray data see supplementary figure S3.

TDGs missed by DELocal

The DELocal algorithm appears to efficiently identify the DE genes (having high precision) as well as to

filter out non TDGs (having high specificity). Still, DELocal missed 60 differentially expressed TDGs
which are identified by all the other methods in RNAseq dataset. DELocal is built on the hypothesis that

every true DE gene should have neighbours and none of them should be differentially expressed.

Consequently, DELocal may fail to identify those DE genes whose neighbours are also differentially

expressed. For instance, 2 out of 5 neighbours of Bmp7 were DE genes which could be the reason of

failure of DELocal to detect Bmp7 (Figure 6). Additionally, presence of paralogous genes in the

neighbourhood may contradict with our hypothesis, like Dlx1 and Dlx2 in chromosome 11 (Figure 6),

Dlx5 and Dlx6 in chromosomes 6, and Dlx1 and Dlx2 in chromosome 2, for which it is known that the

pairs of these genes are co-regulated and can compensate for the deletion of one another (29-32).
Additionally, the other neighbouring paralogs in our set of TDGs are Cyp26c1 with Cyp26a1, and Cdh1

with Cdh3 (33). Therefore, at least some of the genes missed by DELocal should be possible to detect
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by incorporating information about gene paralogues into the algorithm. These results also raise the

question whether our tooth example is representative about organ regulation in general.

Figure 6. Differentially expressed genes in the same neighbourhood interfere with the detection
of differentially expressed genes by DELocal. DELocal failed to identify Bmp7 due to differential
expression patterns of its neighbouring genes (top). Dlx1 and Dlx2 are paralogous TDGs which are in
the same neighbourhood (bottom). Only tooth developmental genes are labelled here.

Potential of DELocal beyond tooth genes

The DELocal method presented here depends on the existence of neighbouring genes. For applications

beyond our example, it is interesting to examine more closely the composition of 1 Mb neighbourhoods

in the mouse genome. Majority of the protein-coding genes from Affymatrix MoEX chip have more than
one neighbour within 1 Mb, and only 7 genes in ensemble mouse annotation lack neighbours altogether

within 1 Mb window (Figure 1A). If genes, which are involved in the same developmental process, had a

tendency to cluster in the same genomic location, then the expression pattern of that neighbourhood

would become dynamic and the outcome of DELocal would deteriorate. Thus, DELocal's performance

will depend on the distribution of relevant genes across chromosomal locations. Although it is difficult to

conduct an experiment for all the possible functional groups of genes, the gene ontology (GO) terms

provides a rough approximation of the adjacency of genes involved in the same developmental process.
Here we focused in the genes belonging to mouse GO slims (a list of selected terms) of “biological

process” (34,35). For every gene belonging to these terms, its 1 Mb neighbourhood was investigated to

tabulate genes belonging to the same term. The tabulations show that most genes belonging to a certain

GO term are sparsely distributed in the chromosomes (Figure 7) which is in accordance with previous

studies (36,37). There are only few genes from broader, or high level, GO terms that are densely located

(more than 3 genes from the same GO term within 1 Mb neighbourhood). However, these few GO terms

represent very broad descriptions of biological functions. With more precise GO terms (Figure 7, bottom

row), genes tend to have no neighbours belonging to the same GO term. For generality, we examined
these patterns in human genome and they remained largely the same (Supplementary Figure S4).
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Figure 7. The more specific the GO term is the fewer neighbours its genes have from the same
GO term within 1 Mb. Each pie represents the genes of one GO term under the root GO term
‘biological processes’. The top three rows represent GO slim terms. The GO terms in the box are
children of the GO term ‘system development’. The color-coding indicates the number of neighbours that
a gene has from the same GO term. The number of genes is indicated under the GO term. Analysis was
done for mouse genome. See Supplementary Table S2 for GO IDs.

Simulations

The scarcity of neighbouring genes in the precise GO term categories is perhaps not surprising

considering the limited number of genes in each category. To test if the patterns are a simple function of

group size and to evaluate to what extent neighbouring genes might potentially interfere with the

DELocal analysis, we performed simulations where genes were assigned randomly to artificial GO terms

containing different numbers of genes. For every group size, 10,000 simulations were performed and for

each simulation density of genes from the same artificial GO term in 1Mb neighbourhood was
calculated. A plot showing the percentage of genes lacking neighbours shows the expected decrease in

percentage as the number of genes increases in the artificial GO terms (Figure 8). The empirical

patterns largely follow the randomizations, although some real GO terms with small number of genes

(300 and less) show slightly lower percentages, indicating that there is tendency for higher spatial

clustering of genes belonging to the same GO terms than in the simulations. This may partly be due to
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GO terms having paralogous genes which are sometimes located near each other in the genome.

Nevertheless, up to GO term categories containing 1000 genes, 80 % of genes have no neighbours

belonging to the same GO terms. This pattern indicates that DELocal or equivalent methods could be

broadly applicable.

Figure 8. Real GO terms with lower gene numbers are slightly more clustered in the genome than
artificial GO terms with the same gene numbers. Artificial GO terms with different numbers of genes
were made with randomly selected genes and their distribution across the genome was measured. For
each group size, 10,000 simulations were executed and for each simulation the percentage of genes
with zero within-1Mb-neighbours with the same artificial GO term were counted (black dots). Real GO
terms are marked with blue dots. See Supplementary Table S2 for GO IDs. The blue line is median, and
the shadow shows the observations between 1st and 3rd quartile.
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Conclusions

Here we developed DELocal algorithm based on linear models that have been successfully implemented
and used in Limma, DeSeq2 and many other methods to identify DE genes (11,13). With linear models,

gene expression can be modelled in two or more biological conditions and thereafter DE genes of

different contrasts of interest can be found. Linear models are advantageous compared to other

methods in that they can model complex experimental conditions with multiple factors. DELocal provides

some additional benefits by taking into account the gene neighbourhood of genes of interest. In this work

we used DELocal to determine the genes that are differentially expressed between bud and cap stage in

the developing mouse tooth. Earlier work has produced an extensive list of genes which are active in
tooth development. This information allowed us to optimize and evaluate the performance of DELocal.

DELocal provided high specificity and accuracy in detecting TDGs, a satisfactory result. Considering that

the in vivo bud and cap stage differences in gene expression are relatively subtle, the high specificity

and accuracy of DELocal is promising. Obviously, the optimization requires a list of genes of interest.

However, DELocal can also be run without any prior knowledge of genes that are active in a particular

developmental process. Figure 3 shows that in relation to the number of neighbours, the performance of

DELocal is very stable and even only one nearest neighbour could be sufficient to build the models. The

implication of this is that DELocal could be used with only a single neighbour contrast in the absence of
any reference/training gene set.

A key requirement for this approach is the assumption that genes participating in the same function

tend to be far from each other (Figure 1). That this is indeed the case is suggested by an analysis using

GO terms (Figure 7, 8) that shows the overall majority of neighbouring genes to belong to different

categories. Thus, neighbourhood information on differentially expressed genes should be applicable to

majority of developmental systems and processes.

There are a few groups of genes which are clustered in certain chromosomal regions and their

expression is regulated in a concerted manner, for example the Hox genes or immunoglobulin genes.
Also house-keeping genes have been shown to cluster in the genome (37,38). As the operation of

DELocal depends on the non-differential expression of the neighbours, the potential differential

expression of clustered genes cannot be analysed by DELocal.

Overall, DELocal is a novel way to reveal differentially expressed genes with respect to their genomic

neighbourhood. Future studies may benefit from, and further characterize the significance of gene-gene

neighbour relationships.
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