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Abstract

The Patterson F - and D-statistics are commonly-used measures for quantifying population
relationships and for testing hypotheses about demographic history. These statistics make use
of allele frequency information across populations to infer different aspects of population history,
such as population structure and introgression events. Inclusion of related or inbred individuals
can bias such statistics, which may often lead to the filtering of such individuals. Here we derive
statistical properties of the F - and D-statistics, including their biases due to finite sample size
or the inclusion of related or inbred individuals, their variances, and their corresponding mean
squared errors. Moreover, for those statistics that are biased, we develop unbiased estimators
and evaluate the variances of these new quantities. Comparisons of the new unbiased statistics
to the originals demonstrates that our newly-derived statistics often have lower error across
a wide population parameter space. Furthermore, we apply these unbiased estimators using
several global human populations with the inclusion of related individuals to highlight their
application on an empirical dataset. Finally, we implement these unbiased estimators in open-
source software package funbiased for easy application by the scientific community.

Introduction

The recently introduced F - and D-statistics (Huson et al., 2005; Kulathinal et al., 2009; Reich et al., 2009;
Green et al., 2010; Patterson et al., 2012) have transformed the way geneticists measure population differ-
entiation. These statistics have been instrumental in many major recent discoveries, including testing which
Neanderthal populations are closest to the populations that admixed with modern humans (Hajdinjak et al.,
2018), and detecting which population is likely the admixing source for European admixture in modern
Ethiopian populations (Molinaro et al., 2019). Iterating through different combinations of populations using
the F4- and D-statistics has allowed reconstruction of population histories in diverse groups such as Native
Americans and South Asians (Reich et al., 2012; Moorjani et al., 2013). In addition, The D-statistics have
been used extensively to provide evidence of introgression and hybridization among species of Drosophila
fruit flies and Heliconius butterflies (Martin et al., 2014; Turissini and Matute, 2017).

In many cases, however, the populations tested by these statistics are small, and proper random sampling
may include data from related individuals. It is common to remove one or more of the relatives from a group
of related individuals because including them might provide a bias in the value of a particular statistic being
measured (Rosenberg, 2006; DeGiorgio and Rosenberg, 2009; DeGiorgio et al., 2010; Waples and Anderson,
2017; Harris and DeGiorgio, 2017a). For this reason we explore whether the current estimators for these
statistics are biased with the inclusion of related or inbred individuals and if so, then develop unbiased
estimators under such scenarios.
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These statistics are flexible and relatively simple to compute, as they measure genetic drift along branches
of a population tree by contrasting allele frequencies between different combinations of populations. Using
allele frequency data from two, three, or four populations, these statistics measure shared variation along
specific branches of the tree relating the populations. We begin by providing intuitive descriptions and
formal definitions of each of the F - and D-statistics that we evaluate. Specifically, consider that we have
allele frequency data at J biallelic loci from each of four populations, denoted A, B, C, and D. We denote the
frequencies of the reference allele at locus j as aj , bj , cj , and dj in populations A, B, C, and D, respectively.
We define each of the F - and D-statistics as they are in Reich et al. (2009) and Patterson et al. (2012).

We first examine the F2 statistic, which measures the amount of genetic drift separating a pair of
populations, and is thus a test for differentiation between them, and is akin to the widely-used fixation index
FST (Weir and Cockerham, 1984). For a pair of populations A and B, we define the F2 statistic as

F2(A,B) =
1

J

J∑
j=1

F2(Aj , Bj),

where for locus j
F2(Aj , Bj) = (aj − bj)2.

It is clear from this definition that F2 takes values between zero, when the populations have identical allele
frequencies, and one, when the populations are fixed for different alleles (Figure 1).

The F3 statistic employs allele frequencies from three populations, and measures the amount of genetic
drift along the branch leading to a target population, given allele frequency data from two reference pop-
ulations. For a target population A and two reference populations B and C, we define the F3 statistic
as

F3(A;B,C) =
1

J

J∑
j=1

F3(Aj ;Bj , Cj),

where for locus j
F3(Aj ;Bj , Cj) = (aj − bj)(aj − cj).

Because it measures genetic drift along a branch leading to a target population, its value is expected to be
non-negative. However, an interesting property of the F3 statistic is that it can be negative if the target
population experienced admixture, and therefore a negative value directly indicates admixture in the history
of the target population (Reich et al., 2009; Patterson et al., 2012). However, though F3 can detect admixture
if its value is negative, admixture is not guaranteed to lead to negative values (Reich et al., 2009; Patterson
et al., 2012), and it is therefore an inconclusive test for admixture if F3 is non-negative. Moreover, because
loci with higher minor allele frequencies may affect F3 more than loci with lower minor allele frequencies, the
F3 statistic is sometimes normalized (Reich et al., 2009; Patterson et al., 2012) based on levels of diversity
of the target population. Formally, this normalized F3 statistic has definition

F3(A;B,C |A) =
F3(A;B,C)

2G(A)
,

where we define for population P (here P = A)

G(P ) =
1

J

∑
j=1

G(Pj)

such that for locus j
G(Pj) = pj(1− pj).

The F4 statistic, on the other hand, is a test of “treeness” among a set of four populations, examining
whether the unrooted tree relating four populations is supported by the allele frequencies within the set of
populations. For a pair of sister populations A and B and a pair of sister populations C and D, we define
the F4 statistic as

F4(A,B;C,D) =
1

J

J∑
j=1

F4(Aj , Bj ;Cj , Dj),
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where for locus j
F4(Aj , Bj ;Cj , Dj) = (aj − bj)(cj − dj).

If the unrooted relationship is true, then F4 takes the value of zero, and is non-zero otherwise. If it is known
a priori that the unrooted relationship should be true, then a non-zero F4 statistic can be indicative of
admixture, and the sign of the statistic will suggest which set of populations may be violating the assumed
unrooted tree topology (Figure 1). As with the F3 statistic, a normalized version (Reich et al., 2009; Patterson
et al., 2012) of the F4 statistic is sometimes used, with normalization based on the diversity of one of the
four populations. Formally, this normalized F4 statistic has definition

F4(A,B;C,D |P ) =
F4(A,B;C,D)

G(P )

where we normalize by diversity in population P ∈ {A,B,C,D}.
Finally, the D-statistic is a special version of the F4 statistic that is a test of treeness for a particular

asymmetric rooted tree relating four populations, with the tree topology containing a pair of sister popula-
tions, together with a close and a distant outgroup population (Figure 1). For sister populations A and B,
close outgroup population C, and distant outgroup population D, we define the D statistic as

D(A,B,C,D) = −F4(A,B;C,D)

H(A,B,C,D)
,

where

H(A,B,C,D) =
1

J

J∑
j=1

H(Aj , Bj , Cj , Dj)

is a normalizing factor to constrain the D statistic to take values between negative one and one, such that
for locus j

H(Aj , Bj , Cj , Dj) = (aj + bj − 2ajbj)(cj + dj − 2cjdj).

If the rooted relationship is true, then D takes the value of zero, and is non-zero otherwise. A non-zero
D value can be used to detect admixture between the close outgroup population and one of the two sister
populations based on its sign (Figure 1).

Theory

The F - and D-statistic equations presented in the Introduction employ population allele frequencies, and
are thus parameters of the set of populations. To estimate them, we first need to build an estimator of
allele frequencies based on samples. We denote estimates of the reference allele frequencies at locus j,
j = 1, 2, . . . , J , in populations A, B, C, and D by âj , b̂j , ĉj , and d̂j , respectively.

As used previously (e.g., McPeek et al., 2004; DeGiorgio and Rosenberg, 2009; DeGiorgio et al., 2010;
Harris and DeGiorgio, 2017a), a linear unbiased estimator of population reference allele frequency p at a
biallelic locus can be defined as

p̂ =

N(P )∑
k=1

φk(P )Xk,

where N(P ) is the number of individuals sampled at the locus, Xk is the frequency of the reference allele
in individual k at the locus, and φk(P ) is the weight of individual k in population P at the locus. McPeek
et al. (2004) discussed the impact of various weighting schemes on allele frequency estimation, and Harris
and DeGiorgio (2017a) examined the effects of weighting scheme on estimation of expected heterozygosity.
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Typical estimators of the F - and D-statistics are computed as

F̂2(A,B) =
1

J

J∑
j=1

F̂2(Aj , Bj)

F̂3(A;B,C) =
1

J

J∑
j=1

F̂3(Aj ;Bj , Cj)

F̂4(A,B;C,D) =
1

J

J∑
j=1

F̂4(Aj , Bj ;Cj , Dj)

F̂3(A;B,C |A) =
F̂3(A;B,C)

2Ĝ(A)

F̂4(A,B;C,D |P ) =
F̂4(A,B;C,D)

Ĝ(P )

D̂(A,B,C,D) = − F̂4(A,B,C,D)

Ĥ(A,B,C,D)
,

where

F̂2(Aj , Bj) = (âj − b̂j)2

F̂3(Aj , Bj , Cj) = (âj − b̂j)(âj − ĉj)

F̂4(Aj , Bj ;Cj , Dj) = (âj − b̂j)(ĉj − d̂j),

and where

Ĝ(P ) =
1

J

J∑
j=1

Ĝ(Pj)

Ĥ(A,B,C,D) =
1

J

J∑
j=1

Ĥ(Aj , Bj , Cj , Dj)

with

Ĝ(Pj) = p̂j(1− p̂j)

Ĥ(Aj , Bj , Cj , Dj) = (âj + b̂j − 2âj b̂j)(ĉj + d̂j − 2ĉj d̂j).

In the following, we discuss properties of these estimators, and where appropriate, develop unbiased estima-
tors for the statistics that are biased either due to finite sample size or due to the inclusion of related or
inbred individuals in the sample.

To begin, we define the kinship coefficient Φxy between individuals x and y, as the probability that a
pair of sampled alleles, one from x and one from y are identical by descent if x 6= y, and as the probability
that a pair of alleles sampled with replacement from individual x are identical by descent if x = y (Lange,
2002). A pair of unrelated individuals x and y have kinship coefficient Φxy = 0 (Lange, 2002). Moreover, an
individual x with ploidy mx has kinship coefficient Φxx = 1/mx + (1− 1/mx)fx = (1/mx)[1 + (mx − 1)fx],
where fx is the inbreeding coefficient of individual x, and is defined as the probability that a pair of alleles
sampled without replacement in individual x are identical by descent (DeGiorgio et al., 2010). A non-inbred
individual x has inbreeding coefficient fx = 0, and so if x is non-inbred, then their kinship coefficient is
Φxx = 1/mx. As in DeGiorgio et al. (2010) and Harris and DeGiorgio (2017a), we define the weighted mean

4

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.20.391367doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.20.391367
http://creativecommons.org/licenses/by/4.0/


kinship coefficients across sets of individuals sampled in population P ∈ {A,B,C,D} at locus j as

Φ2(Pj) =

N(Pj)∑
w=1

N(Pj)∑
x=1

φw(Pj)φx(Pj)Φwx

Φ3(Pj) =

N(Pj)∑
w=1

N(Pj)∑
x=1

N(Pj)∑
y=1

φw(Pj)φx(Pj)φy(Pj)Φwxy

Φ4(Pj) =

N(Pj)∑
w=1

N(Pj)∑
x=1

N(Pj)∑
y=1

N(Pj)∑
z=1

φw(Pj)φx(Pj)φy(Pj)φz(Pj)Φwxyz

Φ2,2(Pj) =

N(Pj)∑
w=1

N(Pj)∑
x=1

N(Pj)∑
y=1

N(Pj)∑
z=1

φw(Pj)φx(Pj)φy(Pj)φz(Pj)Φwx,yz,

which are the weighted mean kinship coefficients for the N(Pj) individuals sampled at locus j in population
P for pairs, triples, quadruples, and pairs of pairs of individuals, respectively. From our definitions of kinship,
we know that unrelated individuals have kinship coefficients of zero, but non-inbred individuals still have
positive values of their self kinship coefficient, thereby causing the mean kinship coefficients to necessarily be
positive quantities. It is for this reason that some F -statistic estimators will be biased even without related
or inbred individuals, and this bias would be due to finite sample size. For accurate estimates of the drift
quantities, it is therefore important to obtain unbiased estimators.

A number of quantities (particularly variances and covariances involving the F - and D-statistics) will be
mathematically complex, as they will involve linear combinations of higher order mean kinship coefficients.
For this reason, we follow prior studies (DeGiorgio et al., 2010; Harris and DeGiorgio, 2017a) and make
the simplifying assumption that no individual in a sample from population P is related to more than one
other individual in the sample, such that terms Φ3(Pj), Φ4(Pj), Φ2,2(Pj), and Φ2(Pj)

2 negligible to Φ2(Pj).
Moreover, we assume that individuals sampled in different populations are unrelated to each other. Under
these assumptions, we approximate a few key results from prior studies (DeGiorgio et al., 2010; Harris and
DeGiorgio, 2017a) that will ultimately make derivations easier. Given that p̂j is an estimate of the frequency
of a reference allele at locus j in population P , we have the following expectations (approximate notation
when not exact)

E[p̂j ] = pj

E[p̂2j ] = p2j + Φ2(Pj)pj(1− pj)
E[p̂3j ] ≈ p3j + 3Φ2(Pj)p

2
j (1− pj)

E[p̂4j ] ≈ p4j + 6Φ2(Pj)p
3
j (1− pj).

From prior studies (Nei and Roychoudhury, 1974; Weir, 1989; DeGiorgio and Rosenberg, 2009; DeGiorgio
et al., 2010; Harris and DeGiorgio, 2017a), we know that 2p̂(1 − p̂) is a downwardly biased estimator of
expected heterozygosity at a locus, with the bias due to finite sample size (Nei and Roychoudhury, 1974) and
exacerbated by the inclusion of inbred (Weir, 1989) and related (DeGiorgio and Rosenberg, 2009; DeGiorgio
et al., 2010; Harris and DeGiorgio, 2017a) individuals in the sample. Based on this definition, 2G(P ) =

2p(1 − p) is expected heterozygosity, and its estimator 2Ĝ(P ) = 2p̂(1 − p̂) therefore biased. We begin by
developing an unbiased estimator for G(P ), as it is a key normalization quantity in the F3 and F4 statistics.

Lemma 1. Consider J polymorphic loci in a population P with parametric reference allele frequencies
pj ∈ (0, 1), and suppose we take a random sample of N(Pj) individuals at locus j, some of which may be

related or inbred. The estimator Ĝ(P ) has downward bias

Bias[Ĝ(P )] = − 1

J

J∑
j=1

Φ2(Pj)G(Pj)
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and an unbiased estimator of G(P ) is

G̃(P ) =
1

J

J∑
j=1

G̃(Pj),

where

G̃(Pj) =
Ĝ(Pj)

1− Φ2(Pj)

is an unbiased estimator of G(Pj).

The proof of Lemma 1 is in the Appendix. Intuitively though, because Ĝ(P ) involves the product of
frequencies for two alleles drawn from population P , there is a chance of having the two alleles being identical
by descent by sampling the same allele twice, and is therefore a biased estimator with and without related
or inbred individuals

We next consider examining the bias of the estimator F̂2(A,B). As with Ĝ(P ), because F̂2(A,B) requires
sampling two alleles from population A and two alleles from population B, we find it is biased due to not
only finite sample size but also the inclusion of related or inbred individuals. We present the formal result
for F2 next (Proposition 2), and prove the result in the Appendix.

Proposition 2. Consider J polymorphic loci in populations A and B with respective parametric reference
allele frequencies aj , bj ∈ (0, 1), and suppose we take a random sample of N(Pj) individuals at locus j in

population P ∈ {A,B}, some of which may be related or inbred. The estimate F̂2(A,B) has upward bias

Bias[F̂2(A,B)] =
1

J

J∑
j=1

[
Φ2(Aj)G(Aj) + Φ2(Bj)G(Bj)

]
and an unbiased estimator of F2(A,B) is

F̃2(A,B) =
1

J

J∑
j=1

[
F̂2(Aj , Bj)− Φ2(Aj)G̃(Aj)− Φ2(Bj)G̃(Bj)

]
.

As one can see, the original estimator F̂2(A,B) is upwardly biased due to finite sample size and related-
ness, and that sampling within both populations A and B contributes proportionally to this bias. The new
unbiased estimator F̃2(A,B) corrects this bias by adjusting the computation to account for the kinship coef-
ficients and diversity within each population, with the adjustment of diversity using the unbiased estimator
G̃(P ) presented in Lemma 1.

Similarly to F̂2(A,B), the original estimator F̂3(A;B,C) is also upwardly biased because it requires the
sampling of two alleles from the target population A. We show the formal results for F3 next (Proposition 3),
and prove the result in the Appendix.

Proposition 3. Consider J polymorphic loci in populations A, B, and C with respective parametric ref-
erence allele frequencies aj , bj , cj ∈ (0, 1), and suppose we take a random sample of N(Pj) individuals at

locus j in population P ∈ {A,B,C}, some of which may be related or inbred. The estimate F̂3(A;B,C) has
upward bias

Bias[F̂3(A;B,C)] =
1

J

J∑
j=1

Φ2(Aj)G(Aj)

and an unbiased estimator of F3(A;B,C) is

F̃3(A;B,C) =
1

J

J∑
j=1

[
F̂3(Aj ;Bj , Cj)− Φ2(Aj)G̃(Aj)

]
.
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The bias of the original estimator is proportional to the relatedness and diversity within the target
population A. The new unbiased estimator F̃3(A;B,C) corrects the bias by adjusting the computation to
account for the kinship and diversity within the target population, with the adjustment of diversity using
the unbiased estimator G̃(A). Moreover, it is important to note that the reference populations B and C do
not contribute to bias, as only a single allele is sampled from each of these populations.

Given that F̂3(A;B,C |A) uses the biased estimators F̂3(A;B,C) and Ĝ(A) in its definition, we can
expect that it would be biased as its component estimators are biased, and these components have different
biases that are also in different directions. However, F̂3(A;B,C |A) is a ratio estimator, and we can therefore
not directly take its expectation to evaluate bias. Instead, we will make some simplifying assumptions and
compute the approximate bias of F̂3(A;B,C |A). We show the formal results next (Proposition 4), and
prove the result in the Appendix.

Proposition 4. Consider J polymorphic loci in populations A, B, and C with respective parametric refer-
ence allele frequencies aj , bj , cj ∈ (0, 1), and suppose we take a random sample of N(Pj) individuals at locus

j in population P ∈ {A,B,C}, some of which may be related or inbred. The ratio estimator F̂3(A;B,C |A)
is approximately upwardly biased, assuming that its mean is well-approximated by the ratio of means of
F̂3(A;B,C) and 2Ĝ(A) that it uses in its definition, with its upward approximate bias

Bias[F̂3(A;B,C |A)] ≈
(1/J)

∑J
j=1 Φ2(Aj)G(Aj)

G(A)− (1/J)
∑J

j=1 Φ2(Aj)G(Aj)

[
F3(A;B,C |A) +

1

2

]
.

Moreover, an approximately unbiased estimator of F3(A;B,C |A) is

F̃3(A;B,C |A) =
F̃3(A;B,C)

2G̃(A)
.

There is an upward approximate bias of the original normalized F3 estimator, and the bias is, as with
the standard estimator of F3, due partially to the diversity and sampling in the target population. The new
approximately unbiased estimator F̃3(A;B,C |A) is based simply on the ratio of unbiased estimators of its

components F̃3(A;B,C) and G̃(A).
Finally, we move to the four population statistics F4 and D. Note that the F4 statistic by definition

only samples a single allele per population, and therefore the original estimator F̂4(A,B;C,D) is intuitively
unbiased. We show the formal results next (Proposition 5), and prove the result in the Appendix.

Proposition 5. Consider J polymorphic loci in populations A, B, C, and D with respective parametric
reference allele frequencies aj , bj , cj , dj ∈ (0, 1), and suppose we take a random sample of N(Pj) individ-
uals at locus j in population P ∈ {A,B,C,D}, some of which may be related or inbred. The estimator

F̂4(A,B;C,D) is unbiased.

Though the original F4 estimator is unbiased, the normalized F4 and D statistics are more complicated
as they are ratio estimators, meaning their biases cannot be directly assessed. However, intuitively, because
both estimators have F̂4(A,B;C,D) as their numerator, bias would seemingly derive from their denominator

component. Next, we show formally in Proposition 6 that the normalized F̂4(A,B;C,D |P ) estimator is
approximately upwardly biased, and prove the result in the Appendix.

Proposition 6. Consider J polymorphic loci in populations A, B, C and D with respective parametric
reference allele frequencies aj , bj , cj , dj ∈ (0, 1), and suppose we take a random sample of N(Pj) individuals
at locus j in population P ∈ {A,B,C,D}, some of which may be related or inbred. The ratio estimator

F̂4(A,B;C,D |P ) is approximately upwardly biased, assuming that its mean is well-approximated by the

ratio of means of F̂4(A,B;C,D) and Ĝ(P ) for any population P ∈ {A,B,C,D} that it uses in its definition,
with its upward approximate bias

Bias[F̂4(A,B;C,D |P )] ≈
(1/J)

∑J
j=1 Φ2(Pj)G(Pj)

G(P )− (1/J)
∑J

j=1 Φ2(Pj)G(Pj)
F4(A,B;C,D |P ).
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Moreover, an approximately unbiased estimator of F4(A,B;C,D |P ) is

F̃4(A,B;C,D |P ) =
F̂4(A,B;C,D)

G̃(P )
.

The reasoning that the original F̂4(A,B;C,D |P ) estimator has upward approximate bias is that its

estimator Ĝ(P ) used in its denominator is downwardly biased. By using the unbiased estimator G̃(P ) in its

place within the denominator, we find a new estimator F̃4(A,B;C,D |P ) is approximately unbiased.
The bias property of the D statistic is different than the normalized F4 statistic, as the estimator

Ĥ(A,B,C,D) of its denominator is unbiased (Lemma 8 of the Appendix ). Intuitively, this result is due to the
denominator not having a product of frequencies for two alleles sampled from the same population. Because
both its numerator and denominator are unbiased, we next show that the ratio estimator D̂(A,B,C,D) is
approximately unbiased in Proposition 7, and prove the result in the Appendix.

Proposition 7. Consider J polymorphic loci in populations A, B, C, and D with respective parametric
reference allele frequencies aj , bj , cj , dj ∈ (0, 1), and suppose we take a random sample of N(Pj) individuals
at locus j in population P ∈ {A,B,C,D}, some of which may be related or inbred. The ratio estimator

D̂(A,B,C,D) is approximately unbiased, assuming that its mean is well-approximated by the ratio of means

of −F̂4(A,B;C,D) and Ĥ(A,B,C,D) that it uses in its definition.

In addition to bias, variance is an important property of an estimator, as both bias and vari-
ance are components of mean squared error. Because the formulas and derivations for the variances
of the F - and D-statistics are not particularly insightful, we relegate these results to the Appendix.
Specifically, we provide the variances for F̂2(A,B), F̃2(A,B), F̂3(A;B,C), F̃3(A;B,C), F̂3(A;B,C |A),

F̃3(A;B,C |A), F̂4(A,B;C,D), F̂4(A,B;C,D |P ), F̃4(A,B;C,D |P ), and D̂(A,B,C,D) in Proposi-
tions 11, 12, 13, 15, 17, 19, 16, 21, 23, and 26 of the Appendix, respectively.

Results

In the Theory and Appendix, we introduced new unbiased estimators of F2 and F3 statistics, and derived
biases and variances (and hence mean squared errors) for the original and new estimators of F - and D-
statistics. In this section, we theoretically evaluate the relative performances of the old biased estimators
and the new unbiased estimators under an array of settings, including different mixtures of relatedness,
inbreeding, sample sizes, and population parameters.

For all of our results we require the kinship coefficients for each pair of individuals. To acquire these
values, we need to know if each individual is related to any other in the population and also whether they are
inbred, and if so, how these values are quantified through the use of kinship coefficients (Φxy). To summarize
how an entire sample from a population P is related to each other at a locus, we use

Φ2(P ) =

N(P )∑
w=1

N(P )∑
x=1

φw(P )φx(P )Φwx,

where φw(P ) and φx(P ) are weights of individuals w and x in population P , and in this study we use
weights corresponding to the proportion of alleles contributed by individual x to the sample from population
P , which is computed as

φx(P ) =
mx∑N(P )

k=1 mk

.

Here mx is the ploidy of individual x. Moreover, using this weighting scheme, we also estimate the frequency
of the reference allele at a biallelic locus as the sample proportion (McPeek et al., 2004; DeGiorgio et al.,
2010; Harris and DeGiorgio, 2017a)

p̂ =

N(P )∑
k=1

φk(P )Xk =

N(P )∑
k=1

mk∑N(P )
j=1 mj

Xk.
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Effect of population F -statistic value on mean squared error

The relationship between the population parameter for a statistic and the estimate based on a sample from
the population is important to evaluate. We compare the difference in the mean squared error (MSE)

between the biased F̂ estimators and our unbiased F̃ estimators to the true value of each statistic in the
cases for which both estimators exist. The F2, F3, and F4 statistics require allele frequency information from
either two, three, or four populations, respectively.

For our F2 comparisons, we use the sample allele frequencies from the YRI (sub-Saharan African) and
CEU (central Europeans) from the 1000 Genomes Project (The 1000 Genomes Project Consortium, 2015) as
the true population allele frequencies to obtain the true F2(A,B) statistic by using the population definition
from the Introduction, with populations A = CEU and B = YRI. To evaluate the relative performances of
F2 estimators over a range of true F2 values, we randomly sample 20 independent loci from both populations
for 1000 independent replicates of J = 20 loci, yielding 1000 independent draws of the true F2 statistic,
which ranged across the set of values F2 ∈ [0.02, 0.12]. Using these allele frequencies, along with the sample

size and relatedness information, we also calculate the difference in MSE between the F̂2 and F̃2 estimators
by using Propositions 2, 11 and 12. We then calculate the MSE by summing the variance and squared bias.
We note that the MSEs of the unbiased estimators are equal to their variances. We repeat this process for
F3(A;B,C), F3(A;B,C |A), and F4(A,B;C,D |A) as these are the estimators that are biased in their F̂
forms.

We use Propositions 3, 13, and 15 to determine the MSE for both biased and unbiased F3 estimators
by including allele frequency information from the JPT (Japanese) population where A = JPT, B = CEU,
and C = YRI, with true range for F3 ∈ [0.00, 0.08]. For the normalized F3(A;B,C |A) estimators, we
compare MSE between the biased and unbiased versions by using bias and variances derived in Proposi-
tions 4, 17, and 19, with true range for normalized F3 ∈ [0.00, 0.30]. Finally, we estimate the MSE for the
normalized F4(A,B;C,D |A) estimators by including GIH (Gujurati Indian) allele frequency data and using
the derivations in Propositions 6, 21, and 23. In this case we set A = YRI, B = CEU, C = JPT, and
D = GIH for a true range of normalized F4 ∈ [−0.3, 0.2].

For each analysis we estimate MSE for instances when samples of 60 diploid individuals from each
population include 30 relative pairs, including ten avuncular relationships, ten inbred full siblings, and ten
outbred full siblings. We also assumed every individual was related to exactly one other individual. In these
estimates, all populations contain the same composition of related individuals.

The difference in log10(MSE) between F̂ and F̃ estimators for F2(A,B), F3(A;B,C), F3(A;B,C |A), and
F4(A,B;C,D |A) show similar trends with respect to the true F -statistic values. Specifically, the difference
in log10(MSE) decreases as the true F -statistic value approaches zero (Figure 2). In our evaluation of
F4(A,B;C,D |A), we considered both positive and negative values for its true value, which shows that the

difference in log10(MSE) of F̂4 and F̃4 exhibits a quadratic shaped trend as a function of true F4. Overall,
we notice that the difference in MSE between biased and unbiased estimators is dependent on the true value
of the F -statistic, with the least difference occurring when the true F -statistic is closest to zero.

Effect of sample size on mean squared error

To probe how sample size within each population affects the difference in estimator error rate, we theoretically
computed the MSE for both F̂ and F̃ estimators when different numbers of individuals are sampled, with
the constraint that every sampled individual is related to exactly one other individual in the sample from
that population. Specifically, we evaluate the impact on these estimators when sampling from one pair to 50
pairs of related individuals, with relationships of inbred full sibling pairs (Φxy = 3/8), outbred full sibling
pairs (Φxy = 1/4), parent-offspring pairs (Φxy = 1/4), and avuncular pairs (Φxy = 1/8). We compute the
MSE as in Effect of population F -statistic value on mean squared error section above.

In almost all cases, the biased F̂ estimators always displayed elevated MSE compared to their corre-
sponding unbiased F̃ estimators (Figures 4 and S1-S3). For both estimators, we see a clear decrease in the
MSE as the number of sampled individuals increases, with the greatest error observed when two individ-
uals are sampled. As expected, a greater sample size allows one to better estimate allele frequencies, and
ultimately reduces the mean pairwise kinship coefficient within the sample, as the number of pairs in the
sample grows quadratically but the number of relative pairs grows linearly. We also find that the difference
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in the MSE at larger sample sizes is not as pronounced for normalized F4 as it is for F2, F3, and normalized
F3, as the difference in bias between the biased and unbiased estimators is much smaller for normalized F4

(Figure S3).

Effect of sample composition on mean squared error

Different types of relatives have different proportions of their alleles shared identical by descent, and thus
have different pairwise kinship coefficients. Because we have demonstrated that bias and variance (and hence
MSE) of estimators are influenced by within-population mean pairwise kinship coefficient across sampled
individuals, the distribution of relative types within a sample will impact overall F -statistic estimation error.
For this reason, it is important to examine how our F -statistics are affected by samples containing diverse
mixtures of relative types. Specifically, to accurately assess the impact of relative composition, we hold
sample sizes, number of relative pairs, and true population F -statistic values constant.

We computed the theoretical MSE when samples of 50 pairs of relatives (100 diploid individuals sampled)
contain relative pairs of three different types as in Harris and DeGiorgio (2017a). In addition, each individual
is related to exactly one other individual in the sample from the same population. For each statistic we
vary the number of pairs related by each of three types of relationships between zero and 50, with 1326
combinations for each. We repeat this process for three configurations of relationships to probe estimator
error as a function of the mixture of relative types. We also provide comparisons among inclusion of male-male
full siblings (Φxy = 1/2), male-female full siblings (Φxy = 3/8) and female-female full siblings (Φxy = 1/4) at
mixed-ploidy loci such as on the X chromosome (DeGiorgio et al., 2010), with results showing elevated MSE
for both estimators for higher male-male sibling proportions, when compared to male-female or female-female
full siblings. To investigate the effects of inbred individuals, we also provide a comparison between inbred
full siblings (Φxy = 3/8) with inbreeding coefficient fx = fy = 1/4, and outbred full-siblings (Φxy = 1/4) at
a autosomal diploid loci. We see that MSE is higher for inbred full-siblings than for outbred full-siblings in
all cases examined (Figures 3 and S4-S6).

We also note that the value of MSE for the biased F̂ estimators is always greater than the value for their
corresponding unbiased F̃ statistics, which is true in part due to the values of the true F -statistics for the
loci we chose to use. Though the MSE is higher for the biased estimators, the variation in MSE values is
similar for both estimators. For example, the data point with the highest proportion of avuncular relatives
has the lowest MSE when compared to parent-offspring relationships and outbred full siblings. In all tested
settings (Figures 3 and S4-S6), we notice similar patterns of MSE variation when comparing F̂ estimators

with F̃ estimators. This pattern is again shared when comparing MSE variation among the estimators for
F2, F3, normalized F3, and normalized F4. We can conclude that in all of these cases, the value of the mean
kinship coefficient is most important in determining MSE when sample size and true F -statistic value are
fixed.

Simulations to evaluate theoretical MSE approximations

To verify that our theoretical approximations for MSE are reasonable, we simulate samples containing related
individuals and use them to compute the biased F̂ - and unbiased F̃ -statistics as well as calculate their biases,
variances, and MSEs. For each population (CEU, YRI, GIH, and JPT), we simulate 10 non-inbred parent-
offspring pairs with each individual related to exactly one other individual in the sample. Genotypes for
each individual are simulated by first sampling two alleles with replacement according to their respective
population allele frequencies from each of the populations (CEU, YRI, GIH, and JPT) to create a set of 20
unrelated individuals per population. Individuals x and y that form one of the 10 relative pairs have the
genotype of individual y modified according to their relationship type. Specifically, for each relative type,
there are probabilities ∆0, ∆1, and ∆2 that the two individuals will share zero, one, or two alleles identical
by descent, respectively. The first allele of individual y is copied from the first allele from individual x with
probability ∆1 and the entire genotype of individual x is copied over to individual y with probability ∆2.
This process is repeated across 20 independent loci to generate a sample of 20 individuals with 10 relative
pairs in each population with genotypes taken at J = 20 independent loci. To generate 20 independent loci
from the four 1000 Genomes Project populations, we used loci either on separate chromosomes, or at least
one megabase away from each other.
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For each of our new unbiased estimators we compute the bias, variance, and MSE along with the same
values for the original estimators (Figures S7-S10). Comparing the bias measurements in these figures,

we observe a clear reduction in bias when applying the F̃ estimators as opposed to the F̂ estimators.
However, the variance is highly similar for F̂ and F̃ in all cases. As the value of variance is much larger
than the magnitude of the bias (by an order of magnitude) and hence the squared bias, the resulting MSE
is consequently similar as well. Because F4 is quantifying the relationship among four populations, more
simulations may be required to converge to the pattern seen by theoretical simulations. For this reason, we
increased the number of simulations used to compute the bias, variance, and MSE to 104 for each data point
in Figure S10, whereas 103 simulation replicates were used for F2, and both versions of F3.

To compare the accuracy of our theoretical approximations to simulation results across a spectrum
of relatedness between individuals in a sample, we simulate combinations of parent offspring, outbred full
sibling, and avuncular relationships. In a manner similar to described above (first paragraph of Simulations to
evaluate theoretical MSE approximations, we simulate a total of 10 relative pairs made up of a combination
of each of the three relative types, with the number of each relative type ranging from zero to 10. We
simulate each of these 66 distinct settings of relative type combinations with genotypes sampled at J = 20
independent loci, and completed 1000 independent replicates of each setting to obtain accurate measurements
of bias, variance, and MSE for each simulation setting, with each simulation using true F -statistic values
specified in Figures S7 and S8-S10. We compute the bias, variance, and MSE for simulations, and compare
these values to theoretically calculated computations for each relative combination (Figures S12-S15). We
find that although noisier, the bias variance, and MSE patterns in our simulation results match theoretical
calculations, suggesting that our theoretical computations are accurate. For all cases the simulated bias
measurements for the F̃ estimators are close to zero, whereas the F̂ estimators display bias measurements
matching the theoretically calculated F̂ bias values.

Utility and applications of unbiased estimators

In previous sections, we have shown through simulations that our theoretical results are producing expected
patterns and evaluated the performance of our unbiased estimators under varying combinations of relatives,
true F -statistic values, and sample sizes. In this section we show some potential applications of these
estimators, using both simulated and empirical data. As discussed previously in the Introduction, the value
of F3(A;B,C) can be used to identify whether population A is the result of admixture between populations
related to B and C (Figure 1). A negative value of F3 indicates the presence of this process, whereas
a non-negative value is inconclusive and means that further tests may be required to verify a history of
admixture. However, because F̂3 is upwardly biased and because F̃3 corrects for this bias, F̃3 might allow us
to detect admixture in cases where F̂3 would be inconclusive, even without the presence of related or inbred
individuals.

To explore this hypothesis, we first examine an admixture scenario in which F3(A;B,C) might provide
marginally negative values. We simulate two populations (B and C) with effective population size of 104

diploid individuals (Takahata, 1993) that diverged 2000 generations prior to sampling using SLiM (Haller
and Messer, 2019). This simple divergence model has parameters inspired by the history relating African
and non-African human populations (Gravel et al., 2011). These populations then merge with admixture
proportions 0.4 and 0.6 for B and C, respectively, to form population A 400 generations prior to sampling.
Using these parameters, the expected value is F3(A;B,C) = −0.0568. To generate genetic data from this
model, we evolved sequences with a per-site per-generation mutation rate of µ = 1.25 × 10−8 (Scally and
Durbin, 2012) and a uniform per-site per-generation recombination rate of r = 10−8 (Payseur and Nachman,
2000). We output 20 two megabase chromosomal regions containing allele frequency information for all three
populations. Using these simulated population allele frequencies for each of these three populations, we then
simulate 50 instances of 50 unrelated individuals each. We then compute F̃3(A;B,C) and F̂3(A;B,C)
across J = 20 loci, either on separate chromosomes or at least one megabase away from each other to ensure
independence.

Figure 5 illustrates that F̃3 values are lower than F̂3, and are always negative when F̂3 values are
almost always positive. Because this statistic is used to test for admixture and a negative result indicates
the presence of admixture, the use of the biased estimator leads to a different conclusion than when using
the unbiased estimator. We also explore a setting in which populations contain related individuals with
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the same parameters as described above. Using allele frequency information from the three populations
simulated previously (A, B, and C ) we generate 50 individuals for each population, in which there are 25

parent-offspring pairs. Similarly to when relatives are not included in the population, F̃3 values are lower
than F̂3, with most F̃3 values giving negative values, and all F̂3 providing positive values, again lending
different conclusions about the underlying demographic history of these populations (Figure 5).

Finally, we test the performance of our statistics on empirical data. We use populations from the HGDP
SNP dataset (Li et al., 2008) that include related individuals (Rosenberg, 2006). Specifically, we use genotype
information from Colombian, Lahu, Melanesian, Mandenka, San, and Druze populations, and we sample 20
independent loci that are at least one megabase apart from all populations for 1000 independent replicates
of J = 20 loci, yielding 1000 independent draws. Each of these populations contains between two and 14
pairs of inferred related individuals, according to Rosenberg (2006). Using distinct pairs for F2, triples for
F3, and quadruples for F4 of these populations and the relationships from Rosenberg (2006), we estimate

F̂2(A,B), F̃2(A,B), F̂3(A;B,C |A), F̃3(A;B,C |A), F̂4(A,B;C,D |A), and F̃4(A,B;C,D |A) and compare
the mean and standard deviation of the biased and unbiased estimators (Figure 6). In all cases shown,
the biased estimator has higher mean than the unbiased estimator, although the standard deviations are
similar for both. This indicates that correcting the bias generated by related individuals yields more accurate
F -statistic estimates with minimal cost in precision of the estimates.

Discussion

We have introduced the unbiased estimators F̃2(A,B), F̃3(A;B,C), F̃3(A;B,C |A), and F̃4(A,B;C,D |P )

as well as shown that the estimators F̂4(A,B;C,D) and D̂(A,B,C,D) are unbiased with the inclusion of

related and inbred individuals. In addition, we have demonstrated that the variance of F̃2(A,B) is similar

to that of F̂2(A,B), as are the variances of F̃3(A;B,C) and F̂3(A;B,C). We have also provided variance
calculations for all other F - and D-statistic estimators included in this study. Using these calculations we
have compared the performance of the biased and newly derived unbiased estimators, and shown that in
most cases the unbiased estimators have lower MSE values than the biased estimators of the same statistic.

Interestingly, the two statistics that sample from each analyzed population only once per locus—
F̂4(A,B;C,D) and D̂(A,B,C,D)—are unbiased with the inclusion of related or inbred individuals, whereas

F̂2(A,B), which samples from each population A and B twice, and F̂3(A;B,C), which samples from pop-
ulation A twice, are biased. This process of sampling more than once from a single population per locus is
responsible for creating bias due simply to finite sample size, which is exacerbated by the inclusion of related
or inbred individuals within the twice-sampled population.

The development of these unbiased statistics, and the proofs showing other statistics are unbiased is
beneficial for anthropologists interested in populations such as hunter-gatherers, some of which are often
small and widely dispersed yet retain high genetic diversity (Kim et al., 2014). Small population sizes may
necessitate the sampling of close relatives, such as parents and offspring, or siblings. Along with small human
populations, these statistics are often applied to non-human species. Some, such as elephants, rhinoceros,
and cheetahs are close to extinction or have extremely small and inbred populations due to human activity.
The F - and D-statistics may prove important in conservation efforts to test how (and whether) different
populations of these animals are interacting. For these reasons, having estimators that are unbiased under
such conditions is imperative in making accurate inferences about the relationships of such small populations
with others. Although it may not be possible to identify relatives through the sampling process, especially in
the case of wild animals, there are methods available to identify related individuals and estimate their likely
degree of relatedness once the samples have been sequenced (Epstein et al., 2000). The inferences from these
methods will allow users to identify pairwise kinship coefficients necessary to apply the unbiased statistics
of this study. Moreover, even if relatedness is difficult to assess, many of the original statistics (i.e., F̂2, F̂3,

normalized F̂3, and normalized F̂4) have bias due to finite sample size, and simply accounting for the bias
may be important to accurately assess population history and diversity across populations (e.g., Figure 5).

A key consideration when evaluating the importance unbiased estimators of F - and D-statistics is their
potential use. Specifically, a number of applications of these statistics do not employ the raw estimates, but
instead standardized estimates (Soraggi et al., 2018; Zheng and Janke, 2018), where a particular F - or D-
statistic has its genomewide mean subtracted, and is normalized by the standard error using a genomic block
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jackknife procedure (Reich et al., 2009). Indeed, subtracting out this genomewide mean may circumvent
bias issues. However, this assumes that all genomic blocks have similar sample properties, yet blocks with
reduced sample size (e.g., in regions with difficult to call genotypes) may still deviate from the genomewide
expectation. In contrast, accounting for this bias due to finite sample size would provide estimates closer to
the genomewide mean. Because the variance for these biased and unbiased estimators is approximately the
same (compare Propositions 11 vs. 12 and 13 vs. 15), the standard errors used for normalizing these statistics
are expected to be comparable, and thus, the unbiased estimators of the F -statistics derived here represent
a more robust alternative to the original biased estimators, regardless of whether the raw or standardized
values of the statistics are used. Furthermore, the raw value of some statistics, such as using the F3 statistic
to detect population admixture, is important, and without correcting the bias of such statistics (Figure 5),
key historical events relating populations could be missed.

The F - and D-statistics evaluated here are the most commonly used. However, since their development
by Reich et al. (2009) and Patterson et al. (2012), other D-statistic type tests have been formulated to not
only detect admixture, but also to identify the direction of gene flow—namely the partitioned D-statistics of
Eaton and Ree (2013) and the DFOIL statistics of Pease and Hahn (2015). Specifically, the DFOIL statistics
as originally formulated by Pease and Hahn (2015) sampled a single lineage (or allele) from each of a set of
five populations A, B, C, D, and O, with a symmetric rooted topology ((AB)(CD)) relating populations
A, B, C, and D, and with O an outgroup to these populations used to polarize the ancestral allelic state.
Subsequently, Harris and DeGiorgio (2017b) derived allele frequency formulas for the DFOIL statistics, and
showed that allele frequency information for the outgroup population O is not needed for computation. The
DFOIL statistics are a set of four quantities (Harris and DeGiorgio, 2017b)

DFO(A,B;C,D) =

∑J
j=1(1− 2aj)(dj − cj)∑J
j=1(cj + dj − 2cjdj)

DIL(A,B;C,D) =

∑J
j=1(1− 2bj)(dj − cj)∑J
j=1(cj + dj − 2cjdj)

DFI(A,B;C,D) =

∑J
j=1(1− 2cj)(bj − aj)∑J
j=1(aj + bj − 2ajbj)

DOL(A,B;C,D) =

∑J
j=1(1− 2dj)(bj − aj)∑J
j=1(aj + bj − 2ajbj)

,

each of which does not have the frequencies for two alleles sampled from a single population multiplying
each other. Hence, using sample allele frequencies in place of the population quantities would still yield
approximately unbiased estimators of the DFOIL statistics, regardless of whether related or inbred individuals
were included in the sample. Though we chose to focus on the more classic F - and D-statistics, variance
quantities for these partitioned D and DFOIL statistics can be readily computed as we have done for other
ratio estimators in this study.

Though we have only shown results when all populations contain samples with the same relative pair
composition, it is trivial to include different relative types in different populations within these statistics. In
addition, it is also possible to apply our new unbiased estimators when only some or none of the populations
contain related or inbred individuals. Moreover, though we have demonstrated results for allele frequencies
estimated as the sample proportion, we could have instead used the best linear unbiased estimator (BLUE)
of McPeek et al. (2004), as all derivations in this article are based on a general form of a linear unbiased
estimator. The BLUE allele frequency estimator would have superior properties to the sample proportion
discussed here, as it has smallest variance (McPeek et al., 2004), and this reduction in variance translates to
functions of the allele frequency as highlighted by improvements in both expected heterozygosity and FST

by Harris and DeGiorgio (2017a). To apply the BLUE estimator, we would simply alter the weight φx(P )
of an individual x in population P at a particular locus with the equation

φx(P ) =

∑N(P )
k=1 (K−1)kx
1TK−11

,
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where K ∈ RN(P )×N(P ) is the matrix of pairwise kinship coefficients, with element in row j and column
k given by Kjk = Φjk, 1 ∈ RN(P ) is a column vector of ones, and superscript T indicates transpose. To
facilitate easy application of these statistics, we have developed open-source software funbiased for use by
the scientific community, which is available at https://github.com/MehreenRuhi/funbiased.
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D. Reich, K. Prüfer, M. Meyer, S. Pääbo, and J. Kelso. Reconstructing the genetic history of late nean-
derthals. Nature, 555:652–656, 2018.

B. C. Haller and P. W. Messer. SLiM 3: Forward Genetic Simulations Beyond the Wright–Fisher Model.
Molecular Biology and Evolution, 36:632–637, 2019.

A. M. Harris and M. DeGiorgio. An unbiased estimator of gene diversity with improved variance for samples
containing related and inbred individuals of any ploidy. G3: Genes, Genomes, Genetics, 7:671–691, 2017a.

A. M. Harris and M. DeGiorgio. Admixture and ancestry inference from ancient and modern samples through
measures of population genetic drift. Human Biology, 89:21–46, 2017b.

14

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.20.391367doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.20.391367
http://creativecommons.org/licenses/by/4.0/
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F2

D

A B
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AB C

F4

A B C D A B C D
Figure 1: Trees showing the different relationships the F - and D-statistics are designed to test.
F2(A,B) can test the differentiation of two populations A and B. F3(A;B,C) can test for in-
trogression or relatedness between populations A and B or populations A and C. F4(A,B;C,D)
can test the hypothesis of whether two populations are closer to each other than they are to two
other populations, in this case are A and B closer to each other than they are to C and D. The
D(A,B,C,D) statistic can test whether there has been admixture between population C and either
populations A or B.
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Figure 2: Difference in theoretically calculated log10(MSE) of F̂ and F̃ estimators when including
relatives or inbred individuals. The MSE is estimated for instances when samples of 60 individ-
uals include individuals related to exactly one other in the sample, with 10 pairs of avuncular
relationships, 10 pairs of inbred full siblings and 10 pairs of outbred full siblings. Each point repre-
sents calculations from J = 20 randomly sampled loci from the 1000 Genomes Project dataset for
CEU, European, YRI African, JPT Japanese, and GIH Indian populations. For F2(A,B) we use
A = CEU and B = YRI, while for F3(A;B,C) and F3(A;B,C |A) we use A = JPT, B = CEU,
and C = YRI and for F4(A,B;C,D |A) we assign A = YRI, B = CEU, C = JPT, and D = GIH.
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Figure 3: Theoretically calculated MSE of F̂2(A,B) and F̃2(A,B) when including relatives or inbred
individuals for J = 20 loci. The MSE is estimated for instances when samples of 100 individuals
include individuals related to exactly one other in the sample. The first column shows MSE for
samples with different combinations of parent-offsring (PO), full sibling (FS), and avuncular (AV)
relationships, the second includes full siblings that are male-male (MM), male-female (MF) and
female-female (MF). The last column includes AV relationships as well as inbred (FSi) and outbred
(FSo) full siblings. The true value of F2(A,B) is 0.071.
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Figure 4: Mean squared error theoretically calculated for F̂2(A,B) and F̃2(A,B) across different
sample sizes or related pairs of individuals, including avuncular relationships, parent-offspring rela-
tionships, inbred full siblings, and outbred full siblings. The number of sampled individuals ranges
from 2 to 100 with the number of relative pairs equaling half the total sampled , all computed using
J = 20 loci. The true value of F2(A,B) is 0.071.
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Figure 5: F̂3(A;B,C) and F̃3(A;B,C) calculated for simulations where populations B and C merge
with admixture proportions of 0.4 and 0.6, respectively, 400 generations ago (0.02 coalescent units)
to form population A. Comparison of simulations with (middle) and without (right) relatives. The
panel in the middle shows results for a sample containing 25 parent-offspring pairs, while the panel
on the right shows results for 50 unrelated individuals.
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Figure 6: The difference between the means and standard deviations of biased and unbiased esti-
mators of F2, normalized and un-normalized F3 and normalized F4 when estimated with genotype
information from four different combinations of Colombian, Lahu, Melanesian, Mandenka, San, and
Druze populations. All of these populations include between two and 14 relative pairs. The black
dots represent the values for the biased estimators, while the white dots show the value for the
unbiased estimators. Each mean and standard deviation was calculated for a combination of two,
three, or four populations, for F2, F3, and F4, respectively, and consists of 1000 estimates of the
statistic, each calculated from J = 20 randomly samples single nucleotide polymorphisms from the
genome. The top row has values for the F2(A,B) (left) and F3(A;B,C) (right), while the bottom
row shows results for normalized F3(A;B,C |A) (left) and normalized F4(A,B;C,D |A) (right).
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Appendix

In this section, we provide proofs of key lemmas and propositions from the Theory section, and also develop
and prove other important results.

Proof of Lemma 1. We first calculate

E[Ĝ(Pj)] = E[p̂j(1− p̂j)]
= E[p̂j ]− E[p̂2j ]

= pj − [1− Φ2(Pj)]p
2
j − Φ2(Pj)pj

= [1− Φ2(Pj)]pj(1− pj)
= [1− Φ2(Pj)]G(Pj),

which gives

E[Ĝ(P )] =
1

J

J∑
j=1

E[Ĝ(Pj)]

=
1

J

J∑
j=1

[1− Φ2(Pj)]G(Pj)

= G(P ) + ∆(P ),

where we define the downward bias of Ĝ(P ) as

∆(P ) = E[Ĝ(P )]−G(P )

= − 1

J

J∑
j=1

Φ2(Pj)G(Pj).

It follows that G̃(P ) is an unbiased estimator of G(P ) because

E[G̃(P )] =
1

J

J∑
j=1

1

1− Φ2(Pj)
Ĝ(Pj)

=
1

J

J∑
j=1

1

1− Φ2(Pj)
[1− Φ2(Pj)]G(Pj)

=
1

J

J∑
j=1

Ĝ(Pj)

= G(P ).

Proof of Proposition 2. We first calculate

E[F̂2(Aj , Bj)] = E
[
(âj − b̂j)2

]
= E[â2j ] + E[̂b2j ]− 2E[âj ]E[̂bj ]

= [1− Φ2(Aj)]a
2
j + Φ2(Aj)aj + [1− Φ2(Bj)]b

2
j + Φ2bj − 2ajbj

= (aj − bj)2 + Φ2(Aj)aj(1− aj) + Φ2(Bj)bj(1− bj)
= F2(Aj , Bj) + Φ2(Aj)G(Aj) + Φ2(Bj)G(Bj),
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which gives

E[F̂2(A,B)] =
1

J

J∑
j=1

E[F̂2(Aj , Bj)]

=
1

J

J∑
j=1

[
F2(Aj , Bj) + Φ2(Aj)G(Aj) + Φ2(Bj)G(Bj)

]
= F2(A,B) + ∆(A,B),

where we define the upward bias of F̂2(A,B) as

∆(A,B) = E[F̂2(A,B)]− F2(A,B)

=
1

J

J∑
j=1

[
Φ2(Aj)G(Aj) + Φ2(Bj)G(Bj)

]
.

It follows that F̃2(A,B) is an unbiased estimator of F2(A,B) because

E[F̃2(A,B)] =
1

J

J∑
j=1

(
E[F̂2(Aj , Bj)]− Φ2(Aj)E[G̃(Aj)]− Φ2(Bj)E[G̃(Bj)]

)
=

1

J

J∑
j=1

[
F2(Aj , Bj) + Φ2(Aj)G(Aj) + Φ2(Bj)G(Bj)− Φ2(Aj)G(Aj)

− Φ2(Bj)G(Bj)
]

=
1

J

J∑
J=1

F2(Aj , Bj)

= F2(A,B).

Proof of Proposition 3. We first calculate

E[F̂3(Aj ;Bj , Cj)] = E
[
(âj − b̂j)(âj − ĉj)

]
= E[â2j ]− E[âj ]E[ĉj ]− E[âj ]E[̂bj ] + E[̂bj ]E[ĉj ]

= [1− Φ2(Aj)]a
2
j + Φ2(Aj)aj − ajcj − ajbj + bjcj

= (a2j − ajcj − ajbj + bjcj) + Φ2(Aj)aj(1− aj)
= F3(Aj ;Bj , CJ) + Φ2(Aj)G(Aj),

which gives

E[F̂3(A;B,C)] =
1

J

J∑
j=1

E[F̂3(Aj ;Bj , Cj)]

=
1

J

J∑
j=1

[
F3(A;Bj , Cj) + Φ2(Aj)G(Aj)

]
= F3(A;B,C) + ∆(A;B,C),

where we define the upward bias of F̂3(A;B,C) as

∆(A;B,C) = E[F̂3(A;B,C)]− F3(A;B,C)

=
1

J

J∑
j=1

Φ2(Aj)G(Aj).
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It follows that F̃3(A;B,C) is an unbiased estimator of F3(A;B,C) because

E[F̃3(A;B,C)] =
1

J

J∑
j=1

(
E[F̂3(Aj ;Bj , Cj)]− Φ2(Aj)E[G̃(Aj)]

)
=

1

J

J∑
j=1

[
F3(Aj ;Bj , Cj) + Φ2(Aj)G(Aj)− Φ2(Aj)G(Aj)

]
=

1

J

J∑
J=1

F3(Aj ;Bj , Cj)

= F3(A;B,C).

Proof of Proposition 4. Assuming that the expectation of F̂3(A;B,C |A) is approximately equal to the ratio

of expectations of F̂3(A;B,C) and 2Ĝ(A), we find that

E[F̂3(A;B,C |A)] = E

[
F̂3(A;B,C)

2Ĝ(A)

]

≈ E[F̂3(A;B,C)]

2E[Ĝ(A)]

=
(1/J)

∑J
j=1

[
F3(Aj ;Bj , Cj) + Φ2(Aj)G(Aj)

]
(2/J)

∑J
j=1[1− Φ2(Aj)]G(Aj)

=
F3(A;B,C) + (1/J)

∑J
j=1 Φ2(Aj)G(Aj)

2G(A)− (2/J)
∑J

j=1 Φ2(Aj)G(Aj)

=
F3(A;B,C)

2G(A)
+ ∆(A;B,C |A)

= F3(A,B;C,D |A) + ∆(A;B,C |A),

where we define the upward bias of F̂3(A;B,C |A) as

∆(A;B,C |A) = E[F̂3(A;B,C |A)]− F3(A;B,C) |A

=
F3(A;B,C) + (1/J)

∑J
j=1 Φ2(Aj)G(Aj)

2G(A)− (2/J)
∑J

j=1 Φ2(Aj)G(Aj)
− F3(A;B,C)

2G(A)

=
[F3(A;B,C) +G(A)](1/J)

∑J
j=1 Φ2(Aj)G(Aj)

2G(A)[G(A)− (1/J)
∑J

j=1 Φ2(Aj)G(Aj)]

=
(1/J)

∑J
j=1 Φ2(Aj)G(Aj)

G(A)− (1/J)
∑J

j=1 Φ2(Aj)G(Aj)

[
F3(A;B,C |A) +

1

2

]
.

We can also see that F̃3(A;B,C |A) is an approximately unbiased estimator of F3(A;B,C |A) because

E[F̃3(A;B,C |A)] = E

[
F̃3(A;B,C)

2G̃(A)

]

≈ E[F̃3(A;B,C)]

2E[G̃(A)]

=
F3(A;B,C)

2G(A)

= F3(A;B,C |A).
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Proof of Proposition 5. We first calculate

E[F̂4(Aj , Bj ;Cj , Dj)] = E[(âj − b̂j)(ĉj − d̂j ]

= E[âj − b̂j ]E[ĉj − d̂j ]

= (E[âj ]− E[̂bj ])(E[ĉj ]− E[d̂j ])

= (aj − bj)(cj − dj)
= F4(Aj , Bj ;Cj , Dj).

We show that F̂4(A,B;C,D) is unbiased estimator of F4(A,B;C,D) because

E[F̂4(A,B;C,D)] =
1

J

J∑
j=1

E[F̂4(Aj , Bj ;Cj , Dj)]

=
1

J

J∑
j=1

F4(Aj , Bj ;Cj , Dj)

= F4(A,B;C,D).

Proof of Proposition 6. Assuming that the expectation of F̂4(A,B;C,D |P ) is approximately equal to the

ratio of expectations of F̂4(A,B;C,D) and Ĝ(P ) for some P ∈ {A,B,C,D}, we find that

E[F̂4(A,B;C,D |P )] = E

[
F̂4(A,B;C,D)

Ĝ(P )

]

≈ E[F̂4(A,B;C,D)]

E[Ĝ(P )]

=
F4(A,B;C,D)

(1/J)
∑J

j=1[1− Φ2(Pj)]G(Pj)

=
F4(A,B;C,D)

G(P )− (1/J)
∑J

j=1 Φ2(Pj)G(Pj)

=
F4(A,B;C,D)

G(P )
+ ∆(A,B;C,D |P )

= F4(A,B;C,D |P ) + ∆(A,B;C,D |P ),

where we define the approximate upward bias of F̂4(A,B;C,D |P ) as

∆(A,B;C,D |P ) = E[F̂ (A,B;C,D |P )]− F4(A,B;C,D |P )

=
F4(A,B;C,D)

G(P )− (1/J)
∑J

j=1 Φ2(Pj)G(Pj)
− F4(A,B;C,D)

G(P )

=
F4(A,B;C,D)(1/J)

∑J
j=1 Φ2(Pj)G(Pj)

G(P )[G(P )− (1/J)
∑J

j=1 Φ2(Pj)G(Pj)]

=
(1/J)

∑J
j=1 Φ2(Pj)G(Pj)

G(P )− (1/J)
∑J

j=1 Φ2(Pj)G(Pj)
F4(A,B;C,D |P ).
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We can also see that F̃4(A,B;C,D |P ) is an approximately unbiased estimator of F4(A,B;C,D |P ) because

E[F̃4(A,B;C,D |P )] = E

[
F̂4(A,B;C,D)

G̃(P )

]

≈ E[F̂4(A,B;C,D)]

E[G̃(P )]

=
F4(A,B;C,D)

G(P )

= F4(A,B;C,D |P ).

Lemma 8. Consider J polymorphic loci in populations A, B, C, and D with respective parametric reference
allele frequencies aj , bj , cj , dj ∈ (0, 1), and suppose we take a random sample of N(Pj) individuals at locus

j in population P ∈ {A,B,C,D}, some of which may be related or inbred. The estimator Ĥ(A,B,C,D) is
unbiased.

Proof. We first calculate

E[Ĥ(Aj , Bj , Cj , Dj)] = E[(âj + b̂j − 2âj b̂j)(ĉj + d̂j − 2ĉj d̂j)]

= E[(âj + b̂j − 2âj b̂j)]E[(ĉj + d̂j − 2ĉj d̂j)]

= (E[âj ] + E[̂bj ]− 2E[âj ]E[̂bj ])(E[ĉj ] + E[d̂j ]− 2E[ĉj ]E[d̂j ])

= (aj + bj − 2ajbj)(cj + dj − 2cjdj)

= H(Aj , Bj , Cj , Dj).

We show that Ĥ(A,B,C,D) is unbiased estimator of H(A,B,C,D) because

E[Ĥ(A,B,C,D)] =
1

J

J∑
j=1

E[Ĥ(Aj , Bj , Cj , Dj)]

=
1

J

J∑
j=1

H(Aj , Bj , Cj , Dj)

= H(A,B,C,D).

Proof of Proposition 7. Assuming that the expectation of D̂(A,B,C,D) is approximately equal to the ratio

of expectations of −F̂4(A,B;C,D) and Ĥ(A,B,C,D), D̂(A,B,C,D) is an approximately unbiased estimator
of D(A,B,C,D) because

E[D̂(A,B,C,D)] = −E

[
F̂4(A,B;C,D)

Ĥ(A,B,C,D)

]

≈ −E[F̂4(A,B;C,D)]

E[Ĥ(A,B,C,D)]

= −F4(A,B;C,D)

H(A,B,C,D)

= D(A,B,C,D).

Lemma 9. Consider J independent polymorphic loci in a population P with parametric reference allele
frequencies pj ∈ (0, 1), and suppose we take a random sample of N(Pj) individuals at locus j, some of
which may be related or inbred. Moreover, assume that no individual is related to more than one other
individual, which makes the terms Φ3(Pj), Φ4(Pj), Φ2,2(Pj), and Φ2(Pj)

2 negligible to Φ2(Pj). Based on

this simplifying assumption, the estimator Ĝ(P ) has an approximate variance

V ar[Ĝ(P )] ≈ 1

J2

J∑
j=1

Φ2(Pj)G(Pj)−
4

J2

J∑
j=1

Φ2(Pj)G(Pj)
2.
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Moreover, the respective approximate variance for the unbiased estimator G̃(P ) is

V ar[G̃(P )] ≈ 1

J2

J∑
j=1

Φ2(Pj)

1− 2Φ2(Pj)
G(Pj)−

4

J2

J∑
j=1

Φ2(Pj)

1− 2Φ2(Pj)
G(Pj)

2.

Proof. From the proof of Lemma 1, we have

E[Ĝ(Pj)] = [1− Φ2(Pj)]G(Pj)

and we calculate

E[Ĝ(Pj)
2] = E[p̂2j (1− p̂j)2]

= E[p̂2j ]− 2E[p̂3j ] + E[p̂4j ]

≈ p2j + Φ2(Pj)pj(1− pj)− 2[p3j + 3Φ2(Pj)p
2
j (1− pj)] + p4j + 6Φ2(Pj)p

3
j (1− pj)

= p2j − 2p3j + p4j + Φ2(Pj)pj(1− pj)[1− 6pj + 6p2j ]

= p2j (1− pj)2 + Φ2(Pj)pj(1− pj)[1− 6pj(1− pj)]
= G(Pj)

2 + Φ2(Pj)G(Pj)[1− 6G(Pj)]

= Φ2(Pj)G(Pj) + [1− 6Φ2(Pj)]G(Pj)
2.

Therefore, we have that

V ar[Ĝ(Pj)] = E[Ĝ(Pj)
2]− E[Ĝ(Pj)]

2

≈ Φ2(Pj)G(Pj) + [1− 6Φ2(Pj)]G(Pj)
2 − [1− Φ2(Pj)]

2G(Pj)
2

= Φ2(Pj)G(Pj) + [1− 6Φ2(Pj)]G(Pj)
2 − [1− 2Φ2(Pj) + Φ2(Pj)

2]G(Pj)
2

≈ Φ2(Pj)G(Pj) + [1− 6Φ2(Pj)]G(Pj)
2 − [1− 2Φ2(Pj)]G(Pj)

2

= Φ2(Pj)G(Pj)− 4Φ2(Pj)G(Pj)
2,

which gives

V ar[Ĝ(P )] = V ar

[
1

J

J∑
j=1

Ĝ(Pj)

]

=
1

J2

J∑
j=1

V ar[Ĝ(Pj)]

≈ 1

J2

J∑
j=1

Φ2(Pj)G(Pj)−
4

J2

J∑
j=1

Φ2(Pj)G(Pj)
2.

Recall that

G̃(P ) =
1

J

J∑
j=1

G̃(Pj),

where

G̃(Pj) =
1

1− Φ2(Pj)
Ĝ(Pj).

28

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.20.391367doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.20.391367
http://creativecommons.org/licenses/by/4.0/


It follows that

V ar[G̃(P )] = V ar

[
1

J

J∑
j=1

G̃(Pj)

]

=
1

J2

J∑
j=1

V ar[G̃(Pj)]

=
1

J2

J∑
j=1

1

[1− Φ2(Pj)]2
V ar[Ĝ(Pj)]

≈ 1

J2

J∑
j=1

Φ2(Pj)

1− 2Φ2(Pj)
G(Pj)−

4

J2

J∑
j=1

Φ2(Pj)

1− 2Φ2(Pj)
G(Pj)

2.

Lemma 10. Consider J independent polymorphic loci in populations A and B with respective parametric
reference allele frequencies aj , bj ∈ (0, 1), and suppose we take a random sample of N(Pj) individuals at
locus j in population P ∈ {A,B}, some of which may be related or inbred. Moreover, assume that no
individual is related to more than one other individual, which makes the terms Φ3(Pj), Φ4(Pj), Φ2,2(Pj),

and Φ2(Pj)
2 negligible to Φ2(Pj). Based on this simplifying assumption, the estimators F̂2(A,B) and Ĝ(B)

have an approximate covariance

Cov[F̂2(A,B), Ĝ(B)] ≈ 2

J2

J∑
j=1

Φ2(Bj)G(Bj)
2 − 2

J2

J∑
j=1

Φ2(Bj)G(Aj)G(Bj)

− 2

J2

J∑
j=1

Φ2(Bj)F2(Aj , Bj)G(Bj).

Proof. From the proofs of Lemma 1 and Proposition 2, we have

E[Ĝ(Bj)] = [1− Φ2(Bj)]G(Bj)

and
E[F̂2(Aj , Bj)] = F2(Aj , Bj) + Φ2(Aj)G(Aj) + Φ2(Bj)G(Bj),

yielding

E[F̂2(Aj , Bj)]E[Ĝ(Bj)] = [F2(Aj , Bj) + Φ2(Aj)G(Aj) + Φ2(Bj)G(Bj)][1− Φ2(Bj)]G(Bj)

= F2(Aj , Bj)G(Bj) + Φ2(Aj)G(Aj)G(Bj) + Φ2(Bj)G(Bj)
2

− Φ2(Bj)F2(Aj , Bj)G(Bj)− Φ2(Aj)Φ2(Bj)G(Aj)G(Bj)

− Φ2(Bj)
2G(Bj)

2

≈ F2(Aj , Bj)G(Bj) + Φ2(Aj)G(Aj)G(Bj) + Φ2(Bj)G(Bj)
2

− Φ2(Bj)F2(Aj , Bj)G(Bj)− Φ2(Aj)Φ2(Bj)G(Aj)G(Bj),

where we used the fact that Φ2(Bj)
2 is negligible compared to Φ2(Bj) as an approximation. We also calculate

E[F̂2(Aj , Bj)Ĝ(Bj)] = E[(âj − b̂j)2b̂j(1− b̂j)]

= E[(â2j − 2âj b̂j + b̂2j )(̂bj − b̂2j )]

= E[â2j (̂bj − b̂2j )− 2âj (̂b
2
j − b̂3j ) + b̂3j − b̂4j ]

= E[â2j ](E[̂bj ]− E[̂b2j ])− 2E[âj ](E[̂b2j ]− E[̂b3j ]) + E[̂b3j ]− E[̂b4j ]

≈ [a2j + Φ2(Aj)aj(1− aj)][b− b2j − Φ2(Bj)bj(1− bj)]
− 2aj [b

2
j + Φ2(Bj)bj(1− bj)− b3j − 3Φ2(Bj)b

2
j (1− bj)]

+ b3j + 3Φ2(Bj)b
2
j (1− bj)− b4j − 6Φ2(Bj)b

3
j (1− bj).
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Recognizing that G(Aj) = aj(1− aj), G(Bj) = gj(1− gj), and F2(Aj , Bj) = a2j − 2ajbj + b2j , we have

E[F̂2(Aj , Bj)Ĝ(Bj)] ≈ [a2j + Φ2(Aj)G(Aj)][1− Φ2(Bj)]G(Bj)

− 2aj
[
Φ2(Bj) + [1− 3Φ2(Bj)]bj

]
G(Bj)

+
[
3Φ2(Bj)bj + [1− 6Φ2(Bj)]b

2
j

]
G(Bj)

= G(Bj)
[
a2j − Φ2(Bj)a

2
j + Φ2(Aj)G(Aj)− Φ2(Aj)Φ2(Bj)G(Aj)

− 2Φ2(Bj)aj − 2ajbj + 2(3)Φ2(Bj)ajbj + 3Φ2(Bj)bj + b2j

− 6Φ2(Bj)b
2
j

]
= G(Bj)

[
F2(Aj , Bj)− Φ2(Bj)[3a

2
j − 2(3)ajbj + 3b2j − 2a2j + 3b2j ]

− 2Φ2(Bj)aj + 3Φ2(Bj)bj + [Φ2(Aj)− Φ2(Aj)Φ2(Bj)]G(Aj)
]

= G(Bj)
[
F2(Aj , Bj)− 3Φ2(Bj)[a

2
j − 2ajbj + b2j ]

− 2Φ2(Bj)[aj − a2j ] + 3Φ2(Bj)[bj − b2j ]

+ [Φ2(Aj)− Φ2(Aj)Φ2(Bj)]G(Aj)
]

= G(Bj)
[
F2(Aj , Bj)− 3Φ2(Bj)F2(Aj , Bj)− 2Φ2(Bj)G(Aj) + 3Φ2(Bj)G(Bj)

+ [Φ2(Aj)− Φ2(Aj)Φ2(Bj)]G(Aj)
]

= [1− 3Φ2(Bj)]F2(Aj , Bj)G(Bj) + 3Φ2(Bj)G(Bj)
2

+ [Φ2(Aj)− 2Φ2(Bj)− Φ2(Aj)Φ2(Bj)]G(Aj)G(Bj).

Therefore, we have that

Cov[F̂2(Aj , Bj), Ĝ(Bj)] = E[F̂2(Aj , Bj)Ĝ(Bj)]− E[F̂2(Aj , Bj)]E[Ĝ(Bj)]

≈ [1− 3Φ2(Bj)]F2(Aj , Bj)G(Bj) + 3Φ2(Bj)G(Bj)
2

+ [Φ2(Aj)− 2Φ2(Bj)− Φ2(Aj)Φ2(Bj)]G(Aj)G(Bj)

−
[
F2(Aj , Bj)G(Bj) + Φ2(Aj)G(Aj)G(Bj) + Φ2(Bj)G(Bj)

2

− Φ2(Bj)F2(Aj , Bj)G(Bj)− Φ2(Aj)Φ2(Bj)G(Aj)G(Bj)
]

= 2Φ2(Bj)G(Bj)
2 − 2Φ2(Bj)G(Aj)G(Bj)− 2Φ2(Bj)F2(Aj , Bj)G(Bj)

= 2Φ2(Bj)G(Bj)[G(Bj)−G(Aj)− F2(Aj , Bj)],

which gives

Cov[F̂2(A,B), Ĝ(B)] = Cov

[
1

J

J∑
j=1

F̂2(Aj , Bj),
1

J

J∑
j=1

Ĝ(Bj)

]

=
1

J2

J∑
j=1

Cov[F̂2(Aj , Bj), Ĝ(Bj)]

≈ 2

J2

J∑
j=1

Φ2(Bj)G(Bj)
2 − 2

J2

J∑
j=1

Φ2(Bj)G(Aj)G(Bj)

− 2

J2

J∑
j=1

Φ2(Bj)F2(Aj , Bj)G(Bj).
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Proposition 11. Consider J independent polymorphic loci in a populations A and B with respective
parametric reference allele frequencies aj , bj ∈ (0, 1), and suppose we take a random sample of N(Pj)
individuals at locus j in population P ∈ {A,B}, some of which may be related or inbred. Moreover,
assume that no individual is related to more than one other individual, which makes the terms Φ3(Pj),
Φ4(Pj), Φ2,2(Pj), Φ2(Pj)

2, and Φ2(Aj)Φ2(Bj) negligible to Φ2(Pj). Based on this simplifying assumption,

the estimator F̂2(A,B) has approximate variance

V ar[F̂2(A,B)] ≈ 4

J2

J∑
j=1

Φ2(Aj)F2(Aj , Bj)G(Aj) +
4

J2

J∑
j=1

Φ2(Bj)F2(Aj , Bj)G(Bj).

Proof. From the proof of Proposition 2, we have

E[F̂2(Aj , Bj)] = F2(Aj , Bj) + Φ2(Aj)G(Aj) + Φ2(Bj)G(Bj),

which gives

E[F̂2(Aj , Bj)]
2 = [F2(Aj , Bj) + Φ2(Aj)G(Aj) + Φ2(Bj)G(Bj)]

2

= F2(Aj , Bj)
2 + 2Φ2(Aj)F2(Aj , Bj)G(Aj) + 2Φ2(Bj)F2(Aj , Bj)G(Bj)

+ 2Φ2(Aj)Φ2(Bj)G(Aj)G(Bj) + Φ2(Aj)
2G(Aj)

2 + Φ2(Bj)
2G(Bj)

≈ F2(Aj , Bj)
2 + 2Φ2(Aj)F2(Aj , Bj)G(Aj) + 2Φ2(Bj)F2(Aj , Bj)G(Bj),

where we used the fact that Φ2(Aj)
2, Φ2(Bj), and Φ2(Aj)Φ2(Bj) are negligible compared to Φ2(Aj) and

Φ2(Bj) as an approximation. We also calculate

E[F̂2(Aj , Bj)
2] = E

[
(âj − b̂j)4

]
= E[â4j ]− 4E[â3j ]E[̂bj ] + 6E[â2j ]E[̂b2j ]− 4E[âj ]E[̂b3j ] + E[̂b4j ]

≈ a4j + 6Φ2(Aj)a
3
j (1− aj)− 4[a3j + 3Φ2(Aj)a

2
j (1− aj)]bj

+ 6[a2j + Φ2(Aj)aj(1− aj)][b2j + Φ2(Bj)bj(1− bj)]
− 4aj [b

3
j + 3Φ2(Bj)b

2
j (1− bj)] + b4j + 6Φ2(Bj)b

3
j (1− bj)

= a4j − 4a3jbj + 6a2jb
2
j − 4ajb

3
j + b4j + 6Φ2(Aj)aj(1− aj)[a2j − 2ajbj + b2j ]

+ 6Φ2(Bj)bj(1− bj)[a2j − 2ajbj + b2j ] + 6Φ2(Aj)Φ2(Bj)aj(1− aj)bj(1− bj)
= (aj − bj)4 + 6Φ2(Aj)aj(1− aj)(aj − bj)2 + 6Φ2(Bj)bj(1− bj)(aj − bj)2

+ 6Φ2(Aj)Φ2(Bj)aj(1− aj)bj(1− bj)
= F2(Aj , Bj)

2 + 6Φ2(Aj)F2(Aj , Bj)G(Aj) + 6Φ2(Bj)F2(Aj , Bj)G(Bj)

+ 6Φ2(Aj)Φ2(Bj)G(Aj)G(Bj)

≈ F2(Aj , Bj)
2 + 6Φ2(Aj)F2(Aj , Bj)G(Aj) + 6Φ2(Bj)F2(Aj , Bj)G(Bj).

Therefore, we have that

V ar[F̂2(Aj , Bj)] = E[F̂2(Aj , Bj)
2]− E[F̂2(Aj , Bj)]

2

≈ F2(Aj , Bj)
2 + 6Φ2(Aj)F2(Aj , Bj)G(Aj) + 6Φ2(Bj)F2(Aj , Bj)G(Bj)

−
[
F2(Aj , Bj)

2 + 2Φ2(Aj)F2(Aj , Bj)G(Aj) + 2Φ2(Bj)F2(Aj , Bj)G(Bj)
]

= 4Φ2(Aj)F2(Aj , Bj)G(Aj) + 4Φ2(Bj)F2(Aj , Bj)G(Bj),
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which gives

V ar[F̂2(A,B)] = V ar

[
1

J

J∑
j=1

F̂2(Aj , Bj)

]

=
1

J2

J∑
j=1

V ar[F̂2(Aj , Bj)]

≈ 4

J2

J∑
j=1

Φ2(Aj)F2(Aj , Bj)G(Aj) +
4

J2

J∑
j=1

Φ2(Bj)F2(Aj , Bj)G(Bj).

Proposition 12. Consider J independent polymorphic loci in a populations A and B with respective
parametric reference allele frequencies aj , bj ∈ (0, 1), and suppose we take a random sample of N(Pj)
individuals at locus j in population P ∈ {A,B}, some of which may be related or inbred. Moreover,
assume that no individual is related to more than one other individual, which makes the terms Φ3(Pj),
Φ4(Pj), Φ2,2(Pj), Φ2(Pj)

2, and Φ2(Aj)Φ2(Bj) negligible to Φ2(Pj). Based on this simplifying assumption,

the unbiased estimator F̃2(A,B) has approximate variance

V ar[F̃2(A,B)] ≈ 4

J2

J∑
j=1

Φ2(Aj)F2(Aj , Bj)G(Aj) +
4

J2

J∑
j=1

Φ2(Bj)F2(Aj , Bj)G(Bj).

Proof. Recall that
F̃2(Aj , Bj) = F̂2(Aj , Bj)− Φ2(Aj)G̃(Aj)− Φ2(Bj)G̃(Bj),

where F̃2(Aj , Bj) is an unbiased estimator for F2(Aj , Bj) and G̃(Pj) is an unbiased estimator of G(Pj) for
P ∈ {A,B} at locus j ∈ {1, 2, . . . , J}. Also, from the proof of Proposition 2, we have

E[F̂2(Aj , Bj)] = F2(Aj , Bj) + Φ2(Aj)G(Aj) + Φ2(Bj)G(Bj).

Therefore, we have that

V ar[F̃2(Aj , Bj)] = V ar[F̂2(Aj , Bj)− Φ2(Aj)G̃(Aj)− Φ2(Bj)G̃(Bj)]

= V ar[F̂2(Aj , Bj)] + Φ2(Aj)
2V ar[G̃(Aj)] + Φ2(Bj)

2V ar[G̃(Bj)]

− 2Φ2(Aj)Cov[F̂2(Aj , Bj), G̃(Aj)]− 2Φ2(Bj)Cov[F̂2(Aj , Bj), G̃(Bj)]

+ 2Φ2(Aj)Φ2(Bj)Cov[G̃(Aj), G̃(Bj)]

≈ V ar[F̂2(Aj , Bj)]− 2Φ2(Aj)Cov[F̂2(Aj , Bj), G̃(Aj)]

− 2Φ2(Bj)Cov[F̂2(Aj , Bj), G̃(Bj)],

where we used the fact that Φ2(Aj)
2 and Φ2(Bj)

2 are negligible compared to Φ2(Aj) and Φ2(Bj) as an

approximation, and where Cov[G̃(Aj), G̃(Bj)] = 0 because drawing alleles in population A is independent
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of population B. Moreover, because G̃(Pj) = Ĝ(Pj)/[1− Φ2(Pj)], we have

V ar[F̃2(Aj , Bj)] ≈ V ar[F̂2(Aj , Bj)]−
2Φ2(Aj)

1− Φ2(Aj)
Cov[F̂2(Aj , Bj), Ĝ(Aj)]

− 2Φ2(Bj)

1− Φ2(Bj)
Cov[F̂2(Aj , Bj), Ĝ(Bj)]

≈ 4Φ2(Aj)F2(Aj , Bj)G(Aj) + 4Φ2(Bj)F2(Aj , Bj)G(Bj)

+ 4Φ2(Aj)Φ2(Bj)G(Aj)G(Bj)

− 2Φ2(Aj)

1− Φ2(Aj)

[
2Φ2(Aj)G(Aj)

2 − 2Φ2(Aj)G(Aj)G(Bj)

− 2Φ2(Aj)F2(Aj , Bj)G(Aj)
]

− 2Φ2(Bj)

1− Φ2(Bj)

[
2Φ2(Bj)G(Bj)

2 − 2Φ2(Bj)G(Aj)G(Bj)

− 2Φ2(Bj)F2(Aj , Bj)G(Bj)
]
.

Recalling the assumption that Φ2(Aj)
2, Φ2(Bj)

2, and Φ2(Aj)Φ2(Bj) are negligible compared to Φ2(Aj) and
Φ2(Bj), we have

V ar[F̃2(Aj , Bj)] ≈ 4Φ2(Aj)F2(Aj , Bj)G(Aj) + 4Φ2(Bj)F2(Aj , Bj)G(Bj)

≈ V ar[F̂2(Aj , Bj)],

and it follows that
V ar[F̃2(A,B)] ≈ V ar[F̂2(A,B)].

Proposition 13. Consider J independent polymorphic loci in populations A, B, and C with respective
parametric reference allele frequencies aj , bj , cj ∈ (0, 1), and suppose we take a random sample of N(Pj)
individuals at locus j in population P ∈ {A,B,C}, some of which may be related or inbred. Moreover,
assume that no individual is related to more than one other individual, which makes the terms Φ3(Pj),
Φ4(Pj), Φ2,2(Pj), Φ2(Pj)

2, Φ2(Aj)Φ2(Bj), Φ2(Aj)Φ2(CBj), and Φ2(Bj)Φ2(Cj) negligible to Φ2(Pj). Based

on this simplifying assumption, the estimator F̂3(A;B,C) has approximate variance

V ar[F̂3(A;B,C)] ≈ 4

J2

J∑
j=1

Φ2(Aj)F3(Aj ;Bj , Cj)G(Aj) +
1

J2

J∑
j=1

Φ2(Aj)F2(Bj , Cj)G(Aj)

+
1

J2

J∑
j=1

Φ2(Bj)F2(Aj , Cj)G(Bj) +
1

J2

J∑
j=1

Φ2(Cj)F2(Aj , Bj)G(Cj).

Proof. From the proof of Proposition 3, we have

E[F̂3(Aj ;Bj , Cj)] = F3(Aj ;Bj , Cj) + Φ2(Aj)G(Aj),

which gives

E[F̂3(Aj ;Bj , Cj)]
2 = [F3(Aj ;Bj , Cj) + Φ2(Aj)G(Aj)]

2

= F3(Aj ;Bj , Cj)
2 + 2Φ2(Aj)F3(Aj ;Bj , Cj)G(Aj) + Φ2(Aj)

2G(Aj)
2

≈ F3(Aj ;Bj , Cj)
2 + 2Φ2(Aj)F3(Aj ;Bj , Cj)G(Aj),
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where we used the fact that Φ2(Aj)
2 is negligible compared to Φ2(Aj) as an approximation. We also calculate

E[F̂3(Aj ;Bj , Cj)
2] = E

[
(âj − b̂j)2(âj − ĉj)2

]
= E[â4j − 2â3j ĉj + â2j ĉ

2
j − 2â3j b̂j + 4â2j b̂j ĉj − 2âj b̂j ĉ

2
j + â2j b̂

2
j − 2âj b̂

2
j ĉj + b̂2j ĉ

2
j ]

≈ a4j + 6Φ2(Aj)a
3
j (1− aj)− 2[a3j + 3Φ2(Aj)a

2
j (1− aj)]cj

+ [a2j + Φ2(Aj)aj(1− aj)][c2j + Φ2(Cj)cj(1− cj)]− 2[a3j + 3Φ2(Aj)a
2
j (1− aj)]bj

+ 4[a2j + Φ2(Aj)aj(1− aj)]bjcj − 2ajbj [c
2
j + Φ2(Cj)cj(1− cj)]

+ [a2j + Φ2(Aj)aj(1− aj)][b2j + Φ2(Bj)bj(1− bj)]− 2aj [b
2
j + Φ2(Bj)bj(1− bj)]cj

+ [b2j + Φ2(Bj)bj(1− bj)][c2j + Φ2(Cj)cj(1− cj)]
= (aj − bj)2(aj − cj)2 + Φ2(Aj)[6(aj − bj)(aj − cj) + (bj − cj)2]aj(1− aj)

+ Φ2(Bj)(aj − cj)2bj(1− bj) + Φ2(Cj)(aj − bj)2cj(1− cj)
+ Φ2(Aj)Φ2(Bj)aj(1− aj)bj(1− bj) + Φ2(Aj)Φ2(Cj)aj(1− aj)cj(1− cj)
+ Φ2(Bj)Φ2(Cj)bj(1− bj)cj(1− cj)

= F3(Aj ;Bj , Cj)
2 + 6Φ2(Aj)F3(Aj ;Bj , Cj)G(Aj) + Φ2(Aj)F2(Bj , Cj)G(Aj)

+ Φ2(Bj)F2(Aj , Cj)G(Bj) + Φ2(Cj)F2(Aj , Bj)G(Cj) + Φ2(Aj)Φ2(Bj)G(Aj)G(Bj)

+ Φ2(Aj)Φ2(Cj)G(Aj)G(Cj) + Φ2(Bj)Φ2(Cj)G(Bj)G(Cj)

≈ F3(Aj ;Bj , Cj)
2 + 6Φ2(Aj)F3(Aj ;Bj , Cj)G(Aj) + Φ2(Aj)F2(Bj , Cj)G(Aj)

+ Φ2(Bj)F2(Aj , Cj)G(Bj) + Φ2(Cj)F2(Aj , Bj)G(Cj),

where we used the fact that Φ2(Aj)Φ2(Bj), Φ2(Aj)Φ2(Cj), and Φ2(Bj)Φ2(Cj) are negligible compared to
Φ2(Aj), Φ2(Bj), and Φ2(Cj) as an approximation. Therefore, we have that

V ar[F̂3(Aj ;Bj , Cj)] = E[F̂3(Aj ;Bj , Cj)
2]− E[F̂3(Aj ;Bj , Cj)]

2

≈ F3(Aj ;Bj , Cj)
2 + 6Φ2(Aj)F3(Aj ;Bj , Cj)G(Aj) + Φ2(Aj)F2(Bj , Cj)G(Aj)

+ Φ2(Bj)F2(Aj , Cj)G(Bj) + Φ2(Cj)F2(Aj , Bj)G(Cj)

−
[
F3(Aj ;Bj , Cj)

2 + 2Φ2(Aj)F3(Aj ;Bj , Cj)G(Aj)
]

= 4Φ2(Aj)F3(Aj ;Bj , Cj)G(Aj) + Φ2(Aj)F2(Bj , Cj)G(Aj)

+ Φ2(Bj)F2(Aj , Cj)G(Bj) + Φ2(Cj)F2(Aj , Bj)G(Cj),

which gives

V ar[F̂3(A;B,C)] = V ar

[
1

J

J∑
j=1

F̂3(Aj ;Bj , Cj)

]

=
1

J2

J∑
j=1

V ar[F̂3(Aj ;Bj , Cj)]

≈ 4

J2

J∑
j=1

Φ2(Aj)F3(Aj ;Bj , Cj)G(Aj) +
1

J2

J∑
j=1

Φ2(Aj)F2(Bj , Cj)G(Aj)

+
1

J2

J∑
j=1

Φ2(Bj)F2(Aj , Cj)G(Bj) +
1

J2

J∑
j=1

Φ2(Cj)F2(Aj , Bj)G(Cj).

Lemma 14. Consider J independent polymorphic loci in populations A, B, and c with respective parametric
reference allele frequencies aj , bj , cj ∈ (0, 1), and suppose we take a random sample of N(Pj) individuals at
locus j in population P ∈ {A,B,C}, some of which may be related or inbred. Moreover, assume that no
individual is related to more than one other individual, which makes the terms Φ3(Pj), Φ4(Pj), Φ2,2(Pj),
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and Φ2(Pj)
2 negligible to Φ2(Pj). Based on this simplifying assumption, the estimators F̂3(A;B,C) and

ĝ(A) have an approximate covariance

Cov[F̂3(A;B,C), Ĝ(A)] ≈ 1

J2

J∑
j=1

Φ2(Aj)G(Aj)[2G(Aj)− 2F3(Aj ;Bj , Cj)− bj(1− cj)− (1− bj)cj ].

Proof. From the proofs of Lemma 1 and Proposition 3, we have

E[Ĝ(Aj)] = [1− Φ2(Aj)]G(Aj)

and
E[F̂3(Aj ;Bj , Cj)] = F3(Aj ;Bj , Cj) + Φ2(Aj)G(Aj),

yielding

E[F̂3(Aj ;Bj , Cj)]E[Ĝ(Aj)] = [F3(Aj ;Bj , Cj) + Φ2(Aj)G(Aj)][1− Φ2(Aj)]G(Aj)

= F3(Aj ;Bj , Cj)G(Aj) + Φ2(Aj)G(Aj)
2 − Φ2(Aj)F3(Aj ;Bj , Cj)G(Aj)

− Φ2(Aj)
2G(Aj)

2

≈ F3(Aj ;Bj , Cj)G(Aj) + Φ2(Aj)G(Aj)
2 − Φ2(Aj)F3(Aj ;Bj , Cj)G(Aj),

where we used the fact that Φ2(Aj)
2 is negligible compared to Φ2(Aj) as an approximation. We also calculate

E[F̂3(Aj ;Bj , Cj)ĝ(Aj)] = E[(âj − b̂j)(âj − ĉj)âj(1− âj)]

= E[(â2j − âj b̂j − âj ĉj + b̂j ĉj)(âj − â2j )]

= E[â3j ]− E[â2j ]E[̂bj ]− E[â2j ]E[ĉj ] + E[âj ]E[̂bj ]E[ĉj ]− E[â4j ] + E[â3j ]E[̂bj ]

+ E[â3j ]E[ĉj ]− E[â2j ]E[̂bj ]E[ĉj ]

≈ a3j + 3Φ2(Aj)a
2
j (1− aj)− [a2j + Φ2(Aj)aj(1− aj)]bj

− [a2j + Φ2(Aj)aj(1− aj)]cj + ajbjcj − [a4j + 6Φ2(Aj)a
3
j (1− aj)]

+ [a3j + 3Φ2(Aj)a
2
j (1− aj)]bj + [a3j + 3Φ2(Aj)a

2
j (1− aj)]cj

− [a2j + Φ2(Aj)aj(1− aj)]bjcj .

Recognizing that G(Aj) = aj(1− aj) and F3(Aj ;Bj , Cj) = a2j − ajbj − ajcj + bjcj , we have

E[F̂3(Aj ;Bj , Cj)ĝ(Bj)] ≈ a3j − a2jbj − a2jcj + ajbjcj − a4j + a3jbj + a3jcj − a2jbjcj
+ Φ2(Aj)[3aj − bj − cj − 6a2j + 3ajbj + 3ajcj − bjcj ]G(Aj)

= (a2j − ajbj − ajcj + bjcj)(aj − a2j )

+ Φ2(Aj)[3(aj − a2j )− 3(a2j − ajbj − ajcj + bjcj)− bj(1− cj)
− (1− bj)cj ]G(Aj)

= F3(Aj ;Bj , Cj)G(Aj)

+ Φ2(Aj)[3G(Aj)− 3F3(Aj ;Bj , Cj)− bj(1− cj)− (1− bj)cj ]G(Aj)

= F3(Aj ;Bj , Cj)G(Aj) + 3Φ2(Aj)G(Aj)
2 − 3Φ2(Aj)F3(Aj ;Bj , Cj)G(Aj)

− Φ2(Aj)G(Aj)bj(1− cj)− Φ2(Aj)G(Aj)(1− bj)cj
= [1− 3Φ2(Aj)]F3(Aj ;Bj , Cj)G(Aj) + 3Φ2(Aj)G(Aj)

2

− Φ2(Aj)G(Aj)bj(1− cj)− Φ2(Aj)G(Aj)(1− bj)cj .
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Therefore, we have that

Cov[F̂3(Aj ;Bj , Cj), Ĝ(Aj)] = E[F̂3(Aj ;Bj , Cj)Ĝ(Aj)]− E[F̂3(Aj ;Bj , Cj)]E[Ĝ(Aj)]

≈ [1− 3Φ2(Aj)]F3(Aj ;Bj , Cj)G(Aj) + 3Φ2(Aj)G(Aj)
2

− Φ2(Aj)G(Aj)bj(1− cj)− Φ2(Aj)G(Aj)(1− bj)cj

−
[
F3(Aj ;Bj , Cj)G(Aj) + Φ2(Aj)G(Aj)

2

− Φ2(Aj)F3(Aj ;Bj , Cj)G(Aj)
]

= 2Φ2(Aj)G(Aj)
2 − 2Φ2(Aj)F3(Aj ;Bj , Cj)G(Aj)

− Φ2(Aj)G(Aj)bj(1− cj)− Φ2(Aj)G(Aj)(1− bj)cj
= Φ2(Aj)G(Aj)[2G(Aj)− 2F3(Aj ;Bj , Cj)− bj(1− cj)− (1− bj)cj ],

which gives

Cov[F̂3(A;B,C), Ĝ(A)] = Cov

[
1

J

J∑
j=1

F̂3(Aj ;Bj , Cj),
1

J

J∑
j=1

Ĝ(Aj)

]

=
1

J2

J∑
j=1

Cov[F̂3(Aj ;Bj , Cj), Ĝ(Aj)]

≈ 1

J2

J∑
j=1

Φ2(Aj)G(Aj)[2G(Aj)− 2F3(Aj ;Bj , Cj)− bj(1− cj)

− (1− bj)cj ].

Proposition 15. Consider J independent polymorphic loci in populations A, B, and C with respective
parametric reference allele frequencies aj , bj , cj ∈ (0, 1), and suppose we take a random sample of N(Pj)
individuals at locus j in population P ∈ {A,B,C}, some of which may be related or inbred. Moreover,
assume that no individual is related to more than one other individual, which makes the terms Φ3(Pj),
Φ4(Pj), Φ2,2(Pj), Φ2(Pj)

2, Φ2(Aj)Φ2(Bj), Φ2(Aj)Φ2(Cj), and Φ2(Bj)Φ2(Cj) negligible to Φ2(Pj). Based

on this simplifying assumption, the unbiased estimator F̃3(A;B,C) has approximate variance

V ar[F̃3(A;B,C)] ≈ 4

J2

J∑
j=1

Φ2(Aj)F3(Aj ;Bj , Cj)G(Aj) +
1

J2

J∑
j=1

Φ2(Aj)F2(Bj , Cj)G(Aj)

+
1

J2

J∑
j=1

Φ2(Bj)F2(Aj , Cj)G(Bj) +
1

J2

J∑
j=1

Φ2(Cj)F2(Aj , Bj)G(Cj).

Proof. Recall that
F̃3(Aj ;Bj , Cj) = F̂3(Aj ;Bj , Cj)− Φ2(Aj)G̃(Aj),

where F̃3(Aj ;Bj , Cj) is an unbiased estimator for F3(Aj ;Bj , Cj) and G̃(Aj) = Ĝ(Aj)/[1 − Φ2(Aj)] is an
unbiased estimator of G(Aj) at locus j ∈ {1, 2, . . . , J}. Also, from the proof of Proposition 3, we have

E[F̂3(Aj ;Bj , Cj)] = F3(Aj ;Bj , Cj) + Φ2(Aj)G(Aj).

Therefore, we have that

V ar[F̃3(Aj ;Bj ;Cj)] = V ar[F̂3(Aj ;Bj , Cj)− Φ2(Aj)G̃(Aj)]

= V ar[F̂3(Aj ;Bj , Cj)] + Φ2(Aj)
2V ar[G̃(Aj)]

− 2Φ2(Aj)Cov[F̂3(Aj ;Bj , Cj), G̃(Aj)]

≈ V ar[F̂3(Aj ;Bj , Cj)]−
2Φ2(Aj)

1− Φ2(Aj)
Cov[F̂3(Aj ;Bj , Cj), Ĝ(Aj)],
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where we used the fact that Φ2(Aj)
2 is negligible compared to Φ2(Aj) as an approximation. Moreover,

because G̃(Aj) = Ĝ(Aj)/[1− Φ2(Aj)], we have

V ar[F̃3(Aj ;Bj ;Cj)] ≈ V ar[F̂3(Aj ;Bj , Cj)]−
2Φ2(Aj)

1− Φ2(Aj)
Cov[F̂3(Aj ;Bj , Cj), ĝ(Aj)]

= V ar[F̂3(Aj ;Bj , Cj)]

− 2Φ2(Aj)
2

1− Φ2(Aj)
G(Aj)[2G(Aj)− 2F3(Aj ;Bj , Cj)− bj(1− cj)− (1− bj)cj ].

Recalling the assumption that Φ2(Aj)
2 is negligible compared to Φ2(Aj), we have

V ar[F̃3(Aj ;Bj , Cj)] ≈ V ar[F̂3(Aj ;Bj , Cj)].

Proposition 16. Consider J independent polymorphic loci in populations A, B, C, and D with respective
parametric reference allele frequencies aj , bj , cj , dj ∈ (0, 1), and suppose we take a random sample of N(Pj)
individuals at locus j in population P ∈ {A,B,C,D}, some of which may be related or inbred. Moreover,
assume that no individual is related to more than one other individual, which makes the terms Φ3(Pj),
Φ4(Pj), Φ2,2(Pj), Φ2(Pj)

2, Φ2(Aj)Φ2(Cj), Φ2(Aj)Φ2(Dj), Φ2(Bj)Φ2(Cj), and Φ2(Bj)Φ2(Dj) negligible to

Φ2(Pj). Based on this simplifying The unbiased estimator F̂4(A,B;C,D) has approximate variance

V ar[F̂4(A,B;C,D)] ≈ 1

J2

J∑
j=1

[Φ2(Cj)G(Cj) + Φ2(Dj)G(Dj)]F2(Aj , Bj)

+
1

J2

J∑
j=1

[Φ2(Aj)G(Aj) + Φ2(Bj)G(Bj)]F2(Cj , Dj).

Proof. From the proofs of Propositions 2 and 5, we have

E[F̂2(Aj , Bj)] = F2(Aj , Bj) + Φ2(Aj)G(Aj) + Φ2(Bj)G(Bj)

and
E[F̂4(Aj , Bj ;Cj , Dj)] = F4(Aj , Bj ;Cj , Dj).

We calculate

E[F̂4(Aj , Bj ;Cj , Dj)
2] = E

[
(âj − b̂j)2(ĉj − d̂j)2

]
= E[F̂2(Aj , Bj)F̂2(Cj , Dj)]

= E[F̂2(Aj , Bj)]E[F̂2(Cj , Dj)]

= [F2(Aj , Bj) + Φ2(Aj)G(Aj) + Φ2(Bj)G(Bj)]

× [F2(Cj , Dj) + Φ2(Cj)G(Cj) + Φ2(Dj)G(Dj)]

= F4(Aj , Bj ;Cj , Dj)
2 + F2(Aj , Bj)[Φ2(Cj)G(Cj) + Φ2(Dj)G(Dj)]

+ F2(Cj , Dj)[Φ2(Aj)G(Aj) + Φ2(Bj)G(Bj)]

+ [Φ2(Aj)G(Aj) + Φ2(Bj)G(Bj)][Φ2(Cj)G(Cj) + Φ2(Dj)G(Dj)],

where we use the identity that

F4(Aj , Bj ;Cj , Dj)
2 = (aj − bj)2(cj − dj)2

= F2(Aj , Bj)F2(Cj , Dj).
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Therefore, we have that

V ar[F̂4(Aj , Bj ;Cj , Dj)] = E[F̂4(Aj , Bj ;Cj , Dj)
2]− E[F̂4(Aj , Bj ;Cj , Dj)]

2

= F4(Aj , Bj ;Cj , Dj)
2 + F2(Aj , Bj)[Φ2(Cj)G(Cj) + Φ2(Dj)G(Dj)]

+ F2(Cj , Dj)[Φ2(Aj)G(Aj) + Φ2(Bj)G(Bj)]

+ [Φ2(Aj)G(Aj) + Φ2(Bj)G(Bj)][Φ2(Cj)G(Cj) + Φ2(Dj)G(Dj)]

− F4(Aj , Bj ;Cj , Dj)
2

= F2(Aj , Bj)[Φ2(Cj)G(Cj) + Φ2(Dj)G(Dj)]

+ F2(Cj , Dj)[Φ2(Aj)G(Aj) + Φ2(Bj)G(Bj)]

+ [Φ2(Aj)G(Aj) + Φ2(Bj)G(Bj)][Φ2(Cj)G(Cj) + Φ2(Dj)G(Dj)]

≈ F2(Aj , Bj)[Φ2(Cj)G(Cj) + Φ2(Dj)G(Dj)]

+F2(Cj , Dj)[Φ2(Aj)G(Aj) + Φ2(Bj)G(Bj)],

where we used the fact that Φ2(Aj)Φ2(Cj), Φ2(Aj)Φ2(Dj), Φ2(Bj)Φ2(Cj), and Φ2(Cj)Φ2(Dj) are negligible
compared to Φ2(Aj), Φ2(Bj), Φ2(Cj) and Φ2(Dj) as an approximation. It follows that

V ar[F̂4(A,B;C,D)] = V ar

[
1

J

J∑
j=1

F̂4(Aj , Bj ;Cj , Dj)

]

=
1

J2

J∑
j=1

V ar[F̂4(Aj , Bj ;Cj , Dj)]

≈ 1

J2

J∑
j=1

[Φ2(Cj)G(Cj) + Φ2(Dj)G(Dj)]F2(Aj , Bj)

+
1

J2

J∑
j=1

[Φ2(Aj)G(Aj) + Φ2(Bj)G(Bj)]F2(Cj , Dj).

Following Wolter (2007), we have that an approximation to the variance of the ratio estimator X/Y is

V ar

[
X

Y

]
≈ E[X]2

E[Y ]2

[
V ar[X]

E[X]2
+
V ar[Y ]

E[Y ]2
− 2

Cov[X,Y ]

E[X]E[Y ]

]

Proposition 17. Consider J polymorphic loci in populations A, B, and C with respective parametric
reference allele frequencies aj , bj , cj ∈ (0, 1), and suppose we take a random sample of N(Pj) individuals at
locus j in population P ∈ {A,B,C}, some of which may be related or inbred. Moreover, assume that no
individual is related to more than one other individual, which makes the terms Φ3(Pj), Φ4(Pj), Φ2,2(Pj),
Φ2(Pj)

2, Φ2(Aj)Φ2(Bj), Φ2(Aj)Φ2(Cj), and Φ2(Bj)Φ2(Cj) negligible to Φ2(Pj). Based on this simplifying

assumption, the ratio estimator F̂3(A;B,C |A) has approximate variance

V ar[F̂3(A;B,C |A)] ≈ E[F̂3(A;B,C)]2

4E[Ĝ(A)]2

[
V ar[F̂3(A;B,C)]

E[F̂3(A;B,C)]2
+
V ar[Ĝ(A)]

E[Ĝ(A)]2
− 2

Cov[F̂3(A;B,C), Ĝ(A)]

E[F̂3(A;B,C)]E[Ĝ(A)]

]
,

where the expectations are

E[F̂3(A;B,C)] = F3(A;B,C) +
1

J

J∑
j=1

Φ2(Aj)G(Aj)

E[Ĝ(A)] = G(A)− 1

J

J∑
j=1

Φ2(Aj)G(Aj)
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the variances are

V ar[F̂3(A;B,C)] ≈ 4

J2

J∑
j=1

Φ2(Aj)F3(Aj ;Bj , Cj)G(Aj) +
1

J2

J∑
j=1

Φ2(Aj)F2(Bj , Cj)G(Aj)

+
1

J2

J∑
j=1

Φ2(Bj)F2(Aj , Cj)G(Bj) +
1

J2

J∑
j=1

Φ2(Cj)F2(Aj , Bj)G(Cj)

V ar[Ĝ(A)] ≈ 1

J2

J∑
j=1

Φ2(Aj)G(Aj)−
4

J2

J∑
j=1

Φ2(Aj)G(Aj)
2

and the covariance is

Cov[F̂3(A;B,C), ĝ(A)] ≈ 1

J2

J∑
j=1

Φ2(Aj)G(Aj)[2G(Aj)− 2F3(Aj ;Bj , Cj)− bj(1− cj)− (1− bj)cj ].

Proof. Recall that

F̂3(A;B,C, |A) =
F̂3(A;B,C)

2Ĝ(A)
.

Assuming that X = F̂3(A;B,C) and Y = 2Ĝ(A), following the approximation in Wolter (2007) we have

V ar[F̂3(A;B,C |A)] ≈ E[F̂3(A;B,C)]2

4E[Ĝ(A)]2

[
V ar[F̂3(A;B,C)]

E[F̂3(A;B,C)]2
+
V ar[Ĝ(A)]

E[Ĝ(A)]2
− 2

Cov[F̂3(A;B,C), Ĝ(A)]

E[F̂3(A;B,C)]E[Ĝ(A)]

]
,

where E[F̂3(A;B,C)] is given in Proposition 3, E[Ĝ(A)] in Lemma 1, V ar[F̂3(A;B,C)] in Proposition 13,

V ar[Ĝ(A)] in Lemma 9, and Cov[F̂3(A;B,C), Ĝ(A)] in Lemma 14.

Lemma 18. Consider J independent polymorphic loci in populationsA, B, and C with respective parametric
reference allele frequencies aj , bj , cj ∈ (0, 1), and suppose we take a random sample of N(Pj) individuals at
locus j in population P ∈ {A,B,C}, some of which may be related or inbred. Moreover, assume that no
individual is related to more than one other individual, which makes the terms Φ3(Pj), Φ4(Pj), Φ2,2(Pj), and

Φ2(Pj)
2 negligible to Φ2(Pj). Based on this simplifying assumption, the unbiased estimators F̃3(A;B,C)

and g̃(A) have an approximate covariance

Cov[F̃3(A;B,C), G̃(A)] ≈ 1

J2

J∑
j=1

Φ2(Aj)

1− Φ2(Aj)
G(Aj)[2G(Aj)− 2F3(Aj ;Bj , Cj)− bj(1− cj)− (1− bj)cj ].

Proof. Recall that
F̃3(Aj ;Bj , Cj) = F̂3(Aj ;Bj , Cj)− Φ2(Aj)G̃(Aj),

where G̃(Aj) = Ĝ(Aj)/[1− Φ2(Aj)]. It follows that

Cov[F̃3(Aj ;Bj , Cj), G̃(Aj)] = Cov[F̂3(Aj ;Bj , Cj)− Φ2(Aj)G̃(Aj), G̃(Aj)]

= Cov[F̂3(Aj ;Bj , Cj), G̃(Aj)]− Φ2(Aj)V ar[G̃(Aj)]

=
1

1− Φ2(Aj)
Cov[F̂3(Aj ;Bj , Cj), Ĝ(Aj)]−

Φ2(Aj)

[1− Φ2(Aj)]2
V ar[Ĝ(Aj)]

≈ 1

1− Φ2(Aj)
Cov[F̂3(Aj ;Bj , Cj), Ĝ(Aj)]−

Φ2(Aj)

1− 2Φ2(Aj)
V ar[Ĝ(Aj)],

where we used the fact that Φ2(Aj)
2 is negligible compared to Φ2(Aj) as an approximation. From the proofs

of Lemmas 9 and 14, we have

V ar[Ĝ(Aj)] ≈ Φ2(Aj)G(Aj)− 4Φ2(Aj)G(Aj)
2
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and

Cov[F̂3(Aj ;Bj , Cj), Ĝ(Aj)] = Φ2(Aj)G(Aj)[2G(Aj)− 2F3(Aj ;Bj , Cj)− bj(1− cj)− (1− bj)cj ].

Assuming that Φ2(Aj)
2 is negligible compared to Φ2(Aj), we have that

Φ2(Aj)V ar[Ĝ(Aj)] ≈ 0.

We therefore have that

Cov[F̃3(Aj ;Bj , Cj), G̃(Aj)] ≈
1

1− Φ2(Aj)
Cov[F̂3(Aj ;Bj , Cj), Ĝ(Aj)],

and thus by independence of loci we have

Cov[F̃3(A;B,C), G̃(A)] = Cov

[
1

J

J∑
j=1

F̃3(Aj ;Bj , Cj),
1

J

J∑
j=1

G̃(Aj)

]

=
1

J2

J∑
j=1

Cov[F̃3(Aj ;Bj , Cj), G̃(Aj)]

≈ 1

J2

J∑
j=1

Φ2(Aj)

1− Φ2(Aj)
G(Aj)[2G(Aj)− 2F3(Aj ;Bj , Cj)

− bj(1− cj)− (1− bj)cj ].

Proposition 19. Consider J polymorphic loci in populations A, B, and C with respective parametric
reference allele frequencies aj , bj , cj ∈ (0, 1), and suppose we take a random sample of N(Pj) individuals at
locus j in population P ∈ {A,B,C}, some of which may be related or inbred. Moreover, assume that no
individual is related to more than one other individual, which makes the terms Φ3(Pj), Φ4(Pj), Φ2,2(Pj),
Φ2(Pj)

2, Φ2(Aj)Φ2(Bj), Φ2(Aj)Φ2(Cj), and Φ2(Bj)Φ2(Cj) negligible to Φ2(Pj). Based on this simplifying

assumption, the approximately unbiased ratio estimator F̃3(A;B,C |A) has approximate variance

V ar[F̃3(A;B,C |A)] ≈ F3(A;B,C)2

4G(A)2

[
V ar[F̃3(A;B,C)]

F3(A;B,C)2
+
V ar[G̃(A)]

G(A)2
− 2

Cov[F̃3(A;B,C), G̃(A)]

F3(A;B,C)G(A)

]
,

where the variances are

V ar[F̃3(A;B,C)] ≈ 4

J2

J∑
j=1

Φ2(Aj)F3(Aj ;Bj , Cj)G(Aj) +
1

J2

J∑
j=1

Φ2(Aj)F2(Bj , Cj)G(Aj)

+
1

J2

J∑
j=1

Φ2(Bj)F2(Aj , Cj)G(Bj) +
1

J2

J∑
j=1

Φ2(Cj)F2(Aj , Bj)G(Cj)

V ar[G̃(A)] ≈ 1

J2

J∑
j=1

Φ2(Aj)

1− 2Φ2(Aj)
G(Aj)−

4

J2

J∑
j=1

Φ2(Aj)

1− 2Φ2(Aj)
G(Aj)

2

and the covariance is

Cov[F̃3(A;B,C), G̃(A)] ≈ 1

J2

J∑
j=1

Φ2(Aj)

1− Φ2(Aj)
G(Aj)[2G(Aj)− 2F3(Aj ;Bj , Cj)− bj(1− cj)− (1− bj)cj ].

Proof. Recall that

F̃3(A;B,C, |A) =
F̃3(A;B,C)

2G̃(A)
,
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where F̃3(A;B,C) is an unbiased estimator for F3(A;B,C) and G̃(A) is an unbiased estimator of G(A).

Assuming that X = F̃3(A;B,C) and Y = 2G̃(A), following the approximation in Wolter (2007) we have

V ar[F̃3(A;B,C |A)] ≈ F3(A;B,C)2

4G(A)2

[
V ar[F̃3(A;B,C)]

F3(A;B,C)2
+
V ar[G̃(A)]

G(A)2
− 2

Cov[F̃3(A;B,C), G̃(A)]

F3(A;B,C)G(A)

]
,

where V ar[F̃3(A;B,C)] is given in Proposition 15, V ar[G̃(A)] in Lemma 9, and Cov[F̃3(A;B,C), G̃(A)] in
Lemma 18.

Lemma 20. Consider J independent polymorphic loci in populations A, B, C, and D with respective
parametric reference allele frequencies aj , bj , cj , dj ∈ (0, 1), and suppose we take a random sample of N(Pj)
individuals at locus j in population P ∈ {A,B,C,D}, some of which may be related or inbred. Moreover,
assume that no individual is related to more than one other individual, which makes the terms Φ3(Pj),
Φ4(Pj), Φ2,2(Pj), and Φ2(Pj)

2 negligible to Φ2(Pj). Based on this simplifying assumption, the estimators

F̂4(A,B;C,D) and Ĝ(P ), P ∈ {A,B,C,D}, have approximate covariances

Cov[F̂4(A,B;C,D), Ĝ(A)] ≈ 1

J2

J∑
j=1

Φ2(Aj)G(Aj)(1− 2aj)(cj − dj)

Cov[F̂4(A,B;C,D), Ĝ(B)] ≈ − 1

J2

J∑
j=1

Φ2(Bj)G(Bj)(1− 2bj)(cj − dj)

Cov[F̂4(A,B;C,D), Ĝ(C)] ≈ 1

J2

J∑
j=1

Φ2(Cj)G(Cj)(1− 2cj)(aj − bj)

Cov[F̂4(A,B;C,D), Ĝ(D)] ≈ − 1

J2

J∑
j=1

Φ2(Dj)G(Dj)(1− 2dj)(aj − bj).

Proof. From the proofs of Lemma 1 and Proposition 5, we that have

E[Ĝ(Pj)] = [1− Φ2(Pj)]G(Pj)

and
E[F̂4(Aj , Bj ;Cj , Dj)] = F4(Aj , Bj ;Cj , Dj),

yielding

E[F̂4(Aj , Bj ;Cj , Dj)]E[Ĝ(Pj)] = [1− Φ2(Pj)]F4(Aj , Bj ;Cj , Dj)G(Pj).

We first calculate

E[F̂4(Aj , Bj ;Cj , Dj)Ĝ(Aj)] = E[(âj − b̂j)(ĉj − d̂j)âj(1− âj)]

= E[(âj − b̂j)(âj − â2j )]E[ĉj − d̂j ]

=
[
E[â2j ]− E[â3j ]− E[âj ]E[̂bj ] + E[â2j ]E[̂bj ]

][
E[ĉj ]− E[d̂j ]

]
≈
[
a2j + Φ2(Aj)aj(1− aj)− [a3j + 3Φ2(Aj)a

3
j (1− aj)− ajbj

+ [a2j + Φ2(Aj)aj(1− aj)]bj
]
(cj − dj)

= (a2j − a3j − ajbj + a2jbj)(cj − dj) + Φ2(Aj)aj(1− aj)(1− 3aj + bj)(cj − dj)
= (aj − bj)(cj − dj)aj(1− aj) + Φ2(Aj)aj(1− aj)[1− 2aj − (aj − bj)](cj − dj)
= F4(Aj , Bj ;Cj , Dj)G(Aj)− Φ2(Aj)F4(Aj , Bj ;Cj , Dj)G(Aj)

+ Φ2(Aj)G(Aj)(1− 2aj)(cj − dj)
= [1− Φ2(Aj)]F4(Aj , Bj ;Cj , Dj)G(Aj) + Φ2(Aj)G(Aj)(1− 2aj)(cj − dj).
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Hence, we have that

Cov[F̂4(Aj , Bj ;Cj , Dj), Ĝ(Aj)] = E[F̂4(Aj , Bj ;Cj , Dj)Ĝ(Aj)]− E[F̂4(Aj , Bj ;Cj , Dj)]E[Ĝ(Aj)]

≈ [1− Φ2(Aj)]F4(Aj , Bj ;Cj , Dj)G(Aj) + Φ2(Aj)G(Aj)(1− 2aj)(cj − dj)
− [1− Φ2(Aj)]F4(Aj , Bj ;Cj , Dj)G(Aj)

= Φ2(Aj)G(Aj)(1− 2aj)(cj − dj).

Similarly, we have that

E[F̂4(Aj , Bj ;Cj , Dj)Ĝ(Bj)] = E[(âj − b̂j)(ĉj − d̂j )̂bj(1− b̂j)]

= E[(âj − b̂j)(̂bj − b̂2j )]E[ĉj − d̂j ]

= −E[(̂bj − âj)(̂bj − b̂2j )]E[ĉj − d̂j ]

= −
[
E[̂b2j ]− E[̂b3j ]− E[âj ]E[̂bj ] + E[âj ]E[̂b2j ]

][
E[ĉj ]− E[d̂j ]

]
≈ −

[
b2j + Φ2(Bj)bj(1− bj)− [b3j + 3Φ2(Bj)b

3
j (1− bj)− ajbj

+ aj [b
2
j + Φ2(Bj)bj(1− bj)]

]
(cj − dj)

= −(b2j − b3j − ajbj + ajb
2
j )(cj − dj)− Φ2(Bj)bj(1− bj)(1− 3bj + aj)(cj − dj)

= (aj − bj)(cj − dj)bj(1− bj)− Φ2(Bj)bj(1− bj)[1− 2bj + (aj − bj)](cj − dj)
= F4(Aj , Bj ;Cj , Dj)G(Aj)− Φ2(Bj)F4(Aj , Bj ;Cj , Dj)G(Bj)

− Φ2(Bj)G(Bj)(1− 2bj)(cj − dj)
= [1− Φ2(Bj)]F4(Aj , Bj ;Cj , Dj)G(Bj)− Φ2(Bj)G(Bj)(1− 2bj)(cj − dj).

Hence, we have that

Cov[F̂4(Aj , Bj ;Cj , Dj), Ĝ(Bj)] = E[F̂4(Aj , Bj ;Cj , Dj)Ĝ(Bj)]− E[F̂4(Aj , Bj ;Cj , Dj)]E[Ĝ(Bj)]

≈ [1− Φ2(Bj)]F4(Aj , Bj ;Cj , Dj)G(Bj)− Φ2(Bj)G(Bj)(1− 2bj)(cj − dj)
− [1− Φ2(Bj)]F4(Aj , Bj ;Cj , Dj)G(Bj)

= −Φ2(Bj)G(Bj)(1− 2bj)(cj − dj).

Parallel to the derivation for P = A, we have

Cov[F̂4(Aj , Bj ;Cj , Dj), Ĝ(Cj)] = Φ2(Cj)G(Cj)(1− 2cj)(aj − bj)

and parallel to the derivation for P = B, we have

Cov[F̂4(Aj , Bj ;Cj , Dj), Ĝ(Dj)] = −Φ2(Dj)G(Dj)(1− 2dj)(aj − bj).

We know that by independence of loci we have

Cov[F̂4(A,B;C,D), Ĝ(P )] = Cov

[
1

J

J∑
j=1

F̂4(Aj , Bj ;Cj , Dj),
1

J

J∑
j=1

Ĝ(Pj)

]

=
1

J2

J∑
j=1

Cov[F̂4(Aj , Bj ;Cj , Dj), Ĝ(Pj)]
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which gives

Cov[F̂4(A,B;C,D), Ĝ(A)] ≈ 1

J2

J∑
j=1

Φ2(Aj)G(Aj)(1− 2aj)(cj − dj)

Cov[F̂4(A,B;C,D), Ĝ(B)] ≈ − 1

J2

J∑
j=1

Φ2(Bj)G(Bj)(1− 2bj)(cj − dj)

Cov[F̂4(A,B;C,D), Ĝ(C)] ≈ 1

J2

J∑
j=1

Φ2(Cj)G(Cj)(1− 2cj)(aj − bj)

Cov[F̂4(A,B;C,D), Ĝ(D)] ≈ − 1

J2

J∑
j=1

Φ2(Dj)G(Dj)(1− 2dj)(aj − bj).

Proposition 21. Consider J polymorphic loci in populations A, B, C, and D with respective parametric
reference allele frequencies aj , bj , cj , dj ∈ (0, 1), and suppose we take a random sample of N(Pj) individuals
at locus j in population P ∈ {A,B,C,D}, some of which may be related or inbred. Moreover, assume that no
individual is related to more than one other individual, which makes the terms Φ3(Pj), Φ4(Pj), Φ2,2(Pj), and

Φ2(Pj)
2 negligible to Φ2(Pj). Based on this simplifying assumption, the ratio estimator F̂4(A,B;C,D |P )

has approximate variance

V ar[F̂4(A,B;C,D |P )] ≈ F4(A,B;C,D)2

E[Ĝ(P )]2

[
V ar[F̂4(A,B;C,D)]

F4(A,B;C,D)2
+
V ar[Ĝ(A)]

E[Ĝ(P )]2

− 2
Cov[F̂4(A,B;C,D), Ĝ(P )]

F4(A,B;C,D)E[Ĝ(P )]

]
,

where the expectation is

E[Ĝ(P )] = G(P )− 1

J

J∑
j=1

Φ2(Pj)G(Pj)

the variances are

V ar[F̂4(A,B;C,D)] ≈ 1

J2

J∑
j=1

[Φ2(Cj)g(Cj) + Φ2(Dj)G(Dj)]F2(Aj , Bj)

+
1

J2

J∑
j=1

[Φ2(Aj)G(Aj) + Φ2(Bj)G(Bj)]F2(Cj , Dj)

V ar[Ĝ(P )] ≈ 1

J2

J∑
j=1

Φ2(Pj)G(Pj)−
4

J2

J∑
j=1

Φ2(Pj)G(Pj)
2

and the covariances are

Cov[F̂4(A,B;C,D), Ĝ(A)] ≈ 1

J2

J∑
j=1

Φ2(Aj)G(Aj)(1− 2aj)(cj − dj)

Cov[F̂4(A,B;C,D), Ĝ(B)] ≈ − 1

J2

J∑
j=1

Φ2(Bj)G(Bj)(1− 2bj)(cj − dj)

Cov[F̂4(A,B;C,D), Ĝ(C)] ≈ 1

J2

J∑
j=1

Φ2(Cj)G(Cj)(1− 2cj)(aj − bj)

Cov[F̂4(A,B;C,D), Ĝ(D)] ≈ − 1

J2

J∑
j=1

Φ2(Dj)G(Dj)(1− 2dj)(aj − bj).

43

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.20.391367doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.20.391367
http://creativecommons.org/licenses/by/4.0/


Proof. Recall that

F̂4(A,B;C,D |P ) =
F̂4(A,B;C,D)

Ĝ(P )
,

where F̂4(A,B;C,D) is an unbiased estimator for F4(A,B;C,D). Assuming that X = F̂4(A,B;C,D) and

Y = Ĝ(P ), following the approximation in Wolter (2007) we have

V ar[F̂4(A,B;C,D |P )] ≈ F4(A,B;C,D)2

E[Ĝ(P )]2

[
V ar[F̂4(A,B;C,D)]

F4(A,B;C,D)2
+
V ar[Ĝ(A)]

E[Ĝ(P )]2

− 2
Cov[F̂4(A,B;C,D), Ĝ(P )]

F4(A,B;C,D)E[Ĝ(P )]

]
,

where E[Ĝ(P )] is given in Lemma 1, V ar[F̂4(A,B;C,D)] in Proposition 16, V ar[Ĝ(P )] in Lemma 9, and

Cov[F̂4(A,B;C,D), Ĝ(P )] in Lemma 20 for each population P ∈ {A,B,C,D}.

Lemma 22. Consider J independent polymorphic loci in populations A, B, C, and D with respective
parametric reference allele frequencies aj , bj , cj , dj ∈ (0, 1), and suppose we take a random sample of N(Pj)
individuals at locus j in population P ∈ {A,B,C,D}, some of which may be related or inbred. Moreover,
assume that no individual is related to more than one other individual, which makes the terms Φ3(Pj),
Φ4(Pj), Φ2,2(Pj), and Φ2(Pj)

2 negligible to Φ2(Pj). Based on this simplifying assumption, the unbiased

estimators F̂4(A,B;C,D) and G̃(P ), P ∈ {A,B,C,D}, have approximate covariances

Cov[F̂4(A,B;C,D), G̃(A)] ≈ 1

J2

J∑
j=1

Φ2(Aj)

1− Φ2(Aj)
G(Aj)(1− 2aj)(cj − dj)

Cov[F̂4(A,B;C,D), G̃(B)] ≈ − 1

J2

J∑
j=1

Φ2(Bj)

1− Φ2(Bj)
G(Bj)(1− 2bj)(cj − dj)

Cov[F̂4(A,B;C,D), G̃(C)] ≈ 1

J2

J∑
j=1

Φ2(Cj)

1− Φ2(Cj)
G(Cj)(1− 2cj)(aj − bj)

Cov[F̂4(A,B;C,D), G̃(D)] ≈ − 1

J2

J∑
j=1

Φ2(Dj)

1− Φ2(Dj)
G(Dj)(1− 2dj)(aj − bj).

Proof. Recall that G̃(Pj) = Ĝ(Pj)/[1− Φ2(Pj)]. It follows that

Cov[F̂4(Aj , Bj ;Cj , Dj), G̃(Pj)] =
1

1− Φ2(Pj)
Cov[F̂4(Aj , Bj ;Cj , Dj), Ĝ(Pj)].

From the proof of Lemma 20, we have

Cov[F̂4(Aj , Bj ;Cj , Dj), G̃(Aj)] ≈
Φ2(Aj)

1− Φ2(Aj)
G(Aj)(1− 2aj)(cj − dj)

Cov[F̂4(Aj , Bj ;Cj , Dj), G̃(Bj)] ≈ −
Φ2(Bj)

1− Φ2(Bj)
G(Bj)(1− 2bj)(cj − dj)

Cov[F̂4(Aj , Bj ;Cj , Dj), G̃(Cj)] ≈
Φ2(Cj)

1− Φ2(Cj)
G(Cj)(1− 2cj)(aj − bj)

Cov[F̂4(Aj , Bj ;Cj , Dj), G̃(Dj)] ≈ −
Φ2(Dj)

1− Φ2(Dj)
G(Dj)(1− 2dj)(aj − bj),

44

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.20.391367doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.20.391367
http://creativecommons.org/licenses/by/4.0/


yielding

Cov[F̂4(A,B;C,D), G̃(A)] ≈ 1

J2

J∑
j=1

Φ2(Aj)

1− Φ2(Aj)
G(Aj)(1− 2aj)(cj − dj)

Cov[F̂4(A,B;C,D), G̃(B)] ≈ − 1

J2

J∑
j=1

Φ2(Bj)

1− Φ2(Bj)
G(Bj)(1− 2bj)(cj − dj)

Cov[F̂4(A,B;C,D), G̃(C)] ≈ 1

J2

J∑
j=1

Φ2(Cj)

1− Φ2(Cj)
G(Cj)(1− 2cj)(aj − bj)

Cov[F̂4(A,B;C,D), G̃(D)] ≈ − 1

J2

J∑
j=1

Φ2(Dj)

1− Φ2(Dj)
G(Dj)(1− 2dj)(aj − bj).

Proposition 23. Consider J polymorphic loci in populations A, B, C, and D with respective parametric
reference allele frequencies aj , bj , cj , dj ∈ (0, 1), and suppose we take a random sample of N(Pj) individuals
at locus j in population P ∈ {A,B,C,D}, some of which may be related or inbred. Moreover, assume that
no individual is related to more than one other individual, which makes the terms Φ3(Pj), Φ4(Pj), Φ2,2(Pj),
and Φ2(Pj)

2 negligible to Φ2(Pj). Based on this simplifying assumption, the approximately unbiased ratio

estimator F̃4(A,B;C,D |P ) has approximate variance

V ar[F̃4(A,B;C,D |P )] ≈ F4(A,B;C,D)2

G(P )2

[
V ar[F̂4(A,B;C,D)]

F4(A,B;C,D)2
+
V ar[G̃(A)]

G(P )2

− 2
Cov[F̂4(A,B;C,D), G̃(P )]

F4(A,B;C,D)G(P )

]
,

where the variances are

V ar[F̂4(A,B;C,D)] ≈ 1

J2

J∑
j=1

[Φ2(Cj)G(Cj) + Φ2(Dj)G(Dj)]F2(Aj , Bj)

+
1

J2

J∑
j=1

[Φ2(Aj)G(Aj) + Φ2(Bj)G(Bj)]F2(Cj , Dj)

V ar[G̃(P )] ≈ 1

J2

J∑
j=1

Φ2(Pj)

1− 2Φ2(Pj)
G(Pj)−

4

J2

J∑
j=1

Φ2(Pj)

1− 2Φ2(Pj)
G(Pj)

2

and the covariances are

Cov[F̂4(A,B;C,D), G̃(A)] ≈ 1

J2

J∑
j=1

Φ2(Aj)

1− Φ2(Aj)
G(Aj)(1− 2aj)(cj − dj)

Cov[F̂4(A,B;C,D), G̃(B)] ≈ − 1

J2

J∑
j=1

Φ2(Bj)

1− Φ2(Bj)
G(Bj)(1− 2bj)(cj − dj)

Cov[F̂4(A,B;C,D), G̃(C)] ≈ 1

J2

J∑
j=1

Φ2(Cj)

1− Φ2(Cj)
G(Cj)(1− 2cj)(aj − bj)

Cov[F̂4(A,B;C,D), G̃(D)] ≈ − 1

J2

J∑
j=1

Φ2(Dj)

1− Φ2(Dj)
G(Dj)(1− 2dj)(aj − bj).

Proof. Recall that

F̃4(A,B;C,D |P ) =
F̂4(A,B;C,D)

G̃(P )
,
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where F̂4(A,B;C,D) is an unbiased estimator for F4(A,B;C,D) and G̃(P ) is an unbiased estimator of G(P ).

Assuming that X = F̂4(A,B;C,D) and Y = G̃(P ), following the approximation in Wolter (2007) we have

V ar[F̃4(A,B;C,D |P )] ≈ F4(A,B;C,D)2

G(P )2

[
V ar[F̂4(A,B;C,D)]

F4(A,B;C,D)2
+
V ar[G̃(A)]

G(P )2

− 2
Cov[F̂4(A,B;C,D), G̃(P )]

F4(A,B;C,D)G(P )

]
,

where V ar[F̂4(A,B;C,D)] is given in Proposition 16, V ar[G̃(P )] in Lemma 9, and Cov[F̂4(A,B;C,D), G̃(P )]
in Lemma 22 for each population P ∈ {A,B,C,D}.

Lemma 24. Consider J independent polymorphic loci in populations A, B, C, and D with respective
parametric reference allele frequencies aj , bj , cj , dj ∈ (0, 1), and suppose we take a random sample of N(Pj)
individuals at locus j in population P ∈ {A,B,C,D}, some of which may be related or inbred. Moreover,
assume that no individual is related to more than one other individual, which makes the terms Φ3(Pj),
Φ4(Pj), Φ2,2(Pj), Φ2(Pj)

2, Φ2(Aj)Φ2(Bj), Φ2(Aj)Φ2(Cj), Φ2(Aj)Φ2(Dj), Φ2(Bj)Φ2(Cj), Φ2(Bj)Φ2(Dj),
and Φ2(Cj)Φ2(Dj) negligible to Φ2(Pj). Based on this simplifying assumption, the unbiased estimator

Ĥ(A,B,C,D) has approximate variance

V ar[Ĥ(A,B;C,D)] ≈ 1

J2

J∑
j=1

(aj + bj − 2ajbj)
2[Φ2(Cj)G(Cj)(1− 2dj)

2 + Φ2(Dj)G(Dj)(1− 2cj)
2]

+
1

J2

J∑
j=1

(cj + dj − 2cjdj)
2[Φ2(Aj)G(Aj)(1− 2bj)

2 + Φ2(Bj)G(Bj)(1− 2aj)
2].

Proof. From the proof of Lemma 8, we have that

E[Ĥ(Aj , Bj , Cj , Dj)] = H(Aj , Bj , Cj , Dj),

yielding
E[Ĥ(Aj , Bj , Cj , Dj)]

2 = H(Aj , Bj , Cj , Dj)
2.

We first calculate

E[Ĥ(Aj , Bj , Cj , Dj)
2] = E[(âj + b̂j − 2âj b̂j)

2(ĉj + d̂j − 2ĉj d̂j)
2]

= E[(âj + b̂j − 2âj b̂j)
2]E[(ĉj + d̂j − 2ĉj d̂j)

2].

We compute the first term as

E[(âj + b̂j − 2âj b̂j)
2] = E[â2j ] + E[̂b2j ] + 4E[â2j ]E[̂b2j ] + 2E[âj ]E[̂bj ]− 4E[â2j ]E[̂bj ]− 4E[âj ]E[̂b2j ]

= E[â2j ] + E[̂b2j ] + 4E[â2j ]E[̂b2j ] + 2ajbj − 4E[â2j ]bj − 4ajE[̂b2j ]

≈ a2j + Φ2(Aj)aj(1− aj) + b2j + Φ2(Bj)bj(1− bj)
+ 4[a2j + Φ2(Aj)aj(1− aj)][b2j + Φ2(Bj)bj(1− bj)] + 2ajbj

− 4[a2j + Φ2(Aj)aj(1− aj)]bj − 4aj [b
2
j + Φ2(Bj)bj(1− bj)]

= a2j + b2j + 4a2jb
2
j + 2ajbj − 4a2jbj − 4ajb

2
j + Φ2(Aj)aj(1− aj) + Φ2(Bj)bj(1− bj)

+ 4Φ2(Aj)aj(1− aj)b2j + 4Φ2(Bj)a
2
jbj(1− bj) + 4Φ2(Aj)Φ2(Bj)aj(1− aj)bj(1− bj)

− 4Φ2(Aj)aj(1− aj)bj − 4Φ2(Bj)ajbj(1− bj)
= (aj + bj − 2ajbj)

2 + Φ2(Aj)G(Aj)[1− 4bj + 4b2j ] + Φ2(Bj)G(Bj)[1− 4aj + 4a2j ]

+ 4Φ2(Aj)Φ2(Bj)G(Aj)G(Bj)

≈ (aj + bj − 2ajbj)
2 + Φ2(Aj)G(Aj)(1− 2bj)

2 + Φ2(Bj)G(Bj)(1− 2aj)
2,
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where we used the fact that Φ2(Aj)Φ2(Bj) is negligible compared to Φ2(Aj) and Φ2(Bj) as an approximation.
Using a similar argument we have that

E[(ĉj + d̂j − 2ĉj d̂j)
2] ≈ (cj + dj − 2cjdj)

2 + Φ2(Cj)G(Cj)(1− 2dj)
2 + Φ2(Dj)G(Dj)(1− 2cj)

2.

Hence, we have that

E[Ĥ(Aj , Bj , Cj , Dj)
2] = E[(âj + b̂j − 2âj b̂j)

2]E[(ĉj + d̂j − 2ĉj d̂j)
2]

≈
[
(aj + bj − 2ajbj)

2 + Φ2(Aj)G(Aj)(1− 2bj)
2 + Φ2(Bj)G(Bj)(1− 2aj)

2
]

×
[
(cj + dj − 2cjdj)

2 + Φ2(Cj)G(Cj)(1− 2dj)
2 + Φ2(Dj)G(Dj)(1− 2cj)

2
]

≈ H(Aj , Bj , Cj , Dj)
2

+ (aj + bj − 2ajbj)
2[Φ2(Cj)G(Cj)(1− 2dj)

2 + Φ2(Dj)G(Dj)(1− 2cj)
2]

+ (cj + dj − 2cjdj)
2[Φ2(Aj)G(Aj)(1− 2bj)

2 + Φ2(Bj)G(Bj)(1− 2aj)
2],

where we used the fact that Φ2(Aj)Φ2(Cj), Φ2(Aj)Φ2(Dj), Φ2(Bj)Φ2(Cj), and Φ2(Bj)Φ2(Dj) are negligible
compared to Φ2(Aj), Φ2(Bj), Φ2(Cj), and Φ2(Dj) as an approximation. Putting it together, we have

V ar[Ĥ(Aj , Bj , Cj , Dj)] = E[Ĥ(Aj , Bj , Cj , Dj)
2]− E[Ĥ(Aj , Bj , Cj , Dj)]

2

= E[Ĥ(Aj , Bj , Cj , Dj)
2]−H(Aj , Bj , Cj , Dj)

2

≈ (aj + bj − 2ajbj)
2[Φ2(Cj)G(Cj)(1− 2dj)

2 + Φ2(Dj)G(Dj)(1− 2cj)
2]

+ (cj + dj − 2cjdj)
2[Φ2(Aj)G(Aj)(1− 2bj)

2 + Φ2(Bj)G(Bj)(1− 2aj)
2].

Given the assumption of independent loci, we have

V ar[Ĥ(A,B,C,D)] = V ar

[
1

J

J∑
j=1

Ĥ(Aj , Bj , Cj , Dj)

]

=
1

J2

J∑
j=1

V ar[Ĥ(Aj , Bj , Cj , Dj)]

≈ 1

J2

J∑
j=1

(aj + bj − 2ajbj)
2[Φ2(Cj)G(Cj)(1− 2dj)

2 + Φ2(Dj)G(Dj)(1− 2cj)
2]

+
1

J2

J∑
j=1

(cj + dj − 2cjdj)
2[Φ2(Aj)G(Aj)(1− 2bj)

2 + Φ2(Bj)G(Bj)(1− 2aj)
2].

Lemma 25. Consider J independent polymorphic loci in populations A, B, C, and D with respective
parametric reference allele frequencies aj , bj , cj , dj ∈ (0, 1), and suppose we take a random sample of N(Pj)
individuals at locus j in population P ∈ {A,B,C,D}, some of which may be related or inbred. Moreover,
assume that no individual is related to more than one other individual, which makes the terms Φ3(Pj),
Φ4(Pj), Φ2,2(Pj), Φ2(Pj)

2, Φ2(Aj)Φ2(Cj), Φ2(Aj)Φ2(Dj), Φ2(Bj)Φ2(Cj), and Φ2(Bj)Φ2(Dj) negligible to

Φ2(Pj). Based on this simplifying assumption, the unbiased estimators F̂4(A,B;C,D) and Ĥ(A,B,C,D)
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have approximate covariance

Cov[F̂4(A,B;C,D), Ĥ(A,B,C,D)] ≈ 1

J2

J∑
j=1

Φ2(Aj)G(Aj)(cj − dj)(cj + dj − 2cjdj)(1− 2bj)

− 1

J2

J∑
j=1

Φ2(Bj)G(Bj)(cj − dj)(cj + dj − 2cjdj)(1− 2aj)

+
1

J2

J∑
j=1

Φ2(Cj)G(Cj)(aj − bj)(aj + bj − 2ajbj)(1− 2dj)

− 1

J2

J∑
j=1

Φ2(Dj)G(Dj)(aj − bj)(aj + bj − 2ajbj)(1− 2cj).

Proof. From the proofs of Proposition 5 and Lemma 8, we that have

E[F̂4(Aj , Bj ;Cj , Dj)] = F4(Aj , Bj ;Cj , Dj),

and
E[Ĥ(Aj , Bj , Cj , Dj)] = H(Aj , Bj , Cj , Dj),

yielding

E[F̂4(Aj , Bj ;Cj , Dj)]E[Ĥ(Aj , Bj , Cj , Dj)] = F4(Aj , Bj ;Cj , Dj)H(Aj , Bj , Cj , Dj).

We first calculate

E[F̂4(Aj , Bj ;Cj , Dj)Ĥ(Aj , Bj , Cj , Dj)] = E[(âj − b̂j)(ĉj − d̂j)(âj + b̂j − 2âj b̂j)(ĉj + d̂j − 2ĉj d̂j)]

= E[(âj − b̂j)(âj + b̂j − 2âj b̂j)]E[(ĉj − d̂j)(ĉj + d̂j − 2ĉj d̂j)].

We compute the first term as

E[(âj − b̂j)(âj + b̂j − 2âj b̂j)] = E[â2j ]− 2E[â2j ]E[̂bj ]− E[̂b2j ] + 2E[âj ]E[̂b2j ]

= E[â2j ](1− 2E[̂bj ])− E[̂b2j ](1− 2E[âj ]

≈ [a2j + Φ2(Aj)aj(1− aj)][1− 2bj ]− [b2j + Φ2(Bj)bj(1− bj)][1− 2aj ]

= (aj − bj)(aj + bj − 2ajbj) + Φ2(Aj)G(Aj)(1− 2bj)− Φ2(Bj)G(Bj)(1− 2aj).

Using a similar argument, we have that

E[(ĉj − d̂j)(ĉj + d̂j − 2ĉj d̂j)] ≈ (cj − dj)(cj + dj − 2cjdj) + Φ2(Cj)g(Cj)(1− 2dj)− Φ2(Dj)g(Dj)(1− 2cj).

Hence, we have that

E[F̂4(Aj , Bj ;Cj , Dj)Ĥ(Aj , Bj , Cj , Dj)] = E[(âj − b̂j)(âj + b̂j − 2âj b̂j)]E[(ĉj − d̂j)(ĉj + d̂j − 2ĉj d̂j)]

≈
[
(aj − bj)(aj + bj − 2ajbj) + Φ2(Aj)G(Aj)(1− 2bj)

− Φ2(Bj)G(Bj)(1− 2aj)
]

×
[
(cj − dj)(cj + dj − 2cjdj) + Φ2(Cj)G(Cj)(1− 2dj)

− Φ2(Dj)G(Dj)(1− 2cj)
]

≈ F4(Aj , Bj ;Cj , Dj)H(Aj , Bj , Cj , Dj)

+ Φ2(Aj)G(Aj)(cj − dj)(cj + dj − 2cjdj)(1− 2bj)

− Φ2(Bj)G(Bj)(cj − dj)(cj + dj − 2cjdj)(1− 2aj)

+ Φ2(Cj)G(Cj)(aj − bj)(aj + bj − 2ajbj)(1− 2dj)

− Φ2(Dj)G(Dj)(aj − bj)(aj + bj − 2ajbj)(1− 2cj),
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where we used the fact that Φ2(Aj)Φ2(Cj), Φ2(Aj)Φ2(Dj), Φ2(Bj)Φ2(Cj), and Φ2(Bj)Φ2(Dj) are negligible
compared to Φ2(Aj), Φ2(Bj), Φ2(Cj), and Φ2(Dj) as an approximation. Putting it together, we have

Cov[F̂4(Aj , Bj ;Cj , Dj), Ĥ(Aj , Bj , Cj , Dj)] = E[F̂4(Aj , Bj ;Cj , Dj)Ĥ(Aj , Bj , Cj , Dj)]

− E[F̂4(Aj , Bj ;Cj , Dj)]E[Ĥ(Aj , Bj , Cj , Dj)]

= E[F̂4(Aj , Bj ;Cj , Dj)Ĥ(Aj , Bj , Cj , Dj)]

− F4(Aj , Bj ;Cj , Dj)H(Aj , Bj , Cj , Dj)

≈ Φ2(Aj)G(Aj)(cj − dj)(cj + dj − 2cjdj)(1− 2bj)

− Φ2(Bj)G(Bj)(cj − dj)(cj + dj − 2cjdj)(1− 2aj)

+ Φ2(Cj)G(Cj)(aj − bj)(aj + bj − 2ajbj)(1− 2dj)

− Φ2(Dj)G(Dj)(aj − bj)(aj + bj − 2ajbj)(1− 2cj).

Given the assumption of independent loci, we have

Cov[F̂4(A,B;C,D), Ĥ(A,B,C,D)] = Cov

[
1

J

J∑
j=1

F̂4(Aj , Bj ;Cj , Dj),
1

J

J∑
j=1

Ĥ(Aj , Bj , Cj , Dj)

]

=
1

J2

J∑
j=1

Cov[F̂4(Aj , Bj ;Cj , Dj), Ĥ(Aj , Bj , Cj , Dj)]

≈ 1

J2

J∑
j=1

Φ2(Aj)G(Aj)(cj − dj)(cj + dj − 2cjdj)(1− 2bj)

− 1

J2

J∑
j=1

Φ2(Bj)G(Bj)(cj − dj)(cj + dj − 2cjdj)(1− 2aj)

+
1

J2

J∑
j=1

Φ2(Cj)G(Cj)(aj − bj)(aj + bj − 2ajbj)(1− 2dj)

− 1

J2

J∑
j=1

Φ2(Dj)G(Dj)(aj − bj)(aj + bj − 2ajbj)(1− 2cj).

Proposition 26. Consider J polymorphic loci in populations A, B, C, and D with respective parametric
reference allele frequencies aj , bj , cj , dj ∈ (0, 1), and suppose we take a random sample of N(Pj) individuals
at locus j in population P ∈ {A,B,C,D}, some of which may be related or inbred. Moreover, assume that
no individual is related to more than one other individual, which makes the terms Φ3(Pj), Φ4(Pj), Φ2,2(Pj),
Φ2(Pj)

2, Φ2(Aj)Φ2(Bj), Φ2(Aj)Φ2(Cj), Φ2(Aj)Φ2(Dj), Φ2(Bj)Φ2(Cj), Φ2(Bj)Φ2(Dj), and Φ2(Cj)Φ2(Dj)
negligible to Φ2(Pj). Based on this simplifying assumption, the approximately unbiased ratio estimator

D̂(A,B,C,D) has approximate variance

V ar[D̂(A,B;C,D)] ≈ F4(A,B;C,D)2

H(A,B,C,D)2

[
V ar[F̂4(A,B;C,D)]

F4(A,B;C,D)2
+
V ar[Ĥ(A,B,C,D)]

H(A,B,C,D)2

− 2
Cov[F̂4(A,B;C,D), Ĥ(A,B,C,D)]

F4(A,B;C,D)H(A,B,C,D)

]
,
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where the variances are

V ar[F̂4(A,B;C,D)] ≈ 1

J2

J∑
j=1

[Φ2(Cj)G(Cj) + Φ2(Dj)G(Dj)]F2(Aj , Bj)

+
1

J2

J∑
j=1

[Φ2(Aj)G(Aj) + Φ2(Bj)G(Bj)]F2(Cj , Dj)

V ar[Ĥ(A,B;C,D)] ≈ 1

J2

J∑
j=1

(aj + bj − 2ajbj)
2[Φ2(Cj)G(Cj)(1− 2dj)

2 + Φ2(Dj)G(Dj)(1− 2cj)
2]

+
1

J2

J∑
j=1

(cj + dj − 2cjdj)
2[Φ2(Aj)G(Aj)(1− 2bj)

2 + Φ2(Bj)G(Bj)(1− 2aj)
2].

and the covariance is

Cov[F̂4(A,B;C,D), Ĥ(A,B,C,D)] ≈ 1

J2

J∑
j=1

Φ2(Aj)G(Aj)(cj − dj)(cj + dj − 2cjdj)(1− 2bj)

− 1

J2

J∑
j=1

Φ2(Bj)G(Bj)(cj − dj)(cj + dj − 2cjdj)(1− 2aj)

+
1

J2

J∑
j=1

Φ2(Cj)G(Cj)(aj − bj)(aj + bj − 2ajbj)(1− 2dj)

− 1

J2

J∑
j=1

Φ2(Dj)G(Dj)(aj − bj)(aj + bj − 2ajbj)(1− 2cj).

Proof. Recall that

D̂(A,B;C,D) =
F̂4(A,B;C,D)

Ĥ(A,B,C,D)
,

where F̂4(A,B;C,D) is an unbiased estimator for F4(A,B;C,D) and Ĥ(A,B,C,D) is an unbiased estimator

of H(A,B,C,D). Assuming that X = F̂4(A,B;C,D) and Y = Ĥ(A,B,C,D), following the approximation
in Wolter (2007) we have

V ar[D̃(A,B;C,D)] ≈ F4(A,B;C,D)2

H(A,B,C,D)2

[
V ar[F̂4(A,B;C,D)]

F4(A,B;C,D)2
+
V ar[Ĥ(A,B,C,D)]

H(A,B,C,D)2

− 2
Cov[F̂4(A,B;C,D), Ĥ(A,B,C,D)]

F4(A,B;C,D)H(A,B,C,D)

]
,

where V ar[F̂4(A,B;C,D)] is given in Proposition 16, V ar[Ĥ(A,B,C,D)] in Lemma 24, and

Cov[F̂4(A,B;C,D), Ĥ(A,B,C,D)] in Lemma 25.
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