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Abstract 
Cell-cell interactions are crucial for multicellular organisms as they shape cellular function and 
ultimately organismal phenotype. However, the spatial code embedded in the molecular 
interactions that drive and sustain spatial organization, and in the organization that in turns 
drives intercellular interactions across a living animal remains to be elucidated. Here we use the 
expression of ligand-receptor pairs obtained from a whole-body single-cell transcriptome of 
Caenorhabditis elegans larvae to compute the potential for intercellular interactions through a 
Bray-Curtis-like metric. Leveraging a 3D atlas of C. elegans’ cells, we implement a genetic 
algorithm to select the ligand-receptor pairs most informative of the spatial organization of cells. 
Validating the strategy, the selected ligand-receptor pairs are involved in known cell-migration 
and morphogenesis processes and we confirm a negative correlation between cell-cell 
distances and interactions. Thus, our computational framework helps identify cell-cell 
interactions and their relationship with intercellular distances, and decipher molecular bases 
encoding spatial information in a whole animal. Furthermore, it can also be used to elucidate 
associations with any other intercellular phenotype and applied to other multicellular organisms. 

Keywords: Caenorhabditis elegans / cell-cell communication / cell-cell interactions /  ligand-
receptor interactions / single-cell RNA-sequencing  
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Introduction 

Cell-cell interactions (CCIs) are fundamental to all facets of multicellular life. They shape cellular 
differentiation and the functions of tissues and organs, which ultimately influence organismal 
physiology and behavior. Cell-cell communication (CCC) is a subtype of CCIs and involves a 
cell sending a signal to another cell, usually triggering downstream signaling events that 
culminate in altered gene expression. Thus, CCIs allow cells to coordinate their gene 
expression1, form spatial patterns of interaction2, and perform collective behaviors3. Signals 
passed between cells are often ligands which are received by receptors in other cells. Ligands 
can mediate CCC across a range of distances and they can encode positional information for 
cells within tissues, which is critical for cellular decision-making4. For instance, some ligands 
form a gradient that serves as a cue for cells to migrate5,6. Thus, studying CCIs elucidates how 
cells coordinate different functions depending on both the molecules mediating CCC and their 
spatial context. 

CCIs and CCC can be inferred from transcriptomic data7. Computational analysis of CCIs 
usually consists of examining the coexpression of secreted proteins by a sender cell (e.g. 
ligands) and their cognate surface proteins in a receiver cell (e.g. receptors). To reveal active 
communication pathways from the coexpression of the corresponding ligand-receptor (LR) 
pairs, communication scores can be assigned to these interactions based on the RNA 
expression levels of genes encoding the secreted and receiver proteins8–12. RNA-based 
analyses have informed CCIs and their mediators in small communities of cells, such as 
embryos13,14 and tissues11,15–23. Moreover, CCI analyses have enabled the study of all cell types 
in the whole body of a multicellular organism in post-embryonic stages24. 

CCIs allow cells to know their location in their communities, enabling a coordination of 
functions4,25. Molecules mediating these interactions are used by cells to encode and pass this 
spatial code. Thus, the study of CCIs can help decode spatial organization and function. 
However, studying CCIs in a spatial context cannot be directly done from conventional single-
cell RNA-sequencing technologies (scRNA-seq) since spatial information is lost during tissue 
dissociation26. Nevertheless, previous studies have proved that gene expression levels still 
encode spatial information that can be recovered by adding extra information such as protein-
protein interactions and/or microscopy data13,26–28. For example, RNA-Magnet inferred cellular 
contacts in the bone marrow by considering the coexpression of adhesion molecules present on 
cell surfaces28, while ProximID used gene expression coupled with microscopy of cells to 
construct a spatial map of cell-cell contacts in bone marrow27. Thus, as previously done for 
understanding a few multicellular niches13,29–31, one can study CCIs in a spatial context by 
adding appropriate information to the RNA-based CCI analysis. Hence, integrating CCI 
analyses with spatial information represents a great opportunity to deepen our understanding of 
intercellular communication in a spatial context. Moreover, this task holds potential to identify 
the signals that cells use to encode spatial organization. 

Caenorhabditis elegans is an excellent model for studying CCIs in a spatial context32. Its cellular 
organization shows complexity comparable to higher-order organisms. It also has well defined 
tissues, and organs in post-embryonic stages. C. elegans can also be easily cultured and all 
individuals possess the same number and location of cells. Previous studies about its CCIs 
have focused on subsets of cells or very-early developmental stages. For example, cell contacts 
were mapped by microscopy during embryogenesis33,34, which helped identify cell pairs using a 
specific Notch signaling pathway34. Thus, C. elegans represents a well controlled experimental 
system that is sophisticated enough for performing CCI analyses. Importantly, a microscopy-
based 3D atlas of cells35 and a single-cell transcriptome36 exist for C. elegans larvae; a stage at 
which most of the C. elegans’ organs have already formed and most cells have migrated to their 
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final adult position37. Therefore, C. elegans can readily be exploited to decode the signals that 
define the spatial organization of cells in a whole living animal. To this end, here we compute 
CCIs from scRNA-seq data and assess how intercellular distance is associated with the 
potential of cells to interact. Also, we inspected which signals govern the CCC that occur in 
different locations and ranges of distance across the C. elegans body. For the latter task, a list 
of ligand-receptor interactions was built, which to date is the most comprehensive one for CCI 
analyses of C. elegans. Our computational framework detects molecules that link CCIs and 
intercellular distances. Importantly, this approach can be extended to any other organism that 
has the necessary input data to study the molecular bases underlying intercellular distances and 
many other traits driving and sustaining cellular organization in multicellular organisms. 

Results 

Computing cell-cell interactions 

Intercellular communication allows cells to coordinate their gene expression1 and to form spatial 
patterns of molecule exchange2. These events also allow cells to sense their spatial proximity, 
which is essential for both the formation and the homeostasis of tissues and organs4. For 
example, one mechanism includes sensing the occupancy of receptors by signals from 
surrounding cells4,38; higher occupancy can indicate greater proximity of communicating cells39. 
Thus, to represent a cell-cell potential of interaction that may respond to or drive intercellular 
proximity, we propose a Bray-Curtis-like score (Figure 1). This cell-cell interaction (CCI) score is 
computed from the expression of ligands and receptors to represent the molecular 
complementarity of a pair of interacting cells. Specifically, it weighs the number of LR pairs that 
both cells use to communicate by the aggregate total of complementary ligands and receptors 
each cell in the pair produces (see Methods and Figure 1b). The main assumption of our CCI 
score is that the smaller the intercellular distance, the more complementary is the production of 
the ligands and receptors in a pair of cells. In other words, for any given pair of cells, cells are 
defined as closer when a greater fraction of the ligands produced by one cell interacts with 
cognate receptors on the other cell and vice versa, as this increases their potential of 
interaction.  

For computing CCIs in C. elegans, besides the gene expression levels of its cells, a list 
containing the interactions between its ligands and receptors is needed. Although much is 
known about this organism, knowledge of its LR interactions remains scattered across literature 
or contained in protein-protein interaction (PPI) networks that include other categories of 
proteins. Thus, we generated a list for C. elegans that consists of 245 ligand-receptor 
interactions (Supplementary Table 1), which was built from interactions described in literature 
and high-confidence published PPIs (see Methods). Next, we used this list to determine the 
presence or absence of ligands and receptors in each cell identified in the single-cell 
transcriptome of C. elegans36, and ultimately the active LR pairs in all pairs of cells. To 
determine presence and absence of proteins, we used expression thresholding9,24, the most 
common strategy for analyzing CCIs and CCC due to its binary nature and easy interpretation7, 
and used the derived ligand and receptor scores as input of our CCI score to represent the 
overall potential of its cell types to interact. 

To facilitate the application of the CCI analyses, we developed cell2cell, an open source tool to 
infer intercellular interactions and communication with any gene expression matrix and list of LR 
pairs as inputs (https://github.com/earmingol/cell2cell). Thus, we used our Bray-Curtis-like score 
to generate the first predicted network of CCIs in C. elegans that measures the complementarity 
of interacting cells given their active LR pairs (Figure 2a). Although we chose this score for 
representing a spatial-dependent complementarity of interaction, cell2cell is flexible in terms of 
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the scoring strategies applied to decipher CCIs and CCC, so depending on the purpose of study 
other CCI scores can be used (e.g. the number of active LR pairs to represent the strength of 
the interaction). 

Cell-type specific properties are captured by computed cell-cell interactions 

After determining the potential for interaction between every pair of cell types from the single-
cell transcriptome of C. elegans, we grouped the different cell types based on their interactions 
with other cells through an agglomerative hierarchical clustering (Figure 2a). This analysis 
generated clusters that seem to represent known roles of the defined cell types in their tissues. 
For instance, we found germline cells to have the lowest CCI potential with other cell types. This 
is consistent with the physical constraint that germline cells have as they are surrounded by 
basal membranes that limit their intercellular communication with other cell types40,41, and may 
uncouple the coordination of their gene expressions. For example, germline cell fate into mitosis 
or meiosis is almost exclusive on CCIs with distal tip cells, especially through mediators of 
Notch signaling such as glp-142. In contrast, neurons have the largest potential for interactions 
with other cell types, suggesting that these cell types use a higher fraction of all possible 
communication pathways. This occurs especially in interactions between neurons and muscle 
cells (Figure 2a), which is consistent with the high molecule interchange that occurs at the 
neuromuscular junctions43, suggesting that our method is exposing complementary signals 
actually transmitted between cells. 

Similarity between pairs of interacting cells was also analyzed given the LR pairs they use. By 
using UMAP44,45 to visualize the similarity they have (Figure 2b), we observe that pairs of 
interacting cells tend to be grouped by the sender cells (i.e. those expressing the ligands), but 
not by the receiver cells (i.e. those expressing the receptors). This result is consistent with 
previous findings that ligands are produced in a cell type-specific manner by human cells, but 
receptors are promiscuously produced46, which suggests that this phenomenon may be 
conserved across multicellular organisms. 

Key signaling pathways link distance between cells with their potential of interaction 

Given that our CCI score is undirected, it can also be compared with spatial properties such as 
the distance between cells, which represent a unique state that does not change with the order 
that cells in a pair are considered. Under the hypothesis that larger distances should decrease 
the potential of cells to interact, we expected our CCI scores to be negatively correlated with the 
Euclidean distances between cells. Thus, we used the distances between cells, calculated by 
taking the Euclidean distance between cells from a 3D atlas of C. elegans (Supplementary 
Figure 1a), as our reference data to assess our methodology and assumptions in calculating our 
CCI score (see Computing cell-cell interactions) 

We annotated each cell in the 3D atlas with a corresponding cell type in the scRNA-seq dataset 
(Supplementary Table 2), and computed the minimal Euclidean distances between each pair of 
cell types (Supplementary Figure 1b). In this case, the minimal distance was considered 
because this case would represent the maximal potential that cells have to interact. Thus, we 
next calculated the Spearman correlation between the CCI score matrix and the Euclidean 
distance matrix. This originally resulted in a correlation coefficient of -0.21 (P-value = 0.0016). 
Although the correlation was negative as expected, it was a low value. This may be due to noise 
introduced by comprehensively incorporating all LR pairs into the computation, which may 
include several LR pairs not necessarily encoding spatial information. 
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Given that the CCI scores computed by using all LR pairs in our list led to a low correlation with 
the distances between cells, we hypothesized that there is a subset of key LR pairs that follow a 
spatial pattern of co-expression and would allow cells to specifically sense their spatial 
relationship with other cells or drive the spacing. In this scenario, a CCI score that is a function 
of only these LR pairs would better represent the potential of two cells to functionally interact 
and it is expected to better correlate with cell proximity. Under this hypothesis, we looked for key 
LR pairs of C. elegans that better capture the potential of cells to interact given their physical 
locations. To do so, we ran a genetic algorithm (GA) to maximize the correlation between the 
CCI score matrix and the Euclidean distance matrix by randomly generating different size 
subsets of the LR pairs in our complete list (Supplementary Figure 2a-b). This algorithm was run 
100 times, obtaining in each case a different optimal list of LR pairs due to the stochastic nature 
of this algorithm (Supplementary Figure 2c). Nevertheless, across all solutions, an average 
Spearman coefficient of -0.67 ± 0.01 was obtained (shown as an absolute value in 
Supplementary Figure 2b) and the maximal correlation resulted in a value of -0.70 (P-value = 
1.435 x 10-35). Thus, the resulting optimized subsets of LR pairs (hereinafter referred to as initial 
GA-LR pairs) may constitute good predictors of biological functions driving or sustaining 
intercellular proximity, and they support the hypothesis that a subset of the LR pairs would drive 
the distance-dependent potential of interaction between two cells. 

To identify the specific biological roles that the  initial GA-LR pairs may have, we used our 
functional annotations about the signaling processes they are involved in (see column “LR 
Function” in Supplementary Table 1). Specifically, for each initial GA-LR pair list, we computed 
the relative abundance of each signaling pathway (i.e. the number of LR pairs involved in a 
given pathway with respect to the total number of LR pairs in the list) (Figure 3a). Considering 
the relative abundance of these pathways in our complete list containing the 245 LR pairs, we 
used the distribution of abundances from the GA runs and performed a one-sided Wilcoxon 
signed-rank test to evaluate whether the fractions of each function either increased or 
decreased with respect to the fraction in all LR pairs (Figure 3b). Remarkably, LR pairs involved 
in Canonical RTK-Ras-ERK signaling, cell migration, Hedgehog signaling and mechanosensory 
mechanisms increased their relative abundance in the resulting subsets from the GA runs. 
Thus, the GA seems to be prioritizing LR pairs associated with processes such as cell 
patterning, morphogenesis and tissue maintenance47. 

The established or predicted roles of the enriched initial GA-LR pairs are congruent with a role 
in establishing and/or sustaining the proximity of cells. This notion is further supported by the 
congruence between our predictions and targeted studies demonstrating the essential role in 
spatial organization of the initial GA-LR pairs detected in most of the GA runs. For instance: 1) 
The LR pair composed of smp-2/plx-1 mediates epidermal morphogenesis, as demonstrated by 
the defects in epidermal functions exhibited by C. elegans lacking smp-248; 2) cwn-1/mig-1 
mediate cell positioning, as demonstrated by the abnormal migration of hermaphrodite specific 
motor neurons in the mutants49,50;  3) K05F1.5/dma-1, as K05F1.5 was described as a novel 
gene (named lect-2) that, similar to mnr-1 and dma-1, is key for dendrite guidance of sensory 
neurons innervating the muscle-skin interface51,52; and 4) the let-756/ver-1 interaction, an 
homolog of the mammalian FGF-VEGF pathway, that is essential for C. elegans development, 
especially in the L2 stage where let-756 has its peak of expression53, and for the positioning of 
ray 1 in the tail54. 

Consensus GA-selected LR pairs contribute to the formation of spatial patterns of 
communication along the C. elegans body 

Next, we looked for a core set of LR pairs that were representative of the optimal solutions 
generated by the GA. We first clustered LR pairs by their co-occurrence across the GA runs and 
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then selected the cluster with members that were simultaneously present in a high fraction of 
the optimal subsets (Supplementary Figure 2c-d). This resulted in a consensus list of 37 LR 
pairs (Supplementary Table 3), hereinafter referred to as GA-LR pairs, whose combined 
appearance seemed to encode proximity across cell-cell interactions. 

This consensus list yields a Spearman coefficient of -0.63 (P-value = 2.629 x 10-27) between the 
CCI score matrix and the Euclidean distance matrix. To test whether the correlation stems from 
the specific LR pairs in the consensus list, we did a series of permutation analyses 
(Supplementary Figure 3). We evaluated if the correlation computed with the consensus list was 
greater than the value stemming from the null distribution generated with random interactions 
generated from the ligands and receptors in the GA-LR interactions, either by randomly 
permuting the ligands and the receptors (Supplementary Figure 3a) or by shuffling their labels to 
keep the topology of the interactions (Supplementary Figure 3b). We also subsampled the 
complete list of LR pairs (Supplementary Table 1) to obtain random subsets of similar size to 
the list of GA-LR pairs (Supplementary Figure 3c). In each scenario, the randomized lists 
yielded a smaller negative Spearman correlation than the consensus list (P-value < 0.0001, see 
Supplementary Figure 3). 

Interestingly, when compared to the complete list of LR pairs, the GA-LR pairs led to more 
heterogeneity in the cell-cell interaction potential (Figures 2a and 4a). The heterogeneity seems 
to stem from the proximity that cells have since cells are grouped by functional interactions 
within their tissues (Figure 4a). For example, the cells composing the pharynx (pharyngeal 
gland, epithelia, muscle and neurons) group together, which may reflect a pharynx-specific 
pattern of interactions between these cell types that may not translate to the cell types 
composing other organs or locating in other regions of the worm. Similarly, we observed 
seemingly functional associations between neurons and muscles. In particular, the interactions 
between muscle cells and GABAergic and cholinergic neurons presented a high CCI score, 
which may represent a protein-based priming for the known exchange of GABA and 
acetylcholine in neuromuscular junctions. We also found that the most complementary 
interaction of amphid/phasmid sheath cells was with seam cells. This is consistent with the role 
of seam cells during larval development, where they form adherens junctions with sheath cells 
and hypodermal cells and function as sockets for the phasmid sensilla55. Another interesting 
observation was the high cell-cell interaction score between oxygen sensing neurons and 
intestinal cells, which is consistent with the extensive communication between these cells to link 
oxygen availability with nutrient status56–58. Thus, the protein-protein interactions prioritized by 
the GA seem to capture cellular properties that define physical proximity, especially defining 
functional roles of tissues and organs. 

To explore the spatial distribution of consensus GA-LR pairs along the body of C. elegans 
(Figure 5), we performed an enrichment analysis of CCC along its body. We first divided the C. 
elegans body in 3 sections, encompassing different cell types (Figure 5a). Then, we computed 
all pairwise CCIs within each section and counted the number of times that each LR pair was 
used. With this number, we performed a Fisher’s exact test on each bin for a given LR 
interaction. We observed enrichment or depletion of specific LR pairs in different parts of the 
body (Figure 5b). Interestingly, we observed LR pairs enriched only in one section and depleted 
in the others and vice versa (Table 1), following a pattern mostly congruent with existing 
experimental data. For instance, col-99 shows prominent expression in the head, especially 
during L1-L2 larvae stages of development59, while LIN-44 is secreted by hypodermal cells 
exclusively in the tail during larval development60,61, both cases coinciding with the results in 
Table 1. By contrast, daf-7 is known to be expressed only by sensory neurons in the head62; 
however, our results suggest an enrichment in the tail (Table 1). This is likely due to the 
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transcriptome including two types of sensory neurons that indeed express daf-7 (Figure 4b) 
suggesting that clustering of single cells cannot distinguish all subtypes of sensory neurons. 
Thus, mapping cell types in the 3D atlas resulted in all sensory neurons having a similar 
transcriptome across the body (Figure 5a), explaining this spurious result. Nevertheless, 
although the daf-7 example points to limitations of the current scRNAseq methods and their 
analysis tools, the col-99 and lin-44 examples demonstrate that when cellular identification is 
sufficiently detailed, our strategy captures true biological spatial behaviors of gene expression 
and therefore of CCC. 

To gain more understanding on the importance that the GA-LR pairs may have in defining 
spatially-constrained CCIs, we searched for LR pairs enriched or depleted across all cell pair 
interactions in any of the different distance-ranges of communication (Figure 6). We found five 
LR pairs that were either enriched or depleted in at least one of the three distance ranges given 
the corresponding pairs of cell types (FDR < 1%). Three of these LR pairs are associated with 
Wnt signaling (lin-44/cfz-2, cwn-1/lin-17 and cwn-1/mig-1) and the other two with cell migration 
(smp-2/plx-1 and smp-2/plx-2). As previously reported, semaphorins (encoded by smp-1, smp-2 
and mab-20) and their receptors (plexins, encoded by plx-1 and plx-2) can control cell-cell 
contact formation63; while their mutants show cell positioning defects, especially along the 
anterior/posterior axis of C. elegans48,64. They are also key for axon guidance and cell 
migration65 and necessary for epidermal66 and vulval morphogenesis67. Members of the Wnt 
signaling are biomolecules known to act as a source of positional information for cells4. In C. 
elegans, cwn-1 and lin-44, for example, follow a gradient along its body, enabling cell 
migration49,68–70. Thus, the GA-LR pairs may influence local or longer-range interactions and 
help encode intercellular proximity. 

GA-selected mediators are enriched in morphology and cell migration phenotypes 

As many LR interactions have not been spatially or functionally characterized in C. elegans, we 
anticipate that several pairs in our GA-selected list may either be “yet to be discovered 
functional interactions” or false positives. To minimize false positives, we incorporated 
phenotypic data. The rationale here being that phenotypic associations between the genes likely 
indicate coordinated function, which in this case may imply CCIs. Thus, we next examined the 
phenotypic associations between genes composing the GA-LR pair list. Given that, as defined 
before, these LR interactions are important for cell patterning, morphogenesis and tissue 
maintenance, we focused on phenotypes with annotations such as “morphology phenotype” and 
“cell migration”. We tested for enrichment of GA selected genes with a Fisher’s exact test, using 
the lists of genes whose mutants have been demonstrated to affect that phenotype. Using our 
complete list of LR pairs to define the background list of genes and those in the consensus list 
as the sample list, we observed that morphology and cell migration phenotypes have odds 
ratios of 4.83 (P-value = 0.027) and 3.07 (P-value = 0.0019), respectively, indicating an 
enrichment and therefore, supporting their role as drivers of spatial organization. 

Among the genes associated with either morphology or cell migration phenotypes in our 
complete list of LR pairs, 51% of them were selected by our genetic algorithm (Figure 7). 
Remarkably, many of the GA-selected genes associated with morphology phenotypes are 
involved in the Wnt signaling pathway (lin-17, lin-18, lin-44 and mom-2) and the rest with cell 
adhesion (epi-1) and insulin signaling (daf-2). On the other hand, GA-selected genes associated 
with cell migration include Wnt signaling (cam-1, cfz-2, cwn-1, lin-17, lin-44, mig-1 and mom-2), 
cell migration pathways (mab-20, unc-5, unc-6, unc-129 and rig-6), cell adhesion (ddr-1, epi-1, 
ina-1, let-2, nid-1 and pat-3), Notch signaling (lag-2 and lin-12) and TGF-β signaling (dbl-1). 
Noteworthily, previous studies have shown that these genes and their interactions are key in 
spatial allocation of cells. Examples include: 1) pat-3, which is involved in post-embryonic 
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organogenesis and tissue function71; 2) the interaction between the discoidin domain receptor 
ddr-1 and the collagen col-99, which plays a role in axonal guidance and asymmetry 
establishment of the ventral nerve cord72; 3) lin-12, mab-20 and unc-6 and their respective 
receptors, which are involved in intestine morphogenesis73; and 5) the interaction between nid-1 
and ptp-3, which participates in cell migration and axon guidance74. Cell adhesion molecules 
such as collagen and proteins from the immunoglobulin superfamily also play a role in 
intercellular contact and communication, encompassing genes such as let-2, cle-1, gpn-1, rig-6, 
wrk-1, unc-5 and ina-175–79. Interestingly, when considering the expression of genes associated 
with the phenotypes reported here, cell types seem to be clustered by spatial proximity of their 
lineage groups (Figure 7), suggesting that these genes may be markers of spatial properties. 
Thus, the congruence between spatial proximity and biological function strongly supports the 
notion that the strategy presented here provides insights into the spatial code behind CCIs and 
CCC.  

Discussion 

Here we developed a computational strategy for inferring complementarity between cells given 
their ligand and receptor expression in scRNA-seq data. With this approach, we identified 
spatial properties in C. elegans associated with the potential of cells to interact and 
communicate. Particularly, we found a negative Spearman coefficient between intercellular 
distance and CCIs computed with our Bray-Curtis-like score; a correlation that was stronger 
when inferring CCIs from ligand-receptor pairs selected with a genetic algorithm. Thus, these 
LR pairs resulted to be informative of spatial properties and may direct how cells transmit this 
kind of information to other cells. 

In this study, we also collected ligand-receptor interactions of C. elegans that were available in 
literature and PPI databases, building an essential resource for CCI analyses of C. elegans 
(Supplementary Table 1). Using this list, our CCI analysis led to results consistent with previous 
findings. For example, we found that interacting cells were grouped given cell type-specific 
production of ligands (Figure 2b), which was previously shown in a work that analyzed a 
communication network of human haematopoietic cells46. Our results are also consistent with 
experimental studies of C. elegans. For instance, the GA-driven selection of LR pairs 
significantly prioritized interactions participating in cell migration, Hedgehog signaling, 
mechanosensory mechanisms and canonical RTK-Ras-ERK signaling. Remarkably, these 
pathways and few other mediators, also involved in cell migration (e.g. members of Notch and 
TGF-β signaling), are crucial for the larval development of C. elegans80–83, coinciding with the 
cognate stages of the datasets we used.  

Our analysis successfully recapitulated known biology regarding spatial organization of the cells 
in C. elegans and associated ligand-receptor interactions. Many of the ligands and receptors 
included in the GA-LR pairs (Supplementary Table 3 and Figure 4b) have been reported to 
contribute to cellular positioning, migration and/or organ morphogenesis, which may explain why 
the genetic algorithm selected them as encoders of spatial information. Netrin UNC-6 is an 
example ligand that serves as a cue for enabling DTC migration given its spatial pattern of 
expression84. Moreover, TGFβ-related signaling pathways regulate body size and therefore 
location of cells, sometimes involving proteins selected by the GA, such as DAF-7, DBL-1, 
SMA-6, SMA-10, LON-2, SRP-7, F14B4.1 and UNC-12985–87. Similarly, mediators associated 
with Wnt signaling are required for axon guidance88 and mutants of some of their encoding 
genes, such as cam-1 (ROR homolog that sequesters Wnts), cwn-1, lin-44, cfz-2, lin-17, lin-18 
and mig-1, have previously been linked to defects of cell migration, positioning and 
patterning50,89–91. Thus, the spatial distributions and functions determined in previous studies 
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provide support to our predictions, which suggests that analyzing CCIs and CCC through RNA-
based approaches can decipher important spatial and functional properties. 

Considering the inputs of our analyses, false positives may arise from the preprocessing of 
datasets. For instance, selecting a threshold value to consider ligands and receptors as 
expressed can affect the number of false positives and negatives9. In this regard, different 
values could be explored to infer the presence of biologically active protein, as previously 
addressed92,93. Moreover, other approaches such as using expression products to compute the 
usage of a ligand-receptor pair may also help10, but further adaptations should be done to use it 
with our Bray-Curtis like score. Our CCI score is also dependent on the input list of LR 
interactions, so including other LR pairs that were not considered in our complete list 
(Supplementary Table 1) could improve the predictions. More comprehensive lists might 
generate a better correlation or contain more important LR pairs for the GA selection than the 
ones selected here (Supplementary Table 3). Furthermore, lists of ligand-receptor pairs 
considering the formation of multimeric complexes can improve the reliability of the results11,94, 
so considering structural information of proteins may also improve the predictions. However, in 
contrast to mammals such as mice and humans, C. elegans has considerably less information 
for building comprehensive lists of ligand-receptor interactions containing multimeric complexes. 

Although our strategy captured underlying mechanisms that are consistent with experimental 
evidence in literature, our approach has limitations that can be related, for instance, to the 
nature of the dataset. Conventional scRNA-seq technologies do not preserve spatial 
information, so labelling cells in a 3D atlas by using the cell types in the transcriptome might be 
a confounder. For example, C. elegans possesses sub-types of non-seam hypodermal cells, 
and their gene expressions vary depending on the antero/posterior location of them. However, 
in the scRNA-seq data set employed here there was only one type of non-seam hypodermal 
cells to represent all subtypes, so they virtually share the same gene expression. An illustrative 
case where this represents an issue is the expression of lin-44, which is expressed by 
hypodermis cells located in the tail68,70, but not in other sections as our results showed for lin-
44/lin-17 (Figure 5b). Besides that, physical constraints, such as physical barriers between cells, 
are not considered in our analyses, which could lead to false positives. Examples of this class of 
false positives are the Notch pathway interactions between germline cells and cells that are not 
the distal tip cell or sheath cells since a basal lamina physically blocks interactions with other 
types of cells41

. Therefore, relying only on the gene expression enables us to infer the LR 
interactions that a pair of cells can theoretically use but may not actually use, and may also 
explain the strong but imperfect correlation obtained between CCI scores and intercellular 
distances. Thus, emerging spatial transcriptomics methods are expected to be an important 
advance in the study of CCIs95, since they can distinguish specific cell subtypes given their 
locations and physical constraints. 

The strategy presented in this work provides a framework to associate CCIs with phenotypes 
and detect ligand-receptor interactions that are crucial for those phenotypes. In contrast to 
previously proposed overall CCI scores7, ours is undirected. A benefit of it is that it can be 
successfully integrated with any information also representing an undirected state between two 
cells, as it is the intercellular distance. When considering, for example, spatial information, this 
holds the potential of recovering spatial properties that are lost in the traditional transcriptomics 
methods, either bulk or single cell. Thus, it also holds the potential to be used for other 
correlative or predictive purposes about important LR pairs associated with a phenotype of 
interest. Importantly, substantial support to our predictions is observed in the literature, which 
suggests that our strategy captures underlying mechanisms and functions of mediators 
associated with the spatial allocation of cells. Thus, although future experiments evaluating 
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spatial allocation of signals will help refine our predictions, the strategy presented here lays the 
foundation to unveil the code of cell-cell interactions and communication that defines the spatial 
distribution of cells across a whole animal body. 

Methods 

Single-cell RNA-seq data 

A previously published single-cell RNA-seq dataset containing 27 cell types of C. elegans in the 
larval L2 stage was used as transcriptome36. The cell types in this dataset belong to different 
kinds of neurons, sexual cells, muscles and organs such as the pharynx and intestine. We used 
the published preprocessed gene expression matrix for cell-types provided previously36, where 
the values are transcripts per million (TPM). 

Intercellular distances of cell types 

A 3D digital atlas of cells in C. elegans in the larval L1 stage, encompassing the location of 357 
nuclei, was used for spatial analyses of the respective cell types35. Each of the nuclei in this 
atlas was assigned a label according to the cell types present in the transcriptomics dataset, 
which resulted in a total of 322 nuclei with a label and therefore a transcriptome. To compute 
the Euclidean distance between a pair of cell types, all nuclei of each cell type were used to 
compute the distance between all element pairs (one in each cell type). Then, the minimal 
distance among all pairs is used as the distance between the two cell types (Supplementary 
Figure 1a). In this step, it is important to consider that this map is for the L1 stage, while the 
transcriptome is for the L2 stage. However, we should not expect major differences in the 
reference location of cells between both stages. 

Generating a list of ligand-receptor interaction pairs 

To build the list of ligand-receptor pairs of C. elegans, a previously published database of 2,422 
human pairs9 was used as reference for looking for respective orthologs in C. elegans. The 
search for orthologs was done using OrthoDB96, OrthoList97 and gProfiler98. Then, a network of 
protein-protein interactions for C. elegans was obtained from RSPGM99 and high-confidence 
interactions in STRING-db (confidence score > 700 and supported at least by one experimental 
evidence)100. Ligand-receptor pairs were selected if a protein of each interaction was in the list 
of ortholog ligands and the other was in the list of ortholog receptors. Additionally, ligands and 
receptors mentioned in the literature were also considered (Supplementary Table 4). Finally, a 
manual curation as well as a functional annotation according to previous studies were 
performed, leading to our final list of 245 annotated ligand-receptor interactions, encompassing 
127 ligands and 66 receptors (Supplementary Table 1). 

Communication and CCI scores 

To detect active communication pathways and to compute CCI scores between cell pairs, first it 
was necessary to detect the presence or absence of each ligand and receptor. To do so, we 
used a threshold over 10 TPM as previously described9. Thus, those ligands and receptors that 
passed this filter were considered as expressed (a binary value of 1 was assigned). Then, a 
communication score of 1 was assigned to each ligand-receptor pair with both partners 
expressed; otherwise a communication score of 0 was assigned. To compute the CCI scores, a 
vector for each cell in a pair of cells was generated as indicated in Figure 1. Using the 
respective vectors for both interacting cells, a Bray-Curtis-like score was calculated to represent 
the potential of interaction. This potential aims to measure how complementary are the signals 
that interacting cells produce. To do so, our Bray-Curtis-like score considers the number of 
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active LR pairs that a pair of cells has while also incorporating  the potential that each cell has to 
communicate independently (Figure 1). In other words, this score normalizes the number of 
active LR pairs used by a pair of cells by the total number of ligands and receptors that each cell 
expresses independently. Unlike other CCI scores that represent a directed relationship of cells 
by considering, for instance, only the number of ligands produced by one cell and the receptors 
of another, our CCI score is also undirected. To make our score undirected, it includes all 
ligands and receptors in cell A, and all cognate receptors and ligands, respectively, in cell B 
(Figure 1). Thus, pairs of cells interacting through all their ligands and receptors are represented 
by a value of 1 while those using none of them are assigned a value of 0. 

Genetic algorithm for selecting ligand-receptor pairs that maximize correlation between 
physical distances and CCI scores 

An optimal correlation between intercellular distances and CCI scores was sought through a 
genetic algorithm (GA). This algorithm used as an objective function the absolute value of the 
Spearman correlation, computed after passing a list of ligand-receptor pairs to compute the CCI 
scores. In this case, only non-autocrine interactions were used (elements of the diagonal of the 
matrix with CCI scores were set to 0). The absolute value was considered because it could 
result either in a positive or negative correlation. A positive correlation would indicate that the 
ligand-receptor pairs used as inputs are preferably used by cells that are not close, while a 
negative value would indicate the opposite. The GA generated random subsets of the curated 
list of ligand-receptor pairs and used them as inputs to evaluate the objective function (as 
indicated in Supplementary Figure 2a). The maximization process was run 100 times, 
generating 100 different lists that resulted in an optimal correlation. As shown in Supplementary 
Figures 2c-d, a selection of the consensus ligand-receptor pairs was done according to their co-
occurrence across the 100 runs of the GA and presence in most of the runs. 

Defining short-, mid- and long-range communication 

The different ranges of distance used for CCC were defined by using a Gaussian mixed model 
on the distributions of distance between all pairs of cell types. This model was implemented 
using the scikit-learn library for Python101 and a number of components equal to 3. 

Statistical analyses 

For each function annotated in the list of ligand-receptor pairs (Supplementary Table 1), a one-
sample Wilcoxon signed rank test was used to evaluate whether the relative abundance 
increased or decreased with respect to the distribution generated with the GA runs. In this case, 
two one-tail analyses were performed for each function, one to evaluate an increase of the 
relative abundance and the other to assess a decrease. Finally, the smallest P-value was 
considered and the respective change was assigned if the adjusted P-value passed the 
threshold. 

A permutation analysis was done on the list of consensus ligand-receptor pairs obtained from 
the GA. To do so, three scenarios were considered: (1) a column-wise permutation (one column 
is for the ligands and the other for the receptors); (2) a label permutation (run independently on 
the ligands and the receptors); and (3) a random subsampling from the original list, generating 
multiple subsets with similar size to the consensus list. In each of these scenarios, the list of 
ligand-receptor interactions was permuted 10,000 times. 

All enrichment analyses in this work corresponded to a Fisher exact test. In all cases a P-value 
was obtained for assessing the enrichment and another for the depletion. The analysis of 
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enriched ligand-receptor pairs along the body of C. elegans (head, mid-body and tail) was 
performed by considering all pairs of cells in each section and evaluated the number of those 
interactions that the corresponding ligand-receptor pair was used. The total number of pairs 
corresponded to the sum of cell pairs in all sections of the body. Similarly, the enrichment 
analysis performed for the different ranges of distance (short-, mid- and long-ranges) was done 
by considering all cell pairs in each range and the total number of pairs was the sum of the pairs 
in each range. To evaluate the enrichment of phenotypes (obtained from the phenotype 
ontology association available in WormBase102), all genes in the GA-selected list were used as 
background. Then, the genes associated with the respective phenotype tested were used to 
assess the enrichment. 

When necessary, P-values were adjusted using Benjamini-Hochberg's procedure. In those 
cases, a significance threshold was set as FDR < 1% (or adj. P-value < 0.01). 

Data availability 

● Single-cell RNA-seq dataset: Supplementary Table S4 in 
https://doi.org/10.1126/science.aam8940 and GitHub repository for the analyses of this 
work. 

● 3D digital atlas of C. elegans: Supplementary Data 1 in 
https://doi.org/10.1038/nmeth.1366 and GitHub repository for the analyses of this work. 

● Lists of ligand-receptor pairs of C. elegans: The manual curated list containing 245 
interactions is present in the Supplementary Table 1, while the consensus list from the 
GA-selection, which contains 37 interactions, is available in the Supplementary Table 3. 
Both lists are also available in the GitHub repository for the analyses of this work. 

Code availability 

All analyses performed in this work, their respective codes (implemented in Python and Jupyter 
Notebooks) and instruction to use them are available in a public repository 
(https://github.com/LewisLabUCSD/Celegans-cell2cell). Similarly, cell2cell is available as an 
open source tool in a GitHub repository (https://github.com/earmingol/cell2cell). 
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Figure 1. Calculation of the modified Bray-Curtis CCI score. 

a, To represent the overall interaction potential between cell A and cell B, our CCI score is 
computed from two vectors representing the ligands and receptors independently expressed in 
each cell. If only the ligands from one cell and the cognate receptors on the other are 
considered (“Cell A to Cell B” half or “Cell B to Cell A” half, independently), the score would be a 
directed score for representing the interaction (one cell is the sender and the other is the 
receiver). However, our score is undirected by considering both ligands and receptors of each 
cell to build the vector (both halves simultaneously, indicated with the yellow rectangle on the 
left). Thus, the vector of each cell is built with both directed halves of molecule production (e.g. 
top half possess ligands of cell A while the bottom half considers its receptors, generating a 
unique vector with both the ligands and the receptors of cell A). b, Toy examples for computing 
our score for the interaction of Cell A and Cell B. Here, both possible directions of interaction 
are represented to show that they result in the same score (undirected score). 

 
Figure 2. Cell-cell interactions and communication in C. elegans. 

a, Heatmap of CCI scores obtained for each pair of cell types using the curated list of LR pairs. 
An agglomerative hierarchical clustering was performed on a dissimilarity-like metric by taking 
the complement (1-score) of CCI scores, disregarding autocrine interactions. Cell types are 
colored by their lineages as indicated in the legend. Lineages and colors were assigned 
according to REF36. b, UMAP visualization of CCC. Dots represent pairs of interacting cells and 
they were projected based on their Jaccard distances, which were computed from the LR pairs 
expressed in the directed interactions between cells (one cell is producing the ligands and the 
other the receptors). Dots are colored by either the sender cell (left) or the receiver cell (right), 
depending on their lineages as indicated in the legend of (a). A readable version of the data 
used for this projection is available in Supplementary Table 5, where names of LR pairs and 
their communication scores are specified for each cell pair. 

 
Figure 3. Relative abundances of signaling functions across initial GA-LR pairs.  

a, Composition plot given the signaling functions that LR pairs are associated with. Relative 
abundances are shown for the complete list of LR pairs (containing 245 interactions) and the 
subsets obtained in each of the 100 runs of the genetic algorithm (GA). Signaling functions are 
colored according to the legend. b, Summary of changes for each of the signaling functions 
given their relative abundance across the runs of the GA with respect to the respective relative 
abundances in the complete list of LR pairs. A one-tailed Wilcoxon’s test was performed to 
evaluate their increase or decrease, as indicated with the arrows. An adjusted P-value is 
reported (FDR < 1%). For those cases without a significant change (gray rectangles), the 
smallest adjusted P-value is reported among the increase or decrease test. 

 
Figure 4. CCI and CCC analyses based on LR pairs driving high correlation with 
intercellular distances.  

a, Heatmap of CCI scores obtained for each pair of cells using the consensus GA-LR pairs. An 
agglomerative hierarchical clustering was performed on a dissimilarity-like metric by taking the 
complement of CCI scores (1-score), disregarding autocrine interactions. Cell types are colored 
by their lineage groups as indicated. b, Heatmaps representing the presence or absence of 
ligands (left) and receptors (right) after expression thresholding (>10 TPM) in sender and 
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receiver cells, respectively. Lines at the center connect ligands with their cognate receptors 
according to the GA-selected interactions. Cell types are colored as in (a).  

 
Figure 5. Anteroposterior use of communication pathways. 

a, Division of the body of C. elegans into three main sections along the anteroposterior axis 
(top) and cell-type composition of each section (bottom) given a previously published 3D atlas. 
In this case, the mid-body section is defined by the presence of the intestine cells, and the head 
and tail are the anterior and posterior sections to it, respectively. Cells in the 3D atlas (top) are 
colored according to the cell types as delineated in barplots (y-axis, bottom). b, 
Enrichment/depletion (FDR < 1%) of ligand-receptor pairs (y-axis) in each of the three sections 
(x-axis), calculated from their usage across all pairs of cells of each section. Communication 
pathways are also colored by their annotated functions (left column) according to the legend in 
Figure 3a. 

 
Figure 6. Importance of ligand-receptor interactions for communication at different 
distances. 

Circos plots for representing the Fisher exact test on cell-cell communication occurring at 
different ranges of distance. The ranges of distances were defined as explained in 
Supplementary Figure 1c. Nodes represent ligands or receptors and edges connect those 
ligands and receptors that interact in the GA-LR pairs (Supplementary Table 3). The color of the 
nodes represent whether they are ligands or receptors and the color of the edges indicate the 
negative value of the logarithmic transformation on the adjusted P-values (Benjamini-
Hochberg's method), according to the colored bar at the bottom. Interactions that resulted 
significantly enriched or depleted (FDR < 1%) are equivalent to the color assigned to a value of 
2.0 or bigger. 

 
Figure 7. Expression of cell migration- and morphogenesis-associated genes in the 
complete list of LR and GA-LR pairs. 

The presence or absence of proteins encoded by genes associated with cell migration and/or 
morphology phenotypes (y-axis) is indicated for each cell type (x-axis) according to C. elegans 
phenotype ontology. The threshold for presence is a gene expression value greater than 10 
TPM; otherwise is labeled as absence. Only genes that are present in our complete list of LR 
pairs are shown, and members also in the GA-LR list are denoted with ochre cells (y-axis). 
Color key for groups of cell types and phenotype annotations are depicted to the right. 
Agglomerative hierarchical clustering was performed using a Jaccard similarity for both genes 
and cell types, independently.  
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Table 1. Ligand-receptor interactions enriched or depleted in one body section and 
depleted or enriched in the rest.  
 

Interactions enriched in a body section and 
depleted in the rest 

Interactions depleted in a body section and 
enriched in the rest 

Ligand Receptor Section Ligand Receptor Section 

col-99 ddr-1 Head K05F1.5 dma-1 Head 

mab-20 plx-2 Head mnr-1 dma-1 Head 

dbl-1 sma-10 Head qua-1 ptc-3 Head 

cle-1 gpn-1 Mid-Body ins-25 daf-2 Head 

nid-1 ptp-3 Mid-Body mec-5 mec-4 Head 

rig-6 wrk-1 Mid-Body mec-5 mec-10 Head 

smp-2 plx-2 Mid-Body sup-17 glp-1 Head 

smp-1 plx-1 Mid-Body arg-1 lin-12 Head 

unc-129 unc-5 Mid-Body cwn-1 mig-1 Head 

unc-10 unc-29 Mid-Body lin-44 lin-17 Head 

mom-2 lin-18 Mid-Body hsp-1 F14B4.1 Mid-Body 

daf-7 sma-6 Tail* srp-7 F14B4.1 Mid-Body 

lin-44 cam-1 Tail let-2 pat-3 Tail 

   epi-1 pat-3 Tail 

   let-2 ina-1 Tail 

   wrt-5 ptc-1 Tail 

* See main text for discussion on this prediction. 
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Supplementary Figure 1. Euclidean distances between cells. 

a, Schematic representation of computing the minimal Euclidean distance for a pair of cell types 
in C. elegans. The distance for all pairs of cells between those belonging to cell type A and 
those belonging to cell type B is computed; then the minimal one is selected. b, Heatmap of 
resulting Euclidean distances among all pairs of cells. Depicted color key defines the eight 
major cell groups that were previously defined by Cao et al.36. c, Distribution of intercellular 
distances given the diagonal matrix in (b). Short-, mid- and long-range distances were defined 
using a Gaussian mixed model built with three components. 

 
Supplementary Figure 2. Genetic algorithm-based selection of ligand-receptor pairs 
leading to high CCI score-distance correlation. 

a, Workflow for running the genetic algorithm (GA) and selecting a subset of ligand-receptor 
pairs leading to an optimal correlation between CCI scores and intercellular distances. Each run 
consists of ten steps described in the schematic representation. This framework was run 100 
times independently, leading to 100 different subsets. b, Absolute value of the correlation score 
obtained at each iteration of the GA. 100 independent runs are plotted, showing the mean and 
standard deviation across them. c, Heatmap indicating when each of the 245 initial LR pairs 
was selected by one of the 100 GA runs. d, Heatmap of the co-occurrence of two LR pairs. Only 
LR pairs that were selected in at least one GA run are shown here. The co-occurrence is 
defined as the number of runs that two pairs were selected together with respect to the total 
number when at least one pair was selected. The dashed red square represents the cluster that 
was finally selected as the consensus subset of LR pairs because of the high values of co-
occurrence and high fraction of presence that its interactions had across the 100 GA runs. 

 
Supplementary Figure 3. Permutation-based null distributions of the correlation obtained 
using the GA-LR pairs. 

a, Null distributions resulting from column-wise random permutation of the interactors, either 
ligands or receptors, separately. b, Null distributions resulting from random permutation of 
interactor labels, either of ligands or receptors, separately. c, Null distribution resulting from 
random subsampling of the initial LR pairs (245 interactions) to generate subsets equivalent to 
the GA-LR pairs (37 interactions). Each analysis was run independently 10,000 times and for 
each run a correlation coefficient was computed, generating a null distribution in each case. In 
(a-c) the dashed lines represent the correlation score obtained from the consensus GA-LR 
pairs. 
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