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Abstract 
  
Motivation: Protein dynamic is essential for cellular functions. Due to the complex nature of non-
covalent interactions and their long-range effects, the analysis of protein conformations using network 
theory can be enlightening. Protein Structure Networks (PSNs) rely on different philosophies, and the 
currently available tools suffer from limitations in terms of input formats, supported network models, 
and version control. Another issue is the precise definition of cutoffs for the network calculations and 
the assessment of the stability of the parameters, which ultimately affect the outcome of the analyses. 
Results: We provide two open-source software packages, i.e., PyInteraph2 and PyInKnife2, to 
implement and analyze PSNs in a harmonized, reproducible, and documented manner.  PyInteraph2 
interfaces with multiple formats for protein ensembles and calculates a diverse range of network 
models with the possibility to integrate them into a macro-network and perform further downstream 
graph analyses. PyInKnife2 is a standalone package that supports the network models implemented in 
PyInteraph2. It employs a jackknife resampling approach to estimate the convergence of network 
properties and streamline the selection of distance cutoffs. Several functionalities are based on 
MDAnalysis and NetworkX, including parallelization, and are available for Python 3.7. PyInteraph2 
underwent a massive restructuring in terms of setup, installation, and test support compared to the 
original PyInteraph software.  
Conclusions: We foresee that the modular structure of the code and the version control system of 
GitHub will promote the transition to a community-driven effort, boost reproducibility, and establish 
harmonized protocols in the PSN field. As developers, we will guarantee the introduction of new 
functionalities, assistance, training of new contributors, and maintenance of the package. 
 

Availability: The packages are available at https://github.com/ELELAB/pyinteraph2 and 
https://github.com/ELELAB/PyInKnife2  with guides provided within the packages. 
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Introduction 
  
Proteins are highly dynamic entities, and even the knowledge of sparsely populated 
conformational states of proteins is key to understanding their function (Baldwin and Kay, 
2009). 
The structural ensemble that a protein can attain in its folded state entails a rugged free-
energy landscape, where the main free energy minimum corresponds to the major state of the 
protein, and other local minima constitute alternative ‘minor’ states (Motlagh et al., 2014). 
Perturbations such as a binding event with another biomolecule, a mutation, or a post-
translational modification, may affect the population of these states.  For example, 
perturbations can switch a minor state to a more frequently occurring state (Naganathan, 
2019; Guarnera and Berezovsky, 2019; Abrusán and Marsh, 2019; Papaleo, Sutto, et al., 
2014; Lambrughi, De Gioia, et al., 2016). Distal residues can influence the transitions 
between different states, mechanisms which are at the base of allostery (del Sol et al., 2009; 
Tsai and Nussinov, 2014; Papaleo, 2015; Papaleo et al., 2016; Ribeiro and Ortiz, 2016). 
In recent years, we witnessed enormous progress in experimental and computational 
structural biology to study protein dynamics and allostery (Papaleo, 2015; Papaleo et al., 
2016; Lisi and Loria, 2016; van den Bedem and Fraser, 2015; Keedy et al., 2015). In this 
context, due to the complex nature of intra- and inter-molecular weak interactions and their 
capability to exert effects over long distances in the structure, the description of long-range 
communication and protein structures using network theory provides an asset (Di Paola et al., 
2013; Di Paola and Giuliani, 2015; Vuillon and Lesieur, 2015).  
In this context, the non-covalent intra- and intermolecular interactions in proteins are 
fundamental to determine their three-dimensional structures and the changes among different 
states. They can be represented as a network, namely a Protein Structure Network (PSN). 
PSNs are generally small-world networks (Atilgan et al., 2004; Vendruscolo et al., 2002) 
making them suitable for the fast transmission of conformational changes among different 
distal sites. In these small-world networks, the residues communicate through the shortest 
paths available, and multiple routes of communication are in play and often pass through 
common nodes (del Sol et al., 2009; Invernizzi et al., 2014; Meireles et al., 2011). 
The usage of network-based approaches to protein dynamics is recent and still developing 
(Papaleo et al., 2012; Invernizzi et al., 2014; Nygaard et al., 2016; Mariani et al., 2013; 
Angelova et al., 2011; Ghosh and Vishveshwara, 2007; Astl and Verkhivker, 2019). Proper 
reproducible protocols and solid tools accessible to the community are needed in the PSN 
field to reach the standards of recent open-access and collaborative initiatives for 
reproducibility and transparency in molecular modeling and simulations (PLUMED 
Consortium, 2019; Smith et al., 2020; Senapathi et al., 2020). These initiatives are also 
common in other areas of bioinformatics, such as cancer genomics (Siu et al., 2016; 
Colaprico et al., 2020, 2015; Mounir et al., 2019; Terkelsen et al., 2020).   
In 2014, we developed PyInteraph (Tiberti et al., 2014)for the study of protein structure 
networks (PSNs) from structural ensembles, especially suited to work on trajectories from 
atomistic simulations such as Molecular Dynamics (MD). Examples of PyInteraph 
applications includes: i) the study of the effects of mutations in disease-related proteins 
(Nygaard et al., 2016; Kønig et al., 2019; Marino et al., 2015; Pantsar et al., 2018; 
Lambrughi, Lucchini, et al., 2016; Kumar and Papaleo, 2020; Fas et al., 2019; Endo et al., 
2020; Michelini et al., 2020; Di Stazio et al., 2020), ii) to characterize or design variants for 
enzymes of industrial interest (Jónsdóttir et al., 2014; Papaleo, Parravicini, et al., 2014; 
Michetti et al., 2017; Óskarsson et al., 2016; Singh et al., 2016), to study the binding of 
biomolecules to a target protein (Di Rita et al., 2018), and to disclose the effect of post-
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translational modifications (Faienza et al., 2020; Lambrughi, De Gioia, et al., 2016). More 
broadly, PyInteraph has been used to study protein dynamics and allostery (Lambrughi, De 
Gioia, et al., 2016; Sora and Papaleo, 2019; Marino and Dell’Orco, 2016, 2019; Galochkina 
et al., 2019; Faienza et al., 2020; Abbas et al., 2019; Bonì et al., 2020; Borsatto et al., 2019). 
PyInteraph is also included in planned protocols from scientific consortia to study the 
genetics and the molecular mechanisms at the base of different diseases (Borges et al., 2020). 
Due to the large and increasing number of applications, it becomes thus of paramount 
importance to maintain and develop further the package. 
Here, we provide a new version for Python 3 upon significant restructuring of the code for a 
more flexible and accessible structure, i.e., PyInteraph2. Moreover, we developed the support 
tool PyInKnife2 for analyses of convergence of the network properties and cutoff selection. 
 
Features and Implementation 
 
PyInteraph2 (Figure 1) calculates the most relevant non-bonded interactions between pairs of 
residues on structural ensembles and translates such information into a network. Those 
interactions include salt bridges, hydrogen bonds, and contacts between hydrophobic side 
chains, along with a description based on a knowledge-based potential for the calculation of 
energy networks (Potapov et al., 2009, 2010). Edges in the resulting networks are weighted 
on the persistence of the interaction they represent, defined as the percentage of 
conformations in which the interaction is present in the ensemble. This value is used to 
understand whether two residues or nodes are connected in the network or not. It also allows 
for unweighted networks where different interactions can be combined. The knowledge-
based potential can also be used to weight the network. 
Graphs for each interaction type are calculated separately, and, once they have been 
computed, PyInteraph2 allows to process them in several ways. The pyinteraph primary 
function allows the calculation of the network. Also, it provides a table with pairwise intra- 
and intermolecular interactions and their persistence for further consultation. Usually, a graph 
is first filtered by removing those edges with low persistence, and the software includes the 
possibility to identify an optimal persistence threshold (pcrit). The user can test a range of 
persistence cutoffs for a given unfiltered PSN. For this analysis, the user can modify the 
lower limit, upper limit, and step size. Afterward, PyInteraph2 computes the size of the most 
populated connected component (i.e., the biggest interconnected sub-graph in the main 
network) for each filtered network. The optimal persistence threshold will be where there is a 
sharp fall in the number of nodes in the most populated connected component, similar to the 
definition of the optimal interaction strength (Icrit) in the PSN based on atomic contacts 
(Brinda and Vishveshwara, 2005). The user can carry out the pcrit analysis and the filtering 
step with the filter_graph function of PyInteraph2. After filtering, it is possible to merge the 
networks into a single multi-interaction graph.  
PyInteraph2 also includes downstream graph analyses that are implemented in the 
graph_analysis function. For example, it allows the identification of hubs, i.e., well-
connected nodes in the network, and calculates connected components. PyInteraph2 also 
enables the calculation of paths between pairs of residues in the network. The analysis of 
connected components and paths uses NetworkX functions. The functions implement a 
breadth-first search algorithm to find the connected components and a modified depth-first 
search algorithm to compute the paths. Hubs are found simply by reporting nodes meeting or 
exceeding a pre-defined node degree threshold, which one should select after careful reading 
of the relevant literature. For the most common PSN networks, the threshold used to assign a 
node as a hub is a degree value of 3 or 4 (Papaleo, 2015).  
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A path is composed of nodes that can be traversed in the network while trying to reach a 
target node from a source one. This is particularly useful to identify potential routes of 
structural communication between distant protein sites - for instance, an active site and an 
allosteric site. 
We also provide the possibility to calculate networks of contacts between residue side chains 
(scPSN) by taking advantage of the hydrophobic contacts function, which simply considers 
distances between the centers of mass of residue side chains to identify a contact. Such a 
network accounts for any type of contact employing a distance cut-off between the pairs of 
centers of mass as the only required parameter. We benchmarked the method on proteins with 
different sizes, folds, and simulated using different physical models, to estimate the best 
distance cut-off to obtain a network with balanced connectivity using a jackknife resampling 
method (Salamanca Viloria et al., 2017). 
PyInteraph, which was initially written for Python 2.7, includes C extensions exposed 
through a Cython abstraction layer. The package uses several open-source packages, such as 
MDAnalysis (Michaud-Agrawal et al., 2011), NetworkX (Hagberg et al., 2008), Matplotlib 
(Hunter, 2007), and the SciPy stack (Harris et al., 2020; Virtanen et al., 2020) to perform the 
required operations on a conformational ensemble, as well as to calculate and represent 
graphs. Its installation required few open-source Python packages, Cython, and a C compiler.  
Python 2.7 is obsolete, and the support for it has ceased. Most of the commonly used Python 
packages have transitioned to version 3. Moreover, changes applied over time to the 
necessary packages had made the installation of PyInteraph complicated, usually requiring an 
ad-hoc Python virtual environment. We have now ported the PyInteraph2 software to Python 
3, having Python 3.7 as the main development target, and discarding retro-compatibility with 
Python 2. We have updated the source code to be compatible with the latest stable release of 
requirements at the time of writing, making it trivial to install. Furthermore, we have 
refactored the structure of the software package to be compliant with the standard formats 
and features of modern Python packages.  
Previously, a full installation of PyInteraph required the user to set up a few system variables 
to make it work correctly. We exploit features from the setuptools package to install the 
necessary files, Python packages, and scripts at a standard location in the new PyInteraph2 
release. As before, the setup script installs two Python packages: i) pyinteraph, which 
includes the most important functions of the package, including user scripts, and ii) 
libinteract, which acts as a backend. Nonetheless, the new structure of user-executable scripts 
allows to import the functions easily and test them separately. We included more in-depth 
tests for both packages with automated pytest scripts to maintain and expand routinely. The 
outputs on the pyinteraph tool have been modified to better handle ensembles of protein-
protein complexes (see as an example: 
https://github.com/ELELAB/pyinteraph2/tree/master/examples ). 
The current version of PyInteraph2 provides a modular structure of the code, which means 
that it is possible to add new functionalities without significant alterations of the core part of 
the code. We also provide guidelines for contributors who are interested in joining the project 
(https://github.com/ELELAB/pyinteraph2/edit/master/CONTRIBUTE ). 
We also provide a standalone version of a pipeline for downstream network analysis to 
identify suitable distance cutoffs for PyInteraph-based PSNs, i.e., PyInKnife2 (Figure 1). 
PyInKnife2 is also available for Python 3, and it supports all the different networks calculated 
by PyInteraph2, i.e., hydrogen bonds, salt bridges, hydrophobic interactions, and side-chain-
based contact maps. PyInKnife2 has been designed in a user-friendly manner thanks to 
customizable configuration files instead of several command-line options. This design will 
facilitate the reproducibility of single runs. Moreover, the calculations are fully parallelized to 
improve the performances on the analysis of multiple trajectories (ensembles) 
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simultaneously. For this, we decided to rely on the Dask package (Rocklin, 2015) to keep a 
clean interface and ease scaling the pipeline up or down according to the computational 
resources available. Furthermore, the customization of the analyses is fine-grained with a 
modular interface to provide maximum flexibility for the user. Overall, PyInKnife2 provides 
a unified Python package, consisting of three main executables to run the pipeline, aggregate 
the results and plot them, and a few modules where the core functions live. PyInteraph2 and 
PyInKnife2 are available under the GNU General Public Licence (GPL) version 3.0. 
 
  
 
Comparison with other software packages for PSN on protein ensembles 
 
Table S1 contains a comparison of several features of the currently available tools 
(Bhattacharyya et al., 2016; Seeber et al., 2011; Serçino�lu and Ozbek, 2018; Chakrabarty et 
al., 2019; Brown et al., 2017; Grant et al., 2020; Contreras-Riquelme et al., 2018) to generate 
PSNs from structural ensembles. We considered: i) features related both to the PSN 
construction methodology and ii) to the palette of network analyses implemented, together 
with iii) indicators of the availability of the tools across different platforms and types of user 
interfaces. 
We also assessed the supported formats for the input file containing the structural ensembles 
and whether a version control repository is available for the source code, where individual 
users can contribute.  
The “tools to support the selection of parameters” field refers to methods provided with the 
PSN tools or elsewhere, helping the selection of values for optimal cutoffs for one or more 
network parameters. Only three packages have integrated similar protocols, either internally 
(PyInteraph2) or referring to external resources (PSN-ensemble and WORDOM, PyInteraph2 
with PyInKnife2).  
PyInteraph2 provides high flexibility in terms of the supported input formats and the classes 
of interactions to calculate the network. We noticed that there is a need for the expansion of 
the supported downstream analyses in PyInteraph beyond the common ones. For example, we 
will consider the inclusion of important properties such as communities, k-cliques, and 
centrality measurements provided by other packages in the future.  
We discriminated between standalone software packages, web servers, and indicated whether 
an API for programmatic access was available). In addition, We reported if plug-ins for 
widely used molecular visualization software packages were available to map the interactions 
found in the PSNs on the corresponding protein structure to ease the interpretation of the 
network and subsequent analyses. While NAPS provide some degree of visualization, only 
PyInterph2 and RIP-MD have a plug-in to integrate the network analyses with software 
packages for molecular visualization. We noticed that only some projects provide version 
control repositories. Moreover, in our survey, we found published tools that are no longer 
maintained. This is a common issue in bioinformatics. The possibility to develop and sustain 
a centralized resource in a community-driven direction should help to overcome it. 
 
Case of study 
We used the new PyInKnife2 on one microsecond MD trajectory of the Cyclophilin A 
(CypA) wild-type enzyme, previously published (Papaleo, Sutto, et al., 2014; Salamanca 
Viloria et al., 2017). CypA is a well-studied enzyme in terms of allostery and structural 
communication both with experimental and computational techniques (Ramanathan et al., 
2011; van den Bedem et al., 2013; Rodriguez-bussey et al., 2018; Fraser et al., 2009; 
Camilloni et al., 2014; McGowan and Hamelberg, 2013; Papaleo, Sutto, et al., 2014; 
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Wapeesittipan et al., 2019). PyInKnife2 supports running the full jackknife resampling 
protocol on the different types of networks implemented in PyInteraph. In this example, we 
have used PyInKnife2 to run the jackknife approach on the scPSN as an illustrative example 
(see files in 
https://github.com/ELELAB/pyinteraph2/tree/master/examples/CypA/graph_analysis/pyinkni
fe).  
After setting up our system, by resolving periodic boundary conditions and keeping the 
protein atoms only in our trajectory, we have prepared the PyInKnife2 YAML format 
configuration file. This file allows the configuration of all the parameters to perform the 
jackknife protocol, most notably the number of resamplings. The configuration file also 
specifies the range of distance cutoffs to use in the jackknife resampling, which is repeated 
for every point of the selected parameter range to perform a parameter scan. Any other 
command-line option to be passed to the PyInteraph2 executable scripts can be specified 
within the configuration file, allowing maximum flexibility. PyInKnife2 uses the 
configuration file to automatically create the required directory structure, appropriately slice 
the trajectory, and perform the necessary analyses. The output is a set of neatly organized 
directories to store the output files of the analysis. A second step allows the aggregation of 
the data into easily-readable comma-separated files (CSV) containing information about the 
network properties of interest, i.e., number of hubs and size of connected components. A 
third script allows visualizing this information as publication-ready plots, requiring a second 
configuration file to fine-tune the graphical representation of the output. 
For the scPSN analysis, we used PyInKnife2 to perform the jackknife resampling with ten 
windows and to vary the distance parameter in the 4.5-6.0 Å range, every 0.1 Å. We have 
then considered the size of the five largest connected components and the distribution of the 
number of hub residues over node degree, where hubs were defined as those residues 
connected to at least three others. We filtered the networks by removing the edges with 
weight < 20% to keep the most significant ones. 
Our analysis with PyInKnife2 confirms that our investigated network properties are stable 
with the resampling approach and that 5.0A (figure 2A) is a suitable distance cut-off for this 
type of network, as already recommended before (Salamanca Viloria et al., 2017). Networks 
at 4.9 Å have very small connected components, as the network is too fragmented. In 
contrast, networks at higher cut-off clump most residues into a single connected component 
(as can be seen in 
https://github.com/ELELAB/pyinteraph2/tree/master/examples/CypA/graph_analysis/pyinkni
fe). PyInKnife2 also has the purpose of assessing the stability of the network parameters 
calculated from the MD ensemble. Our properties feature low standard errors, suggesting that 
they are stable within the resampling performed by the jackknife approach. To this goal, we 
used the results from PyInteraph2 to investigate the scPSN calculated on the full trajectory 
using the graph_analysis tool of PyInteraph2. 
The scPSN features a total of 30 hub residues (Figure 2B), of which four with degree 5, 10 of 
degree 4, and 16 of degree 3. They are distributed on the whole structure and present both in 
stable secondary structure elements and in surface-exposed loops. The α-helix 1 (residues 30-
41) is significantly enriched with hub residues, hosting six of them, of which two with the 
highest degree identified. Hub residues are in all the β-strands of the β-barrel fold of CypA 
except in the β-strand 3 and loops and turns that connect different secondary structure 
elements. The highest-degree nodes are T32 and A38, both located on the α-helix 1, H92, on 
a surface loop and spatially close to S99, and M142, on the α-helix 3. S99 is particularly 
important since its conformational changes can trigger long-range effects to the catalytic site 
and its mutation to threonine impair catalytic activity (Fraser et al., 2009). 
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The network of contacts identified by PyInteraph2 consists of several connected components 
(Figure 2C). The largest connected component accounts for 58 nodes, touches upon most of 
the protein structure, and spans over the helices α1, α3, and the whole β-sheet. It also includes 
residues of the loops interconnecting these secondary structure elements. The remaining 
connected components have a markedly more local character. The second-largest component 
contains 19 nodes, which are mostly residues in the strands β3-β6. This connected component 
consists of the long-range communication network described in the next section from the core 
(S99) to the active site (R55). The third one (11 nodes) has a local character and comprises 
part of the α1 helix and of the neighboring strands β1, β2, and β8. The fourth component (6 
nodes) is also very localized, including residues in the strands β1, β2, and β7. 
Finally, we have calculated the shortest communication paths in the network between two 
residues using the graph_analysis tool of PyInteraph2 
(https://github.com/ELELAB/pyinteraph2/tree/master/examples/CypA/graph_analysis/pyinkn
ife). In detail, we selected one residue of the active site, R55, and a distant residue, S99 
(Figure 2D), for which long-range communication was previously studied by resampling the 
electron density map from X-ray crystallography (Fraser et al., 2009). It is unclear if this path 
entails long-term scale dynamics as suggested by NMR dispersion experiments or a shorter 
timescale, as suggested by recent MD works (Wapeesittipan et al., 2019). Still, it is clear that 
the mutation of S99 to Thr, which entraps the protein in the minor state, promoting the 
cascade of collisional clashes with impact on the enzyme activity (Fraser et al., 2009). S99 
and R55 are the endpoints of a network of residues, passing through F113 and M61, 
triggering the transition between a major and a minor conformational state of CypA. This 
mechanism is supported by the resampling of the electron density map of a crystal of the 
wild-type and S99T CypA variants (Fraser et al., 2009). The S99T mutation traps the enzyme 
in the minor state, significantly reducing the turnover rate. We investigated the network of 
side-chain contacts that propagate long-range communication using another PSN framework 
and free energy calculations (Papaleo, Sutto, et al., 2014). Interestingly, we found that Q63 is 
more likely to take part in the transition between major and minor states than M61. In these 
new analyses, PyInteraph2 identified two communication paths: i) one that includes the 
residues F113, M61, Q63 and, ii) one with the residues F113, A101, and Q63. The two paths 
feature similar average persistence (57.4% and 54.1%).  
 

Conclusions 
 
In the emerging field of PSNs applied to conformational ensembles, we are still far from 
deriving precise information and predictions from PSNs. Moreover, the field is still suffering 
from a lack of consensus in the procedure to employ and how to design or implement the 
network model. Efforts to develop solid platforms and strong foundations to study PSNs of 
highly dynamic biomolecules are needed. This is especially relevant because of the potential 
of PSN approaches in complementing experimental studies of important proteins in health 
and disease. For example, PSNs may help design new protein variants with different 
stabilities or binding preferences, classify the impact of disease-related variants, or identify 
druggable allosteric hotspots. Nevertheless, a more organized community, better standards, 
and a solid framework in the field are still needed to consolidate these applications. Our work 
in restructuring PyInteraph2 and designing PyInKnife2 is the first pillar toward a community-
driven effort in the PSN field applied to biomolecular ensembles to develop harmonized and 
reproducible protocols, facilitate the maintenance of the tools and the contributions from 
other researchers. We provided an open-access, easily accessible, and modular structure 
supported by version control through our GitHub repositories. These features guarantee the 
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baseline for extending their functionalities to include new network models or increase the 
support for downstream graph analyses. The usage of PyInteraph2 as a common tool for PSN 
analyses should also facilitate benchmarking efforts and comparisons among different 
methods. Moreover, pipelines as the ones implemented in PyInKnife2 could guide the 
selection of optimal distance cutoffs. 
We foresee that these are the first steps towards establishing a community-driven effort to 
contribute to PyInteraph2. We aim to develop PyInteraph2 as a central resource for different 
PSN methods where the developers, other contributors, and users who apply the packages for 
their case study can join forces for long-term sustainable and more transparent solutions.  
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Figure legends 
  
Figure 1. PyInteraph2 and PyInKnife2. Schematic depiction of PyInteraph2 and 
PyInKnife2 and how PyInKnife2 incorporates PyInteraph2 tools into its workflow. “HC” 
stands for hydrophobic contacts, “SB” stands for salt bridges, “HB” stands for hydrogen 
bonds, “cc” stands for connected components. 
 
Figure 2. scPSN analysis of CypA. A) Results for hubs and connected components 
identified in the ensemble using the PyInKnife2 pipeline. B) Hubs identified by PyInteraph2 
on the scPSN network. Red, orange, and yellow residues have degrees of 5, 4, and 3, 
respectively. C) Connected components identified in the scPSN; residues with the same color 
belong to the same connected component. The largest ones are highlighted in red, orange, 
yellow, green according to a descending order of size as described in the text. D) 
Communication paths between S99 and R95.  
 
Table S1. Comparison of PyInteraph2 and PyInKnife2 with other software packages for 
different classes of PSN. We did not include MDN (Ribeiro and Ortiz, 2015) since the link 
was unavailable at the time of writing. Also, the RIP-MD web server version did not work at 
the time of writing, and we decided to refer only to the standalone version in this Table.  
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