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Summary. We propose a hierarchical Bayesian approach to infer the RNA synthesis, processing,
and degradation rates from sequencing data. We parametrise kinetic rates with novel functional
forms and estimate the parameters through a Dirichlet process defined at a low level of hierarchy.
Despite the complexity of this approach, we manage to perform inference, clusterisation and
model selection simultaneously. We apply our method to investigate transcriptional and post-
transcriptional responses of murine fibroblasts to the activation of proto-oncogene MYC. We
uncover a widespread choral regulation of the three rates, which was not previously observed in
this biological system.
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1. Introduction

RNA is one of the most important actors in the context of cellular biology and it is in-
volved, directly or indirectly, in any process that occurs inside a cell. This molecule is
a cornerstone of the information-flow which subsists from DNA to proteins, due to both
its role as a template for protein assembly and because of the involvement of non-coding
RNAs in the regulation of gene expression (e.g. modulation of transcript stability, protein
synthesis and protein localisation) (Marchese et al., 2017; Slack and Chinnaiyan, 2019;
Vandevenne et al., 2019). A cell constantly regulates the expression levels of thousands
of genes, i.e. the number of associated transcripts, in order to preserve its homoeostasis
and adapt to the environment. This regulation is mediated by the choral action of several
biological processes that affect the life cycle of the RNA molecules produced by these
genes.

The RNA life-cycle in eukaryotic cells can be simplified the following three steps: the
synthesis of premature RNA molecules in the nucleus, their processing into mature tran-
scripts (which includes exporting the cytosol), and mature RNA cytoplasmic degradation.
The characterisation of these mechanisms, which the cell exploits to modulate the amount
of specific transcripts, according to internal and external stimuli, can provide exceptional
insights into the biology of these responses. A RNA life-cycle investigation requires the
experimental quantification of the gene expression levels. The state-of-the-art approach
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to perform this task is Next Generation RNA sequencing (RNA-Seq). In a typical ex-
periment, this technique simultaneously provides the average expression level per cell for
thousands of genes, at a low cost and with a limited experimental effort (Goodwin et al.,
2016). For these reasons, a remarkable number of public RNA-Seq datasets are currently
available, and easily accessible, through such open repositories as the Gene Expression
Omnibus project (Edgar et al., 2002).

A large amount of literature is available on the analysis of RNA-Seq data. In some
papers, mixture models are used on the observed data to identify differences in gene ex-
pression levels, see, for example, “RNA-Seq by expectation-maximization” (Li and Dewey,
2011), “Cufflinks” (Trapnell et al., 2013), “Casper” (Rossell et al., 2014), the new approach
developed by Papastamoulis and Rattray (2018), and the works of de Souto et al. (2008),
Oyelade et al. (2016), or Saelens et al. (2018). Some of these tools have also been used for
the identification of genes which are differentially expressed under multiple experimental
conditions, this being one of the most common practices in the field (Trapnell et al., 2013;
Papastamoulis and Rattray, 2018).

However, the mere quantification of expression levels is not enough to acquire a full
picture of the RNA life cycle, and the study of this datum alone could lead to misleading
conclusions. Indeed, a cell can regulate gene expression through different fundamental
processes. For instance, an expressed gene is usually assumed to be actively transcribed
in the biological condition under analysis, but this is not alway the case for very stable
transcripts that remain in the cell long after their synthesis. Moreover, an increase in the
expression level of a gene between two conditions is usually interpreted as an intensifica-
tion of its transcription, although the same observation could be due to modulation of the
transcripts stability.

The mathematical modelling of the RNA life cycle can help to deconvolve the exper-
imental data and characterise the different stages of theRNA metabolism. This can be
formalised in terms of a network of chemical reactions (see for example de Pretis et al.,
2015; Feinberg, 2019; Anderson and Kurtz, 2015), and can be modelled either determin-
istically or stochastically. The former approach is usually preferred, since it is compatible
with standard RNA-Seq datasets originating from cell populations and because it leads
to a system of linear ordinary differential equations (ODEs) whose time-dependent coeffi-
cients, the so-called kinetic rates (KRs), can be interpreted as the instantaneous rates at
which the fundamental synthesis, processing and degradation mechanisms occur.

In the last few years, several tools have been proposed to infer KRs from experimental
data, and of these, DRiLL (Rabani et al., 2014) and INSPEcT (de Pretis et al., 2015;
Furlan et al., 2020) provide a characterisation of all the crucial steps of the RNA life cycle
from sequencing data. These tools are based on a least-squared estimation, and each gene
is assumed to be independent of the others.

Motivated by a real data application, we here propose a novel approach to the infer-
ence of RNA life-cycle KRs from gene expression levels, cast in a Bayesian framework,
and characterised by the application of mixture models defined using the Dirichlet pro-
cess (DP) (Ferguson, 1973) on rate parameters. KRs are not directly observable, and the
data-level of the mixture models are therefor latent quantities. This introduces difficulties
in the model estimation, and we need to introduce a new parametrisation of the KR func-
tions and to impose suitable identifiability constraints to overcome such difficulties. At
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the same time we tailor an MCMC algorithm for the mixture models, based only on Gibbs
steps (Casella and George, 1992), to avoid an increase in computational burden. This is
made possible thanks to the adoption of a suitably modified likelihood function. Unlike
other proposals, we estimate likelihood parameters, data standard deviations, KR func-
tions, and latent clusterisations in a single Bayesian model, thereby allowing a coherent
evaluation of the uncertainty. Moreover, by providing a clusterisation without the need
of any post-processing, our proposal is able to gather genes in homogeneous groups and
to extract and exploit the shared information. The inclusion of this clustering step in the
inference procedure results in the estimation of parameters, at the gene level, even though
if the number of experimental observations is limited; a standard situation in biology.
Our new method is particularly suitable for investigating the common biological scenario,
in which the cell synergically regulates the expression of groups of genes to respond to a
modification of its environmental conditions (Allocco et al., 2004).

We apply the model to our motivating example, where data are collected to study
the activation of the proto-oncogene MYC in murine fibroblasts (de Pretis et al., 2017).
Moreover, we demonstrate the inferential gain provided by our approach, which results in
the detection of smaller, but significant, modulations of post-transcriptional rates. From
an interpretative point of view, the classification identifies groups of genes modulated by
MYC activation, both directly and indirectly, and characterised by specific features, such
as the steady-state value of the rate or the timing of its modulation in response to the
stimulus. Since MYC is a transcription factor, the synthesis rate is the most informa-
tive layer of regulation and provides clusters of genes involved in basic cellular processes,
cancer-related processes, and in the RNA metabolism. Nevertheless, we manage also to
identify pervasive modulations of post-transcriptional rates, most likely due to either sec-
ondary regulations or the adaptation of the entire RNA life-cycle kinetics in response to
MYC induced transcriptional stress.

The paper is organised as follows. We start by describing the experiment performed by
de Pretis and colleagues to study MYC activation, and the resulting dataset (Section 2).
We then present the mathematical model we use to describe the RNA life cycle (Section
3) and the function we developed to parametrise the KRs (Section 4); we also discuss the
solutions to some identifiability issues. We proceed by formalising the latent clustering
models and their practical application to study MYC activation (Section 5). The final
section of the paper (Section 6) regards a comparison of our novel Bayesian approach
with other methods, and a discussion of our results. We conclude with a critical summary
of our work and some perspectives (Section 7). The online supplemental material (SM),
available on the web page of the journal, contains additional figures that may be useful
to discuss the results but which are not essential for the comprehension of the paper.

2. Data description

Our dataset, taken from de Pretis et al. (2015), is organised as illustrated in Figure 1 A. It
provides expression levels (in Reads Per Kilobase Million, RPKM) of premature, mature,
and nascent RNA for more than 10.000 genes, at 11 time-points, and for three replicas of
the experiment. The experiment is designed to follow the activation of the transcription
factor MYC in a murine fibroblast cell-line (3T9) over time. This transcription factor
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Fig. 1. (A) Experimental design used for the study of MYC activation in 3T9 cells and the as-
sociated dataset released by de Pretis et al. (2015). (B) RNA life cycle in eukaryotic cells and
definition of premature (red) and mature (blue) RNA. (C) RNA metabolic labelling for nascent RNA
(orange) quantification. (D) Gene expression profiles for two genes from the dataset; each replicate
is represented by a specific colour.

plays a crucial role in the genesis and progression of tumours, and it is involved to a
great extent in the regulation of such basal cellular processes as differentiation, growth
and proliferation (Dang, 2012; Chen et al., 2018).

The experiment starts with a population of cells, which is divided into multiple samples,
in a stationary biological environment. Each sample is treated to induce MYC activation
and, after a different span of time, it is sequenced to quantify RNA expression levels.
MYC activation is achieved through the expression of an artificial chimaera (Littlewood
et al., 1995). This protein is natively inactive, i.e. it is unable to perform any function,
but it can be rapidly activated by adding the 4-hydroxytamoxifen (OHT) hormone to the
cell culture medium. The authors performed standard (ribo-depleted) RNA-Seq, follow-
ing MYC activation, through 11 time-points from an OHT treatment: 0h, 1/6h, 2/6h, 1/2h,
1h, 3/2h, 2h, 4h, 8h, 12h, 16h (Figure 1 A). Each experiment, which was performed on
independent samples, was replicated three times, and gave expression levels of premature
and mature RNA (Figure 1 B).

The same experimental design was used to quantify nascent RNA through 4sU-Seq
(Figure 1 C). In this case, an exogenous nucleotide (4-thiouridine or 4sU) is provided to
the cells before sequencing for a fixed span of time (labelling time). 4sU is incorporated in
the transcripts produced from that moment for the entire labelling time (nascent RNA)
and is later exploited to physically separate them from the other RNA molecules (pre-
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existing RNA). This portion of the transcriptome can be sequenced through standard
RNA-Seq (Dölken et al., 2008).

de Pretis et al. (2015) focused on a set of 4909 transcriptional units, classified as MYC
targets through a chromatin immunoprecipitation sequencing experiment, and altered in
their kinetics. We decided to restrict our study to the same group of genes so that our
results could be compared with the aforementioned authors’ result, which are obtained
with the INSPEcT tool. However, it was not possible to analyse 12 transcriptional units,
because they had negative expression levels. At the end, we retrieved a dataset of prema-
ture, mature and nascent RNA expression levels for 4897 genes in 3 replicates and for 11
time points.

Figure 1 D reports two examples from the dataset: the first one represents a typical
transcriptional regulation, as can be seen from the adherence of the three profiles, while
the second one is probably associated with a more complex post-transcriptional scenario.

3. The likelihood

For each gene g ∈ {1, · · · , G}, time-point t ∈ {t1, · · · , tT} and replica h ∈ {1, · · · , H}.
Let Yg,h(t) = (Y1,g,h(t), Y2,g,h(t), Y3,g,h(t))′ denote the measured expression levels of pre-
mature, mature and nascent RNA.

We assume that the observations Yg,h(t) are noisy versions of the true unobserved
values denoted with xg(t) = (pg(t),mg(t), ng(t))′. Since Yg,h(t) needs to have positive
components, we model it as follows:

Yg,h(t) ∼ N>0(xg(t)ρh(t), diag(τ g(t)), (1)

where N>0(µ,Σ) indicates a (truncated) normal distribution with mean vector µ, covari-
ance matrix Σ, and with the components restricted to R+. In our case, the covariance
matrix is diagonal, with diagonal elements collected in the vector τ g(t) ∈ (R+)3. The
vector ρh(t) = (1, 1, ρh(t)) is a scaling factor that is required to normalise the nascent
RNA libraries to the pre-existing RNA counterparts (Miller et al., 2011; Rabani et al.,
2011, 2014; de Pretis et al., 2015)

As shown in previous works, see, for example, Pavelka et al. (2004) and Subramaniam
and Hsiao (2012), xg(t) affects both the mean and the variance of Yg,h(t). The effect
of xg(t) on the variance of Yg,h(t) is modelled through a linear relation between the
logarithms of their components:

log(τ1,g(t)) = β1,0 + β1,1 log(pg(t)),
log(τ2,g(t)) = β2,0 + β2,1 log(mg(t)),
log(τ3,g(t)) = β3,0 + β3,1 log(ng(t)).

The subject of the next subsection is the mathematical model of the latent gene ex-
pression levels xg(t).

3.1. A mathematical model of the RNA life cycle
At the current state-of-the-art the life cycle of RNA molecules, in eukaryotic cells (e.g.
mammals and plants), is divided into three sub-processes (Figure 1 B). The first is the
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synthesis of premature RNA from DNA. This portion of the transcriptome is located
inside the nucleus and it is not ready to perform its original task (e.g. protein translation).
Premature RNA requires structural modifications and/or exporting to the cytosol. These
steps constitute the second stage of the RNA life cycle, which is named processing. The
product of premature RNA processing is mature RNA, which can eventually be degraded
by the cell that concludes the RNA life cycle. The process may be described by the
following network of chemical reactions

∅ k1,g(t)−−−−→ Pg
k2,g(t)−−−−→Mg

k3,g(t)−−−−→ ∅, g = 1, · · · , G, (2)

where Pg and Mg denote premature and mature RNA for gene g, respectively. The
empty-set symbols are used to emphasise that premature RNA is synthesised from DNA
without consuming resources, and mature RNA is subject to degradation. The symbols
k1,g(t), k2,g(t) and k3,g(t) are the KRs of the synthesis, processing and degradation respec-
tively; they are both time and gene dependent. A system of ODEs that translates the
reaction network (2) in mathematical terms is the following{

ṗg(t) = −k2,g(t)pg(t) + k1,g(t),
ṁg(t) = k2,g(t)pg(t)− k3,g(t)mg(t).

(3)

Indeed, the effect of the processing of premature into mature RNA at rate k2,g(t) is
to decrease pg(t) and correspondingly increase mg(t). The degradation of mature RNA
decreases mg(t) at rate k3,g(t), while the synthesis increases pg(t) at rate k1,g(t).

It is well known that, for the model described so far, it is very difficult to identify all
three KRs. Anotherr variable, the so-called nascent RNA, is usually included to amelio-
rate the identifiability,(Dölken et al., 2008; Miller et al., 2011; Rabani et al., 2011, 2014;
de Pretis et al., 2015). Nascent RNA is the amount of total RNA (both premature and
mature) synthesised by the cell in a short span of time and it can be quantified by 4sU-Seq
(Figure 1 C). Nascent RNA is, by definition and according to the experimental set-up,
absent at the beginning of the experiment. It is produced during the brief labelling time
(tL), according to the same dynamics as the pre-existing counterpart. However, the ef-
fect of degradation, in such a short time, can be neglected. The expression level of the
premature (p?g(t)) and mature (m?

g(t)) nascent RNA is therefor ruled by the following
equations {

ṗ?g(t) = −k2,g(t)p?g(t) + k1,g(t),
ṁ?
g(t) = k2,g(t)p?g(t).

The sum ng(t) = p?g(t) + m?
g(t) is the nascent RNA level. By summing the two previous

equations, one obtains that the amount ng(t) of nascent RNA only varies according to the
effect of the synthesis rate:

ṅg(t) = σg(t). (4)
Since the time window for which nascent RNA evolves is short (tL), this rate can be
considered approximately constant and equation (4) can be integrated to obtain:

ng(t) = k1,g(t)tL, (5)

which is the third equation that is added to model (3). Equation (5) facilitates the
estimate of the synthesis rate.
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time  [a.u.]

Fig. 2. Graphical representations of the KR parametrisation. It should be noted that eη1 and eη2 are
shown to indicate the section of the function they determine, but they are not equal to the length of
the arrows, see equation (8).

4. KRs parametrisation

In several biological experiments, a cell culture is perturbed and gene expression levels
are repeatedly measured after the perturbation in order to understand which genes are
involved in the response. By adopting the model described above, it is possible to shed
light on the fundamental mechanisms that a cell uses to regulate gene expression levels
by modulating the of synthesis, processing, and degradation rates.

The typical shapes that we expect the rates to take on in response to a certain perturba-
tion of the environment are generally assumed to be constant (some rates are not altered),
monotonic (both increasing and decreasing), and peak-like functions. These shapes ac-
count for both permanent and transient modulations of the KRs and have already been
applied successfully to describe transcriptional and post-transcriptional responses in sev-
eral biological systems (see, for example Chechik and Koller, 2009; Rabani et al., 2011,
2014; de Pretis et al., 2015).

The first novelty of our proposal is that we introduce a unique parametric family of
functions which, for different values of the parameters, can cover all such characteristic
shapes. Others approaches use different functional forms and, for each gene, select the
best one with external criteria, e.g. the log-likelihood ratio test.

Let φ(·|µ, σ2) be a Gaussian density with mean µ ∈ R and variance σ2 ∈ R+. We
define the family of functions f(t |µ, σ2, κ−∞, κµ, κ+∞) to which all the KRs belong in the
following way:

f(t |µ, σ2, κ−∞, κµ, κ+∞) =

κ−∞ + φ(t|µ,σ2)
φ(µ|µ,σ2)(κµ − κ−∞), if t < µ,

κ+∞ + φ(t|µ,σ2)
φ(µ|µ,σ2)(κµ − κ+∞), if t ≥ µ,

(6)

where κ−∞, κµ and κ+∞ all belong to R+. The function f in equation (6), is obtained
by applying different scalings and vertical translations of a Gaussian density to its right
and left halves, with respect to the mean value µ, taking care to preserve continuity at
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time-point t = µ (Figure 2). It is easy to see that:

κ−∞ = lim
t→−∞

f(t |µ, σ2, κ−∞, κµ, κ+∞), (7)

κµ = f(µ |µ, σ2, κ−∞, κµ, κ+∞),
κ+∞ = lim

t→+∞
f(t |µ, σ2, κ−∞, κµ, κ+∞).

Examples of the forms that can be obtained with (6), by changing its parameters, are
shown in Table 1. As we can be seen, all the standard shapes (constant, increasing/decreasing,
peak-like) are possible.

For easiness of interpretation, we split and rename the parameters as follows. First,
we single out κ−∞ and we rename it β to simplify the notation. Unlike the other param-
eters, which are related to the response, β is the baseline level, i.e. steady-state, and it is
analysed separately. Secondly, we introduce the logarithmic ratios

η(t′, t) = log f(t′ |µ, σ2, κ−∞, κµ, κ+∞)
f(t |µ, σ2, κ−∞, κµ, κ+∞) .

These quantities are called log-fold-changes in computational biology and are usually used
to measure modulations with respect to the baseline level f(t |µ, σ2, κ−∞, κµ, κ+∞). We
define

η1 = η(µ,−∞) = log κµ
κ−∞

, η2 = η(µ,+∞) = log κµ
κ+∞

. (8)

The parameters µ, σ2, η1, η2 are all related to the characterisation of the response to
perturbations. In particular µ and σ2 characterise the temporal location and duration of
the response, while η1 and η2 determine the typical shape, as highlighted in Table 1. We
collect these four parameters into a single vector that we denote with θ, to obtain a more
compact notation.

The family of functions (7) can now be re-parametrised as f(t | β,θ) with

β = κ−∞ and θ = (µ, σ2, η1, η2).

Identification constraints Although the family of functions (7) is well defined for all real
values of µ and positive values of σ2, identifiability and interpretability issues can arise if
some conditions are not met. For example, if µ is smaller than the first observed time t1,
and σ2 is small, the function f in the interval [t1, tT ], with any arbitrary choice of η1 and
η2, is indistinguishable from a constant one, which should instead be given by η1 = η2 = 0
(Table 1). For this reason, identifiability constraints are needed.

A main requirement is that the value of the function (6) at time-points t1 and tT should
be “close” to κ−∞ and κ∞, respectively, which means that the most relevant part of the
function graph lies within the observed time window. For peak-like shapes (η1η2 > 0, cf.
Table 1) we ask that ∣∣f(t1| β,θ)− κ−∞

∣∣ ≤ 0.01|κµ − κ−∞|,∣∣f(tn| β,θ)− κ+∞
∣∣ ≤ 0.01|κµ − κ+∞|,

(9)
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Table 1. KR shapes as functions of the log-fold-changes and the names we
use to describe the shapes.

η1 sign η2 sign names shape
0 0 constant

+ + peak-like peak-like+

- - peak-like-

+ 0 monotonic monotonic+ up-c

+ - up-up

0 - c-up

0 + monotonic- c-down

- + down-down

- 0 down-c

which implies two conditions:

µ−
√
−2σ2 log(0.01) ≥ t1 and µ+

√
−2σ2 log(0.01) ≤ tT . (10)

Notice that, one of the log-fold-changes vanishes for monotonic shapes, however, we can
still derive an identifiability condition by requiring that (9) holds, e.g. when η1 = 0, we
have a c-up or c-down shape, and κµ = κ−∞. Since the function is constant from t1 to µ,
the first equation of (9) holds if, and only if, t1 ≤ µ. The conditions we obtain for c-up
and c-down shapes (η1 = 0) are therefor

µ ≥ t1 and µ+
√
−2σ2 log(0.01) ≤ tT . (11)

Similarly, for up-c and down-c shapes (η2 = 0), we obtain

µ−
√
−2σ2 log(0.01) ≥ t1 and µ ≤ tT . (12)

We should take into consideration that monotonic up-up and down-down are intermediate
states between, respectively, a c-up and an up-c, and a c-down and a down-c, respectively.
The limits on µ should be close to (11), if η1 < η2, and close to (12), if the opposite is
true. Therefore, we define the constraints on µ as:

µ− ξ1

√
−2σ2 log(0.01) ≥ t1 and µ+ ξT

√
−2σ2 log(0.01) ≤ tT (13)

where ξ1 =
∣∣∣ η1
η1−η2

∣∣∣ and ξT = 1− ξ1.
The subset of the parameter space where the identifiability constraints hold is denoted

with D ⊂ R5, and is defined by the condition β > 0 and one of equations (10), (11), (12)
or (13), depending on the signs of η1 and η2, which are instead real numbers that are free
from any constraint. Although identifiability is only granted in D, we prefer not to force
the parameter to belong to this set for easiness of implementation, but, as we explain in
the next section, we introduce an approximated likelihood that gives very little support
to parameter values outside D.
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5. The latent clustering models

As mentioned in Section 4, βj,g is interpreted as the baseline level of the rate kj,g(t),
while θj,g = (µj,g, σj,g, η1,j,g, η2,j,g) characterises the modulation of the rate in response to
a perturbation of the environment. It is biologically reasonable to allow groups of genes
that have a similar baseline level to respond differently to a perturbation. For this reason,
we introduce mixture models, based on the DP, at the bottom level of the model hierarchy,
for the parameters βj,g and θj,g, for each j ∈ {1, 2, 3}.

Unlike most of the DP applications, where the mixture is at the first level of the
hierarchy i.e. on the observed data level, we introduce mixture models over the parameters
of the non-observable KRs which define the time-varying coefficients of an ODE system.
For this reason, it is necessary to ensure that the sampling of the DP is easy, with as
many Gibbs updates as possible for the mixture parameters.

Moreover, we also want to ensure that the model can discriminate between the possible
shapes of kj,g(t). It is not trivial to define a distribution over the domain D, i.e. the space
where the parameters (βj,g,θj,g) are identifiable. What we propose here is to let (βj,g,θj,g)
be defined over the whole R5 but, each time they are outside D, the posterior distribution
must have a very small density, which means that parameters outside D are almost never
sampled in the MCMC algorithm. We do this by changing the data likelihood (equation
(1)) with the following one:

{
Yg,h(t) ∼ N>0(xg(t)ρg,h(t), diag(τpg (t), τmg (t), τng (t))), if (βj,g,θj,g) ∈ D
Yg,h(t) ∼ N(0, 1010000I), otherwise,

which gives an almost null posterior support to all the parameter values outside D.
A second issue that has to be solved is that if the marginal prior distribution of the

log-fold-changes η1,g,j and η2,g,j is continuous, then the posterior probability that at least
one of the two is exactly equal to 0 vanishes, which means that we are not able to estimate
a constant kj,g(t) (or c-up, c-down, up-c, and down-c shape). One possible solution is to
use a distribution that is continuous over (−∞, 0)∪ (0,∞) and has a point mass at 0. We
can do this by introducing the new variables η∗1,g,j and η∗2,g,j , related to η1,g,j and η2,g,j
through the following:

η1,g,j =
{

max(0, η∗1,g,j − ξ), if η∗1,g,j > 0,
min(0, η∗1,g,j + ξ), otherwise,

, η2,g,j =
{

max(0, η∗2,g,j − ξ), if η∗2,g,j > 0,
min(0, η∗2,g,j + ξ), otherwise.

(14)
If we assume a continuous distribution for η∗1,g,j , as a result of (14), the distribution over
η1,g,j is continuous over (−∞, 0)∪(0,∞) and has a point mass at 0 equal to the cumulative
distribution of η∗1,g,j between −ξ and ξ. A similar result holds for η2,g,j .

We can now work with the parameters βj,g and θ∗j,g = (µj,g, σ2
j,g, η

∗
1,g,j , η

∗
2,g,j), which

are all defined over R, and we obtain continuous distributions. We then define 6 mixture
models, based on Gaussian densities, 3 of them over β1,g, β2,g and β3,g and the others over
θ∗1,g, θ∗2,g and θ∗3,g. In other words, the models are DP Gaussian mixtures (Neal, 2000)
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Multiple latent clusterisation model for the inference of RNA kinetic rates 11
Table 2. Fraction of the CRPS values which satisfy the condition reported at the top of
the grid.

CRPS M1≤CRPS M2 CRPS M1≤CRPS M3 CRPS M2≤CRPS M3
Y p·,·(·) 0.650 0.517 0.489
Y m·,· (·) 0.653 0.517 0.501
Y n·,·(·) 0.643 0.528 0.508

formalised as:
βj,g | ζβzβj,g

, ωβ
j,zβj,g

, zβj,g ∼ N(ζβ
j,zβj,g

, ωβ
j,zβj,g

),

zβj,g |π
β
j,g ∼ Discrete(πβj,g),

πβj,g |α
β
j ∼ GEM(αβj ),

ζβj,k ∼ N(M0, V0),

ωβj,k ∼ IW (ν0, ψ0),

(15)

and
θ∗j,g|ζθ

j,zθ
j,g
,Ωθ

j,zθ
j,g
, zθ
j,g ∼ N(ζθ

j,zθ
j,g
,Ωθ

j,zθ
j,g

),

zθ
j,g|πθ

j,g ∼ Discrete(πθ
j,g),

πθ
j,g|αj ∼ GEM(αθ

j ),
ζθ
j,k ∼ N(M,V),

Ωθ
j,k ∼ IW (ν,Ψ).

(16)

In models (15) and (16), zλj,g and zθ
j,g are the discrete random variables that represent

the labels which identify the component of the mixture to which the parameters belong.
These variables are assumed to come from a discrete distribution, whose probabilities
follow a Dirichlet Processes defined by the GEM (or stick-breaking) distribution (Gnedin
et al., 2001). Given that the allocation variable, λj,g and θ∗j,g are normally distributed
with parameters that have standard priors. All random quantities in model (15) can
easily be updated in the MCMC algorithm using only Gibbs steps, thereby facilitating
the implementation of the model.

6. Real data application

Before the discussion of the results obtained from the motivating dataset, we first show
how our model performs with respect to some competitive approaches.

6.1. Multiple inference method comparison
We compare the performance of our model (M1) with a simplified version of our proposal,
which assumes zβj,g = zθ

j,g = 1 for all j and g (i.e. no mixture models, a single distribution
for each parameter - M2), and the frequentist approach implemented in INSPEcT (M3).
Comparisons are conducted in terms of predictive power and interpretation.

The model is implemented in R/C++ and uses OpenMP (OpenMP Architecture Re-
view Board, 2008) for parallel computing. Our method is estimated using 32 cores,
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12 Mastrantonio et al.
Table 3. For each model and function k, we indicate the fraction of constant
functions, increasing or decreasing peak-like functions (peak+ and peak-) and
increasing or decreasing monotonic functions (monotonic+ and monotonic-)

constant peak+ peak- monotonic+ monotonic-
k1,·(·) 0.019 0.041 0.223 0.373 0.343

M1 k2,·(·) 0.515 0.029 0.102 0.312 0.041
k3,·(·) 0.460 0.017 0.408 0.046 0.069
k1,·(·) 0.100 0.050 0.147 0.357 0.345

M2 k2,·(·) 0.641 0.027 0.117 0.171 0.044
k3,·(·) 0.703 0.031 0.060 0.119 0.087
k1,·(·) 0.013 0.128 0.365 0.229 0.265

M3 k2,·(·) 0.712 0.071 0.192 0.010 0.016
k3,·(·) 0.801 0.109 0.066 0.009 0.015

2500000 iterations, burnin 2425000, thin 30, therefor with 2500 posterior samples, with
ξ = 10; the computations take 20 days. We set M = 0, V = 100I, M0 = 0, V0 = 100,
Ψ = I, ν = 5 and ν0 = 2. We use a N(0, 100) for βj,0, βj,1 as prior distribution, while
each SFh(t) has a G(1, 1). Since the number of latent mixtures in the DP depends on pa-
rameter α`j , we view it as a random parameter with G(1, 1) prior. We use the same priors
and iterations for M2, while, for M3, we retrieved the modelled KRs for the 4897 genes of
interest from the INSPEcT object, released as supplementary material by de Pretis et al.
(2017).

First, we want to assess a goodness-of-fit for the three models for each Yj , to evaluate
wheter our proposal can be considered better than the others. For this purpose, we use
the continuous ranked probability score (CRPS) (Gneiting and Raftery, 2007), since this
index is suitable for comparing the predictive ability of models based on different data
distributional assumptions. We compute this index for each modelling approach and ex-
perimental condition (i.e. RNA species, replicate, and time-point) and, in Table 2, we
report the fraction of the times the first model has a lower CRPS index than the second
one, for any pair-wise comparison. The results show that M1 is better able to recapitulate
the data.

We extend the analysis by computing pairwise Pearson’s correlations between the
CRPS indexes estimated for premature, mature and nascent RNA, for each model. The
correlations are between 0.34 and 0.62, and interestingly, they are always higher for M1
and M2, compared to M3 (0.52, 0.52 and 0.38 on average, respectively, Figure 28-SM). It
follows that the Bayesian approaches tend to fit all the RNA species profiles with similar
goodness while the frequentist one, generally, recapitulates the profile of one experimental
quantity better than the others. This is not desirable in the current application scenario,
since any RNA species is potentially equally informative about the underlying regulations
of the RNA metabolism.

The fraction of rates modeled as constant, monotonic, or peak-like functions are re-
ported In Table 3, for each inference method. In the case of modulation, we also distin-
guish between increasing (+) or decreasing (-) kinetics (for peak-like responses, η1 > 0
and η2 > 0 or η1 < 0 and η2 < 0, respectively). MYC is a transcription factor, and we
can therefore expect a primary response at the synthesis level. This is in particular the
case for M1 and M3, which have less than 2% of the genes constant in synthesis. The
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Fig. 3. Number of genes (y-axis) with a given number of non-constant rates (x axis) for M1, M2
and M3.

percentage is higher for M2 (10%). Nevertheless, k1 is still by far the most variable rate.
Focusing on the genes modulated in synthesis, we can observe that all the inference

methods predict a higher fraction of repressed genes (monotonic- or peak-) than the in-
duced counterpart (0.49−0.63 versus 0.36−0.42). However, the complexity of the resulting
models is different, with 49% of the modulations in synthesis described by M3 as peak-like
functions against 20% and 26% for M1 and M2, respectively.

The higher complexity of the synthesis rate profiles predicted by M3, is accompanied
by a lower fraction of post-transcriptional modulations. M3 in fact predicts higher per-
centages of constant k2 and k3 (71% and 80%, respectively) than the Bayesian approaches
(between 46% and 70%). This means that M1 and M2 tend to explain the expression
more as a choral action of the three kinetic rates than M3 (Figure 3 and 29-SM).

Despite the prevalent role of synthesis in shaping the MYC response, indirect and less
intense post-transcriptional regulations are expected due to, for example, the known feed-
backs that link the three layers of the RNA life cycle (Sun et al., 2012; Eser et al., 2014;
McManus et al., 2015).

In light of the higher goodness of fit of M1 than M3, we can conclude that INSPEcT
fails to capture the more complex regulatory scenarios inferred by our novel Bayesian
method.

6.2. MYC response analysis
In this section, we analyse the model inferred by means of our approach in response to
MYC activation in more detail. For simplicity, we compute the MAP clusterisation for
each gene and variable, and we only discuss clusters that have at least 150 associated
genes. A heatmap and a set of boxplots that recapitulate the temporal behaviour of
the synthesis rate of log-fold-changes, compared to the initial time-point, are reported
in Figures 4, for each cluster, ordered by the number of elements. We also display the
µ versus σ2 and η1 versus η2 plots. Both of these graphs provide valuable information
about the shape of the responses in the cluster of interest (Table 1). Figures 6 and 7 are
analogues of processing and degradation rates, respectively.

In order to support the discussion, we perform enrichment analyses, based on Gene
Ontology (GO) annotations (Ashburner et al., 2000; Dessimoz and Škunca, 2017; The
Gene Ontology Consortium, 2019), for each rate. For the sake of simplicity, the results
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Fig. 4. Synthesis rate modulations in response to MYC activation for 7 clusters that are composed
of at least 150 genes. (First column) Heatmap showing the log-fold-changes of the rate η(t, 0),
compared to the first time-point, for each gene in the cluster. (Second column) Boxplots showing the
distribution of the synthesis rate log-fold-changes, compared to the first time-point. (Third column) µ
versus σ2 smooth-scatter plot. (Fourth column) η1 versus η2 smooth-scatter plot. The black dashed
lines represent the horizontal and vertical axes and the bisector of the first and third quadrants.

of these analyses are mainly shown in the supplemental material. However, they are
summarized in the main text, while Figure 5, which is reported as an example of a full
output, refers to a specific case which has been selected both because of its interest and its
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Fig. 5. Synthesis rate Cluster 3 Gene Ontology analysis. Biological processes (nodes of the
network) associated with the genes belonging to the third cluster identified from the analysis of the
synthesis rate modulations. The network structure is indicative of the semantic similarity of the terms;
i.e., linked and adjacent terms are close to each other in the reference ontology. The size of each
dot is proportional to the number of genes identified in the cluster, while the colour is a proxy of the
significance of the enrichment that takes into account the total number of genes associated with the
specific term in the background. The nodes that are easier to interpret and which are characteristic
of different communities of the network are highlighted in blue.
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Fig. 6. Processing rate modulations in response to MYC activation for 2 clusters that are composed
of at least 150 genes. (First column) Heatmap showing the log-fold-changes of the rate η(t, 0),
compared to the first time-point, for each gene in the cluster. (Second column) Boxplots showing
the distribution of the processing rate log-fold-changes, compared to the first time-point. (Third
column) µ versus σ2 smooth-scatter plot. (Fourth column) η1 versus η2 smooth-scatter plot. The
black dashed lines represent the horizontal and vertical axes and the bisector of the first and third
quadrants.

graphical clarity. The GO enrichment analysis exploits an ontology which can be defined
as a set of terms which, in our case, are pertinent to biological processes (e.g. ”regulation
of mRNA stability”, ”cellular response to stress” etc.), associated by means of relations
(grey edges in Figure 5 - e.g. ”is a”, ”regulates” etc.). Each term is also matched with
a set of relevant genes by means of a curated annotation, which is constantly updated
according to the literature, in order to reflect the knowledge of the scientific community
on the biological domain. Given a set of genes, it is possible to search for those terms
that are over-represented in the group of interest, compared to a background (a number
of associated genes, that is proportional to the node size in Figure 5), that is a larger set
which potentially accounts for all the annotated transcriptional units. A hypergeometric
test is usually performed for any possible term to statistically test the enrichments, and a
threshold is then imposed on the corrected p-values (node colour in Figure 5), or q-values,
selecting the most significant results. These terms (labels in Figure 5) provide a broad
overview of the biological processes involved with the selected genes. We perform these
analyses using the Bioconductor R-package clusterProfiler (Yu et al., 2012).

Synthesis rate The graphical description of the clusters associated with the synthesis
rate is shown in Figure 4.

Cluster 1 accounts for 1293 genes characterised by peak-type functions (η1 and η2 < 0)
with the minimum between 1 and 3 hours and a small variance, which indicates quick re-
sponses. This behaviour can be explained as a side effect of MYC activation, which causes
the polarisation of the resources required for the proficient transcription of the induced
target genes (discussed in the following clusters). This response is compensated in the
recovery of the transcriptional activity of these genes which then results, for a subset of
such genes, in a light induction (η1 > η2). This indicates that these transcriptional units
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Fig. 7. Degradation rate modulations in response to MYC activation for 3 clusters that are composed
of at least 150 genes. (First column) Heatmap showing the log-fold-changes of the rate η(t, 0),
compared to the first time-point, for each gene in the cluster. (Second column) Boxplots showing
the distribution of the degradation rate log-fold-changes, compared to the first time-point. (Third
column) µ versus σ2 smooth-scatter plot. (Fourth column) η1 versus η2 smooth-scatter plot. The
black dashed lines represent the horizontal and vertical axes and the bisector of the first and third
quadrants.

are required by the cell for its homoeostasis.
The enrichment analysis points to such as basic processes as DNA metabolism and

cell-cycle regulation, which are in line with the expectations, because they are known to
be perturbed in an MYC-dependent manner (Dang, 2012; Chen et al., 2018); see Figure
1-SM.

Cluster 2 accounts for 1103 genes, characterised by a monotonic decrease of the syn-
thesis rate (η1 < 0 and η2 > 0). The temporal response is more heterogeneous with µ
and σ2 spanning large domains. This cluster contains the genes that are involved in cell
growth and development, cell adhesion, migration, and apoptotic signalling regulation
(Figure 2-SM). All these terms are interesting clues that point to the role played by MYC
in cancer biology (Dang, 2012; Chen et al., 2018).

Cluster 3, which accounts for 904 genes, is composed of monotonic increasing responses
(η1 > 0 and η2 < 0) concentrated in the first 5 hours of the time-course. This behaviour
indicates a potential direct MYC regulation. These genes are involved in coding and
non-coding RNA metabolisms (Figure 5). They affect RNA localisation, e.g. exporting
from the nucleus, RNA splicing and non-coding RNA processing, and also RNA stability,
e.g. the RNA catabolic process. Moreover, these genes are related to RNA modification,
an emerging dynamic regulatory layer of the transcript metabolism (Roundtree et al.,
2017). For example, N6 − methyladenosine is a methylated nucleotide (methylation,
RNA methylation, macromolecule methylation) which is pervasive in the transcriptome of
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various species, e.g. mice, with a well established role in the control of transcript stability
(Wang et al., 2014) and translation (Wang et al., 2015). Increasing evidence also links
this RNA modification to synthesis and splicing (see for example Louloupi et al., 2018;
Furlan et al., 2019).
The analysis of these terms provides a coherent picture that relates MYC activation to
several regulation layers of the transcript metabolism and translation (e.g., the cellular
amino acid metabolic process, regulation of translation). This evidence supports the post-
transcriptional rate modulations predicted by our approach and, partially, by INSPEcT.

Cluster 4 accounts for 392 monotonic + and - (η1 ≈ 0 and η2 < 0 or η1 < 0 and η2 ≈ 0,
respectively) late responding genes (µ generally larger than 4 and up to 14). These tran-
scriptional regulations are probably secondary responses and are clustered together due
to their temporal features.

Clusters 5 and 6 are composed of 299 and 246 monotonically induced genes (η1 ≈ 0)
in response to MYC activation. These two clusters were split, due to their temporal re-
sponses, which are faster and more homogeneous in Cluster 5 than in Cluster 6. The
latter is partially related to non-coding RNA processing (see Figure 4-SM).

Finally, Cluster 7 is composed of 182 genes characterised by a weak peak-like induction
(η1 and η2 > 0), that is earlier in the time-course and quicker than those belonging to
Cluster 1, as can be seen from the values of µ and σ2 respectively.

Our model also provides a clustering of genes according to their steady-state values of
the synthesis rate (β1). The model identifies 7 clusters, enumerated with a progression
of letters, with more than 150 genes. The Gene Ontology enrichment analysis returned
more confused and less significant terms than those discussed above. Cluster B is par-
tially related to cell-cycle regulation, while Cluster E and Cluster F are related to RNA
metabolism (Figures 15-SM, 18-SM and 19-SM). Interestingly, a remarkable percentage
(≈ 30%) of the genes in Cluster E and Cluster F is also part of Cluster 3 (Figure 26-SM).
Noticeably, these are also the clusters that are characterised by the fastest kinetics, which
is a required condition, even though not sufficient, to quickly regulate the expression level
of a gene, and is a clue of the fundamental regulatory role played by these transcriptional
units (Figures 27-SM).

Processing rate A graphical description of the clusters associated with the processing
rate is given in Figure 6. Cluster 1 is composed of 3537 elements, which respond to a
great extend within 3 hours from the stimulus with a moderate and sharp monotonic
increase of k2. Because of the timing of the response and the extension of this cluster, this
behaviour could be due to the general feedback mechanisms which link RNA synthesis
and processing.

On the other hand, Cluster 2 is composed of 1212 genes characterised by small and
late, both positive and negative, monotonic responses. These are probably secondary
responses mediated by the remarkable number of genes involved in the RNA processing
regulation perturbed by MYC activation. The weakness of these modulations is puzzling
but, since they take place in the most coarse-grained part of the time-course, our approach
may only detect a reflex of the real biological regulation, that could occur between the
experimental observations. It would be interesting to further investigate this population
of transcripts through an experiment, with an ad-hoc temporal design. However, this is
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beyond the scope of this manuscript.
The Gene Ontology enrichment analysis of Cluster 2 does not provide any significant

terms, while several biological processes, already mentioned while discussing the synthesis
rate response, can be found for Cluster 1. However, the enrichments are less significant
(Figures 5-SM and 6-SM) and they disappear when the 4897 differentially expressed genes
are used as the background instead of all the annotated ones (Figures 17-SM and 18-SM).

The same is true for all of the 5 clusters with more than 150 genes which our method
returns for the processing steady-state rate.

Degradation rate The modulations of the degradation rate are divided into three clusters
with more than 150 genes each, see Figure 7. Cluster 1 is composed of 3094 elements
characterised by very quick peak-type responses and with the minimum between 1 and
2 hours. As we have seen for k2, this behaviour may be due to the coupling with the
synthesis rate. Cluster 2 and Cluster 3 account for 1279 and 438 genes, respectively,
characterised by late, both positive and negative, monotonic responses, which are probably
secondary. The situation is similar to the one previously described for late processing rate
modulations especially for Cluster 2, and could point to indirect regulations of the stability
of the transcripts under-sampled due to the temporal design of the experiment. The Gene
Ontology enrichment analysis results are analogues to those we discussed for the processing
rate (Figures 7-SM and 8-SM), and also to those of the 5 steady-state clusters.

7. Final remarks

Motivated by a real data application, we here propose a Bayesian approach to the analysis
of RNA expression levels. In our proposal, the experimental data are hypothesised to be
noisy observations of a true process, which is a solution to a system of ODEs. We assume
that the ODEs depend on KRs, which are time- and gene-dependent. The KRs are the
main object of inference, since they characterise the RNA life cycle and provide impor-
tant insights into the analysis of gene expression levels. The temporal evolution of KRs
is encoded in a single family of functions, defined by only 5 parameters that can be easily
interpreted from the biological perspective (i.e. initial value, relative log-fold-changes, and
temporal location and duration of the response). The parameters are divided into two
groups, according to their role in defining either the initial value of the KR or its tem-
poral modulation. A mixture model, based on the DP, is defined for both of them, and
for each KR. This allows us to find sets of genes with similar KRs shapes or steady-state
values to guide the inference. This approach is conceptually based on the well-established
co-regulation of genes, which a cell often exploits to coordinate of the expression level of
multiple transcripts required to operate a specific task. Therefore, the idea of including a
clustering step in the inference process is not only biologically robust, but also provides a
valuable piece of information.

Some identification problems have arisen, owing to the complex structure of our model.
However, we have managed to solve them using latent variables and identification con-
straints in such a way that the MCMC algorithm can still only use Gibbs updates for the
mixture parameters.

The results obtained with the new method are biologically relevant. The enrichment
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analysis of the clusters results in meaningful sets of terms in the context of MYC biol-
ogy, and which are in conceptual agreement with the shape of the responses. This is
particularly true for the synthesis rate, which is the most informative regulatory layer in
this specific biological system. However, our method manages to identify a remarkable
fraction of genes as post-transcriptionally regulated, thus pointing to weak responses that
are compatible with the adjustments of processing and degradation rates in response to
the transcriptional perturbations and indirect secondary responses concentrated in the
last portion of the time-course. Our method tends to describe the regulation of RNA
metabolism more as a choral action of the three kinetic rates than the frequentist ap-
proach. The inclusion of Dirichlet-based clustering in the inference improves the goodness
of fit.

A limitation of our method is the independence of the synthesis, processing and degra-
dation rate clusters. In principle, this could be overcome by defining a mixture model on
the parameters that shape the response of multiple rates. However, this inference would
take place in a much larger space, which would be difficult to handle. We preferred to
acquire a full picture of each single response for our analysis, but we anticipate that our
framework could also be adapted in this way.

We conclude by stressing that this proposal represents an inference framework for
chemical reaction network coefficients which could be used to improve the methods cur-
rently available in computational biology to study dynamic phenomena in large omics
datasets.

8. Implementation

The source code that implements the methodology is available at https://github.com/
GianlucaMastrantonio/Multiple_latent_clusterisation_model_for_the_inference_
of_RNA_life_cycle_kinetic_rates.
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