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 2 

Abstract  20 

In human occipitotemporal cortex, brain responses to depicted inanimate objects have a large-21 

scale organization by real-world object size. Critically, the size of objects in the world is 22 

systematically related to behaviorally-relevant properties: small objects are often grasped and 23 

manipulated (e.g., forks), while large objects tend to be less motor-relevant (e.g., tables), though 24 

this relationship does not always have to be true (e.g., picture frames and wheelbarrows). To 25 

determine how these two dimensions interact, we measured brain activity with functional 26 

magnetic resonance imaging while participants viewed a stimulus set of small and large objects 27 

with either low or high motor-relevance. The results revealed that the size organization was 28 

evident for objects with both low and high motor-relevance; further, a motor-relevance map was 29 

also evident across both large and small objects. Targeted contrasts revealed that typical 30 

combinations (small motor-relevant vs. large non-motor-relevant) yielded more robust 31 

topographies than the atypical covariance contrast (small non-motor-relevant vs. large motor-32 

relevant). In subsequent exploratory analyses, a factor analysis revealed that the construct of 33 

motor-relevance was better explained by two underlying factors: one more related to 34 

manipulability, and the other to whether an object moves or is stable. The factor related to 35 

manipulability better explained responses in lateral small-object preferring regions, while the 36 

factor related to object stability (lack of movement) better explained responses in ventromedial 37 

large-object preferring regions. Taken together, these results reveal that the structure of neural 38 

responses to objects of different sizes further reflect behavior-relevant properties of 39 

manipulability and stability, and contribute to a deeper understanding of some of the factors that 40 

help the large-scale organization of object representation in high-level visual cortex. 41 

 42 
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 3 

Highlights 51 

- Examined the relationship between real-world size and motor-relevant properties in the 52 

structure of responses to inanimate objects. 53 

- Large scale topography was more robust for contrast that followed natural covariance of small 54 

motor-relevant vs. large non-motor-relevant, over contrast that went against natural covariance. 55 

- Factor analysis revealed that manipulability and stability were, respectively, better explanatory 56 

predictors of responses in small- and large-object regions. 57 

 58 

 59 

 60 
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1. Introduction 65 

To recognize objects in the real world, large portions of the brain are utilized, including 66 

the ventral visual stream (Goodale and Milner, 1992; Ishai et al., 1999). Within this cortex there 67 

is a highly consistent organization of neural response tuning, with a tripartite large-scale 68 

topography distinguishing responses to animate entities, large inanimate objects, and small 69 

inanimate objects (Chao et al., 1999; Konkle and Caramazza, 2013; Proklova et al., 2016; Julian 70 

et al., 2017; Grill-Spector and Weiner, 2014).  Some proposals have raised the possibility that the 71 

large-scale divisions in this cortex arise to support different behavioral needs (e.g., manipulating 72 

objects vs navigating in environments), linked to distinct underlying long-range brain networks 73 

(e.g., Mahon and Caramazza, 2011; Konkle and Caramazza, 2017). Thus, in the present work we 74 

examined how both the size of an object and its motor-relevance can explain brain responses to 75 

object categories. 76 

 77 

Intuitively, the relationship between an object’s size and the degree of interaction it affords 78 

in the world is evident: small objects tend to be graspable and easy to hold up, while larger objects 79 

tend to be used as support or for navigation. However, other relationships are possible, including 80 

not usually manipulated small objects like picture frames, and interactive large objects like pianos. 81 

Here, we operationalize the dimension dealing with object interaction as motor-relevance. While 82 

similar conceptually to the property of manipulability that has been investigated in the past 83 

(Kellenbach et al., 2003; Boronat et al., 2003; Mahon et al., 2007; Campanella et al., 2010; 84 

Kalénine and Buxbaum, 2016), motor-relevance spans a wider definition in that it includes actions 85 

performed not only with the hands, but with other parts of the body as well. With this broader 86 

conceptualization, size can more easily dissociate from degree of interaction: large objects like 87 

swing sets and wheelbarrows tend to involve movements beyond hand-performed actions, while 88 

for small objects such as picture frames and smoke alarms there is no clear motor interaction 89 

associated.  90 

 91 

To date, there is substantial evidence that motor-relevance is an important construct for 92 

visual object responses, particularly along the lateral aspect of the occipitotemporal cortex, a 93 

region known to show a preference for small inanimate over large inanimate objects (Konkle and 94 

Oliva, 2012; Konkle and Caramazza, 2013). For example, in this territory, there is a region with 95 
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preference for tools (Chao et al., 1999; Bracci et al., 2012; Gallivan et al., 2013; Chen et al., 2016) 96 

which is closely overlapping with effector-specific regions (Bracci et al., 2012), and persists in the 97 

congenitally blind (Peelen et al., 2013; Wang et al., 2015). Further, this cortex shows connectivity 98 

with frontoparietal networks supporting actions (Simmons and Martin, 2012; Bi et al., 2015; 99 

Konkle and Caramazza, 2017), and is causally involved in tool-action discrimination judgments 100 

(Perini et al., 2014). While past studies have typically focused on objects that require hand-101 

performed actions, the present study allows us to test whether the inclusion of non-hand-performed 102 

actions through the motor-relevance dimension would further explain neural responses and extend 103 

them to large objects.  104 

 105 

In the ventromedial temporal cortex, another tool-preferring region has been observed by 106 

some studies in the medial fusiform gyrus when contrasting tools to animals (Chao et al., 1999; 107 

Whatmough et al., 2002; Mahon et al., 2007; Garcea and Mahon 2014). However, the property 108 

of motor-relevance in this region is less clear:  for example, responses to manipulable tools are 109 

not higher than to other inanimate objects (Mahon et al., 2007; Chen et al., 2018), though there is 110 

still some evidence for sensitivity to tools in neural adaptation signals (Mahon et al., 2007). 111 

Further, research focused on scene understanding has characterized these ventral-medial object 112 

responses along other kinds of object properties that are less related to motor-relevance. For 113 

example, responses in ventromedial scene-related regions are best predicted by objects invoking 114 

a local space that tend to stay fixed in the world, and are useful as a landmark (Troiani et al., 115 

2014, Mullally and Maguire, 2011; Julian et al., 2016; Auger et al., 2013; see also Epstein, 116 

2014). These same areas are also known to show a preference for large over small inanimate 117 

objects (Konkle and Oliva, 2012; Konkle and Caramazza, 2013) and, interestingly, also to the 118 

names of such objects in both blind and sighted individuals (He et al., 2013).  119 

 120 

Given these past observations, in the present study we aimed to clarify how brain responses 121 

to different objects in occipitotemporal cortex reflect motor-relevance and object size properties. 122 

To do so, we designed our experiment to enable two different levels of granularity. First, we 123 

compared the broad relationship among object size and motor-relevance properties along a 2x2 124 

design (large vs small, motor-relevant vs non-motor relevant), finding effects for both variables 125 

independently. Second, we examined brain responses at the level of object categories (72 126 
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categories total), where a factor analysis revealed that three dimensions that respectively relate to 127 

object size, manipulability, and stability interact to account for the structure of brain responses in 128 

different regions.  Finally, we consider the relative merits of visual feature- versus domain-based 129 

properties (e.g., manipulability, navigation relevance) as driving principles in the organization of 130 

high-level visual cortex.  131 
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2. METHODS 132 

2.1 Participants 133 

For the fMRI experiment, 21 healthy adults with normal or corrected-to-normal vision participated 134 

in a 2-hour fMRI session (age, 18-30 years; 11 females). Three were later removed for excessive 135 

head movement, and the remaining 18 subjects were analyzed. Each subject gave informed consent 136 

according to procedures approved by the Institutional Review Board at the University of Trento. 137 

 138 

 For the online behavioral experiments, ratings were collected from 644 total participants 139 

(464 subjects for the stimulus set development and validation over the dimensions of motor-140 

relevance [n=161], size [n=168] and recognition [n=135]; and 36 subjects for each of the 141 

dimensions of manipulability, spatial definition, position variability, motion-based identity and 142 

interaction envelope). 143 

 144 

2.2 Stimuli. 145 

The stimulus set consisted of images from 72 object categories, where each object category 146 

belonged to one of four conditions (small motor-relevant, small non-motor-relevant, large motor-147 

relevant and large non-motor-relevant) with 18 object categories per condition. Each object 148 

category included images of six exemplars of that category, for a total of 432 pictures in the 149 

stimulus set (Figure 1a). Each image depicted an isolated object on a white background, and the 150 

image was sized to 512 x 512 pixels with the object’s longest axis reaching the border of the image. 151 

 152 

2.2.1 Stimuli validation. To develop and validate the stimulus set, we performed three separate 153 

behavioral studies using Amazon Mechanical Turk on an initial larger set of 20 object categories 154 

per condition with 7 unique exemplars for each object category (560 total images). Our aim was 155 

to construct a stimulus set in which items were recognizable, and where the size and motor-156 

relevance dimensions were balanced.  157 

 158 

a. Recognition ratings. Observers were presented with an item and reported whether they were 159 

familiar with this object (yes/no), and how easily they recognized the object on a scale from 160 

1 (very hard to recognize) to 5 (very easy to recognize). 161 

b. Motor-relevance ratings. Participants were presented with an item and rated the degree to 162 
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which the object made them think of moving their hands or other parts of their body, using 163 

a scale from 1 (not at all) to 7 (very strongly).  164 

c. Size Ratings. Participants were presented with an item and judged the size of an object as 165 

they would encounter it in everyday life, on a scale from 1 to 7. To provide a reference for 166 

the scale, pictures of a wristwatch (small size), a hiking backpack (medium size) and a bed 167 

(large size) were provided beside the values of 1, 4 and 7 on the scale.  168 

 169 

 For all three experiments, each participant made judgments for 20 items (5 items from each 170 

of the four conditions). Only one exemplar for an object category was presented to each participant. 171 

Ratings were obtained for all 560 objects combining data from all participants, so that each image 172 

was rated by 6 observers along the measures of size and motor-relevance and by five observers 173 

along the measure of recognition. 174 

 175 

 In order to eliminate those items that were least recognizable, we dropped one item from 176 

each object category based on the familiarity score in the recognition experiment. We next 177 

eliminated two object categories that scored low in familiarity in order to balance the ratings from 178 

the other two experiments (Motor-relevance and Size experiments). This resulted in a new stimulus 179 

set with 18 objects per condition (72 total) and 6 items per object. All results and analysis that 180 

follow refer to this new stimulus set. 181 

 182 

 To ensure these factors were balanced, we conducted several statistical tests. As expected, 183 

motor-relevant objects had higher motor-relevance scores than non-motor-relevant objects 184 

(t35=32.93, p<0.001), and large objects had higher size ratings than small objects (t35=19.82, 185 

p<0.001). Further, large and small objects did not differ in their average motor-relevance scores 186 

(t35=1.63, p=0.11). The same was true when looking separately at large motor-relevant and small 187 

motor-relevant objects (t17=1.05, p=0.31), and small non-motor-relevant and large non-motor-188 

relevant object categories (t35=1.35, p=0.2). Similarly, motor-relevant and non-motor-relevant 189 

objects did not differ in their average size score (t35=-0.72, p=0.5) and neither did large motor-190 

relevant and large non-motor-relevant relevant objects (t17=0.96, p=0.35), nor small motor-191 

relevant and small non-motor-relevant objects (t17=-1.76, p=0.1).  192 

 193 
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2.3 Image Acquisition.  194 

Imaging data were acquired using a BioSpin MedSpec 4T scanner (Bruker) with an eight-channel 195 

coil. Functional data were obtained with an echo-planar 2D imaging sequence (repetition time TR: 196 

2000ms; echo time TE: 33ms; flip angle: 73º; slice thickness: 3 mm; gap: 0.99 mm, with 3x3 in-197 

plane resolution and 34 slices). Volumes were acquired in ascending interleaved order of slice 198 

acquisition. 199 

 200 

 201 
[2 column fitting] 202 

Figure 1. a) Stimulus set: 72 inanimate object categories divided into four conditions (small 203 

motor-relevant, small non-motor-relevant, large motor-relevant, large non-motor-relevant). Each 204 

object category included six individual items, for a total of 432 individual images.  b) fMRI task: 205 

subjects were presented with four consecutive pictures of the same object category in a 4s object 206 

category mini-block. Three 4s category-level mini-blocks (e.g. cello mini-block, swing set mini-207 

block, pinball machine mini-block) were presented sequentially in a 12s condition-level main block 208 

(e.g. large motor-relevant objects block).  The task for participants was to detect when a red frame 209 

surrounded one of the objects, which happened once per 12s block. 210 

  211 
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 212 

2.4 Experimental Design and Statistical Analysis 213 

2.4.1 Design and procedure. During the fMRI experiment subjects viewed images of the small 214 

motor-relevant, small non-motor-relevant, large motor-relevant, large non-motor-relevant objects 215 

in a classic blocked design. In each run, stimuli from each of the 4 conditions were presented 6 216 

times in 12s stimulus blocks, with 6 rest blocks of 12s interspersed. Images were each presented 217 

for 800ms with a 200ms blank between each stimulus. Fixation blocks also appeared at the 218 

beginning and end of each run, for 4 and 12 seconds respectively. Participants were instructed to 219 

maintain fixation and to press a button when a red frame surrounded one of the objects, which 220 

happened once per block. The full experiment consisted of six runs each lasting 6 minutes and 12 221 

seconds.  222 

 Additionally, we added sub-structure in each stimulus block, to support more exploratory 223 

analyses about the relationship between all 72 object categories (see Figure 1b). Specifically, each 224 

stimulus block was comprised of 4s mini-blocks. In each mini-block, three different exemplars 225 

from the same category were shown. For example, in a 12s block of large motor-relevant objects, 226 

a participant would see 4 different cellos, followed by 4 different swings, followed by 4 different 227 

pinball machines. Within each run all 72 object categories were presented exactly one time. The 228 

specific 4 exemplars that were displayed in each mini-block were randomly chosen without 229 

repetition from the set of 6 possible exemplars from that object category.  230 

 Each image was presented in isolation at a ~8 x ~8º visual angle. Stimulus presentation was 231 

performed using the Psychophysics Toolbox package (Brainard, 1997) in MATLAB. 232 

 233 

2.4.2 Functional Localizer. Three independent functional localizer runs were performed to 234 

identify category-selective regions. These runs consisted of a blocked design, in which each block 235 

included one of the following stimuli: 1) objects 2) scrambled objects 3) scenes 4) bodies 5) hands. 236 

Each run lasted 6 minutes and 36 seconds, with 50 6-second stimulus blocks (10 per condition) 237 

and ten 8-second rest blocks interspersed. In each stimulus-block, six different stimuli from the 238 

same condition were presented, where each image was shown for 800ms followed by 200ms of 239 

fixation. Additionally, there was an orthogonal motion manipulation: for each of the 5 stimulus 240 

categories, in half of the blocks the object was presented at the center of the screen, and in the 241 

other half the object moved from the center out in one of 8 randomly directions randomly. 242 
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Observers were instructed to maintain fixation throughout the experiment and press the button 243 

when an exact image repeated back-to-back.  244 

 Two of the 21 subjects performed 8 experimental runs (instead of 6) and only 2 Localizer 245 

runs (instead of 3). Data from all experimental runs for these subjects were used for data analysis. 246 

Due to a technical error, localizer runs for one subject did not include scrambled objects.  247 

 For the purpose of the current project, we were only interested in identifying category-248 

selective regions Lateral Occipital Complex (LOC; Objects > Scramble; Grill-Spector, 2003), 249 

parahippocampal place area (PPA; Scenes > Objects; Epstein and Kanwisher, 1998) and Occipital 250 

Place Area (OPA; Scenes > Objects; Dilks et al., 2013). We were not able to localize area LOC in 251 

the subject for whom the scrambled objects condition was missing. To compare the coordinates of 252 

our contrasts of interest with the location of well-known category-selective regions, we also 253 

localized extrastriate body area (EBA; Downing et al., 2001) and a nearby hand-selective area 254 

(Bracci et al., 2012). 255 

 256 

2.4.3 fMRI Data Analysis.  257 

Functional neuroimaging data were analyzed using SPM12 (Ashburner et al., 2014), MARSBAR 258 

(Brett et al., 2002) and bspmview (https://www.bobspunt.com/software/bspmview/) on MATLAB 259 

(Versions 2014b and 2016a,b). Barplots and scatterplots were displayed using ggplot2 (Wickham, 260 

2009) in RStudio. 261 

The raw functional images were submitted to preprocessing, where the first 4 volumes were 262 

discarded from each run, slice scan-time correction was performed, followed by 3D motion 263 

correction, normalization and spatial smoothing (8 mm FWHM kernel). Data were modeled using 264 

standard general linear models (GLM). The first GLM included regressors for each of the four 265 

main conditions, with run regressors and motion correction parameters included as nuisance 266 

factors. The second GLM modeled each object category as a separate condition for a total of 72 267 

regressors, with run regressors and motion correction parameters included as nuisance factors. 268 

 269 

2.4.4 Regions-of-interest selection. We created our ROIs utilizing a separate set of runs from the 270 

ones we used for data-analysis. Spherical ROIs were defined around the individual peaks of 271 

activation for the whole-brain size contrast Small > Large (collapsing over motor-relevance) from 272 

two experimental runs. Univariate responses were extracted from the remaining experimental runs 273 
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for size and motor-relevance conditions. These ROIs were defined with a 12mm sphere (257 274 

voxels) centered around the peak positive and negative voxels in individual subjects, and then 275 

intersected with individual whole-brain gray matter masks. The selected peaks are referred to 276 

following the conventions of Konkle and Oliva (2010) and included small-object preferring 277 

bilateral inferior temporal gyrus (Small-ITG, left hemisphere [LH] n=15, right hemisphere [RH] 278 

n=17), and large-object preferring bilateral PHC (Large-PHC, LH n=16, RH n=15). After 279 

intersecting the 12mm ROI sphere with each subjects’ gray-matter mask, the ROIs slightly varied 280 

in size across subjects. After intersection, the average size was 244 voxels for Small-ITG and 257 281 

voxels for Large-PHC.  282 

We further identify large-object preferring TOS (Large-TOS) dorsally based on the size contrast, 283 

and a series of category-selective regions using the Functional Localizer runs. The regions 284 

identified with the Localizer were object-selective lateral occipitotemporal cortex (LOC), scene-285 

selective parahippocampal place area (PPA), and scene-selective occipital-place area (OPA). 286 

Analysis and results for Large-TOS and the category-selective ROIs are reported in the 287 

Supplementary Material.  288 

 289 

2.4.5 Voxel mask. We produced a mask of the most reliable object-selective voxels in occipital, 290 

temporal and parietal regions using the reliability-based voxel selection method for condition-rich 291 

designs (Tarhan and Konkle, 2020). To compute the reliability maps, average beta values for odd 292 

and even runs were separated in two groups and correlated for each voxel that was included within 293 

the gray matter. To establish a reliability threshold, we then correlated the patterns for the same 294 

object category at different thresholding levels and picked the threshold at which the average 295 

correlation across conditions plateaued, which in this case was r = 0.25. We then produced a mask 296 

from the reliability map at this value. 297 

 298 

2.4.6 Whole-brain conjunction analysis. To explore the size organization across motor-relevance, 299 

we performed a random-effects conjunction analysis at the individual level between small motor-300 

relevant > large motor-relevant and small non-motor-relevant > large non-motor-relevant.  301 

For each individual, at each voxel, t-values for the two contrasts were compared. The β-weight 302 

corresponding to the contrast with t-value closest to zero was then assigned to the given voxel. 303 

This resulted in eighteen conjunction maps (one for each participant) which were then submitted 304 
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to a one-sample t-test, and the resulting t-values were assigned to the corresponding voxels on a 305 

new map. The voxels with highest value in these new t-maps are those that are strongly activated 306 

or deactivated by both contrasts in most subjects. The resulting maps were thresholded with 307 

q(FDR)<0.05. Similarly, to explore the motor-relevance organization across size, we performed 308 

the same analysis but considering small motor-relevant > small non-motor-relevant and large 309 

motor-relevant > large non-motor-relevant contrasts.  310 

 311 

2.4.7 Typical-Atypical contrast analysis.  312 

 To further explore the relationship between size and motor-relevance, we compared maps 313 

between two contrasts: a typical contrast [small motor-relevant > large non-motor-relevant], which 314 

follows the real-world covariation of small objects being more motor-relevant than large objects; 315 

and an atypical contrast [small non-motor-relevant > large motor-relevant]. Individual maps for 316 

each contrast were submitted to a second-level analysis to obtain a group map, which was FDR-317 

thresholded at q<0.05.  318 

 To assess the reliability of the two contrasts, we further produced individual maps for each 319 

contrast separately for odd and even runs and correlated them. We then submitted individual 320 

correlations for the two separate contrasts to a t-test to assess whether there was a significant 321 

different in reliability between the maps produced by the two contrasts. 322 

 323 

2.5 Exploratory Analysis.  324 

2.5.1 Object Property Ratings. Ratings for the 72 objects in our dataset were collected on a series 325 

of other dimensions to identify the ones that were best associated with the response profiles of our 326 

ROIs. All studies were conducted on Amazon Mechanical Turk with 36 judgments per object 327 

category. Each of the participants (n=36) rated one exemplar of each of the 72 object categories, 328 

with six participants rating the same exemplars within each category. Participants were not 329 

presented with two exemplars from the same category. The following object properties were rated:  330 

1. Manipulability. Manipulability tracks the degree to which hand-interactions with objects 331 

are prominent. Participants were presented with an item and rated the degree to which the 332 

object made them think of moving their hands, using a scale from 1 (not at all) to 7 (very 333 

strongly). The question asked to participants was very similar to the one posed to collect 334 
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the motor-relevance dimension, but here we focus on actions performed with the hands 335 

rather than with other parts of the body. 336 

2. Motion-based Identity. The degree to which an object’s parts are expected to move and 337 

change position might be a relevant property for representing objects. Participants were 338 

asked to rate on a scale from 1 to 7 the degree to which motion is important in determining 339 

the identity of the object. 340 

3. Spatial Definition. This property is defined as “the degree to which objects evoke a sense 341 

of surrounding space” (Mullally and Maguire, 2011). Participants were asked to rate on a 342 

scale from 1 to 7 the degree to which a background is evoked when looking at a specific 343 

object. 344 

4. Position Variability. Objects can be more or less likely to change location in the 345 

environment (i.e., a car is more likely to change location than a swing). Participants were 346 

asked to rate on a scale from 1 to 7 the degree to which an object is likely to change position 347 

in everyday life. 348 

5. Interaction Envelope. “Interaction envelope” was operationalized as a measure of the 349 

amount of space needed to interact with the object (e.g., a hamburger needs to be 350 

manipulated with two hands that cover its whole surface, thus it has a larger interaction 351 

envelope than a coffee mug which just needs one hand on its handle to be manipulated), 352 

following Bainbridge and Oliva (2015). Participants had to judge on a scale from 0 to 2 353 

how many hands are often used when interacting with an object.  354 

 355 

2.5.2 Pairwise correlations. We compared the similarity across our seven dimensions (size, motor-356 

relevance and the additional ones collected post-hoc), and the reliability of each of the rated 357 

dimensions, in the following way. First, we divided participants into two groups and computed the 358 

mean rating for each group and each object category separately for each dimension, resulting in 359 

two group vectors of 72 mean ratings for each dimension. To compute the reliability of a 360 

dimension, we correlated the two group vectors with each other. To compute the correlation 361 

between two different dimensions, we correlated each dimension’s group vectors with the other 362 

dimension’s group vectors, and averaged across the four combinations.  363 

  364 

2.5.3 Factor Analysis. To understand how our critical dimensions of size and motor-relevance 365 
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related to the variety of stimulus properties from the subsequent stimulus norming studies, we 366 

conducted a maximum-likelihood factor analysis on all seven dimensions (size, motor-relevance, 367 

manipulability, motion-based identity, spatial definition, position variability and interaction 368 

envelope) with a “varimax” rotation of the coefficients. This factor analysis was implemented with 369 

the factanal function in R. To determine the number of meaningful factors to extract from our 370 

dimensions, we performed a “parallel” analysis (Horn, 1965). This procedure involves generating 371 

random data and submitting them to the same factor analysis, iterated 5000 times. The average of 372 

the eigenvalues resulting from the parallel random-data factor analyses is then compared to the 373 

factors from the observed data: if the average eigenvalues from the parallel factor is smaller than 374 

the one from the data factor, then the data factor is kept. This procedure was implemented with the 375 

fa.parallel function in R. The three resulting factors can be summarized as relating to real-world 376 

size and context (fsize), manipulability (fmanip) and degree of movement (fstability). For the following 377 

ROI and searchlight analyses, for ease of interpretation, we flipped the direction of fstability so as to 378 

positively correlate with degree of stability.  379 

 380 

2.4.6 ROI analysis with Factors as predictors. Following the factor analysis on the behavioral 381 

ratings of the objects, we performed a linear model analysis to predict the size ROIs responses 382 

from the resulting factor scores and their interactions. To estimate the response profile of each 383 

ROI, β-weights for each of the 72 object categories were extracted from the GLMs of the main 384 

experiment runs. Note that this analysis was performed on runs separate from the ones used to 385 

produce the ROIs. These betas were averaged across voxels, resulting in a vector of 72 values 386 

reflecting the ROIs overall response activation to each category. The ROIs activation profiles were 387 

computed for each subject using subject-specific ROIs and GLMs.  388 

 389 

We next sought to explain these ROI activation profiles with the factors from the factor analysis 390 

above by employing a linear modeling approach. All linear models to predict an ROI activation 391 

were implemented with the function lm in R. We first looked for hemispheric interactions by 392 

submitting our size ROIs to a model with the three factors, hemisphere and their interaction as 393 

coefficients. No hemispheric interaction significantly explained either Small-ITG or Large-PHC’s 394 

activation; hemisphere was thus removed from the models. 395 

 396 
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Next, we examined which of three nested models best explained activation in our size ROIs by 397 

comparing their resulting adjusted R square (adjR2). The three models were: one with the three 398 

factors as predictors, with no interaction terms [ fsize + fmanip + fstability ]; a second model that also 399 

included the two-way interaction terms [fsize*fmanip + fsize*fstability + fmanip *fstability ]; and a third 400 

model that also included the three-way interaction term [fsize*fmanip*fstability ]. The model with the 401 

highest adjR2 was considered the one most fitting the region and the significant coefficients were 402 

explored. If two models had comparable adjR2 (rounded at the second decimal), the simpler model 403 

was picked. The same analysis was also performed on Large-TOS and in category-selective 404 

regions defined from the Functional Localizer (LOC-sphere, PPA-sphere and OPA-sphere; see 405 

Supplementary Material). 406 

 407 

 When comparing the nested models for the highest adj R2, we found that both Small-ITG 408 

and Large-PHC were best explained by a model with all three factors and their two-way 409 

interactions (Small-ITG: adj. R2 = 0.33; F6,65 = 6.90, p < 0.001; Large-PHC: adj. R2 = 0.27; F6,65 = 410 

5.36, p < 0.001), as compared to the model with only main effects (Small-ITG: adj. R2 = 0.23; 411 

Large-PHC: adj. R2 = 0.21) and the model with main effects, two- and three-way interactions 412 

(Small-ITG: adj. R2 = 0.32; Large-PHC: adj. R2 = 0.26).  413 

 414 

To evaluate the quality of the fit of the different coefficients, we looked at the resulting associated 415 

t- and p-values. T-values were computed by dividing coefficients by their standard errors, while 416 

p-values tested the significance against the hypothesis of obtaining given t-values if the 417 

coefficients were not actually contributing in explaining the dependent variable.  418 

 419 

2.5.4 Searchlight Regression Analysis. Following our findings in the spherical ROIs, we next 420 

explored which factors would best fit voxels throughout object-responsive cortex.  421 

 422 

The searchlight analysis was performed in the following way: within the voxel mask, a 6mm sphere 423 

was drawn around a voxel, and all voxels falling within that sphere were considered part of the 424 

neighborhood for that voxel. This procedure was performed iteratively so that each voxel within 425 

the object-selective mask was at the center of the sphere. In each searchlight ROI, voxel activation 426 

for all 72 object categories was averaged across all voxels within the sphere, and the resulting 427 
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vector used as the dependent variable for two models. 428 

 429 

For each search sphere, we fit two models. The first model related size and manipulability, with 430 

fsize, fmanip, and their interaction [fsize + fmanip + fsize * fmanip], which we refer to as manip-model. the 431 

second model related size and stability, with fsize, fstability and their interaction [fsize + fstability + fsize 432 

* fstability], which we refer to as stability-model. For each given searchlight, adjusted R2 values for 433 

these two models were extracted and compared, and the model with the highest positive value was 434 

selected and assigned to that searchlight’s central voxel.  435 

 436 

To visualize which models are fitting best and where, we looked separately at small-preferring and 437 

large-object preferring voxels. Small- and large-object preferring voxels were identified based on 438 

whether the coefficient for the main effect of fsize was positive (preference for small) or negative 439 

(preference for large). We then visualized the coefficient maps for the interaction terms fsize*fmanip 440 

and fsize*fstability separately for large- and small-preferring voxels, comparing them with a map of 441 

the F-values for the winning model associated with each voxel. 442 

  443 
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3. RESULTS 444 

3.1 Whole-brain conjunction analysis 445 

We first examined whether the large-scale neural organization by real-world size of inanimate 446 

objects is preserved when disrupting the natural covariance between size and motor-relevance. To 447 

do so, we conducted a conjunction analysis to isolate regions which show a large vs small object 448 

difference that holds when comparing motor-relevant as well as non-motor-relevant objects (see 449 

Methods).  450 

 451 

When looking at the real-world size organization, we found regions that showed a 452 

preference for small over large objects, and for large over small objects, regardless of the motor-453 

relevance preference. The whole brain maps can be visualized in Figure 2a, with the group MNI 454 

coordinates at the bottom of the figure. With respect to small objects, we observed activation 455 

bilaterally in ITG and in the left hemisphere and along the lateral aspect of the fusiform gyrus. In 456 

the left hemisphere, the region for small objects expanded posteriorly to the lateral occipital cortex. 457 

With respect to large objects, along the ventral surface of the occipitotemporal cortex, we observed 458 

bilateral regions corresponding to the parahippocampal cortex. A preference for large objects was 459 

also present more dorsally in the lateral surface in the occipital place area (OPA) in individual 460 

participants, but this region did not survive the group-level conjunction test at the FDR threshold 461 

depicted in Figure 2a. Overall, this group-level conjunction analysis reveals that, even when taking 462 

into account motor-relevance, the real-world size of objects drives large-scale differential 463 

responses across the ventral stream.  464 

 465 

 Next, we examined whether also motor-relevance, when disrupting its natural covariance 466 

with size, would elicit a large-scale organization across this cortex. Another whole-brain 467 

conjunction analysis was conducted, comparing motor-relevant objects vs non-motor-relevant 468 

objects, requiring this relationship to hold for both large object and small objects independently. 469 

The results are mapped in Figure 2b, with the group MNI coordinates at the bottom of the figure. 470 

Along the lateral surface, we observed regions with a stronger response to motor-relevant objects, 471 

with peaks in LO bilaterally. Along the medial aspect of the ventral surface, we found stronger 472 

responses to non-motor-relevant objects primarily in the right hemisphere, with the peak activation 473 

located slightly anterior to the large-object preferring region. This analysis reveals that the 474 
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dimension of motor-relevance also elicits stable response differences in parts of object-responsive 475 

cortex.  476 

  477 

Notably, these conjunction maps yielded relatively similar organizations. Specifically, 478 

lateral regions prefer both small and motor-relevant objects; while ventromedial regions prefer 479 

both large and non-motor-relevant objects. These findings indicate that neither size alone nor 480 

motor-relevance alone are sufficient to explain the large-scale organization of responses to objects 481 

along occipitotemporal cortex. Further, these results highlight that there is a clear association 482 

between the two dimensions and how they map across the cortex. 483 

  484 
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 485 
[2 columns fitting] 486 

Figure 2. Whole Brain Random-Effects Conjunction Analysis. a) Size conjunction contrasts, 487 

where both [small motor-relevant > large motor-relevant] and [small non-motor-relevant > 488 

large non-motor-relevant] relationships hold. a) Motor-relevance conjunction contrasts, where 489 

both [small motor-relevant > small non-motor-relevant] and [large motor-relevant > large non-490 

motor relevant] relationships hold. Contrasts were thresholded at q(FDR)<0.05.  491 
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3.2 Typical-atypical Contrasts 492 

 To further explore the relationship between size and motor-relevance, we compared maps 493 

between two contrasts: a typical contrast (small motor-relevant > large non-motor-relevant), which 494 

follows the real-world covariation of small objects being more motor-relevant than large objects; 495 

and an atypical contrast (small non-motor-relevant > large motor-relevant; Figure 3a). These maps 496 

are shown in Figure 3.  497 

 498 

When looking at surface maps produced by the typical contrast, we find extensive activations 499 

along the lateral and ventral surfaces (Figure 3b). In contrast, the surface maps produced by the 500 

atypical contrast (Figure 3c) are less extensive and also less reliable in a split-half analysis 501 

(typical split-half map correlations: M=0.61, SD=0.18; atypical: M=0.43, SD=0.24; t17=2.70, 502 

p<0.05). 503 

 504 

These topographic observations mirror the ecological covariation of these factors (Figure 3a): 505 

while it is theoretically possible to artificially dissociate size and motor-relevance as we have done 506 

in this stimulus set, in every day experience small objects tend to be more motor-relevant and large 507 

objects less so. And we found this covariation to also be evident in the neural data (see Figure 508 

3b,c). Taken together, these data show the importance of the interaction between size and motor-509 

relevance in driving more reliable and robust neural responses, thus revealing the importance of 510 

the natural covariation between these two properties in the visual system. 511 

 512 

 513 

 514 

 515 

 516 

 517 
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 518 
[2 columns fitting] 519 

Figure 3. Typical/Atypical contrast Analysis. a) simplified representation of the size x motor-520 

relevance design. Arrow points to the typical contrast conditions, representing the covariation 521 

commonly observed in the environment.  b) Typical contrast: small motor-relevant > large non-522 

motor-relevant. c) Atypical contrast: small non-motor-relevant > large motor-relevant. Contrasts 523 

were thresholded at q(FDR)<0.05. 524 

 525 

3.3 Exploratory Analyses 526 

3.3.1 Factor Analysis. We next explored the possibility that the relationship between size and 527 

motor-relevance may be more multifaceted than what can be gathered from a simple 2 x 2 design. 528 

Our goal for this analysis was to understand and explore how other, related properties that have 529 

been proposed in the past relate to our findings and predict neural responses at the category level. 530 

To do so, we collected ratings along five additional dimensions of our 72 object categories and 531 

submitted them to a factor analysis together with size and motor-relevance.  532 

 First, manipulability ratings were obtained, which focused on hand movements specifically, 533 

in order to understand the extent to which our motor-relevance dimension correlated with this 534 

previously studied dimension (Mahon et al., 2007). We also examined a number of dimensions 535 

that have been previously proposed as significant modulators of tool regions or scene regions, 536 

namely interaction envelope (Bainbridge and Oliva, 2015), spatial definition (Mullally and 537 

Maguire, 2011), and motion-based identity (Beauchamp, 2005). Finally, based on our observation 538 

regarding low responses to vehicles in Large-PHC, we obtained “position variability” ratings, 539 

capturing how often an object changes its position in the environment. Note that these properties 540 

were defined after having seen the data, and thus any role they play in explaining neural data 541 

requires independent follow-up studies to confirm.    542 
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The relationship among these ratings and our original size and motor-relevant dimensions 543 

are detailed in Figure 4. All ratings had a relatively high reliability (Figure 4a, shaded diagonal 544 

numbers), with a range of similarity relationship between any pair of dimensions (Figure 6b). 545 

There are a couple observations to note from inspecting these pairwise correlations and scatter 546 

plots. First, by design, size and motor-relevance were completely uncorrelated in this stimulus set. 547 

Second, the correlation between motor-relevance and manipulability was at ceiling, virtually 548 

identifying the same property. As mentioned in the introduction, most motor-relevant objects 549 

involved hands for their interaction; including whole-body actions in the motor-relevance score 550 

had a minimal or non-existent effect (the only exception being the skateboard which was high in 551 

motor-relevance but low on manipulability).  552 

Next, we extracted the latent dimensions within this dataset using factor analysis (see 553 

Methods). A parallel analysis procedure determined that three factors should be retained, which 554 

were sufficient to explain more than 80% of all variance among the ratings. The property loadings 555 

for each factor are shown to the right in Figure 4a.  556 

The first factor was loaded mostly by manipulability, motor-relevance and interaction 557 

envelope—it seemed thus to be most related to actions and hand-object interactions. The second 558 

factor was loaded by size and spatial definition, and was thus most related to the physical presence 559 

of the object. Finally, motion-based identity, position variability and motor-relevance loaded 560 

strongly on the third factor, which seemed thus to capture the mobility/movability of the object.  561 

Considering these factors within the context of our main design, our motor-relevance 562 

dimension was effectively split into two factors, one related to hand-object interactions (fmanip) and 563 

one related to an object’s mobility/movability (fstability), and both of these were separate from the 564 

more physical properties of size and, to a lesser degree, spatial definition (fsize). Thus, while our 565 

stimulus set was collected as varying along only two primary factors (size and motor-relevance), 566 

the factor analysis indicated that this stimulus set is better characterized along three factors (size, 567 

manipulability and stability).  568 

We next explored how well the three factors extracted from our ratings can explain the 569 

neural response profiles, both in a targeted ROI analysis and in a broader searchlight analysis. Note 570 

that these analyses were unplanned and should be considered post-hoc and exploratory in nature. 571 
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 572 
[2 column fitting] 573 

Figure 4. Object dimension similarity and Factor Analysis. a) For each rated object property, 574 

the subplot shows the dimension label, the question asked to elicit ratings on the dimension, the 575 

correlation to the other dimensions, where the rating’s reliability is shaded, and the dimension’s 576 

loading in a factor analysis. b) Scatter plots are shown for all pairs of 7 dimensions, where each 577 
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dot reflects an object category and is color-coded based on its size and motor-relevance rating 578 

(light orange – small motor-relevant; dark orange: small non-motor relevant; light blue: large 579 

motor-relevant; dark blue: large non-motor-relevant). 580 

 581 

 582 

 583 

3.3.2 ROI Analysis. To explore how well the three factors could explain fMRI responses, we 584 

employed a linear modeling analysis explaining the activation profile in each ROI, with the three 585 

factors obtained from the factor analysis and their interactions as regressors (see Methods). The 586 

goal was to see which weighted combination of factors best predicted a region’s response variation 587 

to the 72 objects. This finer-grained analysis looking at responses to all 72 object categories was 588 

possible due to our nested fMRI protocol design (see Methods), in which the neural responses 589 

could be modeled at the category-level for each of the 72 categories independently (see Figure 1). 590 

Note that these three factors were determined only from the behavioral ratings of our stimulus set. 591 

Further, for interpretive clarity, we reversed the sign of fstability so that high values indicate high 592 

“fixedness” (rather than high mobility.) This transformation does not affect the significance of the 593 

statistical results.  594 

 After determining which model was a best fit for each region, we looked at the factors 595 

within the winning models that significantly contributed to the fit (see Methods), and whether they 596 

were positive or negative, to understand the models’ relationship to the data (Figure 5a).  597 

In Small-ITG, the results indicate that the best prediction of neural response magnitude 598 

was given by a combination of size and of the manipulability component of motor-relevance: there 599 

was a significant effect of fsize, as well as the interaction of fsize and fmanip (see Figure 5a, top for 600 

statistical results). The interaction between these factors further indicates that it is specifically 601 

small objects involved in hand-object actions which drive the strongest responses in this region. 602 

Thus, the distinction of hand-object action and manipulability is a better descriptor of the responses 603 

in this region over the more general concept of motor-relevance.  604 

In Large-PHC we observed a different pattern: the coefficients that significantly explained 605 

the model were fsize and the interaction of fsize and fstability (see Figure 5b, bottom row for statistical 606 

results). Thus, responses in this region were driven most by large objects that are stable in the 607 

environment. This result in Large-PHC clarifies what we observed in earlier analyses employing 608 
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the 2 x 2 design: rather than the low-action component of motor-relevance, it might be the fixedness 609 

component of this construct the one most driving neural representations in this area. That is, the 610 

stability component of non-motor-relevance is the one to best predict response magnitude in Large-611 

PHC.  612 

To better understand these relationships, we visualize them in Figure 5c: for each ROI, the 613 

activation to each category is plotted on the y-axis as a function of the manipulability factor for 614 

Small-ITG, and the stability factor for Large-PHC. Each dot is color-coded based on the fsize value 615 

for the corresponding object. This plot reveals that the manipulability factor drives activation in 616 

Small-ITG but mostly for small objects (increasing activity for more manipulable small objects, 617 

see Figure 5c, top). In contrast, inspection of the scatterplot for Large-PHC suggests that activation 618 

is driven by stability but mostly for large objects (increasing activity for more stable large objects, 619 

see Figure 5c, bottom). These relationships are also evident in the activation profiles of the two 620 

ROIs in Figure 6: For Small-ITG, tools are the small objects that drive the most activation (e.g. 621 

nail clipper, hand rack, yo-yo; see Figure 6a), while for Large-PHC, means of transport tend to be 622 

the large objects that drive the least activation (e.g. bike, scooter, jet-ski; see Figure 6b). 623 

  624 
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 625 
[2 column fitting] 626 

Figure 5 ROI analysis. a) Visualization of size ROIs Small-ITG and Large-PHC in one example 627 

subject. b) GLMs with ROIs’ activity as dependent variable and factor scores as independent 628 

variables. Shown are estimates for all predictors included in the model, t-value and p-value. The 629 

t-value was measured by dividing the coefficients by their standard errors. The p-value tested the 630 

hypothesis of obtaining the observed t-value if the coefficient were actually zero.c) Top: scatterplot 631 

of Small-ITG’s activation by fmanip (x-axis) and fsize (y-axis). Dots are color-coded based on the fsize 632 

weight from blue (low-weight, large size) to orange (high weight, small size). Bottom: scatterplot 633 

of Large-PHC’s activation by fstability (x-axis) and fsize (y-axis). Same color-coding scheme as 634 

described for the plot above. 635 

  636 
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 637 
[2 column fitting] 638 

Figure 6 Barplots of ROIs activation. Mean activation to each of the 72 object categories are 639 

plotted for each region (a: Small-ITG; b: Large-PHC), where the categories are rank-ordered 640 

from most to least active. Object categories are color-coded based on their size and motor-641 

relevance conditions (light orange: small motor-relevant; dark orange: small non-motor-relevant; 642 

light blue: large motor-relevant; dark blue: large non-motor-relevant). Error bars reflect ±1 SEM 643 

across subjects. 644 

 645 

 646 

 647 

Taken together, these analyses begin to characterize the nature of the ecological covariation 648 

between size and motor-relevance, clarifying how these object properties fit together. For example, 649 

no one factor alone (size, manipulability, stability) best accounted for the responses in any ROI. 650 

Rather, manipulability (or hand-relevance) of an object matters more for small objects in the lateral 651 

cortex, and stability of an object matters more for large objects in ventral cortex. Finally, these 652 

findings are consistent with prior literature that has focused on either the ventral or lateral surface 653 

separately (e.g., Bracci et al., 2012; Mullaly and Maguire, 2011), unifying these separate 654 

observations in one common data set and analysis procedure.  655 

 656 
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3.3.3 Additional ROIs. To more directly relate our findings to previous literature, we also 657 

conducted these same analyses in the classic scene regions, parahippocampal place area and 658 

occipital place area (PPA and OPA; Epstein et al., 2014), and object-responsive lateral 659 

occipitotemporal cortex (LOC; see Methods and Supplementary Material). These regions are 660 

adjacent and partially overlapping with the size ROIs (see also Konkle and Oliva, 2012). The 661 

findings in these classic regions generally converge with what was observed for the size ROIs: in 662 

LOC, there was a significant contribution of fsize, and a significant contribution of the interaction 663 

between fsize and fmanip. In PPA, there was a significant contribution of the size factor, and 664 

marginally of stability and of the interaction between size and stability (see Supplementary 665 

Material).  666 

Further, we conducted these analyses in an additional occipitodorsal region identified with 667 

the [Large > Small] size contrast from two runs of the main experiment (Large-TOS) and in 668 

adjacent scene-selective occipital place area (OPA; see Supplementary Material). In Large-TOS, 669 

we found a result parallel to our observation in PPA: a significant contribution of fsize and of the 670 

interaction between fsize and fstability. However, this result did not replicate in OPA where only fsize 671 

had a significant contribution. 672 

 673 

 674 

3.3.4 Searchlight Analysis. By focusing on the ROIs produced by the size contrast, we were able 675 

to explore whether other factors beyond size and motor-relevance were important in these 676 

ROIs—to which the answer is clearly yes: motor-relevance was indeed split into two sub-677 

dimensions, one more related to manipulability, and one more related to stability, which 678 

dissociated in explaining small- and large-object ROIs. However, by performing a targeted ROI 679 

analysis, we might have missed additional regions with different associations between these 680 

factors.  681 

 682 

Given the complexity of the number of possible interactions among these factors, we 683 

approached the searchlight analysis with a more targeted comparison. Specifically, we mapped 684 

which regions showed a better model fit among two candidate models: one that associates size 685 

and manipulability (manip-model) and one that associates size and stability (stability-model; see 686 
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Methods). All searchlight analyses were conducted within a reliable voxel mask (see Methods). 687 

The results of this analysis are shown in Figure 7. 688 

 689 

From this analysis, we can gather two main conclusions. First, we found that the voxels with 690 

best fitting models (i.e., the ones with highest F-value, see Figure 7, center) focused mostly in 691 

the lateral occipitotemporal region and in the ventromedial occipitotemporal regions, in areas 692 

mostly overlapping with size ROIs Small-ITG and Large-PHC (outlined in black in Figure 7a,b). 693 

Thus, our targeted ROIs seemed to cover most OTC areas where voxels’ information could be 694 

explained by a combination of the three factors.  695 

 696 

Second, we found that the best-fitting voxels resulting from the searchlight analysis largely 697 

confirmed our targeted ROI analyses. Indeed, small-object preferring voxels in the lateral 698 

occipitotemporal region (i.e., the ones with positive fsize coefficients for the winning model) 699 

presented a positive interaction of the size and manipulability factors (Figure 7a top, colored in 700 

yellow), similarly to what was observed in the ROI analysis for Small-ITG: that is, the smaller fsize 701 

(the smaller the object), and the higher fmanip (the more manipulable the object), the stronger the 702 

activation. Similarly, we found that large-object preferring voxels in ventromedial 703 

occipitotemporal region (i.e., the ones with negative fsize coefficients for the winning model) 704 

presented a negative interaction of the size and stability factors (Figure 7b, top, colored in green), 705 

similarly to what observed in our ROI analysis for Large-PHC: that is, the lower fsize (the bigger 706 

the object), and the higher fstability (the more stable the object), the stronger the activation. For ease 707 

of comparison, we have drawn a black outline on the searchlight coefficient maps of the size ROIs 708 

Small-ITG (Figure 7a) and Large-PHC (Figure 7b) for one example subject, from which it is clear 709 

that the targeted ROI analyses do in fact highlight the major structure in neural responses by our 710 

three factors.  711 

 712 
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 713 
[2 column fitting] 714 

Figure 7. Searchlight Analysis. a) Top: surface map of interaction coefficients for small-object 715 

preferring voxels (i.e., voxels with a positive fsize coefficient). In voxels in which the winning model 716 

was the manip-model, that voxel is colored according to its fsize*fmanip interaction coefficient 717 

estimate in a brown to yellow scale. In voxels in which the winning model was the stability-model, 718 

that voxel is colored according to its fsize*fstability interaction coefficient estimate in a green-to-cyan 719 

scale. Bottom: scatterplot of activation by fmanip (x-axis) and fsize (y-axis) for all voxels showing a 720 

positive fsize*fmanip interaction in lateral OTC. Dots are color-coded based on the fsize weight from 721 

blue (low-weight, large size) to orange (high weight, small size). b) Top: surface map of interaction 722 

coefficients for large-object preferring voxels (i.e., voxels with a negative fsize coefficient). In voxels 723 

in which the winning model was the manip-model, that voxel is colored according to its fsize*fmanip 724 

interaction coefficient term in a brown-to-yellow scale. In voxels in which the winning model was 725 

the stability-model, that voxel is colored according to its fsize*fstability interaction coefficient estimate 726 

in a green-to-cyan scale. Bottom: scatterplot of activation by fstability (x-axis) and fsize (y-axis) for 727 

all voxels showing a negative fsize*fmanip interaction in ventromedial OTC. Dots are color-coded 728 

based on the fsize weight from blue (low-weight, large size) to orange (high weight, small size). 729 
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At lower F-value levels, we observed two more nuanced relationships. However, given the 730 

lower fit of either manip-model or stability-model within these voxels, one can only draw tentative 731 

inferences from these results.  732 

 733 

First, a significant portion of small-object preferring voxels in the lateral occipitotemporal 734 

surface (Figure 7a, top, colored in cyan) are fit best by models with size and stability, and show a 735 

negative interaction between the size and stability factors. Inspection of activation to all 72 object 736 

categories in this area shows a preference for moving over non-moving things (see Supplementary 737 

material) which is in line with the presence of movement-preferring region MT+ in the lateral 738 

surface.  739 

 740 

Second, we also observed large-object preferring voxels in the dorsal occipitoparietal region, 741 

where most voxels (Figure 7b, top, colored in yellow) indicate a positive interaction of the size 742 

and manipulability factors while a few voxels (colored in green) indicate a negative interaction of 743 

the size and stability factors. However, inspection of the scatter plots for these regions showed that 744 

these interactions were not as simple and easily interpretable as the ones observed in areas 745 

neighboring our size ROIs (see Supplementary Material). From these results, it is clear that there 746 

are systematically varying object responses in this dorsal occipital part of the cortex, but none of 747 

the three factors or their interactions cleanly provides a description of what explains the object 748 

activations.  749 

  750 
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4. DISCUSSION 751 

Here, we examined whether the large-scale organization of neural responses to object size 752 

could be better explained by the factor of motor-relevance. This was not the case – we found that 753 

the contrasts of small vs large objects elicited a clear size organization for both motor-relevant and 754 

non-motor relevant objects. We also found that motor-relevance, independent of size, accounted 755 

for some of the large-scale structure of neural responses. This observation confirms the importance 756 

of motor interaction as an explanatory dimension in the ventral visual stream. Crucially, however, 757 

further analyses showed the two dimensions to not be independent, in that more typical 758 

combinations (small and motor-relevant, large and non-motor-relevant) elicited more reliable 759 

representations than less typical ones.  760 

 761 

Our subsequent exploratory analyses helped to refine and clarify these results. Specifically, 762 

a factor analysis revealed that the construct of motor-relevance could be divided into two 763 

underlying dimensions, one better related to manipulability (i.e., related to hand performed 764 

actions), and one better related to an object’s physical presence and stability. Further ROI and 765 

searchlight exploratory analyses revealed that the manipulability factor was a better descriptor of 766 

activation in small-object preferring lateral OTC, while the stability factor was a better descriptor 767 

of activation in large-object preferring ventromedial OTC. 768 

Broadly, these results begin to characterize how the ecological covariation between size 769 

and behaviorally relevant object properties contributes to the observed dissociations between 770 

object categories in the ventral stream regions with a preference for the inanimate domain. In the 771 

next two sections, we situate these findings in the literature, and discuss how they inform the 772 

deeper theoretical question of what drives the neural organization of inanimate objects.  773 

 774 

4.1 Dissociations within the inanimate-domain  775 

Objects are characterized by numerous visual properties, real-world size being one of them. 776 

However, size tends to correlate with other visual and non-visual properties. There are suites of 777 

partially related factors that predict neural responses to inanimate objects, with a major division 778 

between small, manipulable objects on one side and large, stable, navigationally relevant objects 779 

on the other (e.g., He et al., 2013; Peelen et al., 2013; Julian et al., 2016; Mullally and Maguire 780 

2011; Troiani et al., 2014; Auger et al., 2013; Bracci et al., 2012; MacDonald and Culham, 2015; 781 
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Bainbridge and Oliva, 2015). Overall, these findings point to a richer organization than simply 782 

object size as such, where different brain regions may be sensitive to size in the presence of other 783 

object properties for different reasons (Bi et al., 2015). 784 

 785 

For example, along lateral OTC and middle temporal gyrus, there is a mosaic of partially 786 

overlapping regions whose response magnitudes are predicted by a range of related factors, from 787 

more primitive object shape (Grill-Spector, 2003), to real-world size (Konkle and Oliva, 2012; 788 

Julian et al., 2016), to tools and other objects that are manipulated by the hands (Lewis 2006; 789 

Bracci et al., 2012; MacDonald et al., 2015; Mruczek et al., 2013; Lingnau and Downing, 2015). 790 

These regions are also adjacent to motion-selective cortex and body-preferring regions (Grill-791 

Spector and Weiner, 2014), including a region that jointly responds to both tools and hands, 792 

spanning the animate/inanimate divide (Bracci and Peelen, 2013; Striem-Amit et al., 2017). While 793 

the number of regions and exact functional divisions along this cortex are still being clarified, from 794 

our results and these others, it is clear that these regions are most strongly related to small, 795 

movable, manipulable items.  796 

 797 

Along ventromedial OTC, where scene-preferring PPA is located, there are now a number of 798 

converging results characterizing the object properties that are best associated with responses to 799 

isolated objects. These factors include the degree to which the object invokes a local tridimensional 800 

space, its size, its tendency to stay fixed in the world, and can be generally summarized by an 801 

overarching construct of spatial stability and landmark suitability (Troiani et al., 2014, Mullally 802 

and Maguire, 2011; Julian et al., 2016; Auger et al., 2013; see also Epstein et al., 2014). While 803 

these studies examining PPA responses differ in their stimulus sets, designs, and even mode of 804 

presentation (e.g., pictures, mental imagery), they all leverage condition-rich designs and factor 805 

analyses to characterize the configuration of related object properties. While our observation of a 806 

role of spatial stability in PHC cannot in isolation lead to strong inferences, given that it is the 807 

product of a post-hoc analysis, it joins this collection of studies, adding to the diversity of stimulus 808 

sets and neuroimaging designs that show converging evidence that size in the context of position 809 

fixedness best explains the object responses in this region.  810 

 811 
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Our results, jointly with these collections of studies, suggest that a division based on 812 

manipulability for small objects and stability for large objects is fundamental in the organization 813 

of inanimate object responses. 814 

 815 

4.2 What drives this object organization? 816 

 817 

Turning to the broader question of what drives the spatial organization of object domains in 818 

visual cortex, as opposed to what visual properties are explicitly encoded in domain-specific 819 

regions, one answer is that the observed specialization is the result of evolutionary pressures to 820 

maximize the efficient mapping of visual representations onto the appropriate downstream regions 821 

engaged in action relevant processing for a given object domain (Caramazza and Shelton, 1998; 822 

Mahon et al., 2009; Mahon and Caramazza, 2011; Konkle and Caramazza, 2017; Conway, 2018).  823 

Candidate domains are manipulable (tools) and navigation-relevant objects. On this account, the 824 

representations computed in these regions are shape configurations and texture values that 825 

statistically reflect the distinguishing properties of manipulable versus navigation-relevant object 826 

domains. And, in the measure to which real-world size is differentially correlated with the two 827 

object domains (for example, large objects tend to be bulkier) it will have contributed to the 828 

evolving preferences for different visual features and configurations in the lateral and ventral 829 

occipitotemporal cortex.  In other words, the two inanimate-object-preferring regions respond 830 

preferentially to, and presumably encode, the types of shape and texture properties that are 831 

associated with prototypical manipulable (small, graspable) objects and navigation-relevant (large, 832 

stable/stationary) objects.  833 

 834 

It is relevant to note here that this view is fully compatible with accounts that emphasize the 835 

statistics of visual experience, wherein experienced eccentricity has played an evolutionary role in 836 

helping determine the localization of object domain preferences in the brain since it reflects the 837 

natural distribution of object viewing: more foveal, required for accurate reaching/grasping for 838 

small manipulable objects, versus more peripheral, associated with the requirement for capturing 839 

spatial (context) relations for large space-defining objects (Malach et al., 2002, Arcaro et al. 2009; 840 

Mahon  and Caramazza, 2011; Konkle and Oliva, 2012; Gomez et al., 2017). 841 

 842 
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 A crucial distinction is being drawn here between, on the one hand, the factors that may 843 

have determined the observed neural specialization in different regions of OTC for different types 844 

of inanimate objects and, on the other hand, the information being computed/represented in those 845 

specialized areas. The role of the object property “size” at these two levels of description of neural 846 

specialization is illustrative in this regard. It could be argued that real-world object size, because 847 

of its role in distinguishing between manipulable and navigation-relevant object types, contributed 848 

to help select the visual shape/texture properties that characterize the observed domain 849 

specialization in OTC. But what about the role of the visual property “size” in characterizing the 850 

computations/representations in these neural regions? Is this visual property explicitly 851 

computed/represented in these areas? One reading of the available results is that size is not directly 852 

computed/represented in these areas.   853 

 854 

 There are at least three senses of the property size in the context of visual processing: 855 

subtended visual angle, perceived physical size, and real-world size. Konkle and Oliva (2012) 856 

found that only objects’ real-world size, and not retinal or inferred size, is related to regional 857 

specialization. However, this generalization is tempered by the observation, reported in Konkle 858 

and Caramazza (2013), that the effect of real-world size is limited to inanimate objects: real-world 859 

size differences in the animate domain are not associated with regional specialization.  An 860 

implication of this observation, consistent with the results reported here, is that it is not real-word 861 

size, as such, that drives neural responses but the types of visual shapes that are typically associated 862 

with inanimate small, manipulable objects versus large, stable objects (e.g., Long et al., 2016). 863 

Furthermore, the property real-world size of an object is a “constructed” value that is retrieved 864 

from memory and has no obvious description in a vocabulary of visual properties such a shape, 865 

orientation, texture, and color. Indeed, the notion “real-word size” is a kind of 866 

conceptual/functional information like the properties “manipulability” and “navigation-867 

relevance”, and none of these types of information is directly represented in the putative, size-868 

responsive areas. 869 

  870 

 By positing a key role for domain-related processing, this view provides an account of data 871 

from congenitally blind individuals, who show response preferences in similarly located regions 872 

of occipitotemporal cortex when hearing the names of animate versus inanimate objects or big 873 
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versus small artifacts (e.g., Mahon et al., 2009; Wolbers et al., 2011; He et al., 2013; Peelen et al., 874 

2013; Bi et al., 2015; Mattioni et al., 2020).  Since ontogenetic visual experience could not have 875 

contributed to the similar patterns of object-preferring effects in high-level visual areas in 876 

congenitally blind and sighted individuals, it invites the conclusion that the observed specialization 877 

predates such experience. While the domain account provides a principled framework for 878 

explaining the potential functional basis for the observed large-scale organization of “visual” 879 

cortex, it is silent on the specific representational content at any given level of visual processing. 880 

Investigation of the specific perceptual features – e.g., elongated versus bulky shapes, texture 881 

properties, curvature patterns, or specific combinations of such features – that are 882 

represented/computed in the various object-type-preferring regions is an active, promising area of 883 

research (e.g., Andrews et al., 2010; Rajimehr et al., 2011; Bracci and Op de Beeck, 2016; Long, 884 

Yu and Konkle, 2018), aided by modeling with deep CNNs (e.g., Güçlü and Van Gerven, 2015; 885 

Khaligh-Razavi and Kriegeskorte, 2014; Yamins et al., 2014; Kubilius et al., 2016). 886 

 887 

 888 

 889 
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