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Many functional RNA structures are conserved across evolution, and
such conserved structures provide critical targets for diagnostics
and treatment. TurboFold II is a state-of-the-art software that can
predict conserved structures and alignments given homologous se-
quences, but its cubic runtime and quadratic memory usage with
sequence length prevent it from being applied to most full-length vi-
ral genomes. As the COVID-19 outbreak spreads, there is a growing
need to have a fast and accurate tool to identify conserved regions
of SARS-CoV-2. To address this issue, we present LinearTurboFold,
which successfully accelerates TurboFold II without sacrificing accu-
racy on secondary structure and multiple sequence alignment pre-
diction. LinearTurboFold is orders of magnitude faster than Turbo-
Fold II, e.g., 372× faster (12 minutes vs. 3.1 days) on a group of
five HIV-1 homologs with average length 9,686 nt. LinearTurboFold
is able to scale up to the full sequence of SARS-CoV-2, and identifies
conserved structures that have been supported by previous studies.
Additionally, LinearTurboFold finds a list of novel conserved regions,
including long-range base pairs, which may be useful for better un-
derstanding the virus.

1. Introduction

RNAs play important roles in multiple cellular processes [1–3], and
many of their functions rely on folding to specific structures. To
maintain their functions, secondary structures of RNA homologs are
conserved across evolution [4–7]. These conserved structures provide
critical targets for diagnostics and treatment. Thus, there is a need
for developing fast and accurate computational methods to identify
conserved structural regions.

Commonly, conserved structures involve compensating base pair
changes, where two changes in primary sequences still preserve base
pairs in secondary structures. For instance, a GC base pair is replaced
by an AU or a CG base pair in homologous sequences. These com-
pensating changes provide strong evidence for conserved structures [8].
Meanwhile, they also make it harder to align sequences when struc-
tures are unknown. To solve this issue, Sankoff proposed a dynamic
algorithm that simultaneously predict structures and a sequence align-
ment for two or more sequences [9]. Several software packages provide
implementations of the Sankoff algorithm [10–14]. One drawback of
this approach is that the Sankoff algorithm runs in O(n3k) against
averaged sequence length n and k sequences.

TurboFold II [15], an extension of TurboFold [16], provides a more
computationally efficient method to align and fold sequences. Tur-
boFold II takes multiple unaligned RNA sequences as input, and
estimates the posterior co-incidence probabilities for all pairs of se-
quences and the base pair probability matrix for each sequence using
probabilistic models of a Hidden Markov Model (HMM) [17] and a
partition function [18], respectively. It iteratively refines estimations so
that the alignments and structure probabilities conform more closely
to each other and converge on conserved structures. Finally, Turbo-

Fold II generates a multiple sequence alignment using probabilistic
consistency transformation and progressive alignment methods, and
predicts secondary structures using downstream methods, such as
Maximum Expected Accuracy (MEA) [19–21] and ProbKnot [22]. Tur-
boFold II is significantly more accurate than other methods when
tested on families of RNAs with known structures and alignments.
Though TurboFold II is substantially more efficient than the Sankoff
approach, it can not scale to longer sequences due to its end-to-end
O(k2n2 + kn3) runtime and O(k2n2) memory usage, which mainly
suffer from calculating RNA partition functions and base pairing prob-
abilities for each sequence (O(kn3)). For example, TurboFold II
takes 3.1 days, along with 54 GB memory usage, for a group of five
HIV-1 sequences with average length 9,686 nt.

As the COVID-19 outbreak spreads, there is a growing need for
a tool, such as TurboFold II, to identify conserved regions along
with their structural propensities. However, the runtime and memory
usage bottlenecks of TurboFold II prevent it from being applied to
full-length viral genomes, especially to SARS-CoV-2, the virus that
causes the COVID-19 pandemic, which has a genome of length nearly
30,000 nt and is far beyond TurboFold II’s scope.

Recently, we introduced LinearPartition [23], a linear-time approxi-
mation of the RNA partition function to accelerate the classical cubic-
time partition function algorithm [24] and the estimation of base pairing
probabilities. Unlike previous local linear-time algorithms [25,26], Lin-
earPartition is a global algorithm without constraints on the pairing
distance. Thus, a natural strategy to overcome the slowness and
improve the scalability of TurboFold II is to replace the partition
function and base pairing probability calculation in TurboFold II
with LinearPartition. Following this idea, we propose LinearTurbo-
Fold, which can output the RNA structural alignment and identify
conserved base pairs in linear time. To make LinearTurboFold an
end-to-end linear-time algorithm, we further present LinearAlignment,
which linearizes and approximates the pairwise alignment by apply-
ing the beam pruning heuristic algorithm [27]. LinearTurboFold uses
ThreshKnot [28] to predict secondary structures. ThreshKnot uses a
probability threshold θ to disallow any pair whose probability falls
below θ, then builds structure of mutually maximal probability pairing
partners. Based on the significant acceleration, LinearTurboFold can
scale up to whole-genome viruses.

We run LinearTurboFold on a collected dataset with diverse RNA
homologous sequences of length ranging from about 200 nt up to
30,000 nt. LinearTurboFold achieves linear runtime and memory
usage against sequence length. We compare the secondary structure
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Fig. 1. The framework of LinearTurboFold. LinearTurboFold inherits the iterative process from TurboFold II with k homologous RNA sequences as input. The iterative
process includes two major modules (1) pairwise alignment posterior probability estimation and (2) base pairing probability prediction. The blue lines and arrows represent
the information flow between modules. In module (1), LinearAlignment, a linear-time pairwise alignment and posterior co-incidence probability computation approximation,
incorporates the match score, which uses the structural information, i.e. base pairing probabilities, to guide the pairwise alignment. In module (2), LinearPartition is modified by
incorporating the extrinsic information to refine the base pairing probabilities estimation. The extrinsic information maps structural information from other sequences to the
target sequences under the help of the posterior co-incidence probability. After a user-specified number of iterations (with default value of 3), module (3) computes the final
multiple sequence alignment over the pairwise alignment predictions, and module (4) uses ThreshKnot to predict secondary structures.

and alignment prediction accuracy between LinearTurboFold and
benchmark methods, including LocARNA-P [29], MXSCARNA [12]

and TurboFold II on the RNAStrAlign test set. LinearTurboFold
leads to equal or better accuracies among the benchmarks. With
LinearTurboFold, we explore conserved structural regions among be-
tacoronavirus with the well-known RNA structures. Additionally, we
list novel conserved regions whose functions are not well understood.

2. Results

A. LinearTurboFold Algorithm. Formally, we define a group of
k homologous sequences as x(1),x(2), . . . ,x(k). For the mth se-
quence, x(m) = x

(m)
1 x

(m)
2 . . . x

(m)
nm of sequence length nm, and each

nucleotide x(m)
i takes the value from the alphabet set {A,U,G,C}.

n is the average sequence length. x(m)
[i, j] indicates the subsequence

from position i to j of the sequence x(m).
LinearTurboFold approximates the TurboFold II algorithm in lin-

ear time end-to-end. As presented in Figure 1, LinearTurboFold
inherits the iterative framework from TurboFold II, which consists
of two major modules: (1) posterior co-incidence probability estima-
tion [17] for each pair of sequences using the HMM algorithm and (2)
partition function and base pair probability prediction for each se-
quence. To accelerate TurboFold II, two types of iterative refinement
occur with linearization. In module (1), LinearAlignment approxi-
mates the pairwise alignment and posterior co-incidence probability
calculation in linear time, and is optimized iteratively by incorpo-
rating the match score, which integrates structural information, i.e.
the predicted base pair probabilities from module (2). In module
(2), LinearPartition refines base pairing probabilities by taking in the
extrinsic information, a proclivity for base pairing inferred from the
base pairing probabilities of other sequences and mapped to the target
sequence via the estimated posterior co-incidence probabilities from
module (1). Thus the posterior co-incidence probability and base pair
probability prediction performance are jointly improved by taking
advantage of the information from each other. After several iterations,
LinearTurboFold computes the final multiple sequence alignment
(MSA) based on pairwise alignment probabilities in module (3), and
predicts secondary structures over base pairing probabilities in module
(4).

A.1. Linearized Posterior Co-incidence Probability Computation. We
develop LinearAlignment, an HMM alignment with the beam search
algorithm, that approximates the pairwise alignment and posterior
co-incidence probability computation in linear time. LinearAlignment
adopts states as well as the parameters of the HMM algorithm realized
in Harmanci et al. [17]. Specifically, there are three states: aligning
a pair of nucleotides from two sequences (ALN); inserting one nu-
cleotide in the first sequence but a gap in the second sequence (INS1);
and a nucleotide insertion in the second sequence with a gap insertion
in the first sequence (INS2). Transitions between any two states are
allowed. State ALN emits a pair of two nucleotides (x(m)

i , x(n)
j );

INS1 and INS2 emit a nucleotide paired with a gap (x(m)
i , −) and

(−, x(n)
j ), respectively, where a short dash (−) means an insertion

of a gap. A pair with all gaps (−, −) is not permitted to be emitted.
The emission of nucleotides x(m)

i or x(n)
j keeps the same order in the

two sequences x(m) or x(n), respectively. As shown in Figure 2, the
x-axis and y-axis of the alignment matrix represent two sequences
x(m) and x(n). State ALN, INS1 or INS2 is a step along the diagonal,
bottom or left line of cells towards the end point, respectively. And a
possible alignment is a sequence of states, i.e. a continuous path from
the start to the end points. There are two complete alignment paths
(in green and blue) in Figure 2 and the corresponding alignments
with different colors are on the right side of the matrix. We use the
forward-backward algorithm to estimate marginal probabilities for
the alignment of two nucleotides.

The HMM algorithm in Harmanci et al. [17] computes the
maximum-likelihood alignment probabilities or the forward scores
for all position pairs (i, j), where i and j are positions in the two
homologs x(m) and x(n). Starting from the bottom-left position, it
iterates columns from left to right, and cells from bottom to up in
each column. While, LinearAlignment uses a different topological
order based on the step counts to fill out the matrix. The step counts
are the sum value of i and j, i.e. the number of nucleotides in the
current alignment for the prefixes x(m)

[1, i] and x(n)
[1, j]. States (i, j) with

the same step counts make transitions to the next states together. Thus,
LinearAlignment computes all the states (i, k) anti-diagonally from
bottom-left towards top-right. As illustrated in Figure 2, the numbers
along the paths are step counts for the prefix alignments. There are
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Fig. 2. Example illustration of LinearAlignment. The nucleotides along x- and y-axis
are two simple sequences x(m) and x(n). State ALN, INS1 or INS2 is a step along
the diagonal, bottom or left line of cells towards the end point, respectively. And
a possible alignment is a set of continuous and sequential states from the start to
end points. Two complete pairwise alignments (in blue and green) are on the right
side of the matrix with the corresponding colors, where a short dash (-) means a
gap insertion. LinearAlignment is a HMM alignment based on the step counts. The
numbers along with paths are step counts for the partial alignments. Position pairs
with the same step counts make updates to next states together, for example, all the
positions with step counts 6 in blue background. After LinearAlignment applies the
beam search algorithm, position pairs with the same step counts compete with each
other and only the promising states with higher probabilities survive. For the step
count 6, if only three paths exist and the beam size is 2, the path in red is discarded
because it has the lowest probability.

three paths of step counts 6 in blue background, and they will update
next states together.

With a different topological order, the HMM alignment is still
an exhaustive search algorithm and costs quadratic time and space.
To reduce the runtime, for each step counts s from 0 to nm + nn,
LinearAlignment applies the beam search algorithm [27] and only keeps
a limited number of promising states with higher forward scores,
which are further transited to next states together. By pruning low-
scoring candidates, we reduce the runtime from O(n2) to O(b1n),
where b1 is a user-specified beam size and the default value is 100.
As depicted in Figure 2, three paths of step counts 6 compete with
each other. The alignment path (in red) is unlikely to be a reasonable
alignment because of many insertions. If only these three paths exist
and the beam size is 2, the path in red is discarded due to the lowest
probability.

To encourage the pairwise alignment conforming with estimated
secondary structures, TurboFold II incorporates the match score [30]

into the HMM alignment computation. TurboFold II separately pre-
computes match scores for all the O(n2) alignment pairs of all se-
quences in pairwise before the HMM alignment calculation. However,
only a linear number of pairs (O(b1n)) survives after applying the
beam pruning in LinearAlignment. To reduce redundant time and
space usage, LinearTurboFold calculates the corresponding match
scores for alignable pairs when they are visited in LinearAlignment.
Overall, LinearTurboFold reduces the runtime of the whole mod-
ule of pairwise posterior co-incidence probability computation from
O(k2n2) to O(k2b1n) by applying the beam search heuristic to the
HMM alignment, and calculating only the match scores that are
needed.

A.2. Base Pairing Probability Estimation. The classical partition func-
tion algorithm scales cubically with sequence length. The slowness
limits its extension to longer sequences. To address this bottleneck,
our recent LinearPartition algorithm approximates the partition func-
tion and base paring probability matrix in linear time. LinearPartition

is significantly faster, and correlates better with the ground truth struc-
tures. Thus LinearTurboFold uses LinearPartition to predict base pair
probabilities instead of O(n3)-time partition function.

LinearTurboFold modifies LinearPartition to incorporate extrinsic
information inferred from homologous sequences to predict base pair
probabilities iteratively. The extrinsic information maps the estimated
base pairing probabilities of other sequences to the target sequence
via the co-incident nucleotides between two sequences. TurboFold II
introduces the extrinsic information π(i, j) in the partition function
as a pseudo-free energy term for each base pair (xi, xj). Similarly, in
LinearPartition, for each span [i, j] associated with its partition func-
tion Qi,j , the partition function is modified as Q̃i,j = Qi,jπ(i, j)λ if
(xi, xj) is an allowed pair, where λ denotes the contribution of the ex-
trinsic information relative to the intrinsic information. Specifically, at
each step j, among all possible spans [i, j] where xi and xj are paired,
we replace the original partition function Qi,j with Qi,jπ(i, j)λ by
multiplying the extrinsic information. Then LinearTurboFold applies
the beam pruning heuristic over the modified partition function Q̃i,j
instead of the original.

TurboFold II obtains the extrinsic information for all the O(n2)
base pairs before the partition function calculation of each sequence,
while only a linear number of base pairs survives in LinearPartition.
Thus, LinearTurboFold only requires the extrinsic information for
those promising base pairs that are visited in LinearPartition. One
challenge is, in TurboFold II, the extrinsic information matrix is
normalized by the maximum value before being introduced into the
partition function, where the normalization factor is not determined in
advance and vary with iterations. We put forward an approximation
as the solution: using the unnormalized values directly. We check
that the maximum value has no relationship with sequence length,
confirming in Figure SI 1.

A.3. Multiple Sequence Alignment and Secondary Structure Predic-
tion. After several iterations, TurboFold II builds the multiple se-
quence alignment using a probabilistic consistency transformation [31],
generating a guide tree and performing progressive alignment over the
pairwise posterior co-incidence probabilities. The whole procedure
is accelerated in virtue of the sparse matrix by discarding position
pairs of values smaller than a threshold (0.01 by default). Since Lin-
earAlignment uses beam search and only saves a linear number of
co-incident pairs, the MSA computation in LinearTurboFold costs
linear runtime against the sequence length automatically.

LinearTurboFold feeds estimated base pair probabilities into the
downstream method to predict secondary structures. To maintain
the end-to-end linear-time property, LinearTurboFold uses Thresh-
Knot [28], which is a thresholded version of ProbKnot and only consid-
ers base pairs with probabilities exceeding the threshold θ (θ = 0.3
by default). We evaluate the performance of ThreshKnot and MEA
with different hyperparameters (θ and γ). on a sampled RNAStrAlign
training set. As shown in Figure SI 2, ThreshKnot is closer to the
upper right-hand than MEA, which indicates that ThreshKnot always
has a higher Sensitivity than MEA at a given PPV.

B. Efficiency and Scalability. To evaluate the scalability of Lin-
earTurboFold against the sequence length, we collect a dataset in-
cluding groups of five homologous sequences with sequence length
ranging from 210 nt to 2920 nt. In addition to running both TurboFold
II and LinearTurboFold on this dataset, we further extend LinearTur-
boFold to whole-genome HIV-1 and SARS-CoV sequences of length
~10,000 nt and ~30,000 nt, respectively. The detailed data collection
process is introduced in the Methods section. Figure 3A indicates
that LinearTurboFold scales almost linearly with the sequence length,
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Fig. 3. End-to-end runtime and memory usage comparisons between TurboFold II
and LinearTurboFold. We use a Linux machine (CentOS 7.7.1908) with 2.30 GHz
Intel Xeon E5-2695 v3 CPU and 755 GB memory, and gcc 4.8.5 for benchmarks.
A: End-to-end runtime comparison with the sequence length. We run TurboFold
II and LinearTurboFold on sampled groups from the RNAStrAlign dataset and 23S
rRNA sequences. LinearTurboFold was further extended to HIV-1 and SARS-CoV-2
whole-genome sequences. The curve-fittings are log-log in gnuplot and use the data
for n > 700. The group size is 5. B: End-to-end runtime comparison with the group
size (k) ranging from 5 to 20, and the sequence lengths are fixed around 1,500 nt. C:
Memory usage comparisons with the sequence length on the same groups used to
evaluate the runtime. D: Memory usage comparisons with different group sizes.

which allows it to scale to the full-length SARS-CoV sequences with-
out any constraints on base-pairing length. For instance, for a group
of five SARS-CoV sequences, LinearTurboFold only takes about 50
minutes and 10 GB space with the default hyperparameters. Figure 3A
also confirms that the runtime of TurboFold II grows cubically with
sequence length and is substantially slower than LinearTurboFold.
TurboFold II is 372× slower (12 minutes vs. 3.1 days) than Lin-
earTurboFold on a group of five homologous HIV sequences with the
average sequence length 9,686 nt. Figure 3C illustrates that LinearTur-
boFold costs linear space with sequence length, while TurboFold II
costs quadratic.

Additionally, to assess the scalability of LinearTurboFold against
the group size, we build a dataset of group size ranging from 5 to 20,
by sampling sequences from the RNAStrAlign 16S rRNA family. The
sequence length is fixed around 1,500 nt. Though, in Figure 3B,
the runtime complexity of TurboFold II grows less quadratically
(O(k1.4) while LinearTurboFold grows quadratically, the latter is
significantly faster than the former. Figure 3D shows, in LinearTur-
boFold, the memory usage grows in O(k1.6) with the group size,
while it is O(k1.1) in TurboFold II. The fact that the complexity of
runtime and memory usage against k for LinearTurboFold is larger, is
mainly because the cubic complexity of partition function calculation,
which dominates in TurboFold II, has been linearized in LinearTur-
boFold. Specifically, posterior co-incidence probability estimation
uses O(k2b1n) space and base pairing probability prediction takes
O(kb2n) in LinearTurboFold. In practice, as shown in Figure SI 3, the
alignment runtime occupies about 60% of the total used space when
k is 5, and dominates the memory usage as the group size increases.

C. Secondary Structure And Alignment Prediction Accuracy.
We compare the accuracy of both predicted secondary structures
and multiple sequence alignments between LocARNA-P [29], MXS-
CARNA [12], TurboFold II and LinearTurboFold. Both LocARNA-P
and MXSCARNA predict Sankoff-style structural alignment, and like
TurboFold II, they take raw RNA sequences instead of a pre-computed
fixed alignments as input. All the benchmarks use the default options
and hyperparameters running on the RNAStrAlign test set. TurboFold
II iterates three times, then predicts secondary structures by MEA
(γ=1). LinearTurboFold also runs three iterations with default beam
sizes (b1 = b2 = 100) in LinearAlignment and LinearPartition, then
identifies structures with ThreshKnot (θ = 0.3).

We use Positive Predictive Value (PPV) and Sensitivity to measure
the secondary structure prediction accuracy. Figure 4 compares the
accuracies of secondary structure prediction and alignment between
the benchmarks and LinearTurboFold. Regarding structure prediction,
TurboFold II and LinearTurboFold are more accurate than the other
two on most families, except for 16S rRNA, where MXSCARNA is
the best. Compared with TurboFold II, LinearTurboFold has a slight
decrease in PPV but improvement in Sensitivity. To assess the statis-
tical significance of accuracy differences between the other programs
and LinearTurboFold, two tailed significance tests are conducted and
annotated in Figure 4A and B on the top of corresponding bars when
p < 0.05. The Sensitivity of LinearTurboFold is significantly better
than TurboFold II on all the test families except for telomerase, and
also better on the overall. For PPV, TurboFold II is significantly
better than LinearTurboFold. The PPV and Sensitivity are adjustable
by changing the threshold in ThreshKnot. Overall, the F1 score of
LinearTurboFold at 72.0% is better than TurboFold II at 71.0% on the
test set. LinearTurboFold are significantly better than LocARNA-P
and MXSCARNA in PPV and Sensitivity except for 16S rRNA.

Similarly we calculate PPV and Sensitivity to evaluate the ac-
curacy of predicted multiple sequence alignments [32]. PPV is the
fraction of predicted aligned nucleotides that are also correct, and
Sensitivity is the fraction of aligned nucleotides in the ground truth
that are predicted. LocARNA-P acchieves the best performance
among all methods on the SRP family, because it is more accurate
for families with low sequence identity. Overall, LinearTurboFold
obtains significantly higher PPV and Sensitivity than LocARNA-P,
better PPV than MXSCARNA. LinearTurboFold leads to compara-
ble Sensitivity and PPV with TurboFold II. The overall F1 score of
TurboFold II is the best on the test set.

D. Highly conserved base pairs in SARS-related betacoron-
aviruses and SARS-CoV-2. The current outbreak COVID-19 is
causing a global pandemic that raises an emergent requirement for
identifying potential targets for diagnostics and antiviral therapeu-
tics. Evolutionarily conserved RNA secondary structures play vital
biological roles and provide potential targets.

Conserved structures have been discovered and found to be of
crucial importance in the life circle of the coronavirus, but most
regions remain unexplored. We use LinearTurboFold to identify
highly conserved structures across SARS-related betacoronaviruses
and SARS-CoV-2. In addition to prediction for several currently
known structural elements, LinearTurboFold captures novel conserved
structures whose functions have not been reported yet.

We use the sequences curated by Ceraolo et al. [33]. Following the
data-processing in the paper [34], we filter out SARS-CoV-2 sequences
except the reference sequence NC_0405512.2 [35], remove two MERS
sequences and retain only whole-genome sequences. We further
discard an identical sequence and a relatively short sequence. These
remaining 9 sequences comprise five SARS sequences, three SARS-
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Fig. 4. The accuracy comparisons of secondary structure prediction and multiple sequence alignment prediction between the benchmarks and LinearTurboFold on the
RNAStrAlign test set. A and B: PPV and sensitivity of predicted secondary structures on each family. Statistical significance (two-tailed) between the benchmarks and
LinearTurboFold are marked as stars (*) on the top of the corresponding bars if p < 0.05. D and E: PPV and sensitivity of estimated multiple sequence alignment. C and F: The
F1 score of secondary structure and multiple sequence alignment prediction on test families.

related bat coronavirus and one reference NC_0405512.2 of SARS-
CoV-2. The average pairwise sequence identity of these nine whole-
genome sequences is 0.88 calculated by [36].

LinearTurboFold does not provide a single consensus structure
for the homologous sequences. Instead, it allows flexibility in the
predicted structures to account for structure evolution as in TurboFold
II. Base pairs are said being conserved if most of sequences form base
pairs at the same alignment positions.

A previous paper [34] identified sequence conservations and con-
served structures in SARS-related viruses and SARS-CoV-2. They
used RNAz [37] to scan the alignment of SARS-CoV-2 sequences with
windows of length 120 nt sliding by 40 nt for regions likely to have
conserved structure, then ranked windows by probability of being
thermodynamic stable. Additionally, contiguous stretches of at least
15 nt are required to be conserved exceeding a specific cutoff value.
This method has two drawbacks: first, identified conserved structures
do not include long-range base-pairing due to the limited window
size; second, the constraints on the primary sequences would miss
base pairs with compensating changes, i.e. two changes in sequence
across evolution that conserve a base pair. The second drawback is
crucial because covariations are a signal of conserved RNA secondary
structure [38–42]. LinearTurboFold can solve these two issues. First,
LinearTurboFold can capture long-distance interactions because of
its scalibility to the whole-genome SARS-CoV-2 sequences without
constraints on the pairing distance. Furthermore, LinearTurboFold
encodes structural information of homologous sequences, which en-
ables it to identify conserved co-variational base pairs. As illustrated
in Figure 5, base pairs with compensating changes are highlighted in
blue and annotated with the alternative pairs.

We compare LinearTurboFold results with well-characterized
structures across betacoronaviruses including the 5’ UTR structure,
the frameshifting stimulation element (FSE) and the 3’ UTR structure
of SARS-CoV-2. The ~300 nt 5’ UTR includes five conserved struc-
tural elements called SL1, SL2, SL3, SL4 and SL5, with critically
functional roles in viral genome replication [43]. It harbors an essential
element, the leader transcription-regulating sequences (TRS-L), in-
volved in long-range interactions with 3’ UTR essential for discontin-
uous transcription [44]. Additionally, the SL5 contains the start codon

(AUG) for ORF1ab, which occupies about two thirds of the genome,
and encodes the replicase/transcriptase polyprotein. The frameshifting
simulation element locates at the boundary of ORF1a and ORF1b and
it includes a pseudoknot in the canonical model, which is necessary
for regulating programmed -1 ribosomal frameshifting to bypass the
stop codon at the end of ORF1a and continually translate the protein
in ORFab [45]. The slippery site (UUUAAAC) upstream of the pseu-
doknot comprises the coronavirus frameshift signal. The prevailing 3’
UTR model contains several structural elements. Close to the 5’ end
of the 3’ UTR, a mutually exclusive formation of a bulged stem-loop
(BSL) and a pseudoknot is important for viral replication [46]. The
hyper-variable region (HVR) is nonessential for viral RNA synthe-
sis but affects pathogenicity in mice [47]. A triple helix junction is
folded downstream of the hyper-variation region [48]. The stem–loop
II-like motif (s2m) is the most highly conserved element within the
coronaviruses immediately upstream of the end of 3’ UTR poly-A
tail. Its rigorous conservation in viral pathogen genomes suggests this
element is an attractive targets for the anti-viral therapeutic design [49].

Figure 5 represents conserved base pairs identified by LinearTur-
boFold for the 5’ UTR, FSE and 3’ UTR, and most of base pairs
are 100% conserved among the SARS, bat coronavirus, and SARS-
CoV-2 reference sequence. LinearTurboFold predictions largely agree
with the prevailing models with some variations. For the 5’ UTR
(Fig. 5B), LinearTurboFold identifies the SL1, SL2, SL4 and SL5
with all the base pairing probabilities higher than 0.6. For the FSE
(Fig. 5A), LinearTurboFold predicts two stem loops in the canonical
three-stem pseudoknot motif. For the 3’ UTR (Fig. 5C), LinearTurbo-
Fold found the BSL and s2m in the 3’ UTR. In Figure 5, nucleotides
in grey are not fully conserved on the sequence level, which indicates
those positions are with possible evolutionary variations. And we
attach more importance to covariations where both of the nucleotides
are changed but the base pair remains constant. Base pairs with co-
variations are highlighted in blue background and annotated with
compensating changes in Figure 5. The SL4 and SL5 in 5’ UTR and
the two bulged stem-loop close to the 5’ end of 3’ UTR discovered by
LinearTurboFold are supported by the co-variational base pairs.

Theoretical and experimental studies [50–52] demonstrate that long-
range base pairs are common in natural RNAs, especially between
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Fig. 5. Conserved secondary structures predicted by LinearTurboFold with ThreshKnot (θ = 0.3) for A: frameshifting stimulation element, B: 5’ UTR, and C: 3’ UTR.
Most of base pairs are fully conserved across nine sequences. Base pairs with a grey background are conserved across at least 8 sequences, except that the long-range
interaction between 5’ UTR and 3’ UTR are conserved over 7 sequences. Base pairs are visualized by colors to indicate base pairing probabilities. Co-evolved base pairs
are highlighted in blue and annotated with alternative base pairs. Nucleotides are black if 100% conserved and grey otherwise. Figures were drawn by StructureEditor
(http://rna.urmc.rochester.edu/tutorials/workshop/Editor.html).

the 5’ and 3’ UTRs. LinearTurboFold predicts secondary structures
globally without any limit on base-pairing distance, thus it can ex-
plore long-distance interactions across whole-genome sequences. Lin-
earTurboFold detects genome cyclization of SARS-CoV-2 involving
long-range base-pairing between the 5’ and 3’ ends. As depicted in
Figure 5B and 5C, the canonical SL3 region (from the 60 nucleotide
to the 75 nucleotide) in 5’ UTR opens completely and some of po-
sitions form base pairs with bases at the end of 3’ UTR (from the
29853 nucleotide to the 29865 nucleotide) over a distance of around
29.8 kilobases. Recently, COMRADES [53] was developed to capture
RNA structural diversity and long-range base-pairing interactions in
vivo. Interestingly, this long-distance interaction between SL3 in 5’
UTR and 3’ UTR was discovered in vivo by COMRADES [54], which
highly supports LinearTurboFold’s predictions.

LinearTurboFold does not identify the pseudoknots that are the
prevailing model in the FSE and 3’ UTR regions. Recent studies [54–56]

do not detect the pseudoknot conformation in the 3’ UTR either. An-
other study [57] performs DMS-MaPseq on infected Vero cells, then
uses RNAstructure [18] to predict secondary structures, which uncovers
an unexpected structure for FSE region compared with the canonical
structure. The estimated FSE structure does not include the pseudo-
knot, but a sequence of 10 bases right after the slippery sequence is
folded into a stem with a complementary sequence upstream of the
slippery site, instead. As shown in Figure 5B, LinearTurboFold also
detects this stem near the 5’ of FSE region of eight base pairs (from
the 13425 nucleotide to the 13432 nucleotide).

In addition to well-known structures, LinearTurboFold discovers
new structures across the SARS-CoV-2 whole-genome, and the func-

tional properties of those substructures may have not been explored.
These structures potentially offer targeting positions for diagnosis
and therapy of SARS-CoV-2. With a threshold 0.3 in ThreshKnot,
LinearTurboFold detects 3801 base pairs fully conserved across nine
SARS-related betacoronaviruses sequences, out of which 674 base
pairs include variations, and 154 pairs have covariations as listed in
Table SI 2. These conserved structures are highly conserved and more
likely to be targets for antivirals. Among them, 686 conserved stems
are at least 3 nt long, and the average length is 4.5 nt. The longest
conserved stem consists of 11 base pairs between [8144, 8154] and
[8211, 8221].

Additionally, we compare LinearTurboFold results with running
LinearPartition with ThreshKnot (θ = 0.3) on the reference sequence
NC_0405512.2, as a negative control. For the 5’ UTR structure,
LinearPartition also identified long-range interactions between the
5’ and the 3’ UTRs, but it involves SL2 not SL3, which disagrees
with a previous study [54] and LinearTurboFold’s result. This is an
evidence that homologous sequences assist to adjust the position of
the long-distance base-pairing in LinearTurboFold.

3. Discussion

In this paper, we present LinearTurboFold, which achieves end-to-
end linear runtime and memory usage for structural alignment and
conserved structure prediction of RNA homologs. LinearTurboFold
is orders of magnitude faster than TurboFold II on long sequences,
e.g., it is 372× faster (12 minutes vs. 3.1 days) than TurboFold II
on a group of five HIV-1 homologs with average length of 9,696 nt,
and is able to scale up to the full genome of RNA viruses, such as
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SARS-CoV-2 (about 3,000 nt).
To accelerate TurboFold II, LinearTurboFold linearizes all the

computational modules in the TurboFold II framework: (1) lineariz-
ing pairwise sequence alignment by applying beam search for each
step in the HMM alignment; (2) replacing O(n3)-runtime partition
function calculation with linear-time algorithm LinearPartition; (3)
calculating extrinsic information and match scores only when needed;
(4) linearizing multiple sequence alignment as a product of pairwise
alignment linearization; and (5) using ThreshKnot as the default sec-
ondary structure prediction module. It is worth noticing that all these
speed-up efforts do not sacrifice secondary structure and alignment
prediction accuracy.

We confirm that:

1. LinearTurboFold successfully scales up to a group of nine coro-
navirus sequences (including SARS and SARS-CoV-2) and fin-
ishes in 1.7 hours. LinearTurboFold finds conserved structures
that have been well-established in previous researches or sup-
ported by recent studies.

2. LinearTurboFold takes linear runtime and memory usage against
sequence length, while TurboFold II takes cubic runtime and
quadratic memory, which leads to significant improvement in
effciency and scalability.

3. The approximation quality of LinearTurboFold is good, i.e., the
overall F1-score of secondary structure predicted by LinearTur-
boFold is slightly better than TurboFold II, and much better than
LocARNA-P, MXSCARNA.

We also list novel conserved regions we found by LinearTurbo-
Fold, which have not been studied or verified previously. Given
the high accuracy of LinearTurboFold on benchmark datasets, as
well as the high consistency of LinearTurboFold on the well-studied
conserved structures, we believe that these regions are structurally
conserved across evolution, and are useful for further understanding
the structures and functions of the virus.

Methods

Datasets. Four kinds of dataset are used in the paper. First, to evaluate the
scalability of LinearTurboFold with sequence length, we collected groups of
homologous RNA sequences with sequence length ranging from 200 nt to
29,903 nt with the fixed group size 5. Sequences are sampled from RNAS-
trAlign dataset [15], the Comparative RNA Web (CRW) Site [58], the Los
Alamos HIV database (http://www.hiv.lanl.gov/) and the SARS-
related betacoronaviruses (SARSr) curated by Ceraolo et al. [33]. RNAStrAlign,
aggregated and released with TurboFold II, is an RNA alignment and structure
database. Sequences in RNAStrAlign are categorized into homologous fami-
lies, and some of families are further split into subfamilies. Each subfamily
or family includes a multiple sequence alignment and ground truth structures
for all the sequences. 20 groups of five homologs, were randomly chosen
from the small subunit ribosomal RNA (Alphaproteobacteria subfamily), SRP
RNA (Protozoan subfamily), RNase P RNA (bacterial type A subfamily) and
telomerase RNA families. For longer sequences, we sampled five groups of
23S rRNA (of sequence length ranging from 2,700 nt to 2,926 nt) from the
CRW Site, HIV-1 genetic sequences (of sequence length ranging from 9,597 nt
to 9,738 nt) from the Los Alamos HIV database, and SARSr sequences (of
sequence length ranging from 29,484 nt to 29,903 nt), respectively. All the
sequences in one group belong to the same subfamily or subtype. And we
sampled five groups for each family and obtained 35 groups in total. Due to
the long runtime, we did not run TurboFold II on HIV-1 and SARSr groups.
Figure 3A and 3B results were from experiments on this collected dataset
with varied sequence lengths.

To assess the scalability of LinearTurboFold with group size, we fixed
the sequence length around 3,000 nt, and sampled 5 groups of 16S rRNA
sequences from the small subunit ribosomal RNA (Alphaproteobacteria sub-
family) with group size 5, 10, 15 and 20 respectively. Figure 3B and 3C were
built on this dataset with different group sizes.

Following TurboFold, we built a test set from RNAStrAlign dataset to
measure and compare the performance between benchmarks and LinearTurbo-
Fold. 100 groups of input sequences, consisting of 5, 10 or 20 homologous
sequences, were randomly selected from the small subunit ribosomal RNA
(Alphaproteobacteria subfamily), SRP RNA (Protozoan subfamily), RNase P
RNA (bacterial type A subfamily) and telomerase RNA families from RNAS-
trAlign dataset. We removed sequences of length less than 1400, 200, 330 and
400 nt for these four families respectively to filter out subdomains. The detail
information is summarized in Table SI 1.

The last dataset used in Figure SI 2 is a RNAStrAlign training set to
compare between MEA and ThreshKnot. 40 groups of three, five and seven
homologs were randomly sampled from 5S ribosomal RNA (Eubacteria sub-
family), group I intron (IC1 subfamily), tmRNA, and tRNA families from
RNAStrAlign dataset. We chose θ = 0.1, 0.2, 0.3, 0.4, 0.5 for ThreshKnot, and
γ = 1, 1.5, 2, 2.5, 3, 3.5, 4, 8, 16 for MEA. We calculated the overall secondary
structure prediction accuracy across all training families, and reported both
PPV and Sensitivity.

Benchmarks. Both LocARNA-P [29] and MXSCARNA [12] predict Sankoff-
style structural alignment. Sankoff’s algorithm uses dynamic programming to
simultaneously fold and align two or more sequences and it requires O(n3k)
time andO(n2k) space for k input sequences with the average sequence length
n. LocARNA-P extends LocARNA [10] with features based on sequence and
structural match probabilities. LocARNA (local alignment of RNA) costs
O(n2(n2 + k2)) time and O(n2 + k2) space by restricting the alignable
regions. MXSCARNA progressively aligns multiple sequences, as an exten-
sion of the pairwise alignment algorithm SCARNA [59], with improved score
functions. SCARNA first aligns stem fragment candidates, then removes the
inconsistent matching in the post-processing to generate the sequence align-
ment. MXSCARNA reduces runtime to O(k3n2) and space to k2n2 with
limiting searching space of folding and alignment. Both MXSCARNA and
LocARNA-P uses base pair probabilities pre-computed for each sequence as
structural input.

Significance Test. We use a paired, two-tailed permutation test [60] to mea-
sure the significant different. Following the common practice, the repetition
number is 10, 000, and the significance threshold α is 0.05.
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Fig. SI 1. The maximum values of the extrinsic information as a function of sequence length. The maximal value for each sequence is recorded when we ran LinearTurboFold
on the collected dataset of sequence length ranging from 200 nt to 29,903 nt.
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# of seqs length pairwise
Family total used avg max min cutoff identity

SRP RNA 81 53 285.7 320 210 200 0.46
RNase P RNA 326 153 369.7 486 331 330 0.51

telomerase RNA 37 31 454.6 559 405 400 0.57
16S rRNA 2946 303 1440.2 1560 1401 1400 0.85

Overall 3,390 540 967.0 1560 210 0.65

Table SI 1. Statistics of the sequences in the RNAStrAlign test families used in this work. The last column represents the average pairwise
sequence identity.
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Fig. SI 3. The proportion of alignment runtime in the total runtime as the group size grows from 5 to 20.
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Table SI 2. 100% conserved base pairs across nine sequences that demonstrate compensating changes

5’ 3’
avg.

prob.

Base pair

(ref. seq.)

Compensating

changes
5’ 3’

avg.

prob.

Base pair

(ref. seq.)

Compensating

changes
1 90 121 1.00 GC GU/AU 78 12931 12964 0.99 UA GC/AU

2 91 120 0.98 GU GC/AU 79 13069 13108 1.00 UA CG

3 97 115 1.00 AU GC/GU 80 13078 13099 1.00 UA UG/CG

4 101 111 0.99 GU GC/AU 81 13216 13222 1.00 UA UG/CG

5 153 291 1.00 UA CG 82 13599 13628 1.00 UA CG

6 159 282 0.94 GC GU/AU 83 13638 13695 0.93 UA AU

7 189 217 1.00 GC AU 84 13641 13692 1.00 UA CG

8 358 385 0.99 UA CG 85 13707 13746 0.96 AU GC

9 367 373 0.99 CG UA 86 13831 13848 1.00 UA CG

10 407 478 0.88 GC AU 87 13878 13903 1.00 UG CG/UA

11 442 448 0.99 CG UG/UA 88 14161 14194 1.00 UA UG/CG

12 570 616 0.93 AU UA/CG 89 14169 14186 0.96 UG UA/CG

13 652 724 0.98 AU GC 90 14205 14211 0.80 AU CG

14 670 709 0.99 UG CG/UA 91 14224 14251 0.99 AU GC/GU

15 880 889 0.99 AU CG 92 14355 14361 1.00 AU GC

16 970 981 0.99 GC AU 93 14487 14532 1.00 AU UG/CG/UA

17 1231 1251 0.99 GC AU 94 14595 14604 0.99 UA UG/CG

18 1237 1245 0.99 UG UA/CG 95 15582 15607 1.00 AU GC

19 2193 2200 0.91 GU GC/AU 96 16023 16032 1.00 UA AU

20 2278 2303 1.00 UA CG 97 16080 16110 0.94 CG UA

21 2855 2875 0.93 CG UG/UA 98 16089 16101 1.00 GC AU

22 2896 2923 1.00 UA GU/AU 99 16125 16155 1.00 AU UA

23 2959 2986 1.00 UA UG/CG 100 16230 16236 1.00 CG UA

24 3034 3061 0.91 UA UG/CG 101 16677 16716 1.00 GC AU

25 3712 3721 1.00 AU GC 102 17241 17256 1.00 UA CG

26 4096 4108 1.00 UA UG/CG 103 17244 17253 1.00 AU GC

27 4189 4225 1.00 CG GC/UG 104 17304 17331 1.00 CG UA

28 4603 4624 1.00 UA UG/CG 105 17914 17925 0.95 AU CG

29 4978 4987 1.00 UA CG 106 18006 18054 1.00 UA GU/AU

30 5164 5203 0.99 GC GU/AU 107 18549 18561 1.00 AU CG

31 5347 5374 1.00 UG GC/AU/UA 108 18717 18774 1.00 UA UG/CG

32 5356 5371 0.95 UA GC/AU 109 19386 19419 1.00 CG UG/UA

33 5417 5428 1.00 UA AU 110 19395 19410 1.00 UA CG

34 5476 5521 0.99 AU GC/GU 111 19594 19613 0.96 CG UA

35 5479 5518 1.00 UG CG/UA 112 19707 19732 0.99 CG UA

36 5482 5515 1.00 CG UG/UA 113 19708 19731 1.00 AU GC/GU

37 5549 5554 0.88 CG UG/UA 114 19917 19953 1.00 UA AU

38 5739 5770 1.00 GC AU 115 19929 19941 1.00 UA AU

39 6034 6055 0.99 AU GC 116 19963 20012 1.00 AU GC/GU

40 6037 6052 0.95 CG UA 117 20172 20187 1.00 UA CG

41 6103 6112 1.00 UA CG 118 20217 20265 0.97 UA CG

42 6154 6202 1.00 AU GC 119 20223 20260 1.00 AU GC

43 6328 6343 1.00 AU UA 120 20353 20388 0.98 UA CG

44 6364 6388 1.00 GC AU 121 20523 20541 1.00 UA CG

45 6367 6385 1.00 GC AU 122 20622 20643 0.92 AU GC

46 6458 6490 1.00 AU GC 123 20841 20901 1.00 AU GC/GU

47 6460 6488 1.00 UA CG 124 21163 21201 1.00 AU GC/GU

48 6592 6619 1.00 AU GC 125 21300 21321 0.97 AU GC/GU

49 6903 6922 0.69 CG UA 126 21411 21423 1.00 CG UA

50 6977 7006 0.96 GC GU/AU 127 21513 21523 1.00 CG UA

51 7480 7531 0.98 UA UG/CG 128 22795 22810 1.00 UA GU/AU

52 7864 7876 0.98 AU GC/GU 129 23374 23383 1.00 UG UA/CG

53 8146 8219 1.00 CG UA 130 23531 23548 0.84 AU GC

54 8147 8218 1.00 AU GC/GU 131 23621 23647 1.00 GC AU

55 8153 8212 1.00 UA CG 132 23980 24088 1.00 AU GC/GU

56 8317 8332 1.00 AU GC/GU 133 23983 24085 1.00 AU UA/CG
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Table SI 2 continued from previous page

5’ 3’
avg.

prob.

Base pair

(ref. seq.)

Compensating

changes
5’ 3’

avg.

prob.

Base pair

(ref. seq.)

Compensating

changes
57 8860 8881 1.00 CG AU/UA 134 24121 24152 0.99 AU GC

58 9046 9079 1.00 UA UG/CG 135 24445 24487 1.00 GU GC/AU

59 9055 9070 1.00 AU GC 136 25016 25024 0.92 UA CG

60 9427 9433 1.00 UA CG 137 25336 25370 0.78 AU GC/GU

61 9472 9511 1.00 AU UA 138 25991 26004 1.00 GC GU/AU

62 9689 9703 0.98 AU GC 139 26091 26104 0.96 CG UA

63 10213 10248 1.00 UA CG 140 26145 26190 1.00 UA CG

64 10225 10234 1.00 AU GC 141 26630 26658 0.90 AU GC

65 10651 10669 1.00 UA CG 142 26676 26706 0.99 AU GC

66 10711 10720 0.97 UA CG 143 26939 26975 1.00 AU CG

67 10864 10906 0.98 AU GC 144 27412 27456 1.00 UA UG/CG

68 10873 10898 0.99 AU GC 145 27415 27453 0.99 GC AU

69 10984 11026 1.00 AU GC 146 27467 27484 1.00 GU GC/AU

70 11275 11298 0.93 UA UG/CG 147 27603 27613 0.99 CG UA

71 11737 11763 1.00 UA CG 148 27699 27744 0.98 UA CG

72 11782 11803 0.97 AU GC/GU 149 27717 27725 1.00 GC GU/AU

73 11788 11797 1.00 CG UA 150 28642 28664 1.00 UA UG/CG

74 11971 12013 0.97 AU GC/GU 151 28910 28930 0.99 AU GC/GU

75 11989 11995 0.93 UA UG/CG 152 29567 29597 1.00 AU GC

76 12250 12280 1.00 AU UG/UA 153 29635 29651 1.00 CG AU

77 12538 12577 0.79 UA UG/CG 154 29637 29649 1.00 UA CG
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