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 2 

Abstract 24 

Language production deficits occur early in the course of Alzheimer's disease (AD); however, 25 

only few studies have focused on language functional networks in prodromal AD. The current 26 

study aims to uncover the extent of language alteration at a prodromal stage, on a behavioral, 27 

structural and functional level, using univariate and multivariate analyses. Twenty-four AD 28 

participants and 24 matched healthy controls underwent a comprehensive language evaluation, 29 

a structural T1-3D MRI and resting-state fMRI. We performed seed-based analyses, using the 30 

left inferior frontal gyrus and left posterior temporal gyrus as seeds. Then, we analyzed 31 

connectivity between executive control networks and language network in each group. Finally, 32 

we used multivariate pattern analyses to test whether the two groups could be distinguished 33 

based on the pattern of atrophy within the language network; atrophy within the executive 34 

control networks, as well as the pattern of functional connectivity within the language network; 35 

and functional connectivity within executive control networks. AD participants had language 36 

impairment during standardized language tasks and connected-speech production. Univariate 37 

analyses were not able to discriminate participants at this stage, while multivariate pattern 38 

analyses could significantly predict the group membership of prodromal patients and healthy 39 

controls, both when classifying atrophy patterns or connectivity patterns of the language 40 

network. Language functional networks could discriminate AD participants better than 41 

executive control networks. Most notably, they revealed an increased connectivity at a 42 

prodromal stage. Multivariate analyses represent a useful tool for investigating the functional 43 

and structural (re-)organization of the neural bases of language. 44 

 45 

Keywords: language, connected speech, functional connectivity, fMRI, MVPA (multivariate 46 

pattern analysis), Alzheimer’s disease 47 

48 
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Highlights 49 

Language network connectivity discriminates prodromal AD from healthy controls 50 

Language network connectivity increases in prodromal AD 51 

Atrophy patterns in the language network do not correlate with connectivity patterns in AD 52 

53 
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 4 

 54 

1. Introduction 55 

 56 

Language production deficits occur early in the course of Alzheimer's disease (AD). Most 57 

studies have shown impairment in fluency tasks and confrontation naming tasks (Taler and 58 

Phillips, 2008), usually attributed to lexical-semantic impairment (Joubert et al., 2010). These 59 

tasks have also been shown to accurately discriminate prodromal patients from healthy controls 60 

(Mueller et al., 2016; Taler and Phillips, 2008). Fewer studies have analyzed other language 61 

processes. Some studies have shown preserved syntactic abilities in early AD (Taler and 62 

Phillips, 2008), while others did not find such preservations (Kemper et al., 1993). Most studies 63 

have stressed the fact that phonological capacities are relatively preserved in early AD (Taler 64 

and Phillips, 2008). More and more studies have been focusing on connected speech 65 

production in AD, for the assessment of the functional use of language and cognition. They 66 

revealed several impairments in AD: reduced lexical content (Ahmed et al., 2013), increased 67 

word-finding difficulty and use of repetitions and self-corrections (de Lira et al., 2011), etc. 68 

While most studies focused on AD at a dementia stage, other studies revealed changes as early 69 

as the prodromal stage. Mueller et al. (2016) demonstrated that prodromal patients had lower 70 

lexical richness compared to healthy controls, but similar production of filled pauses (e.g. 71 

“hm”). Pistono et al. (2018) also showed that these patients produced more modalizing 72 

discourse, which refers to "discourse about discourse" (i.e. comments, feelings and uncertainty 73 

about the task). 74 

 75 

Neuroimaging studies in AD patients have shown that language impairments are 76 

associated with atrophy or hypometabolism in the left inferior frontal gyrus (IFG) and temporal 77 

regions (e.g. Melrose et al., 2009). However, besides the alteration of isolated brain regions, 78 

the functional connectivity within brain networks can underlie the cognitive impairments or 79 

compensations observed. Resting-state functional connectivity is one of the current methods 80 

that allows functional brain networks to be investigated, including language functional network 81 

(e.g. Muller et al., 2016; Muller & Meyer, 2014). In AD, only few studies focused on this 82 

network, reporting lower functional connectivity in AD (Weiler et al., 2014, patients’ mean 83 

MMSE: 18.86; Mascali et al., 2018, patients’ mean MMSE: 20.5) and prodromal AD 84 

(Montembeault et al., 2019, patients’ mean MMSE: 24.9) compared to healthy controls. These 85 

studies used the left IFG (Mascali et al., 2018; Montembeault et al., 2019) or left posterior 86 
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temporal gyrus (Mascali et al., 2018; Montembeault et al., 2019; Weiler et al., 2014) as a seed. 87 

They also showed that connectivity changes were only marginally correlated with AD 88 

participants’ language performance (i.e. no significant correlations in Mascali et al., 2018, no 89 

correlations with IFG’s connectivity map in Montembeault et al., 2019). However, it is possible 90 

that some changes remain unnoticed when focusing exclusively on the language network. For 91 

example, we now know that, in healthy aging, the language network interacts with the executive 92 

control network/attentional network to maintain a sufficient level of language performance 93 

(Hoffman & Morcom, 2018; Pistono et al., 2020). It is therefore possible that prodromal AD is 94 

primarily characterized by a loss of this compensation, rather than an alteration within the 95 

language network.  96 

Second, univariate fMRI analyses may not be able to uncover the extent of changes 97 

occurring at a prodromal stage. Indeed, analysis of structural or functional MRI data is 98 

traditionally performed in a univariate manner, where each voxel or area in the brain is 99 

separately tested for a condition of interest. By contrast, multivariate pattern analyses (MVPA) 100 

simultaneously consider patterns of information (i.e. atrophy or BOLD signal), leveraging the 101 

multivariate, i.e. multi-voxel, and distributed nature of neural representations (Haynes and 102 

Rees, 2006). In other words, while univariate analyses ask to what degree each voxel’s activity 103 

is affected by a particular condition, MVPA examines whether, by contrast, an experimental 104 

manipulation or a clinical population can be predicted based on the pattern of activity across a 105 

set of voxels. Using multivariate patterns of activity, i.e. activity across multiple voxels, can 106 

increase sensitivity in differentiating between individuals or conditions (Haynes & Rees, 2006; 107 

but see Hebart & Baker (2018) for a discussion on the benefits and pitfalls of MVPA as 108 

compared with classical univariate analyses). Regarding Alzheimer’s disease, Liu et al., (2018) 109 

applied MVPA to investigate the topologic alterations of resting-state functional connectivity 110 

in participants with subjective cognitive decline, prodromal AD and AD compared with healthy 111 

individuals. They showed that by using MVPA, it was possible to predict whether a participant 112 

belonged to one of the three clinical groups or to the healthy control group, which indicated 113 

that patterns of resting-state data are already discriminant for cognitive decline and prodromal 114 

AD. Further work is required to understand how these changes relate to patients’ cognitive 115 

impairment. 116 

 117 

In the current study, we focus on language processing to uncover the extent of language 118 

alteration at a prodromal stage on a behavioral, structural and functional level, using univariate 119 

and multivariate analyses. Additionally, we will examine whether structural and functional 120 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 22, 2020. ; https://doi.org/10.1101/2020.11.22.393199doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.22.393199
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

changes are correlated with language performance, using both standardized and connected 121 

speech tasks. Regarding language performance, we expect behavioral inter-group differences 122 

for both the standardized language tasks and discourse task, in line with current literature on 123 

prodromal AD (e.g. Mueller et al., 2016). Regarding functional connectivity, we will first 124 

analyze language networks using the same method as previous literature on AD, and the same 125 

two seeds: left IFG and left posterior temporal gyrus (e.g. Mascali et al., 2018). We anticipate 126 

marginal inter-group differences with this analysis. We will then analyze connectivity between 127 

executive control networks and language network. We expect lower between-network 128 

connectivity in prodromal AD participants, correlated with lower language performance. 129 

Finally, we will use MVPA to test whether it is possible to distinguish the two groups based on 130 

(i) the pattern of atrophy within the language network, (ii) atrophy within the executive control 131 

networks, as well as (iii) the pattern of functional connectivity within the language network and 132 

(iv) functional connectivity within executive control networks (using atlases from Shirer et al., 133 

2012). Based on previous studies showing that functional connectivity is affected in prodromal 134 

AD, we predict that both structural and functional information will allow to discriminate AD 135 

participants from healthy controls using MVPA. We also hypothesize that functional changes 136 

within both language and executive control networks will be related to language performance. 137 

In particular, lower lexical performance (i.e. naming and fluency tasks) and lexical content 138 

during connected speech production will be correlated with functional connectivity alteration 139 

in the AD group. 140 

 141 

2. Material and Methods  142 

 143 

2.1. Participants 144 

Participants were right-handed and native French speakers with no history of neurological or 145 

psychiatric problems. In order to avoid possible reorganization of the language network due to 146 

multilingualism, we only included speakers that did not have a good command and/or a frequent 147 

use of a language other than French. All the participants provided written, informed consent 148 

before participating in the study and received monetary compensation for their participation. 149 

The current study was approved by the ethics committee (IDRCB: 2015-A01416-43). 150 
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 7 

AD participants were selected if they presented with a memory complaint and had no 151 

concomitant history of neurological or psychiatric disease. They underwent the following pre-152 

inclusion assessment: 153 

- Autonomy in daily living (Instrumental Activities of Daily Living (IADL), Graf, 2008); 154 

- Global cognition (Mini-Mental State Evaluation (MMSE));  155 

- Anterograde verbal memory (Free and Cued Selective Reminding Test (FCSRT, Van 156 

der Linden et al., 2004)).  157 

- Amyloid assessment with cerebrospinal fluid (CSF) analysis by lumbar puncture: CSF 158 

biomarker levels of total tau (T-Tau), phospho-tau (P-Tau), Ab42 and Ab40 were 159 

measured using an ELISA method (Innogenetics, Ghent, Belgium). Innotest Amyloid 160 

Tau Index (IATI) was calculated. P-Tau ≥ 60 pg/ml and IATI ≤ 0.8 were deemed to be 161 

suggestive of AD. In case of an ambiguous profile (P-Tau < 60 pg/ml or IATI > 0.8), 162 

we calculated the Ab42/Ab40 ratio and a score < 0.045 was considered to be compatible 163 

with a diagnosis of AD.  164 

Individuals with AD were included if they met the following criteria: MMSE ≥ 24; IADL < 1 165 

and based on the IWG-2 criteria (Dubois et al., 2014): evidence of a gradual and progressive 166 

change in memory function reported by patient or informant for more than 6 months and 167 

demonstrated by an episodic memory test, and CSF evidence of AD. 168 

Matched healthy control participants underwent the same pre-inclusion neuropsychological 169 

assessment as the AD group. They were included if they had no memory complaint and no 170 

history of neurological or psychiatric disease and a MMSE ≥ 27. They were excluded if they 171 

presented with cognitive impairment (test scores < -1.5 SDs) during the pre- or post-inclusion 172 

neuropsychological assessment. 173 

 174 

2.2. Cognitive evaluation 175 

 176 

2.2.1. Neuropsychological assessment 177 

All participants also underwent a comprehensive neuropsychological assessment. Visual 178 

recognition memory was assessed with the Doors and People test (Baddeley et al., 1994). Short-179 

term memory and working memory were evaluated with the WAIS-III Digit Span and 180 

Backward Digit Span subtest (Wechsler, 1997). Cognitive flexibility was assessed with the 181 

Trail Making Test (TMT, Reitan, 1958). Praxis was explored with Mahieux’s assessment 182 
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(Mahieux-Laurent et al., 2008) and gnosis with the Visual Gnosis Evaluation Protocol (VGEP, 183 

Agniel, Joanette, Doyon, & Duchein, 1992). Apathy and depression were also measured, using 184 

the Starkstein scale (Starkstein et al., 1992) and the Beck Depression Inventory (Beck et al., 185 

1961). 186 

 187 

2.2.2. Language assessment  188 

Language was assessed with the GREMOTs assessment (Bézy et al., 2016). GREMOTs is a 189 

computerized battery of language tests that evaluates both oral and written language as well as 190 

production and comprehension at different levels (i.e. phonological processing, lexical 191 

processing and syntactic processing).   192 

 193 

This battery includes a connected-speech task, which we analyzed more specifically. With 194 

regards to the procedure for this task, the participants were given the same instructions: “This 195 

is a story depicted in 5 pictures. Tell me the story with as many details as possible.” During the 196 

task, the experimenter remained neutral and avoided speaking in order to ensure uniform 197 

conditions for discourse production. The oral productions of participants were recorded and 198 

manually and orthographically transcribed. The following variables were used to analyze the 199 

discourse of both the AD group and the cognitively normal controls: 200 

- Total number of words in the narrative; 201 

- Lexical content: proportion of closed class and open class words (i.e. nouns, most verbs, 202 

adjectives, numerals and adverbs of manner). Standardized indexes were calculated 203 

according to the following formula: (Open class – Closed class)/(Open class + Closed 204 

class), similarly to Pistono et al., (2019); 205 

- Proportion of self-corrections: number of self-corrections normalized per 100 words 206 

(e.g. when the speaker stops and resumes with a substitution for a word or a new 207 

utterance); 208 

- Proportion of repetitions: number of repetitions (of sounds, syllables, words or partial 209 

phrases) normalized per 100 words; 210 

- Proportion of filled pauses: number of filled pauses (e.g. “hm,” “um,” “pff”) normalized 211 

per 100 words; 212 

- Proportion of modalizing discourse: number of words that are part of a modalizing 213 

utterance, normalized per 100 words (e.g. “It seems that”; “I don’t know how to say it”; 214 

etc.). 215 

 216 
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Intergroup comparisons for the neuropsychological assessment and the language assessment 217 

were performed using Student’s t-test for independent samples. Bonferroni-Holm corrections 218 

for multiple comparisons were applied. 219 

 220 

2.3. Structural and functional MRI 221 

 222 

2.3.1. MRI Acquisition 223 

MRI scans were performed for all participants using a 3-T imager (Philips Achieva dStream, 224 

Inserm/UPS UMR1214 ToNIC Technical Platform, Toulouse, France). A 3D-T1 image was 225 

acquired for anatomical reference with the following parameters: TR = 8 ms, TE = 3.7 ms, flip 226 

angle = 8°, matrix size = 256 x 256 mm, 170 slices, voxel size= 0.9 mm x 0.9 mm x 1 mm, slice 227 

thickness = 1 mm. Whole-brain resting-state fMRI images were obtained with the following 228 

parameters: TR = 2837 ms, TE = 40 ms, flip angle = 90°, 46 interleaved acquisition, slice 229 

thickness = 3 mm, matrix size = 80 x 80 mm, 200 volumes, total scan time 10 min. During 230 

scanning, participants were instructed to keep their eyes closed but to stay awake and avoid 231 

thinking of anything in particular. All participants affirmed that they were fully awake during 232 

the 10 minutes of the scanning.  233 

 234 

2.3.2. Preprocessing 235 

The data were analyzed using the Conn toolbox (Version 18b, Whitfield-Gabrieli & Nieto-236 

Castanon, 2012), implemented in MATLAB. The preprocessing pipeline of the functional 237 

images included: functional realignment and unwarp, slice-timing correction, outlier 238 

identification, normalization to the MNI template, and smoothing with a Gaussian kernel of 6 239 

mm. This step created a scrubbing covariate (containing the potential outliers scans for each 240 

participant) and a realignment covariate (containing the six head motion parameters). Average 241 

realignment (t(46)=0.97, p=0.17) and maximum realignment (t(46)=1.16, p=0.13) did not 242 

significantly differ between the two groups. Then, the six head motion parameters plus their 243 

associated first-order derivatives, the identified outliers scans, white matter and cerebrospinal 244 

fluid signals and the effect of rest were removed by means of the CompCor method. The 245 

resulting preprocessed images were band-pass filtered (0.01 Hz–0.1 Hz) to remove 246 

physiological high-frequency noise (e.g. cardiac and respiratory fluctuations). Atlases were 247 

then masked with the participant's gray matter mask. With this method, each ROI was restricted 248 

to voxels belonging to an estimated gray matter mask derived from the T1 segmentation. 249 

 250 
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 10 

2.3.3. Voxel based morphometry (VBM) 251 

Gray matter density was assessed using a voxel-based morphometry method on Statistical 252 

Parametric Mapping version 12 (SPM 12, Wellcome Trust Centre for Neuroimaging). For each 253 

participant, the 3D-T1 sequence was segmented to isolate gray matter and white matter 254 

partitions, modulated for deformation, normalized to the MNI space and smoothed (8×8×8 255 

mm). Inter-group comparisons were then performed (voxel level p<0.05, FWE-corrected, 256 

cluster = 50 voxels). 257 

 258 

2.3.4. Seed-based analyses 259 

The left Inferior frontal gyrus (LIFG) and the left posterior temporal gyrus (LSTG, including 260 

parts of the left middle/superior/supramarginal gyrus) were used as seeds, based on Shirer’s 261 

functional atlas of language (Shirer et al., 2012). Correlation maps were constructed by 262 

correlating the average BOLD-signal dynamic of the region of interest with the BOLD-signal 263 

of every other single voxel. To enforce a Gaussian distribution of the correlation data, Pearson’s 264 

correlation coefficients were then transformed to z-scores using the Fisher r to z transformation 265 

for subsequent t-tests. These individual z values maps were entered into a one-sample t-test to 266 

determine the functional network correlated with spontaneous activity of the seed region within 267 

each group (p < 0.05 FWE at the cluster level). We then performed two-sample t-tests to detect 268 

inter-group differences. The threshold for second-level maps was set at p < 0.05 FWE at the 269 

cluster level.  270 

 271 

2.3.5. Within- and between-network connectivity 272 

To measure within-network and between-networks connectivity, we selected networks from 273 

Shirer’s atlas (2012): language network, left executive control network (left ECN), right 274 

executive control network (right ECN). 275 

The language network includes 7 ROIs within the left IFG, right IFG, left middle temporal 276 

gyrus, left middle/angular gyrus, left middle/superior/supramarginal gyrus, right 277 

middle/superior/ supramarginal gyrus, left thalamus and left cerebellum. The left ECN includes 278 

6 ROIs within the left middle frontal/superior frontal gyrus, left IFG/orbitofrontal gyrus, left 279 

superior/inferior parietal/precuneus/angular gyrus, right cerebellum and left thalamus. The right 280 

ECN includes 6 ROIs as well: the right middle frontal/superior frontal gyrus, right middle 281 

frontal gyrus, right superior frontal gyrus, right inferior parietal/supramarginal/angular gyrus, 282 

left cerebellum and right caudate. 283 
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Within- and between-network connectivity (average for all the ROIs within each network) was 284 

evaluated for each participant. More precisely, within-network connectivity is a mean 285 

composite network connectivity estimate, calculated by means of pairwise correlations between 286 

all the regions comprising an individual network. Between-network connectivity is the result 287 

of pairwise correlations between the regions in each pair of different networks. Averages of 288 

within- and between-network connectivity were compared between groups with one-tailed t-289 

tests to assess whether healthy controls present greater within- and between-network 290 

connectivity than AD participants.  291 

 292 

2.3.6. Multivariate pattern analyses 293 

To investigate whether the two groups could be identified based on the pattern of atrophy or 294 

connectivity within the language network and the ECN networks, we performed multivariate 295 

pattern classification.  296 

Supervised classification analyses, performed using a classifier algorithm, consist in 297 

training a classifier to distinguish two or more classes of data (e.g. class 1: healthy controls 298 

(HC), class 2: patients (AD)) from a set of training samples by providing the corresponding 299 

labels of each sample, e.g. “healthy control” or “patient.” Following this training phase, the 300 

classifier is then tested on a test dataset composed of samples not used during the training phase, 301 

in order to assess whether the classifier is able to generalize to new unseen data. If the classifier 302 

is able to predict the class of novel samples in the test dataset, i.e. accurate prediction, it 303 

indicates that the multivariate pattern of information is informative about the classes of interest. 304 

To ensure unbiased evaluation of classification performance, this procedure is repeated over 305 

multiple independent divisions of the entire dataset into training and test datasets, i.e. cross-306 

validation. The accuracy of classifier predictions, i.e. 0 for incorrect and 1 for correct, are then 307 

averaged across cross-validation folds to obtain a classification score between 0 and 1 (or 0% 308 

and 100%) that can be compared to chance level. For our analyses, there was always 2 classes, 309 

corresponding to the healthy control or patient groups, therefore chance level was 1/2 = 50%. 310 

Features selection. Classifiers are sensitive to the ratio between the number of variables, 311 

e.g. voxels, and number of samples, i.e. the different data samples provided, which can cause 312 

overfitting and/or poor classification accuracy (Pereira et al., 2009). One method to prevent this 313 

is to perform the analysis on specific ROIs based on anatomical or functional data (Pereira et 314 

al., 2009). Doing so decreases the number of voxels used by the classifier and focuses on 315 

appropriate regions that allow for best discrimination. We therefore extracted ROIs from the 316 

Shirer’s atlas (Shirer et al., 2012) of language network (7 ROIs), left ECN (6 ROIs) and right 317 
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ECN (6 ROIs) to perform 6 classifications: gray matter density within areas of each of these 318 

three networks, as well as functional connectivity between areas of each of these three 319 

networks. To extract each participant’s gray matter density within each ROI, we performed a 320 

one sample t-test (using SPM12) using each network as an inclusive mask. To extract individual 321 

connectivity values between each ROI of the networks under study, we performed a one sample 322 

t-test within each network, using the Conn toolbox. 323 

Classification procedure. We used a linear discriminant analysis (LDA) classifier 324 

implemented in the Scikit-learn toolbox (Pedregosa et al., 2011). More precisely, we trained 325 

the LDA classifier to distinguish the two classes of data, i.e. “healthy controls” versus 326 

“patients.” The classification was performed in a leave-one-out cross-validation approach. In 327 

each cross-validation fold, the classifier was trained on data from all but one participant and 328 

used on the left-out participant to predict its class membership. This procedure was repeated 329 

until each trial’s class had been used as a test.  330 

Permutation test. To evaluate the significance of classification accuracies, for each 331 

analysis, we computed permutation tests. In order to estimate the null distribution of 332 

classification accuracy, we randomly permuted the labels of all samples (i.e. HC or AD) and 333 

performed the classification analysis 100,000 times, yielding 100,000 surrogate classification 334 

accuracies under the null hypothesis that the two classes are completely interchangeable. From 335 

these surrogate distributions, we computed the probability if observing a certain classification 336 

accuracy, i.e. p-value. 337 

Feature contribution. For each classification, we extracted each feature contribution by 338 

using a method that allows an “informativity” measure to be extracted from classifier weights 339 

(Haufe et al., 2014). Indeed, classifier weights cannot be interpreted, as they reflect both noise 340 

and signal in the data; we thus used this approach to evaluate the extent to which a certain 341 

feature was informative in performing the classification. For each classification, the 342 

contribution value of each feature was calculated. Furthermore, a null distribution of each 343 

feature’s contribution was computed using the permutation procedure described above to 344 

estimate the significance of the contribution values. 345 

 346 

2.3.7. Correlations between functional connectivity and language performance 347 

For the different functional analyses (i.e. seed-based, between-network connectivity, MVPA), 348 

significant inter-group differences were further examined through intra-group correlations. To 349 

do so, we chose the most sensitive variables during the language assessment (object naming, 350 

famous face naming, word spelling, written semantic verification, sentence spelling and text 351 
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comprehension) and the narrative task (lexical content, modalizing discourse, self-corrections). 352 

We performed Kendall correlations and then applied Bonferroni-Holm corrections. 353 

 354 

 355 

3. Results 356 

 357 

3.1. Population 358 

Twenty-four AD participants and 24 healthy controls were recruited. Both groups were matched 359 

for age (AD group: 72.9±8 years old; HC group: 70±4 years old, p=0.09), gender (AD group: 360 

13 women; HC group: 11 women) and level of education (years of education, AD group: 361 

12.5±4; HC group: 12.4±4, p=0.9).  362 

During the pre-inclusion assessment, patients had a lower MMSE (AD group: 25.5±2.6; HC 363 

group: 29±1, p<0.0001) and lower performance during the FCSRT than the control group (sum 364 

three free recalls AD group: 14.17±9.69; HC group: 32.29±4.79, p<0.0001; sum three cued 365 

recalls AD group: 30.33±12; HC group: 46.42±1.93, p<0.0001). 366 

 367 

3.1.1. Neuropsychological assessment 368 

During the post-inclusion assessment, AD participants’ performance on the Doors and People 369 

test, digit span forward and Trail Making Test was also lower than that of the control group, as 370 

shown in Table 1. 371 

 372 

 Healthy 

Controls 

AD 

participants 

p value Cohen’s 

d 

Doors and People test, set A 10.78±1.38 8.00±2.55 <0.0001 1.36 

Digit span forward 6.00±1.00 5.21±0.98 0.009 0.80 

Digit span backward 4.83±1.40 4.04±0.91 0.027 - 

Trail Making Test, A 38.79±12.50 51±16.41 0.006 0.83 

Trail Making Test, B-A 55.13±27.86 114.22±81.83 0.002 0.97 

VGEP 35.26±1.10 33.79±2.87 0.026 - 

Beck 2.58±2.21 3.29±3.28 0.384 - 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 22, 2020. ; https://doi.org/10.1101/2020.11.22.393199doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.22.393199
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

Starkstein 9.50±4.19 11.78±4.60 0.082 - 

Table 1. Performance during the neuropsychological assessment. Results represent mean±SD. 373 

Results that are significant after Bonferroni-Holm correction are in bold. Cohen’s d values were 374 

measured for these variables only. 375 

 376 

 377 

3.1.2. Brain atrophy 378 

AD participants had significant atrophy in two clusters compared to the control group (see 379 

Appendix), with one cluster encompassing the left hippocampus, parahippocampus and 380 

thalamus (K voxels=3278; t=7.28; pFWE-corr<0.0), and one cluster involving the contralateral 381 

areas (K voxels=1076; t=7.40; pFWE-corr<0.05).  382 

 383 

 384 

3.2. Language evaluation 385 

 386 

3.2.1. Standardized assessment 387 

AD participants had lower performance during several lexical tasks, as well as syntactic tasks. 388 

Results are detailed in Table 2. 389 

 390 

  
Healthy 

Controls 

AD 

participants 
p value 

Cohen’s 

d 

Lexical 

processing 

Repetition, words (/10) 9.38±1.01 9.17±1.05 0.488 - 

Grammatical fluency  

(category: verbs) 
35.21±11.66 27.08±11.23 0.018 

- 

Semantic fluency  

(category: fruits) 
19.33±3.38 15.04±6.03 0.004 

- 

Phonemic fluency 

(letter V) 
17.29±6.12 17±8.01 0.888 

- 

Object naming (/36) 34.7±1.40 32.63±1.91 <0.0001 1.23 

Action naming (/36) 33.13±3.25 31.13±2.8 0.028 - 

Famous face naming 

(/10) 
8.75±1.15 4.83±2.78 <0.0001 

1.84 

Reading, words (/30) 29.71±.55 29.33±.92 0.092 - 
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Spelling, words (/12) 11.58±.504 10.04±1.33 <0.001 1.53 

Oral semantic 

verification (/18) 
17.04±1.27 15.96±1.6À 0.013 

- 

Written semantic 

verification (/18) 
16.3±1.69 14±2.21 <0.001 

1.17 

Syntactic 

processing 

Repetition, sentences 

(/4) 
3.46±.78 3.42±.65 0.842 

- 

Order execution (/6) 5.96±.20 5.79±.42 0.084 - 

Sentence production 

(/6) 
5.75±.68 5.25±.94 0.040 

- 

Syntactic 

comprehension (/24) 
21.25±2.51 18.92±3.62 0.013 

- 

Spelling, sentence (/27) 25.83±1.05 24.25±1.98 0.001 1.00 

Text comprehension  

(time in seconds) 
49.3±15.73 80.88±30.51 <0.0001 

1.30 

Phonological 

processing 

Repetitions, non-words 

(/6) 
5.54±.66 5.08±.93 0.055 

- 

Reading, non-words 

(/15) 
14.67±.64 13.79±1.06 0.001 

1.00 

Spelling, non-words 

(/6) 
5.50±.59 4.96±1.04 0.032 

- 

Table 2. Performance during the language assessment. Results represent mean±SD. Results that 391 

are significant after Bonferroni-Holm correction are in bold. Cohen’s d values were measured 392 

for these variables only. 393 

 394 

3.2.2. Connected-speech production 395 

The AD group did not produce shorter narratives compared to healthy controls (number of 396 

words AD group: 172±112; HC group: 146±84, p=0.4). However, they produced significantly 397 

more self-corrections (AD group: 3.3±2.1; HC group: 1.7±1.5, p=0.006, Figure 1) and more 398 

modalizing discourse (AD group: 12.1±11.5; HC group: 3.7±7.5, p=0.005) while performing 399 

this task. Their lexical content was also lower than the control group (AD group: -0.82±0.8; HC 400 

group: 0.19±0.8, p=0.0001, Figure 1). On the contrary, the two groups produced the same 401 
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proportion of repetitions (AD group: 1.9±1.9; HC group: 1.2±0.9, p=0.1) and filled pauses (AD 402 

group: 4.1±2.8; HC group: 3.5±2.9, p=0.5).  403 

 404 

 405 
Figure 1. Inter-group comparisons for self-corrections (left) and lexical content (right) between 406 

AD participants (AD) and Healthy Control group (HC). ** p < 0.01; *** p < 0.001 407 

 408 

 409 

3.3. Seed-based analyses 410 

 411 

3.3.1. Inferior frontal gyrus 412 

At a group level, connectivity maps show that both groups have extended maps of fronto-413 

temporal areas connected with the LIFG (Figure 2). They did not reveal any inter-group 414 

differences (threshold for second level maps p < 0.05 FWE at the cluster level). Regions 415 

positively and negatively correlated with the LIFG in each group are detailed in the Appendix. 416 

 417 

3.3.2. Posterior temporal gyrus 418 

Similar to the previous seed-based analysis, both groups had extended map areas connected 419 

with the LSTG (Figure 2). Two sample t-tests did not reveal any inter-group differences 420 

(threshold for second level maps p < 0.05 FWE at the cluster level). Regions positively and 421 

negatively correlated with the LIFG in each group are detailed in the Appendix. 422 

 423 

** ***
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 424 
Figure 2. Cluster map for A) LIFG and B) LSTG in healthy controls and AD participants. 425 

Yellow to red color for clusters positively correlated to LIGF activity; blue to pink color for 426 

clusters negatively correlated to LIFG activity. 427 

 428 

3.4. Within- and between-network connectivity 429 

The average connectivity within the language network (t(46)=1.12, p=0.13), within the Left 430 

ECN network (t(46)=1.35, p=0.09) and within the right ECN (t(46)=-0.77, p=0.78) was not 431 

significantly different between the two groups.  432 

Additionally, the strength of connectivity between the language network and the left ECN 433 

network (t(46)=1., p=0.46) or between the language network and the right ECN network 434 

(t(46)=0.53, p=0.3) was not lower in the AD group. 435 

 436 

3.5. Multivariate pattern analyses 437 

 438 

3.5.1. Language network 439 

For the language structural network, the classification analysis yielded an accuracy of 95.8%. 440 

The permutation tests indicated that this classification was highly significant (p<0.0001). 441 

Furthermore, it indicated that the discriminative regions included the right inferior frontal 442 

gyrus, the right superior temporal gyrus, the left middle temporal gyrus and the left middle 443 

temporal gyrus/angular gyrus (Figure 3). 444 

 445 

Heatlhy control group AD group Heatlhy control group AD group

A) Seed LIFG B) Seed LSTG



 18 

 446 
Figure 3. Contribution of each feature when classifying the pattern of atrophy within language 447 

network. The dashed lines represent the threshold (p<0.05) for significance obtained through 448 

permutations. Significant features are indicated in bold on the y-axis. Only the main area of 449 

each ROI is displayed on the y-axis. 450 

Abbreviations: LMTG: left middle temporal gyrus; LMTG/AG: left middle temporal/angular 451 

gyrus; LSTG: left middle/superior/supramarginal gyrus; RSTG: right middle/superior/ 452 

supramarginal gyrus, LCereb: left cerebellum. 453 

 454 

Regarding the language functional network, the classification analysis yielded an 455 

accuracy of 64.5% (p<0.05). This pattern revealed a global increase in language functional 456 

connectivity in the AD group compared to the control group (Figure 4). There were three 457 

significantly discriminative connectivity features: the connectivity between the left inferior 458 

frontal gyrus and the left middle temporal gyrus/angular gyrus, the connectivity between the 459 

left inferior frontal gyrus and the left superior temporal gyrus and the connectivity between the 460 

left middle temporal gyrus/angular gyrus and the left superior temporal gyrus.  461 

 462 

LMTG

LMTG/AG

RSTG

RIFG

LSTG

LCereb

LIFG

Contribution of each feature when classifying the 
pattern of atrophy

+ atrophy AD group

Contribution of each feature (a.u.)
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 463 
Figure 4. Contribution of each feature when classifying the pattern of functional connectivity 464 

within the language network. The dashed lines represent the threshold for significance (p<0.05) 465 

obtained through permutations. Significant features are indicated in bold red on the y-axis. Only 466 

the main area of each ROI is displayed on the y-axis. 467 

Abbreviations: LMTG: left middle temporal gyrus; LMTG/AG: left middle temporal/angular 468 

gyrus; LSTG: left middle/superior/supramarginal gyrus; RSTG: right middle/superior/ 469 

supramarginal gyrus, LCereb: left cerebellum. 470 

 471 

3.5.2. Executive control networks 472 

For the structural left ECN, the classification analysis yielded an accuracy of 95.8% (p<0.0001). 473 

All the features of this network but one (left IFG/orbitofrontal gyrus) were significantly 474 

informative for the classification. For the structural right ECN, the classification analysis 475 

yielded an accuracy of 91.8% (p<0.0001). All the features of this network were significantly 476 

informative for the classification. 477 

Regarding these functional networks, neither of the two networks could significantly 478 

discriminate AD participants from healthy controls (left ECN: 60.9%; p=0.09; right ECN: 44%; 479 

p=0.7). 480 

 481 

3.5.3. Correlations with language performance 482 

We extracted a measure of group-typicality from classification analyses to perform intra-group 483 

correlations between discriminative patterns and language performance. For each participant, 484 

we extracted the confidence score of the classifier to predict the class of this participant (HC or 485 

AD). This score corresponds to the distance of each participant from the hyperplane that 486 

distinguishes the two classes. For instance, a participant whose data represent a point far from 487 

LMTG ⟷ RIFG
LMTG ⟷ LCereb

LMTG ⟷ LMTG/AG
LMTG ⟷ LIFG
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RIFG ⟷ RSTG
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LCereb ⟷ LSTG
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the classification hyperplane will have a high confidence score, indicating that they can be 488 

confidently classified as a member of the class (depending on which side of the hyperplane they 489 

fall). On the other hand, a participant whose data represent a point close to the classification 490 

hyperplane will have a low confidence score, indicating that this participant’s data were not 491 

very distinct from the other class. This measure therefore represents a continuous group-492 

typicality measure that allow us to relate multivariate patterns analyses to behavioral 493 

performance (similarly to Ritchie and Carlson, 2016; Senoussi et al., 2016). For language 494 

performance, the most sensitive standardized language tasks (object naming, famous face 495 

naming, word spelling, written semantic verification, sentence spelling and text 496 

comprehension) and connected speech variables (lexical content, modalizing discourse, self-497 

corrections) were chosen. Kendall correlations were performed, followed by Bonferroni-Holm 498 

corrections. 499 

For the language structural network, confidence scores were not correlated with 500 

language performance, standardized tasks or the connected speech task in any group. For the 501 

language functional network, confidence scores were not correlated with any language task in 502 

the AD group. There was a positive correlation with the connected speech task in the HC group: 503 

participants with high confidence scores had superior lexical content during this task (p=0.015; 504 

r=0.36). This means that participants that were the most different from the AD group in terms 505 

of language functional connectivity had richer lexical content during their narrative production. 506 

Confidence scores obtained during structural ECN classifications were not correlated with 507 

language performance in any group. 508 

 509 

 510 

4. Discussion  511 

 512 

In the current study, we recruited typical AD participants at the prodromal stage who underwent 513 

a comprehensive language assessment, a structural 3D-T1 MRI and a resting-state fMRI. We 514 

showed that AD participants had language impairment during standardized language tasks and 515 

connected speech production. Based on MVPA results, an increased functional connectivity 516 

within the language network could be a marker of early AD, despite gray matter loss. However, 517 

such differences were not noticeable during univariate analyses. 518 

 519 

4.1. Behavioral level  520 
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The prodromal AD group had lower performance than HC during several lexical tasks: object 521 

naming, famous face naming, word spelling and written semantic verification. These results are 522 

coherent with previous literature that showed an early semantic and naming impairment in AD 523 

(e.g. Barbeau et al., 2012; Joubert et al., 2010). Contrary to what was expected, their verbal 524 

fluency was not lower than in HC (contrary to Mueller et al., 2016).  525 

During connected-speech production, the two groups did not differ in terms of number 526 

of words. Additionally, and similarly to Mueller et al. (2016), the prodromal AD group did not 527 

produce more filled pauses than HC. However, we revealed three qualitative differences in AD 528 

participants’ productions. First, their lexical content was lower than healthy controls, which is 529 

similar to what Pistono et al. (2019) found using the same narrative task. AD participants also 530 

produced more modalizing discourse and more self-corrections while speaking. Pistono et al. 531 

(2018) also found an increase of modalizing discourse in prodromal patients’ narratives. As 532 

mentioned by Duong et al. (2003), the fact that patients produced modalizing discourse means 533 

that their pragmatic abilities are preserved and used to communicate about their productions. It 534 

is therefore possible that this variable increases in prodromal AD but decreases in later stages, 535 

when pragmatic and metacognitive processes are altered. Similarly, self-corrections can be seen 536 

as evidence that some abilities remain. Indeed, self-corrections are the result of a relatively late 537 

process of verbal self-monitoring. Verbal self-monitoring is a cognitive system that inspects 538 

the speech plan and overt speech and initiates corrections when necessary (Hartsuiker, 2014). 539 

In the current study, the AD participants exhibited more errors than the controls. However, they 540 

were able to correct themselves, while an impaired monitoring system would lead to 541 

uncorrected errors. The significant proportion of modalizing discourse and self-corrections 542 

therefore reflects the use of metacognitive abilities in prodromal AD patients’ discourse 543 

production. In sum, in our sample, despite lexical difficulties, patients present with mostly 544 

preserved language/communicational abilities reflected by different compensation mechanisms 545 

during discourse production. 546 

 547 

4.2. Univariate analyses 548 

No inter-group differences were found during seed-based analyses, both when using the LIFG 549 

or LSTG as a seed. This result is, however, unsurprising, given the early stage of AD 550 

participants that were recruited in the current study. Indeed, Montembeault et al. (2019) 551 

recruited AD participants with a slightly lower MMSE than AD participants in the current study 552 

(24.9±3.1 in their study vs. 25.5±2.6 in the current study). They showed that only one cluster 553 

(the right posterior temporal gyrus) was significantly less connected to the left posterior 554 
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temporal gyrus in prodromal AD, while there was no difference with the control group when 555 

the LIFG was used a seed.  556 

More surprisingly, connectivity between the language network and the executive 557 

control network was not lower in AD participants. Since this type of measure is the result of 558 

mean pairwise correlations between several ROIs, it is possible that it is too broad to reveal 559 

differences at a prodromal stage. Additionally, the AD group did not significantly differ from 560 

the HC group on fluency tasks during language assessment (i.e. not after corrections for 561 

multiple comparisons). Studies that revealed interactions with the executive control network in 562 

healthy aging suggested that older adults may rely on these additional attentional resources to 563 

maintain successful verbal fluency performance (Muller et al., 2016; Pistono et al., 2020). It is 564 

therefore also possible that prodromal patients do not differ from HC in the interaction of 565 

language and executive resources. However, although the two groups did not differ on any of 566 

these univariate measures, the pattern of atrophy or functional connectivity within the language 567 

network helped discriminate the two groups, as shown with multivariate analyses. 568 

 569 

4.3. Multivariate analyses 570 

MVPA uses machine-learning algorithms that allow information patterns to be extracted from 571 

multi-dimensional data and the class of new data to be predicted. Here, we aimed to classify 572 

the two groups based on the pattern of atrophy and functional connectivity within the language 573 

network and the executive control networks. By doing so, we revealed two main findings. First, 574 

prodromal AD is not characterized by decreased language functional connectivity. Second, 575 

language network connectivity could better classify participants than executive control 576 

networks. 577 

Regarding language networks, the pattern of atrophy was highly discriminative of AD 578 

participants from HC. However, this pattern was not correlated with language performance in 579 

any group. This discrepancy between atrophy and language performance has already been 580 

shown in the literature on healthy aging (Pistono et al., 2020). Additionally, while AD 581 

participants could be classified above chance based of their pattern of atrophy, the classifier 582 

was also able to discriminate them when examining their pattern of functional connectivity. 583 

However, this pattern revealed an overall increased connectivity between most language ROIs 584 

in the AD group. In other words, despite important gray matter loss, AD participants presented 585 

increased functional connectivity within language network. Taken individually, connectivity 586 

values between each ROI are not informative (i.e. not significantly different in univariate 587 

analyses); however, when all the information is considered, this global increase becomes 588 
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discriminant. This pattern could have been caused by the fact that AD participants were at the 589 

prodromal stage. Indeed, increased functional connectivity associated with gray matter loss has 590 

already been shown in the literature about subjective cognitive impairment (Hafkemeijer et al., 591 

2013) or mild cognitive impairment (Gardini et al., 2015). Two explanations are developed in 592 

the current literature: either this type of mechanism could compensate for cognitive decline, or 593 

increased functional connectivity reflects a shift in network properties that may cause further 594 

brain damage (Gallagher et al., 2010). This pattern of connectivity was not correlated with 595 

language performance in the AD group, while in HC, the confidence score of each individual 596 

was correlated with higher lexical content during connected-speech production. This means that 597 

HC that presented a pattern of connectivity highly different from AD participants had superior 598 

lexical content in their narrative. On the contrary, increased functional connectivity in 599 

prodromal AD does not seem sufficient to maintain behavioral performance. However, future 600 

work is required to examine whether increased connectivity switches to decreased connectivity 601 

at a later stage of AD and how it relates to language decline. 602 

The pattern of atrophy in the left and right ECN was highly discriminative of AD 603 

participants from HC. However, similarly to the language network, this pattern was not 604 

correlated with language performance in any group. Additionally, classification accuracies of 605 

AD participants and HC based on the functional connectivity within executive control networks 606 

were not significant. This suggests that despite significant atrophy, AD participants’ functional 607 

connectivity patterns within the executive control networks were not different from HC. 608 

Taken together, current findings show that language functional networks can better 609 

discriminate prodromal AD participants than executive control networks. More precisely, 610 

functional connectivity increased within AD participants’ language network, in particular 611 

between three areas: left IFG, left STG and left MTG/AG. While the language network is 612 

usually understudied in AD compared to other networks, it could provide important insight at 613 

an early stage.  614 

 615 

4.4. Limitations 616 

This study has 24 participants in each group, which is comparable to previous studies we 617 

mentioned earlier (e.g. Weiler et al., 2014), but represent a rather small sample size. Further 618 

studies are therefore required to examine structural and functional language network changes 619 

in prodromal AD and to reinforce current findings. Although we adapted our methods to the 620 

current sample size (e.g. using feature selection and cross-validations during MVPA), further 621 

research on large samples of participants could combine multiple modalities (e.g. language task 622 
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performance, gray matter, functional connectivity) into a single multivariate pattern 623 

classification analysis. Moreover, as mentioned earlier, it would be interesting to replicate 624 

current methods on larger longitudinal data to uncover how the patterns we observed evolve 625 

over the course of AD.  626 

Additionally, we did not use a functional language task to control that participants were 627 

left hemisphere dominant or to define our ROIs. Although we exclusively included right-628 

handed participants, we cannot be sure that their language was left lateralized. Similarly, the 629 

use of a predefined atlas might have influenced the results. Nonetheless, we decided to use an 630 

atlas that was functionally defined, since these are more likely to represent brain regions 631 

effectively involved in language processing than anatomical seeds (Muller et al., 2014).  632 

 633 

4.5. Conclusions 634 

The current study demonstrated that prodromal participants present with language alterations, 635 

both when examining standardized language tasks and connected-speech production. It also 636 

showed that, when analyzing language functional networks, multivariate pattern analyses could 637 

significantly predict the group membership of prodromal patients and HC, while univariate 638 

analyses were not able to discriminate participants at this stage. This method therefore 639 

represents a useful tool for investigating the functional and structural (re-)organization of the 640 

neural bases of language in various populations. 641 
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Appendix 1. Regions showing less density of grey matter in AD participants in comparison to 784 

healthy controls. The statistical threshold is pFWE-corr<0.05 (k>50 voxels) 785 

 786 

 787 

Appendix 2. Summary of regions positively and negatively correlated with the seeds in each 788 

group. Abbreviations: PCC = Posterior cingulate gyrus; SMG = Supramarginal gyrus; AG = 789 

Angular gyrus; TP = Temporal pole; ITG = Inferior temporal gyrus; MTG= Middle temporal 790 

gyrus; SPL= Superior parietal lobule. 791 

 792 

Cluster 
Functional 

connectivity 
K voxels 

Peak in MNI 

coordinates 

(x, y, z) 

T 

value 

Seed IFG 

AD group   

Left and right frontal regions (i.e. 

frontal poles, middle and superior 

frontal gyri, inferior frontal gyri). Left 

lateral occipital cortex, SMG, AG, 

SPL, ITG. Right TP, precuneus 

positive 24,565 -48 +26 -06 21.35 

Right lateral occipital cortex, SMG, 

AG 
positive 3,786 +50 +20 -16 13.03 

Right ITG, MTG, STG positive 1,269 +52 -32 -08 8 

Right cerebellum positive 1,418 +24 -86 -46 7.96 

Left cerebellum positive 673 -34 -34 -36 -10.14 

Precuneus and posterior cingulate negative 2,144 +16 -60 +34 -10.82 
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Left and right superior parietal 

lobules, Right lateral occipital cortex 
negative 457 -04 -56 +58 -5.82 

Right cerebellum negative 341 +14 -56 -62 -8.89 

Left cerebellum negative 335 -26 -80 -42 6.91 

Older group   

Left and right frontal regions (i.e. 

frontal poles, middle and superior 

frontal gyri, inferior frontal gyri). Left 

lateral occipital cortex, SMG, AG, 

SPL, ITG. Right TP, precuneus 

positive 41,598 -42 +24 +24 18.82 

Right lateral occipital cortex, SMG, 

AG 
positive 2,752 +42 -44 +44 8.68 

Right ITG, MTG positive 1,050 +60 -38 -18 6.94 

Right cerebellum positive 2,367 +32 -70 -52 9.22 

Left cerebellum positive 396 -24 -78 -52 6.92 

Left hippocampus, caudate and 

temporal fusiform cortex 
negative 4,587 -04 +06 +20 -5.18 

Right hippocampus, thalamus, 

parahippocampal gyrus, PCC 
negative 2,275 +36 -38 +18 -9.24 

Left cerebellum negative 870 -08 -26 -54 -10.34 
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Cluster 
Functional 

connectivity 
K voxels 

Peak in MNI 

coordinates 

(x, y, z) 

T 

value 

Seed STG 

AD group   

Left frontal regions (i.e. frontal pole, 

middle and superior frontal gyri, 

inferior frontal gyri) and 

temporoparietal regions (i.e. TP, ITG, 

MTG, SMG, AG, lateral occipital 

cortex and SPL). 

positive 26,454 -44 -58 +24 22.6 
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Right regions mentioned in the cluster 

above 
positive 7,705 +52 -64 +32 14.07 

Right cerebellum positive 2,281 +20 -78 -34 10.96 

Left cerebellum positive 1,392 -24 -76 -32 10.13 

Precuneus and posterior cingulate negative 4,343 -10 -50 +30 8.51 

Right superior parietal lobule, SMG, 

lateral occipital cortex 
negative 1,463 +28 -42 +34 -6.32 

Older group   

Left frontal regions (i.e. frontal pole, 

middle and superior frontal gyri, 

inferior frontal gyri) and 

temporoparietal regions (i.e. TP, ITG, 

MTG, SMG, AG, lateral occipital 

cortex and SPL). 

positive 31,472 -54 -56 +26 19.71 

Right regions mentioned in the cluster 

above 
positive 10,411 +56 -54 +26 18.41 

Right cerebellum positive 2,928 +24 -80 -42 11.11 

Left cerebellum positive 868 -20 -80 -30 7.86 

Precuneus and posterior cingulate negative 4,343 -08 -48 +36 9.89 

Right Superior parietal lobule, SMG, 

lateral occipital cortex 
negative 289 +46 -36 +62 -6.05 

Left cerebellum negative 238 -16 -44 -54 -7.23 
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