ER bodies are induced by *Pseudomonas syringae* and negatively regulate immunity

Running title: Role of ER bodies in the defense response

José S. Rufián¹,²,³, James M. Elmore²,⁴, Eduardo R. Bejarano¹, Carmen R. Beuzon¹, Gitta L. Coaker²*

¹ Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Campus de Teatinos, Málaga E-29071, Spain

² Department of Plant Pathology, University of California Davis, Davis, CA 95616 USA

³ Current address: Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China

⁴ Current address: Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 5001 USA

Address correspondence to: glcoaker@ucdavis.edu
ABSTRACT
ER bodies are endoplasmic reticulum-derived organelles present in plants belonging to the Brassicales order. In Arabidopsis thaliana, ER bodies are ubiquitous in cotyledons and roots, and present only in certain cell types in rosette leaves. However, both wounding and jasmonic acid treatment induce the formation of ER bodies in leaves. Formation of this structure is dependent on the transcription factor NAI1. The main components of the ER bodies are β-glucosidases (BGLUs), enzymes that hydrolyze secondary compounds. In Arabidopsis, PYK10 (BGLU23) and BGLU18 are the most abundant ER body proteins. In this work, we found that ER bodies are downregulated as a consequence of the immune responses induced by bacterial flagellin perception. Arabidopsis mutants defective in ER body formation show enhanced responses upon flagellin perception and enhanced resistance to bacterial infections. Furthermore, the bacterial toxin coronatine induces the formation of de novo ER bodies in leaves and its virulence function is partially dependent on this structure. Finally, we show that performance of the polyphagous beet armyworm herbivore, Spodoptera exigua, increases in plants lacking ER bodies. Altogether, we provide new evidence for the role of the ER bodies in plant immune responses.

Keywords: ER bodies, plant immunity, Pseudomonas syringae, Spodoptera exigua,
INTRODUCTION

ER bodies are rod-shaped endoplasmic reticulum (ER)-associated structures that are present in three families within the Brassicales order (Nakano et al. 2014a). ER bodies are constitutively present in roots and cotyledons of young plants (constitutive ER bodies), but their abundance decreases with senescence (Matsushima et al. 2002). In Arabidopsis rosette leaves, ER bodies are constitutively present in marginal cells, epidermal cells covering the midrib and extremely large pavement cells (Leaf ER bodies) (Nakazaki et al. 2019b). Furthermore, the formation of ER bodies in rosette leaves is induced by Methyl Jasmonate (MeJa) treatment or wounding (Inducible ER bodies) (Matsushima et al. 2002).

Formation of ER bodies is dependent on the basic-helix-loop-helix transcription factor NAI1 (Matsushima et al. 2004) and the essential protein NAI2 (Yamada et al. 2008).

The main components of the constitutive ER bodies are the β-glucosidases (BGLU) PYK10 (BGLU23), BGLU21 and BGLU22 (Matsushima et al. 2003), while induced-ER bodies also contain BGLU18 (Ogasawara et al. 2009). These myrosinases belong to a subfamily of 8 β-glucosidases (i.e. BGLU18 to BGLU25) (Xu et al. 2004) with ER-retention signals (Yamada et al. 2011). Leaf ER bodies mainly contain PYK10 and BGLU18 (Nakazaki et al. 2019b). PYK10 has been described as an atypical myrosinase that hydrolyzes Indole Glucosinolates (IG) (Nakano et al. 2017). Upon tissue disruption, PYK10 associates in the cytosol with PYK10-binding protein 1 (PBP1), activating PYK10 function (Nagano et al. 2005). An Arabidopsis pyk10/blgu18 double mutant accumulates high amounts of the IG 4-methoxyindol-3-ylmethylglucosinolate (4MI3G) after tissue disruption (Nakazaki et al. 2019b). IGs and the products resulting from their breakdown...
have a role in the defense responses against microbial pathogens and herbivory (Bednarek et al. 2009; Clay et al. 2009; Johansson et al. 2014; Millet et al. 2010; Müller et al. 2010; Nakazaki et al. 2019b). IGs are also required for the establishment of beneficial interactions with the endophytic fungus Pirimospora indica by appropriately regulating the level of root colonization through PYK10 (Lahrmann et al. 2015; Sherameti et al. 2008). Collectively, multiple independent studies have supported a role in defense responses for ER bodies (Nakano et al. 2014b; Yamada et al. 2011).

Plants are constantly exposed to a variety of biotic and abiotic stresses. Surface localized plant pattern-recognition receptors (PRRs) act as one of the first lines of defense against pathogens and are able to recognize conserved pathogen features, such as flagellin, as non-self (Couto and Zipfel 2016). One of the best-characterized PRRs is the flagellin receptor FLS2 (Flagellin Sensing 2) which recognizes flg22, a 22 amino acid epitope of bacterial flagellin (Gómez-Gómez and Boller 2000). Perception of flg22 by FLS2 induces a number of cellular events resulting in Pattern-Triggered Immunity (PTI), which restricts pathogen proliferation. Some of the cellular events that take place during PTI are the activation of MAP Kinases (MAPK) and calcium-dependent protein kinases, the production of reactive oxygen species (ROS), stomatal closure and the formation of callose (β-1,3-glucan) deposits in the cell wall (Henry et al. 2013). However, successful pathogens have evolved different mechanisms to suppress defense responses and successfully colonize their host.

Pseudomonas syringae is a Gram-negative bacterium that has been extensively used to study plant immune signaling. P. syringae virulence depends on the Type Three Secretion System (T3SS), a complex nanomachine that translocates proteins, called
effectors, into the cytosol of the plant cell. Most of the effectors suppress PTI acting on
different cellular pathways (Macho 2015). Another virulence mechanisms used by
bacterial pathogens to subvert plant immunity is the production of phytotoxins. *P. syringae*
pv. tomato DC3000 produces coronatine, a polyketide toxin that acts as a molecular
mimic of the plant hormone jasmonic acid (JA) (Weiler et al. 1994). Coronatine induces
stomata re-opening upon PRR perception to allow bacterial colonization (Gimenez-
Ibanez et al. 2017; Melotto et al. 2008; Melotto et al. 2006), and also suppresses callose
deposition and induces bacterial growth within the apoplast (Geng et al. 2012).

In this work, we investigated the biological function of ER bodies during plant
immunity. We found that ER bodies are downregulated after flg22-triggered immune
activation but induced after *P. syringae* infection in a coronatine-dependent manner.
Furthermore, loci underlying ER body formation act as negative regulators of immunity
against bacterial pathogens but are required for a complete response against the chewing
insect *Spodoptera exigua*. With these results, we report a new and contrasting role of ER
bodies in defense against phytopathogenic bacteria and chewing insects.
RESULTS

ER bodies are rapidly inhibited upon flagellin perception

To investigate the role of ER body formation after plant immune perception, we used an *Arabidopsis* transgenic line expressing GFP with the ER-retention signal HDEL (GFP-HDEL), which allows the visualization of ER bodies (Mitsuhashi et al. 2000). We vacuum-infiltrated 2 week-old *Arabidopsis* plants with either 10 μM flg22 or water and visualized cotyledons three hours later by confocal microscopy. We were able to detect and quantify the ER bodies in cotyledons, where this structure is constitutively present, in mock-treated plants. However, after flg22 treatment, only a small number of ER bodies were detected (Fig. 1A). This decrease in ER body detection was statistically different compared to water-treated controls (Fig. 1A). Treatment with flg22 had no effect in the *nai1-1* GFP-HDEL mutant, which lacks ER bodies in cotyledons (Fig S1).

To analyze the impact of the flg22 treatment in ER body formation at the transcriptional level, we analyzed the transcriptional expression of *NAI1* and *PYK10* under different biotic treatments using an available dataset (NASCArrays-120). We found that flg22 treatment reduces the expression level of *NAI1*, pointing to regulation of ER bodies at the transcriptional level as a consequence of activation of defense responses. However, inoculation with the virulent bacterial strain *P. syringae* DC3000 induces the expression of both *NAI1* and *PYK10* at 24h, and the same occurs with a strain expressing the avirulence effector AvrRpm1 (Fig 1B). Interestingly, both the T3SS mutant derivative ΔhrcC and the non-host strain 1448A reduced the accumulation of *NAI1* transcripts (Fig 1B). Altogether, these results show a downregulation of ER bodies as a consequence of...
the activation of flg22-triggered immunity and suggest a role of this subcellular structure during the defense response against *P. syringae*.

Arabidopsis mutants impacting ER body formation and contents exhibit enhanced immune responses against bacterial pathogens

After flg22 perception, many cellular events take place to restrict pathogen invasion, including activation of MAPKs and calcium dependent protein kinases minutes after perception, followed by ROS production, activation of defense gene expression and several hours later, callose deposition (Henry et al. 2013). To further characterize the role of the ER bodies in flg22-induced responses, we measured ROS production as an early event of PTI, in plants affected in the formation of ER bodies. We treated 3-week-old Col-0, *nai1-1*, *pyk10-1* and *pyk10-1/bglu21* plants, with 100 nM flg22 and measured the ROS burst. The total ROS produced in all the mutant backgrounds tested was higher than the ROS produced in Col-0 (Fig. 2A). This increase in ROS production in response to flg22 also occurs in both *bglu18-1* and *pbp1-1* mutants (Fig S2A). To analyze a late event of PTI, we treated four-week-old plants with flg22 and quantified callose deposition. Consistent with the ROS burst, the number of callose deposit was two times higher in ER bodies mutants compared to Col-0 (Fig 2B). These data indicate that a loss of ER bodies or its main components induce an enhanced response to bacterial flg22, pointing to a negative role of ER bodies on PTI.

To determine the role of the ER bodies in bacterial growth, we quantified DC3000 titers in Col-0 and in the different mutant backgrounds (Fig. 2C). DC3000 exhibited decreased growth (>1 log) in the *nai1-1* mutant compared to Col-0. Interestingly, both the *pyk10-1*
and the pyk10-1/bglu21 mutants exhibited a stronger decrease in bacterial growth, with 1.5 Log reduction compared to wild-type Col-0 (Fig 2C). No differences were detected between pyk10 and pyk10-1/bglu21, indicating that PYK10 is a critical gene involved in negative regulation of bacterial growth. Plants lacking pbp1, necessary for PYK10 function, or bglu18, the main component of inducible ER bodies, also showed enhanced resistance to bacterial infection (Fig S2B).

A critical component controlling bacterial virulence is the ability to deliver effectors through the type III secretion system (Macho 2015). In order to investigate the relationship between immune suppression and ER body formation, we used DC3000 ΔhrcC, which is unable to translocate effectors to the plant cell, and thus, does not suppress PTI. We measured the growth of ΔhrcC in ER body mutants. In the nai1-1 background, the growth of ΔhrcC was not significantly different from that in Col-0. However, we observed a slight but significant decrease in growth in the pyk10-1/bglu21 background (Fig 2D). The increased P. syringae growth restriction in pyk10-1 and pyk10-1/bglu21 backgrounds compared with nai1 (Fig 2C and 2D) could indicate a NAI1-independent regulation for PYK10 and/or BGLU21. Altogether, these results show that the absence of ER bodies increases resistance against the bacterial pathogen P. syringae.

Coronatine induces the formation of ER bodies in rosette leaves

Transcriptomic analyses indicate that inoculation with virulent DC3000 induces the expression of nai1 and pyk10 (Fig 1B). To check if this increased expression results in de novo formation of ER bodies, we inoculated rosette leaves of Arabidopsis GFP-HDEL plants with a concentrated suspension (5x10⁷ CFU/mL) of DC3000, the derivative ΔhrcC.
and a coronatine mutant (cor-). Three days after inoculation, we observed the samples under the confocal microscope (Fig 3A). No ER bodies were found in the mock-treated leaves, in agreement to the described absence of ER bodies in certain rosette leaves (Matsushima et al. 2002; Nakazaki et al. 2019b). Interestingly, a large number of ER bodies was found in leaves inoculated with wild-type DC3000. The distribution of the ER bodies was patchy, suggesting that only some cells were forming the structure. To investigate if the formation of ER bodies localized surrounding bacterial colonies, we generated a DC3000 derivative tagged with eYFP. Three days after inoculation, we observed a vast number of ER bodies surrounding the bacterial microcolony (Fig 3B). To determine which bacterial factors are inducing the formation of ER bodies in rosette leaves, we inoculated the ΔhrcC derivative and the cor- mutant, both tagged with eYFP. We were unable to detect ΔhrcC–eYFP microcolonies due to their extremely small size, consistent with their reduced growth in planta. Nevertheless, we did not detect ER bodies in leaves inoculated with the ΔhrcC mutant (Fig. 3A). Interestingly, the cor- eYFP mutant was unable to induce the formation of de novo ER bodies, consistent with the role of coronatine mimicking JA (Fig. 3). This result indicates that induction of ER bodies could be a virulence function of coronatine. Analyzing transcriptomic data of plants inoculated either with DC3000 or the cor- mutant, we observed that many genes related to ER bodies, including NAI1, PYK10 and BGLU18, were upregulated by DC3000 but not after inoculation with DC3000 cor- (Fig. S3). To investigate the ability of coronatine to promote bacterial virulence in the absence of ER body formation, we measured the growth of DC3000 and the DC3000 cor- mutant in Col-0, nai1-1, pyk10-1 and pyk10-1/bglu21. In order to bypass the role of coronatine on re-opening stomata (Melotto et al. 2008; Melotto
et al. 2006), we performed syringe inoculation in five-week old plant leaves. Four days after inoculation, a strong growth restriction was observed in the coronatine mutant compared with wild-type DC3000 in Col-0 (Fig 3C). In the ER body-defective backgrounds, a stronger growth restriction was observed for DC3000 (Fig 2C, Fig 3C). However, the growth of the coronatine mutant was not significantly different between wild-type Col-0 and the ER body mutants.

NAI1 contributes to the defense response against *S. exigua*

ER bodies have been proposed to participate in the defense response against herbivores (Nakano et al. 2014b; Yamada et al. 2011). A recent study demonstrated increased susceptibility of the double mutant *bglu18 pyk10* to the terrestrial isopod *Armadillidium vulgare* (Nakazaki et al. 2019b). We measured the performance of the generalist leaf-chewing herbivore *S. exigua* in different ER body related mutants. Performance assays have been widely used to study the defense mechanisms against herbivory (Chung et al. 2008; Cipollini et al. 2004; Müller et al. 2010; Santamaría et al. 2017; Van Oosten et al. 2008). We fed *Spodoptera exigua* larvae with Col-0 and the ER body-defective mutants *nai1-1, pyk10-1* and *pyk10-1/bglu21* plants, and measured the weight of the larvae after 7 days. The fresh weight of *S. exigua* larvae was higher in *nai1-1* plants compared with the Col-0 control, confirming a role of ER bodies in the defense response against herbivore insects. Surprisingly, the performance of *S. exigua* in either *pyk10-1* or *pyk10-1/bglu21* plants was not different compared Col-0, suggesting a redundant role of PYK10 and BGLU21 with other myrosinases in this context.
DISCUSSION

The main contents in ER bodies are β-glucosidases, enzymes which can produce toxic compounds to protect the plant from herbivore attack (Matsushima et al. 2003). Induction of ER bodies by wounding or by MeJa treatment suggests an association with plant defense (Nakano et al. 2014b). However, there are few experimental evidences of the association between ER bodies and plant immunity. Plants are infected by diverse pathogens that often utilize opposing virulence strategies and are differentially impacted by plant immune responses (e.g. chewing insects versus biotrophic pathogens). In this study we demonstrate contrasting roles of ER bodies in the plant response to pathogenic bacteria and herbivores.

Previous studies have implicated ER bodies in plant protection against fungi and feeding insects. Sherameti et al. (2008) demonstrated that PYK10 is required to protect plants against excessive root colonization by the endophytic fungus Pirimormospora indica. Furthermore, Nakazaki et al. (2019b) showed that bglu18 pyk10 double mutant plants are more susceptible than wild-type to the attack of the terrestrial isopod Armadillidium vulgare (pill-bug). In this work, we experimentally link the function of the ER bodies with the plant response against the bacterial pathogen P. syringae and the herbivore S. exigua. We found an increased weight acquisition of the generalist chewing herbivore S. exigua in nai1-1 plants compared with Col-0, but not in pyk10-1 and pyk10-1/bglu21 mutants (Fig. 4). S. exigua feeds on leaves, where constitutive ER bodies are absent (Matsushima et al. 2002). Leaf ER bodies, which are dependent on NAI1, localize in the edges of the leaves and mainly contain PYK10 and BGLU18 (Nakazaki et al. 2019b). The biogenesis and content of leaf ER bodies is regulated by both Jasmonic Acid (JA)
dependent and independent pathways (Nakazaki et al. 2019a). While \textit{NAI1} expression, and therefore PYK10 accumulation is dependent on JA, BGLU18 accumulation in leaf ER bodies is independent on JA (Nakazaki et al. 2019a). Since the performance of \textit{S. exigua} is not affected in \textit{pyk10-1} mutant, the genetic analysis points to \textit{BGLU18} as the responsible of the defense response against \textit{S. exigua}. Furthermore, chewing induces \textit{JA} accumulation (Rehrig et al. 2014) and this signal would potentially lead to the formation of the inducible ER bodies, which are independent of \textit{NAI1} and mainly contain BGLU18.

\textit{P. syringae} \textit{pv. tomato} induces the formation of ER bodies in leaves. Since the flagellin peptide flg22 downregulates the formation of constitutive ER bodies and we have shown that ER bodies negatively regulate PTI, we hypothesize that \textit{P. syringae}-induction of ER bodies is a virulence strategy to suppress host immune responses. The two main virulence factors of \textit{P. syringae} \textit{pv. tomato} are the phytotoxin coronatine and the T3SS. The bacterial phytotoxin coronatine, which mimics the function of JA in the plant (Bender et al. 1999), induces the formation of ER bodies in leaves (Fig 3A,B). The main virulence function of coronatine is to re-open stomata upon PAMP-induced closure (Melotto et al. 2008; Melotto et al. 2006). However, coronatine also has been shown to suppress immunity once the bacteria colonize the apoplast (Fig 3C; (Geng et al. 2012)). The T3SS defective mutant \textit{ΔhrcC} is not able to induce the formation of ER bodies, which would indicate an effect of T3Es on the induction of ER bodies. However, we cannot rule out that the absence of ER bodies is due to an insufficient amount of coronatine produced by the \textit{ΔhrcC} microcolonies.

Bacterial flg22 perception leads to a down regulation of the ER bodies at both transcriptional and post-transcriptional levels (Fig. 1). We found that \textit{Arabidopsis} mutants
defective in either ER body biogenesis or composition are more resistant to pathogenic bacteria (Fig. 2 and S2). The main components of ER bodies are myrosinases, enzymes that modify glucosinolates to initiate the glucosinolate breakdown, which will result in different products depending on the biochemical properties of the modifier protein and the chemical nature of the glucosinolate side chain (Sugiyama and Hirai 2019; Wittstock and Burow 2010). Those products can function as defense compounds or as signaling molecules.

PYK10/BGLU23 is an atypical myrosinase similar to PENETRATION 2 (PEN2, BGLU26) that hydrolyzes indole glucosinolates (IGs) (Nakano et al. 2017; Nakazaki et al. 2019b). PEN2-mediated conversion of 4-methoxyindol-3-ylmethylglucosinolate (4MI3G) into glucosinolate-derived products plays an important role in the defense response against fungi (Bednarek et al. 2009). Interestingly, PEN2 is required for callose deposition upon flg22 perception and for resistance against DC3000 infection in seedlings grown in liquid media (Clay et al. 2009; Johansson et al. 2014). In contrast, in adult plants grown in soil, callose deposition and DC3000 growth is not affected in the pen2-1 mutant (Geng et al., 2012). The pen2-1 mutant grown in soil exhibits enhanced resistance to P. syringae pv. maculicola (Stahl et al., 2016). These apparently contradictory results indicate that PEN2 activity is dependent on age and/or the metabolic state of the plant. 4MI3G overaccumulates in homogenized tissue of bglu18/pyk10 mutants indicating that one or both of these β-glucosidases hydrolyze 4MI3G (Nakazaki et al., 2019). Our results indicate that the single pyk10-1 mutant and the double pyk10-1/bglu21 mutant accumulate an increased number of callose deposits in response to flg22 treatment and are more resistant to DC3000. Although both PEN2 and PYK10 seem to have the same
substrate (4MI3G), their respective mutants differ on phenotypes as flg22-induced callose deposition and resistance to *P. syringae* DC3000 (Clay et al. 2009; Johansson et al. 2014). Apart from the above-mentioned effect related to growth conditions, one of the reasons explaining these differences could be the different compartmentalization of both PEN2 and PYK10. While PEN2 is localized in peroxisome and mitochondria (Fuchs et al. 2016; Lipka et al. 2005), PYK10 localizes in ER bodies (Matsushima et al. 2003). Furthermore, myrosinase activity is regulated by different Myrosinase-Biding Proteins and Myrosinase-Associated Proteins, as well as different specifier proteins, which lead to the formation of different breakdown products (Wittstock et al. 2016). This variety of compounds can have a direct or indirect effect on the plant defense response (Wittstock et al. 2016).

In conclusion, we have demonstrated the involvement of ER body-dependent regulation of immunity to bacteria and induction of ER bodies as a pathogen virulence strategy. Further work will shed light on how this novel function of ER bodies influences bacterial-plant interactions and pave the way for the discovery of the role of indole-glucosinolates breakdown on the response against bacterial invasion in plants.
Experimental procedures

Plant material and growth conditions

A. thaliana Col-0, the transgenic line expressing GFP-HDEL (Hayashi et al., 2001) and the mutants *nai1-*1 (Matsushima et al. 2003), *pyk10-*1 (Nagano et al. 2008), *pyk10-*1/*bglu21* (Nagano et al. 2009), *bglu18-*1 (Ogasawara et al. 2009) and *pbp1-*1 (Nagano et al. 2005) were grown in a controlled environment chamber at 23°C, 70% relative humidity, and a 10h/14h light/dark photoperiod with light intensity of 100µE.m⁻².S⁻¹. All seeds were stratified for 3-4 days at 4°C before sowing into soil.

Bacterial strains, growth conditions and pathogen assays

Pseudomonas syringae pv. *tomato* DC3000 (Cuppels 1986) and the derivative strains Δ*hrcC* and cor− (cma- cfa-; (Brooks et al. 2004)) were grown at 28°C in Lysogeny Broth (LB) medium (Bertani 1951). Antibiotics were used when appropriate, at the following concentrations: Rifampicin (100 µg/ml), kanamycin (25 µg/ml) and gentamycin (10 µg/ml).

The DC3000, Δ*hrcC* and cor− eYFP (enhanced yellow fluorescent protein) derivatives were generated using a Tn7 delivery system as previously described (Rufian et al. 2018)

For pathogen assays, five-week-old *Arabidopsis* plants were inoculated with a *P. syringae* suspension of 5x10⁴ CFU/mL prepared in 10 mM MgCl₂. Three leaves per plant were syringe infiltrated and five plants were used for each experiment. Four days after inoculation, three leaf discs of 1 cm of diameter (one per leaf were ground in 1 mL 10 mM MgCl₂, and serial dilutions were plated.

Transcriptomic analyses
For the analysis of NAI1 and PYK10 expression under different biotic stresses, we used transcriptomic data available in eFP Browser. Specifically, we used the dataset AtGenExpress: Response to virulent, avirulent, type III-secretion system deficient and nonhost bacteria (NASCArrays-120). 5-week-old Col-0 plants were infiltrated with the corresponding *P. syringae* strain. Samples were taken 24h after treatment and RNA was isolated and hybridized to the ATH1 GeneChip. The data were normalized by GCOS normalization, TGT 100.

flg22-related assays

For ROS burst assays, leaf discs were collected using a cork borer of 5mm diameter from three-week-old *Arabidopsis* plants and floated overnight in deionized water. The next day, the water was replaced with an assay solution containing 17 mg/ml luminol (Sigma), 10 mg/ml horse radish peroxidase (Sigma) and 100 nM flg22 (Genscript). Luminescence was measured using Tristar multimode reader (Berthold technology).

Callose deposits were quantified from four-week-old *Arabidopsis* leaves infiltrated with 10 μM flg22 solution. Eighteen hours after treatment, leaves were detached and incubated 15 minutes at 65ºC in 5 ml of alcoholic lactophenol (1 volume of phenol: glycerol: lactic acid: water (1:1:1:1) and 2 volumes of ethanol). Leaves were transferred to fresh alcoholic lactophenol and incubated overnight at room temperature. After two washes with 50% ethanol, leaves were stained with aniline blue and callose deposits were visualized under a fluorescence microscope. Quantification of callose deposits was performed using the Fiji distribution of ImageJ.
Confocal microscopy

Two-week old Arabidopsis GFP-HDEL plants were vacuum infiltrated with either water or 100 nM flg22. Three hours after the treatment, cotyledons were detached and observed under a Zeiss LSM710 confocal microscope equipped with a LDC-apochromat 40x/1.1W Korr M27 water-immersion objective (NA 1.1). GFP was excited at 488 nm and emission collected at 500-550 nm.

For visualization of bacterial microcolonies, five-week old Arabidopsis GFP-HDEL plants were syringe infiltrated with a 5x10⁴ CFU/mL suspension and leaves were visualized using the Leica SP5 II confocal microscope (Leica Microsystems GmbH, Wetzlar, Germany). Images of eYFP and GFP were sequentially obtained using the following conditions (excitation/emission): eYFP (514 nm/ 525 to 600 nm), GFP (488/ 500 to 525 nm). Z series imaging was taken at 1 µm interval. Image processing was performed using Leica LAS AF (Leica Microsystems). ER bodies were quantified using Fiji distribution of ImageJ software.

S. exigua performance

S. exigua eggs were kindly provided by Dr. Salvador Herrero (U. Valencia). After eclosion, S. exigua larvae were fed with an artificial diet (Elvira et al. 2010). Three days after eclosion, five larvae of approximately same size were transferred to a four-to-five week old Arabidopsis plant grown in Jiffy-7 pods. Larvae were transfer to new plants every 24 hours to avoid food privation. Seven days after plant feeding, fresh weight of the larvae was measured. For each experiment, five replicates were performed (25 larvae per genotype).
ACKNOWLEDGMENTS

J.S. Rufián has been supported by a FPI fellowship associated with a grant of E.R. Bejarano (MICINN, Spain; AGL2010-22287-C02-2), funds from BIO2012-35641 (MICINN, Spain) granted to C.R. Beuzón, and Plan Propio de la Universidad de Málaga – Andalucía Tech. The work was co-funded by European Regional Development Funds (FEDER). G. Coaker is supported by grants from the National Institutes of Health (RO1GM092772, R35GM13640).
Literature Cited

Matsushima, R., Fukao, Y., Nishimura, M., and Hara-Nishimura, I. 2004. NAI1 gene encodes a basic-helix-loop-helix-type putative transcription factor that regulates the formation of an endoplasmic reticulum-derived structure, the ER body. Pages 1536-1549 in: THE PLANT CELL ONLINE American Society of Plant Biologists.

Sherameti, I., Venus, Y., Drzewiecki, G., Tripathi, S., Dan, V. M., Nitz, I., Varma, A., Grundler, F. M., and Oelmüller, R. 2008. PYK10, a beta-glucosidase located in the
endoplasmatic reticulum, is crucial for the beneficial interaction between Arabidopsis thaliana and the endophytic fungus Piriformospora indica. Pages 428-439 in: Plant J. Blackwell Publishing Ltd.

Figure 1. ER bodies are downregulated after activation of PTI.

(A) Constitutive ER bodies disappear after flg22 treatment. Two-week-old Arabidopsis GFP-HDEL plants were vacuum infiltrated with water or 100 nM flg22. Cotyledons were observed in a confocal microscope three hours after treatment. For ER body quantification, three fields from three independent cotyledons were used. ER bodies were quantified using Fiji. The experiment was repeated four times with similar results and a mean value ± SE of all quantifications is shown. Statistical differences were determined with a two-tailed t-test comparing water treatment with flg22. Three asterisks indicate p<0.001. Scale bar: 20 µm. (B) Expression patterns of nai1 and pyk10 genes under different biotic stress. Data was obtained from available microarray in eFP Browser. Five week-old Col-0 plant leaves were syringe-infiltrated with either a 1 µM flg22 solution (using water as mock treatment) or the indicated bacterial strain at 10^8 cfu/ml (using 10 mM MgCl₂ as mock treatment). Samples were taken 24 hours after treatment. Fold change relative to mock treatment is shown.
Figure 2. ER body mutants exhibit enhanced resistance against *P. syringae*. (A) flg22-induced ROS burst in Col-0, *nai1-1*, *pyk10-1* and *pyk10-1/bglu21*. Three-week-old *Arabidopsis* leaf discs were treated with 100 nM flg22 and ROS was quantified using a luminescence based assay. The left graph represent the dynamics of the ROS produced in the different genotypes and the right graph represent the total relative lights units (RLU) detected over a 30 minutes period. Error bars indicate SD, *n* = 16. Statistically differences were determined with one-way ANOVA (α = 0.05) with Tukey’s multiple comparisons test and different letters indicate statistical significance. The experiment was repeated four times with similar results and a representative experiment is shown. (B) Quantification of flg22-induced callose deposition in Col-0, *nai1-1*, *pyk10-1* and *pyk10-1/bglu21*. Four-week-old plants were infiltrated with 10 µM flg22 and callose deposits were visualized.
under an epifluorescence microscope eighteen hours after treatment. Four images were taken per leaf and nine leaves were used per experiment. The mean number of deposits was quantified and is included ± SE in the bottom-right corner of each representative image. The experiment was repeated three times with similar results, and a representative experiment is shown. White bar: 100 µm. (C) Growth of *P. syringae* pv. *tomato* DC3000 in Col-0, *nai1-1*, *pyk10-1* and *pyk10-1/bglu21*. Five-week-old plant leaves were syringe inoculated with a suspension of 5x10⁶ CFU/mL. Four days after inoculation, bacteria were recovered and quantified. Values for each individual plant are shown (*n*=6). Bars represent the mean value ± SE. Statistically differences were determined with one-way ANOVA (α = 0.05) with Tukey’s multiple comparisons test and different letters indicate statistical significance. The experiment was repeated four times with similar results, and a representative experiment is shown. (D) Growth of the *P. syringae* pv. *tomato* Δ*hrcC* derivative in Col-0, *nai1-1*, and *pyk10-1/bglu21*. Five-week-old plant leaves were syringe inoculated with a suspension of 5x10⁶ CFU/mL. Four days after inoculation, bacteria were recovered and quantified. Values for each individual plant are shown (*n*=6). Bars represent the mean value ± SE. Statistically differences were determined with one-way ANOVA (α= 0.05) with Tukey’s multiple comparisons test and different letters indicate statistical significance. The experiment was repeated two times with similar results, and a representative replicate is shown.
Figure 3. Coronatine induces formation of ER bodies in leaves and its virulence function is compromised in mutants impaired in ER body formation. (A-B) Confocal microscope images of bacterial micro-colonies (yellow) and ER bodies (green). Five-week-old *Arabidopsis* GFP-HDEL plants were syringe inoculated with a bacterial suspension containing 5×10^4 CFU/mL. Three days after inoculation, leaf sections were visualized under the confocal microscope. A representative z-stack projection image is shown. ER bodies were quantified from the green channel using Fiji.
Bars represent the mean number of ER bodies in (A) or the number of ER bodies surrounding a single bacterial micro colony in (B) ± SE. The experiments were repeated three times with similar results, and the mean of all experiments is shown. ER bodies were quantified using Fiji and statistically differences were determined with one-way ANOVA (α= 0.05) with Tukey’s multiple comparison test in (A) and different letters indicate statistical significance. In (B) data were analyzed by a t-test (α= 0.001). White bar: 20 µm.

(C) Growth of *P. syringae* pv. *tomato* DC3000 and its derivative coronatine mutant (*cor-*) in Col-0, *nai1-1*, *pyk10-1* and *pyk10-1/bglu21*. Five-week-old plant leaves were syringe inoculated with a bacterial suspension of 5x10⁴ CFU/mL. Four days after inoculation, bacteria were recovered and quantified. Values for each individual plant are shown (n=6). Bars represent the mean value ± SE. Statistically differences were determined with one-way ANOVA (α= 0.05) with Tukey’s multiple comparisons test and different letters indicate statistical significance. The experiment was repeated three times with similar results, and a representative experiment is shown.
Figure 4. *Spodoptera exigua* performance is improved in the *nai1-1* mutant.

Three-week-old *Arabidopsis* Col-0, *nai1-1*, *pyk10-1* and *pyk10-1/bglu21* plants were challenged with three-days-old *S. exigua* larvae. Seven days after feeding, fresh weight of each larva was measured. Bars represent the mean weight ± SE (n=20). Statistically differences were determined with one-way ANOVA (α= 0.05) with Tukey’s multiple comparisons test and different letters indicate statistical significance. The experiment was repeated three times with similar results, and a representative experiment is shown.
Supplemental Figure Legends

Figure S1. No ER bodies are present in nai1-1 cotyledons.
Two-week-old Arabidopsis nai1-1 GFP-HDEL plants were vacuum infiltrated with water or 100 nM flg22. Cotyledons were observed in a confocal microscope three hours after treatment. White bar: 20 µm.

Figure S2. bglu18-1 and pbp1-1 show enhanced resistance to P. syringae
(A) Flg22-induced ROS burst in Col-0, bglu18-1, and pbp1-1. Three-week-old Arabidopsis leaf discs were treated with 100 nM flg22 and ROS was quantified using a luminescence based assay. Error bars indicate ±SE, n = 16. The experiment was repeated twice with similar results and a representative experiment is shown. (B) Growth of P. syringae pv. tomato DC3000 in Col-0, bglu18-1, and pbp1-1. Five-week-old plant leaves were syringe inoculated with a suspension of 5x10^4 CFU/mL. Four days after inoculation, bacteria were recovered and quantified. Values for each individual plant are shown (n=6). Bars represent the mean value ± SE. Statistically differences were determined with one-way ANOVA (α= 0.05) with Tukey’s multiple comparisons test and different letters indicate statistical significance. The experiment was repeated twice with similar results and a representative experiment is shown.

Figure S3. Coronatine induce the expression of ER body and indole glucosinolate related genes.
(A) Transcriptomic analysis of several genes related with ER bodies formation or indole-glucosinolate metabolism. Bars show Log2 signal values from microarrays datasets. Data was obtained from the study by Thilmony et al. (2006), available in Genevestigator. *Arabidopsis* Col-5 leaves were inoculated with water (Mock), or a 10^6 cfu/ml suspension of DC3000 or DC3118 (cor). Samples were taken 24 hours after inoculation. (B) Coexpression analyses of PYK10 (At3G09260). Analyses were performed using ATTED-II software.