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The constant emergence of COVID-19 variants reduces the effec-
tiveness of existing vaccines and test kits. Therefore, it is criti-
cal to identify conserved structures in SARS-CoV-2 genomes as po-
tential targets for variant-proof diagnostics and therapeutics. How-
ever, the algorithms to predict these conserved structures, which
simultaneously fold and align multiple RNA homologs, scale at best
cubically with sequence length, and are thus infeasible for coron-
aviruses, which possess the longest genomes (~30,000 nf) among
RNA viruses. As a result, existing efforts on modeling SARS-
CoV-2 structures resort to single sequence folding as well as local
folding methods with short window sizes, which inevitably neglect
long-range interactions that are crucial in RNA functions. Here we
present LinearTurboFold, an efficient algorithm for folding RNA ho-
mologs that scales linearly with sequence length, enabling unprece-
dented global structural analysis on SARS-CoV-2. Surprisingly, on
a group of SARS-CoV-2 and SARS-related genomes, LinearTurbo-
Fold’s purely in silico prediction not only is close to experimentally-
guided models for local structures, but also goes far beyond them by
capturing the end-to-end pairs between 5’ and 3’ UTRs (~29,800 nt
apart) that match perfectly with a purely experimental work. Fur-
thermore, LinearTurboFold identifies novel conserved structures
and conserved accessible regions as potential targets for designing
efficient and mutation-insensitive small-molecule drugs, antisense
oligonucleotides, siRNAs, CRISPR-Cas13 guide RNAs and RT-PCR
primers. LinearTurboFold is a general technique that can also be ap-
plied to other RNA viruses and full-length genome studies, and will
be a useful tool in fighting the current and future pandemics.
Availability and implementation: Our source code is available at
https://github.com/LinearFold/LinearTurboFold.

RNA secondary structure | homologous folding | conserved structures | structural align-
ment | SARS-CoV-2

R ibonucleic acid (RNA) plays important roles in many cellular
processes.'? To maintain their functions, secondary structures of
RNA homologs are conserved across evolution.>*> These conserved
structures provide critical targets for diagnostics and treatments. Thus,
there is a need for developing fast and accurate computational methods
to identify structurally conserved regions.

Commonly, conserved structures involve compensatory base pair
changes, where two positions in primary sequences mutate across
evolution and still conserve a base pair, for instance, an AU or a
CG pair replaces a GC pair in homologous sequences. These com-
pensatory changes provide strong evidence for evolutionarily con-
served structures.®”*%'® Meanwhile, they make it harder to align
sequences when structures are unknown. To solve this issue, Sankoff
proposed a dynamic programming algorithm that simultaneously
predicts structures and a structural alignment for two or more se-
quences.'' The major limitation of this approach is that the algorithm
runs in O(n3k) against k sequences with the average sequence length

n. Several software packages provide implementations of the Sankoff
algorithm!'? 1314 15:16.17 that yse simplifications to reduce runtime.”

As an alternative, TurboFold IL'® an extension of TurboFold,"
provides a more computationally efficient method to align and fold
sequences. Taking multiple unaligned sequences as input, Turbo-
Fold II iteratively refines alignments and structure predictions so that
they conform more closely to each other and converge on conserved
structures. TurboFold II is significantly more accurate than other meth-
ods'>1420.21:22 yhen tested on RNA families with known structures
and alignments.

However, the cubic runtime and quadratic memory usage of Tur-
boFold II prevent it from scaling to longer sequences such as full-
length SARS-CoV-2 genomes, which contain ~30,000 nucleotides;
in fact, no joint-align-and-fold methods can scale to these genomes,
which are the longest among RNA viruses. As a (not very principled)
workaround, most existing efforts for modeling SARS-CoV-2 struc-
tures®® 2425272826 resort to local folding methods™?! with sliding
windows plus a limited pairing distance, abandoning all long-range
interactions, and only consider one SARS-CoV-2 genome (Fig. 1B—
C), ignoring signals available in multiple homologous sequences. To
address this challenge, we designed a linearized version of TurboFold
I, LinearTurboFold (Fig. 1A), which is a global homologous fold-
ing algorithm that scales linearly with sequence length. This linear
runtime makes it the first joint-fold-and-align algorithm to scale to
full-length coronavirus genomes without any constraints on window
size or pairing distance, taking about 13 hours to analyze a group of
25 SARS-CoV homologs. It also leads to significant improvement

“Besides these joint-fold-and-align algorithms, there exist two alternative approaches to homolo-
gous folding: align-then-fold and fold-then-align; see Fig. S6 for details.

Significance Statement

Conserved RNA structures are critical for designing diagnostic
and therapeutic tools for many diseases including COVID-19.
However, existing algorithms are much too slow to model the
global structures of full-length RNA viral genomes. We present
LinearTurboFold, a linear-time algorithm that is orders of mag-
nitude faster, making it the first method to simultaneously fold
and align whole genomes of SARS-CoV-2 variants, the longest
known RNA virus (~30 kilobases). Our work enables unprece-
dented global structural analysis and captures long-range inter-
actions that are out of reach for existing algorithms but crucial
for RNA functions. LinearTurboFold is a general technique for
full-length genome studies and can help fight the current and
future pandemics.

*Corresponding authors: David_Mathews@urmc.rochester.edu, liang.huang.sh@gmail.com.
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and predicts 5'-3' interaction (29.8kb apart) also found by Ziv et al., 2020 (see Fig. 3)
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Fig. 1. A: The LinearTurboFold framework. Like TurboFold Il, LinearTurboFold takes multiple unaligned homologous sequences as input and outputs a secondary structures
for each sequence, and a multiple sequence alignment (MSA). But unlike TurboFold I, LinearTurboFold employs two linearizations to ensure linear runtime: a linearized
alignment computation (module 1) to predict posterior co-incidence probabilities (red squares) for all pairs of sequences (see Methods §1-4), and a linearized partition function
computation (module 2) to estimate base-pairing probabilities (yellow triangles) for all the sequences (see Methods §5-6). These two modules take advantage of information
from each other and iteratively refine predictions (Fig. S7). After several iterations, module 3 generates the final multiple sequence alignments (see Methods §7), and module 4
predicts secondary structures. Module 5 can stochastically sample structures. B-C: Prior studies (except for the purely experimental work by Ziv et al.) used local folding
methods with limited window size and maximum pairing distance. B shows the local folding of the SARS-CoV-2 genome by Huston ez al., which used a window of 3,000 nr that
was advanced 300 nt. It also limited the distance between nucleotides that can base pair at 500. Some work also used homologous sequences to identify conserved structures,
but they only predicted structures for one genome and utilized sequence alignments to identify mutations. By contrast, LinearTurboFold is a global folding method without
any limitations on sequence length or paring distance, and it jointly folds and aligns homologs to obtain conserved structures. Consequently, LinearTurboFold can capture

long-range interactions even across the whole genome (the long arc in B and Fig. 3).

on secondary structure prediction accuracy as well as an alignment
accuracy comparable to or higher than all benchmarks.

Over a group of 25 SARS-CoV-2 and SARS-related homologous
genomes, LinearTurboFold predictions are close to the canonical struc-
tures>? and structures modeled with the aid of experimental data>*>>%’
for several well-studied regions. Thanks to global rather than local
folding, LinearTurboFold discovers a long-range interaction involving
5" and 3° UTRs (~29,800 nt apart), which is consistent with recent
purely experimental work,?® and yet is out of reach for local folding
methods used by existing studies (Fig. 1B—C). In short, our in silico
method of folding multiple homologs can achieve results similar to,
and sometimes more accurate than, experimentally-guided models
for one genome. Moreover, LinearTurboFold identifies conserved
structures supported by compensatory mutations, which are poten-
tial targets for small molecule drugs® and antisense oligonucleotides
(ASOs).%% We further identify regions that are (a) sequence-level
conserved, (b) at least 15 nt long, and (c) accessible (i.e., likely to be
completely unpaired) as potential targets for ASOs,** small interfering
RNA (siRNA),* CRISPR-Cas13 guide RNA (gRNA) and reverse
transcription polymerase chain reaction (RT-PCR) primers.”” Lin-
earTurboFold is a general technique that can also be applied to other
RNA viruses (e.g., influenza, Ebola, HIV, Zika, etc.) and full-length
genome studies.

Results

The framework of LinearTurboFold has two major aspects (Fig. 1A):
linearized structure-aware pairwise alignment estimation (module 1);
and linearized homolog-aware structure prediction (module 2). Lin-
earTurboFold iteratively refines alignments and structure predictions,
specifically, updating pairwise alignment probabilities by incorporat-
ing predicted base-pairing probabilities (from module 2) to form struc-

tural alignments, and modifying base-pairing probabilities for each
sequence by integrating the structural information from homologous
sequences via the estimated alignment probabilities (from module 1)
to detect conserved structures. After several iterations, LinearTurbo-
Fold generates the final multiple sequence alignment (MSA) based
on the latest pairwise alignment probabilities (module 3) and predicts
secondary structures using the latest pairing probabilities (module 4).

LinearTurboFold achieves linear time regarding sequence length
with two major linearized modules: our recent work LinearParti-
tion®® (Fig. 1A module 2), which approximates the RNA partition
function® and base pairing probabilities in linear time, and a novel
algorithm LinearAlignment (module 1). LinearAlignment aligns two
sequences by Hidden Markov Model (HMM) in linear time by apply-
ing the same beam search heuristic*’ used by LinearPartition. Finally,
LinearTurboFold assembles the secondary structure from the final
base pairing probabilities using an accurate and linear-time method
named ThreshKnot*' (module 4). LinearTurboFold also integrates a
linear-time stochastic sampling algorithm named LinearSampling**
(module 5), which can independently sample structures according to
the homolog-aware partition functions and then calculate the proba-
bility of being unpaired for regions, which is an important property
in, for example, siRNA sequence design.* Therefore, the overall
end-to-end runtime of LinearTurboFold scales linearly with sequence
length (see Methods §1-7 for more details).

Scalability and Accuracy. To evaluate the efficiency of LinearTur-
boFold against the sequence length, we collected a dataset consisting
of seven families of RNAs with sequence length ranging from 210 nt
to 30,000 nt, including five families from the RNAstralign dataset plus
23S ribosomal RNA, HIV genomes and SARS-CoV genomes, and
the calculation for each family uses five homologous sequences (see
Methods §8 for more details). Fig. 2A compares the running times of
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Fig. 2. End-to-end Scalability and Accuracy Comparisons. A-B: End-to-end runtime and memory usage comparisons between benchmarks and LinearTurboFold against the
sequence length. C-D: End-to-end runtime and memory usage comparisons against the group size. LinearTurboFold is the first joint-fold-and-align algorithm to scale to
full-length coronavirus genomes (~30,000 n#) due to its linear runtime. E-F: The F1 accuracy scores of the structure prediction and multiple sequence alignment (see Tab. S1
for more details). LocARNA and MXSCARNA are Sankoff-style simultaneous folding and alignment algorithms for homologous sequences. As negative controls, LinearPartition
and Vienna RNAfold-predicted structures for each sequence separately; LinearAlignment and MAFFT generated sequence-level alignments; RNAalifold folded pre-aligned
sequences (e.g., from MAFFT) and predicted conserved structures. Statistical significances (two-tailed permutation test) between the benchmarks and LinearTurboFold are
marked with one star (x) on the top of the corresponding bars if p < 0.05 or two stars (:) if p < 0.01. The benchmarks whose accuracies are significantly lower than
LinearTurboFold are annotated with black stars, while benchmarks higher than LinearTurboFold are marked with dark red stars. Overall, on structure prediction, LinearTurboFold
achieves significantly higher accuracy than all evaluated benchmarks, and on multiple sequence alignment, it achieves accuracies comparable to TurboFold Il and significantly

higher than other methods (See Tab. S1 for detailed accuracies).

LinearTurboFold with TurboFold II and two Sankoff-style simultane-
ous folding and alignment algorithms, LocARNA and MXSCARNA.
Clearly, LinearTurboFold scales linearly with sequence length n, and
is substantially faster than other algorithms, which scale superlinearly.
The linearization in LinearTurboFold brought orders of magnitude
speedup over the cubic-time TurboFold II, taking only 12 minutes on
the HIV family (average length 9,686 nt) while TurboFold II takes 3.1
days (372 speedup). More importantly, LinearTurboFold takes only
40 minutes on five SARS-CoV sequences while all other benchmarks
fail to scale. Regarding the memory usage (Fig. 2B), LinearTurbo-
Fold costs linear memory space with sequence length, while other
benchmarks use quadratic or more memory. In Fig. 2C-D, we also
demonstrate that the runtime and memory usage against the number of
homologs (k = 5 ~ 20), using sets of 16S rRNAs about 1,500 nt in
length. The apparent complexity against the group size of LinearTur-
boFold is higher than TurboFold II because the cubic-time partition
function calculation, which dominates the runtime of TurboFold I,
was linearized in LinearTurboFold by LinearPartition (Fig. S10C).

We next compare the accuracies of predicted secondary structures
and MSAs between LinearTurboFold and several benchmark meth-
ods (see Methods §9). Besides Sankoff-style LocARNA and MXS-
CARNA, we also consider three types of negative controls: (a) single
sequence folding (partition function-based): Vienna RNAfold*' (-p
mode) and LinearPartition; (b) sequence-only alignment: MAFFT?!
and LinearAlignment (a standalone version of the alignment method
developed for this work, but without structural information in Lin-
earTurboFold); and (c) an align-then-fold method that predicts con-
sensus structures from MSAs (Fig. S6): MAFFT + RNAalifold.?

For secondary structure prediction, LinearTurboFold, TurboFold
II and LocARNA achieve higher F1 scores than single sequence fold-
ing methods (Vienna RNAfold and LinearPartition) (Fig. 2E), which
demonstrates folding with homology information performs better than
folding sequences separately. Overall, LinearTurboFold performs sig-
nificantly better than all the other benchmarks on structure prediction.
For the accuracy of MSAs (Fig. 2F), the structural alignments from
LinearTurboFold obtain higher accuracies than sequence-only align-
ments (LinearAlignment and MAFFT) on all four families, especially
for families with low sequence identity. On average, LinearTurbo-
Fold performs comparably with TurboFold II and significantly better
than other benchmarks on alignments. We also note that the struc-
ture prediction accuracy of the align-then-fold approach (MAFFT +
RNAalifold) depends heavily on the alignment accuracy, and is the
worst when the sequence identity is low (e.g., SRP RNA) and the best
when the sequence identity is high (e.g., 16S rRNA) (Fig. 2E-F).

Highly Conserved Structures in SARS-CoV-2 and SARS-re-
lated Betacoronaviruses. RNA sequences with conserved sec-
ondary structures play vital biological roles and provide potential
targets. The current COVID-19 outbreak raises an emergent require-
ment of identifying potential targets for diagnostics and therapeutics.
Given the strong scalability and high accuracy, we used LinearTur-
boFold on a group of full-length SARS-CoV-2 and SARS-related
(SARST) genomes to obtain global structures and identify highly con-
served structural regions.

We used a greedy algorithm to select the 16 most diverse genomes
from all the valid SARS-CoV-2 genomes submitted to the Global
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Fig. 3. Secondary structures predictions of SARS-CoV-2 extended 5’ and 3’ UTRs. A: LinearTurboFold prediction.The nucleotides and base pairs are colored by unpaired
probabilities and base-pairing probabilities, respectively. The compensatory mutations extracted by LinearTurboFold are annotated with alternative pairs in red boxes (see
Tab. S3 for more fully conserved pairs with co-variational changes). B: SHAPE-guided model by Huston et al.2* (window size 3000 nt sliding by 300 n¢ with maximum pairing
distance 500 nt). The nucleotides are colored by SHAPE reactivities. Dashed boxes enclose the different structures between A and B. Our model is close to Huston et al.’s,
but the major difference is that LinearTurboFold predicts the end-to-end pairs involving 5" and 3’ UTRs (solid box in A), which is exactly the same interaction detected by
Ziv et al. using the COMRADES experimental technique23 (C). Such long-range interactions cannot be captured by the local folding methods used by prior experimentally-guided
models (Fig. 1B). The similarity between models A and B as well as the exact agreement between A and C show that our in silico method of folding multiple homologs can
achieve results similar to, if not more accurate than, experimentally-guided single-genome prediction. As negative controls (Fig. S11), the align-then-fold (RNAalifold) method
cannot predict such long-range interactions. Although the single sequence folding algorithm (LinearPartition) predicts a long-range 5’-3’ interaction, the positions are not the

same as the LinearTurboFold model and Ziv et al.’s experimental result.

Initiative on Sharing Avian Influenza Data (GISAID)* up to De-
cember 2020 (Methods §11). We further extended the group by
adding 9 SARS-related homologous genomes (5 human SARS-CoV-1
and 4 bat coronaviruses).44 In total, we built a dataset of 25 full-
length genomes consisting of 16 SARS-CoV-2 and 9 SARS-related
sequences (Tab. S2). The average pairwise sequence identities of
the 16 SARS-CoV-2 and the total 25 genomes are 99.9% and 89.6%,
respectively. LinearTurboFold takes about 13 hours and 43 GB on the
25 genomes.

To evaluate the reliability of LinearTurboFold predictions, we first
compare them with the Huston ef al.’s SHAPE-guided models® for
regions with well-characterized structures across betacoronaviruses.
For the extended 5’ and 3’ untranslated regions (UTRs), LinearTurbo-
Fold’s predictions are close to the SHAPE-guided structures (Fig. 3A—
B), i.e., both identify the stem-loops (SLs) 1-2 and 4-7 in the extended
5’ UTR, and the bulged stem-loop (BSL), SL1, and a long bulge stem
for the hypervariable region (HVR) including the stem-loop II-like
motif (S2M) in the 3’ UTR. Interestingly, in our model, the high
unpaired probability of the stem in the SL4b indicates the possibility

of being single-stranded as an alternative structure, which is supported
by experimental studies.?*?* In addition, the compensatory mutations
LinearTurboFold found in UTRs strongly support the evolutionary
conservation of structures (Fig. 3A).

The most important difference between LinearTurboFold’s pre-
diction and Huston ef al.’s experimentally-guided model is that Lin-
earTurboFold discovers an end-to-end interaction (29.8 kilobases
apart) between the 5> UTR (SL3, 60-82 nt) and the 3 UTR (final
region, 29845-29868 nt), which fold locally by themselves in Hus-
ton et al.’s model. Interestingly, this 5°-3 interaction matches ex-
actly with the one discovered by the purely experimental work of
Ziv et al.” using the COMRADES technique to capture long-range
base-pairing interactions (Fig. 3C). These end-to-end interactions have
been well established by theoretical and experimental studies* %7 to
be common in natural RNAs, but are far beyond the reaches of local
folding methods used in existing studies on SARS-CoV-2 secondary
structures.>*?>2"-28 By contrast, LinearTurboFold predicts secondary
structures globally without any limit on window size or base-pairing
distance, enabling it to discover long-distance interactions across the
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Fig. 4. A-D: Secondary structure predictions of SARS-CoV-2 extended frameshifting stimulation element (FSE) region (13425—-13545 nr). A: LinearTurboFold prediction. B-D:
Experimentally-guided predictions from the literature,24225 which are sensitive to the context and region boundaries due to the use of local folding methods (Fig. S12). E:
The canonical pseudoknot structure by the comparative analysis between SARS-CoV-1 and SARS-CoV-2 genomes.*2 For the 5’ region of the FSE shown in dotted boxes
(attenuator hairpin, internal loop with slippery site, and a stem), the LinearTurboFold prediction (A) is consistent with B-D; for the 3’ region of the FSE shown in dashed boxes,
our prediction (predicting stems 1-2 but missing 3) is closer to the canonical structure in E compared to B-D. F: LinearTurboFold prediction on SARS-CoV-1. G: Single
sequence folding algorithm (LinearPartition) prediction on SARS-CoV-2, which is quite different from LinearTurboFold’s. As another negative control, the align-then-fold method
(RNAalifold) predicts a rather dissimilar structure (Fig. S12G). H: Five examples from 59 fully conserved structures among 25 genomes (see Tab. S4 for details), 26 of which are
novel compared with prior work.2%:24

whole genome. The similarity between our predictions and the ex-
perimental work shows that our in silico method of folding multiple
homologs can achieve results similar to, if not more accurate than,
those experimentally-guided single-genome prediction. We also ob-
served that LinearPartition, as a single sequence folding method, can
also predict a long-range interaction between 5 and 3° UTRs, but it
involves SL2 instead of SL3 of the 5* UTR (Fig. 3A), which indicates
that the homologous information assists to adjust the positions of
base pairs to be conserved in LinearTurboFold. Additionally, the
align-then-fold approach (MAFFT + RNAalifold) fails to predict such
long-range interactions (Fig. S11B).

The frameshifiting stimulation element (FSE) is another well-
characterized region. For an extended FSE region, the LinearTurbo-
Fold prediction consists of two substructures (Fig. 4A): the 5° part
includes an attenuator hairpin and a stem, which are connected by a

long internal loop (16 nt) including the slippery site, and the 3’ part
includes three stem loops. We observe that our predicted structure
of the 5’ part is consistent with experimentally-guided models***>
(Fig. 4B-D). In the attenuator hairpin, the small internal loop motif
(UU) was previously selected as a small molecule binder that stabilizes
the folded state of the attenuator hairpin and impairs frameshifting.>
For the long internal loop including the slippery site, we will show
in the next section that it is both highly accessible and conserved
(Fig. 5), which makes it a perfect candidate for drug design. For the
3’ region of the FSE, LinearTurboFold successfully predicts stems
1-2 (but misses stem 3) of the canonical three-stem pseudoknot32
(Fig. 4E). Our prediction is closer to the canonical structure com-
pared to the experimentally-guided models**>>?® (Fig. 4B-D); one
such model (Fig. 4B) identified the pseudoknot (stem 3) but with
an open stem 2. Note that all these experimentally-guided models
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Fig. 5. An illustration of accessible and conserved regions that LinearTurboFold identifies. A-B: Identified structurally-conserved accessible regions by LinearTurboFold with the
help of considering alignment and folding simultaneously. The regions at least 15 nt long with accessibility of at least 0.5 among all the 16 SARS-CoV-2 genomes are shaded

on blue background. Structures are encoded in dot-bracket notation. “(” and “)” indicates nucleotides pairing in the 3’ and 5’ direction, respectively. “

“n

indicates an unpaired

nucleotide. The positions with mutations compared to the SARS-CoV-2 reference sequence among three different subfamilies (SARS-CoV-2, SARS-CoV-1 and BCoV) are
underlined. C: Accessible and conserved regions are not only accessible among SARS-CoV-2 genomes (pink circle) but also conserved (at sequence level) among both
SARS-CoV-2 and SARS-related genomes (green circle). D: Two examples out of 33 accessible and conserved regions found by LinearTurboFold. Region 16 and Region 29
correspond to the accessible regions in A and B, respectively. Region 16 is also the long internal loop including the slippery site in the FSE region (H). The conservation of
these regions on 9 SARS-related genomes is the number of mutated sites. The conservation on the ~2M SARS-CoV-2 dataset is shown in both average sequence identity with
the reference sequence and the percentage of exact matches, respectively. E-F: Single sequence folding algorithms predict greatly different structures even if the sequence
identities are high (grey boxes). These two regions, fully conserved among SARS-CoV-2 genomes, still fold into different structures due to mutations outside the regions. G:
The positions of these 33 regions (red bars) across the whole genome (see Tab. S6 for more details). All the accessible and conserved regions are potential targets for siRNAs,

ASOs, CRISPR-Cas13 gRNAs and RT-PCR primers.

for the FSE region were estimated for specific local regions. As
a result, the models are sensitive to the context and region bound-
aries”™?**® (see Fig. S12D-F for alternative structures of Fig. 4B-D
with different regions). LinearTurboFold, by contrast, does not suffer
from this problem by virtue of global folding without local windows.
Besides SARS-CoV-2, we notice that the estimated structure of the
SARS-CoV-1 reference sequence (Fig. 4F) from LinearTurboFold
is similar to SARS-CoV-2 (Fig. 4A), which is consistent with the
observation that the structure of the FSE region is highly conserved
among betacoronaviruses.*” Finally, as negative controls, both the
single sequence folding algorithm (LinearPartition in Fig. 4G) and
the align-then-fold method (RNAalifold in Fig. S12G) predict quite
different structures compared with the LinearTurboFold prediction
(Fig. 4A) (39%/61% of pairs from the LinearTurboFold model are not
found by LinearPartition/RNAalifold).

In addition to the well-studied UTRs and FSE regions, LinearTur-
boFold discovers 50 conserved structures with identical structures
among 25 genomes, and 26 regions are novel compared to previ-
ous studies®>>* (Fig. 4H and Tab. S4). These novel structures are
potential targets for small-molecule drugs® and antisense oligonu-
cleotides.?** LinearTurboFold also recovers fully conserved base

pairs with compensatory mutations (Tab. S3), which imply highly
conserved structural regions whose functions might not have been
explored. We also provide the whole multiple sequence alignment
and predicted structures for 25 genomes from LinearTurboFold (see
Fig. S13 for the format and link).

Highly Accessible and Conserved Regions in SARS-CoV-2
and SARS-related Betacoronaviruses. Studies show that the
siRNA silencing efficiency, ASO inhibitory efficacy, CRISPR-Cas13
knockdown efficiency, and RT-PCR primer binding efficiency, all
correlate with the target region’s accessibility,>"3>3%50 which is the
probability of a target site being fully unpaired. However, most ex-
isting work for designing siRNAs, ASOs, CRISPR-Cas13 gRNAs,
and RT-PCR primers does not take this feature into consideration®">
(Tab. S5). Here LinearTurboFold is able to provide more princi-
pled design candidates by identifying accessible regions of the target
genome. In addition to accessibility, the emerging variants around the
world reduce effectiveness of existing vaccines and test kits (Tab. S5),
which indicates sequence conservation is another critical aspect for
therapeutic and diagnostic design. LinearTurboFold, being a tool
for both structural alignment and homologous folding, can identify
regions that are both (sequence-wise) conserved and (structurally)
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accessible, and it takes advantage of not only SARS-CoV-2 variants
but also homologous sequences, e.g., SARS-CoV-1 and bat coron-
avirus genomes, to identify conserved regions from historical and
evolutionary perspectives.

To get unstructured regions, Rangan er al.”’ imposed a threshold
on unpaired probability of each position, which is a crude approxima-
tion because the probabilities are not independent of each other. By
contrast, the widely-used stochastic sampling algorithm>** builds
a representative ensemble of structures by sampling independent
secondary structures according to their probabilities in the Boltz-
mann distribution. Thus the accessibility for a region can be approx-
imated as the fraction of sampled structures in which the region is
single-stranded. LinearTurboFold utilized LinearSampling* to gen-
erate 10,000 independent structures for each genome according to
the modified partition functions after the iterative refinement (Fig. 1A
module 5), and calculated accessibilities for regions at least 15 nt
long. We then define accessible regions that are with at least 0.5
accessibility among all 16 SARS-CoV-2 genomes (Fig. SA-B). We
also measure the free energy to open a target region [i, j],54 notated:
AG\[i, j] = —RT (log Zul[i, j] — log Z) = —RT log P,[i, j] where
Z is the partition function which sums up the equilibrium constants
of all possible secondary structures, Z,[i, 7] is the partition function
over all structures in which the region [i, 7] is fully unpaired, R is
the universal gas constant and 7' is the thermodynamic temperature.
Therefore P,[i, 7] is the unpaired probability of the target region and
can be approximated via sampling by so/s, where s is the sample
size and so is the number of samples in which the target region is
single-stranded. The regions whose free energy changes are close to
zero need less free energy to open, thus more accessible to bind with
siRNAs, ASOs, CRISPR-Cas13 gRNAs and RT-PCR primers.

Next, to identify conserved regions that are highly conserved
among both SARS-CoV-2 and SARS-related genomes, we require
that these regions contain at most three mutated sites on the 9 SARS-
related genomes compared to the SARS-CoV-2 reference sequence
because historically conserved sites are also unlikely to change in the
future, and the average sequence identity with reference sequence
over a large SARS-CoV-2 dataset is at least 0.999 (here we use a
dataset of ~2M SARS-CoV-2 genomes submitted to GISAID up to
June 30, 20217; see Methods §11). Finally, we identified 33 accessi-
ble and conserved regions (Fig. 5G and Tab. S6), which are not only
structurally accessible among SARS-CoV-2 genomes but also highly
conserved among SARS-CoV-2 and SARS-related genomes (Fig. 5C).
Because the specificity is also a key factor influencing siRNA effi-
ciency,’® we used BLAST against the human transcript dataset for
these regions (Tab. S6). Finally, we also listed the GC content of each
region. Among these regions, region 16 corresponds to the internal
loop containing the slippery site in the extended FSE region, and it
is conserved at both structural and sequence levels (Fig. SD and 5H).
Besides SARS-CoV-2 genomes, the SARS-related genomes such as
the SARS-CoV-1 reference sequence (NC_004718.3) and a bat coro-
navirus (BCoV, MG772934.1) also form similar structures around
the slippery site (Fig. 5A). By removing the constraint of conserva-
tion on SARS-related genomes, we identified 38 additional candidate
regions (Tab. S7) that are accessible but only highly conserved on
SARS-CoV-2 variants.

We also designed a negative control by analyzing the SARS-CoV-
2 reference sequence alone using LinearSampling, which can also
predict accessible regions. However, these regions are not structurally
conserved among the other 15 SARS-CoV-2 genomes, resulting in
vastly different accessibilities, except for one region in the M gene

The average sequence identity is 0.9987 on that ~2M dataset (downloaded on July 25, 2021).

(Tab. S8). The reason for this difference is that, even with a high se-
quence identity (over 99.9%), single sequence folding algorithms still
predict greatly dissimilar structures for the SARS-CoV-2 genomes
(Fig. SE-F). Both regions (in nsp11 and N genes) are fully conserved
among the 16 SARS-CoV-2 genomes, yet they still fold into vastly dif-
ferent structures due to mutations outside the regions; as a result, the
accessibilities are either low (nsp11) or in a wide range (N) (Fig. 5SD).
Conversely, addressing this by folding each sequence with proclivity
of base pairing inferred from all homologous sequences, LinearTur-
boFold structure predictions are more consistent with each other and
thus can detect conserved structures (Fig. SA-B).

Discussion

The constant emergence of new SARS-CoV-2 variants is reducing the
effectiveness of exiting vaccines and test kits. To cope with this issue,
there is an urgent need to identify conserved structures as promis-
ing targets for therapeutics and diagnostics that would work in spite
of current and future mutations. Here we presented LinearTurbo-
Fold, an end-to-end linear-time algorithm for structural alignment and
conserved structure prediction of RNA homologs, which is the first
joint-fold-and-align algorithm to scale to full-length SARS-CoV-2
genomes without imposing any constraints on base-pairing distance.
We also demonstrate that LinearTurboFold leads to significant im-
provement on secondary structure prediction accuracy as well as an
alignment accuracy comparable to or higher than all benchmarks.
Unlike existing work on SARS-CoV-2 using local folding and
single-sequence folding workarounds, LinearTurboFold enables un-
precedented global structural analysis on SARS-CoV-2 genomes; in
particular, it can capture long-range interactions, especially the one
between 5’ and 3° UTRs across the whole genome, which matches
perfectly with a recent purely experiment work. Over a group of
SARS-CoV-2 and SARS-related homologs, LinearTurboFold iden-
tifies not only conserved structures supported by compensatory mu-
tations and experimental studies, but also accessible and conserved
regions as vital targets for designing efficient small-molecule drugs,
siRNAs, ASOs, CRISPR-Cas13 gRNAs and RT-PCR primers. Lin-
earTurboFold is widely applicable to the analysis of other RNA viruses
(influenza, Ebola, HIV, Zika, etc.) and full-length genome analysis.

Methods

Detailed description of our algorithms, datasets, and evaluation met-
rics are available in the online version of the paper.
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Methods

§1 Pairwise Hidden Markov Model. We use a pairwise Hidden Markov
Model (pair-HMM) to align two sequences.””>8 The model includes three
actions (h): aligning two nucleotides from two sequences (ALN), inserting a
nucleotide in the first sequence without a corresponding nucleotide in the other
sequence (INS1), and a nucleotide insertion in the second sequence without a
corresponding nucleotide in the first sequence (INS2). We then define A(x,y)
as a set of all the possible alignments for the two sequences, and one alignment
a € A(x,y) as a sequence of steps (h, ¢, ) with m + 2 steps, where (h, 4, j)
means an alignment step at the position pair (4, j) by the action h. Thus, for
the Ith step a; = (hy, 4, 71) € a, the values of 4; and j; depend on the action
h; and the positions 4; 1 and j;_1 of a;_1:

(ALN7 —1+1, jia +1)7 h; = ALN
a; = ¢ (INs1, 49 41, Ji-1), h; = INS1
(INS2, 41,  Ji—1+1), hy=INS2

with (ALN, 0,0) as the first step, and (ALN, |x| 4+ 1, |y| + 1) as the last
one. For two sequences {ACAAGU, AACUG}, one possible alignment
{—ACAAGU, AAC——UG} can be specified as { (ALN, 0,0) — (INS2,0,1) —
(ALN, 1,2) — (ALN, 2,3) — (INSI, 3,3) — (INS1,4,3) — (ALN,5,4) —
(ALN, 6,5) — (ALN, 7,6) }, where a gap symbol (—) represents a nucleotide
insertion in the other sequence at the corresponding position (Fig. S8). The
action hy in each step (hy, i;, j;) corresponds to a line segment starting from
the previous node (4;_1, j;—1) and stopping at the node (;, 5;). Thus the line
segment is horizontal, vertical or diagonal towards the top-right corner when
hy is INSI1, INS2 or ALN, respectively (Fig. S8).

We initialize the first step with the state ALN of probability 1, thus
pr(ALN) = 1. pi(h2 | h1) is the transition probability from the state
h1 to ha, and pe((c1, c2) | h1) is the probability of the state k1 emitting a
character pair (c1, c2) with values from {A, G, C, U, —}. Both the emission
and transition probabilities were taken from TurboFold II. The function e()
yields a character pair based on a; and the nucleotides of two sequences:

(zi),y5,), Py =ALN
(wil s —), h; = INS1
—,¥5,), hy=INS2

6(X7 Y, al) =

where x; and y; are the ith and jth nucleotides of sequences x and y, re-
spectively. Note that the first step ap = (ALN, 0, 0) and the last ay,+1 =
(ALN, |x| + 1, |y| + 1) do not have emissiom

We denote forward probability a encompassmg the probability of the
partial alignments of x and y up to posmons 4 and j, and all the alignments
that go through the step (h, i, 5):

h  _
X = E,

a€A(x,y)
3k,ag,=(h,i,j)

p(x,y, al: k])

k

= pa(ho) - | [ el [ -)pelel,y,a) | hu)
=1
where a[: k] indicates the partial dlignments from the starting node up to the
kth step and az, = (h, 1, j). For instance, o3'3, oz'SNSg' and ag%z corresponds
to the region circled by the blue dashed lines (Fig. S8B, C and D). Similarly,
the backward probability 3 Zhj assembles the probability of partial alignments

alk + 1 :] from the (k + 1)th step up to the end one:

D

acA(x,y)
Ik, ag=(h,i,j)

Blhyj = p(xvyaa[k_‘—l ])

IT w1 sipetetx v, | he)

I=k+1

“pi(hm1 | hm)

For example, £3'3, A5 and 61”52 are the regions circled by the yellow
dashed line (Fig. SSB C and D). Thus, the probability of observing two

sequences p(x,y) is ale_l ly|+1 OF ,80 o

§2 Posterior Co-incidence Probability Computation. Nucleotide positions
4 and j in two sequences x and y are said to be co-incident (notated as i ~ j)
in an alignment a if the alignment path goes through the node (i, 5).%’ Since

the node (¢, j) is reachable by three actions H = {ALN, INSI, INS2}, the
co-incidence probability for a position pair (7, j) given two sequences is:

;D pkvie) [

a€A(x,y)
3h,(h,i,j)E€a

pi~jlxy)=
p(x,y

where p(x,y, a) is the probability of two sequences with the alignment a, and
p(x,y) is the probability of observing two sequences, which is the sum of
probability of all the possible alignments:

Z p(x,y,a)

acA(x,y)

p(x,y) =

The co-incidence probability for positions ¢ and 5 (Equation 1) can be
computed by:
h
Zh By

Ix\+1 lyl+1

pi~j|xy)=

§3 LinearAlignment. Unlike a previous method®’ that fills out all the nodes
in the alignment matrix by columns (Fig. S8), LinearAlignment scans the
matrix based on the step count s, which is the sum value of ¢ and j (s = i+ j)
for the partial alignments of x[; ;) and y[y ;). As shown in the pseudocode
(Fig. S9), the forward phase starts from the node (0, 0) in the state ALN of
probability 1, then iterates the step count s from 0 to |x| 4 |y| — 1. For each
step count s with a specific state h from H, we first collect all the nodes (¢, j)
with the step count s with a . existing, which means the position pair (i, 7)
has been visited via the state 'h before. Then each node makes transitions to
next nodes by there states, and updates the corresponding forward probabilities
aﬂfi‘j, oz?f]sil and a?fi’j 1 respectively.

The current alignment algorithm is still an exhaustive-search algorithm
and costs quadratic time and space for all the |x| X |y| nodes. To reduce
the runtime, LinearAlignment uses the beam search heuristic algorithm*® and
keeps a limited number of promising nodes at each step. For each step count
s with a state h, LinearAlignment applies the beam search method first over
B(s, h), which is the collection of all the nodes (z, j) with step count s and
the presence of aﬁ j (Fig. S9 line 6). This algorithm only saves the top b1
nodes with the highest forward scores in B(s, h), and these are subsequently
allowed to make transitions to the next states. Here b1 is a user-specified beam
size and the default value is 100. In total, O (b1 n) nodes survive because the
length of s is |x| + |y| and each step count keeps b1 nodes. For simplicity,
we show the topological order and the beam search method with alignment
examples (Fig. S8A), while the forward-backward algorithm adopts the same
idea by summing the probabilities of all the possible alignments.

After the forward phase, the backward phase (Fig. S9) performs in linear
time to calculate the co-incidence probabilities automatically because only a
linear number of nodes in B(s, h) are stored. Thus by pruning low-scoring
candidates at each step in the forward algorithm, we reduce the runtime from
O(n?) to O(byn) for aligning two sequences. For k input homologous
sequences, LinearTurboFold computes posterior co-incidence probabilities for
each pair of sequences by LinearAlignment, which costs O(k2b1n) runtime
in total.

§4 Match Scores Computation and Modified LinearAlignment. To encour-
age the pairwise alignment conforming with estimated secondary structures,
LinearTurboFold predicts structural alignments by incorporating the secondary
structural conformation. PMcomp™? first proposed the match score to measure
the structural similarity for position pairs between a pair of sequences, and
TurboFold II adapts it as a prior. Based on the base pair probabilities Px (¢, 7)
estimated from the partition function for a sequence x, a position ¢ could
be paired with bases upstream, downstream or unpaired, with correspond-
ing probability Px,> (1) = ., Px(i,5). Pe,<(i) = > ., Px(i,])
and Px (i) = 1 — Px,> (%) — Px,< (i), respectively. The match score
Mmx,y (1, j) for two positions ¢ and j from two sequences x and y is based on
the probabilities of these three structural propensities from the last iteration
t—1)

mil, (5,5) = WP“‘”() PGP ) P2V G)

+ az\/P,if;”(i) PN (G) + as
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where a1, ag and a3 are weight parameters trained in TurboFold II. The
forward-backward phrases integrate the match score as a prior when aligning
two nucleotides (Fig. S9 line 10, and Fig. S9 line 12).

TurboFold 11 separately pre-computes match scores for all the O(n?) po-
sition pairs for pairs of sequences before the HMM alignment calculation.
However, only a linear number of pairs O(bin) survive after applying the
beam pruning in LinearAlignment. To reduce redundant time and space usage,
LinearTurboFold calculates the corresponding match scores for co-incident
pairs when they are first visited in LinearAlignment. Overall, for £ homolo-
gous sequences, LinearTurboFold reduces the runtime of the whole module
of pairwise posterior co-incidence probability computation from O(k?n2)
to O(k2b1n) by applying the beam search heuristic to the pairwise HMM
alignment, and only calculating the match scores for position pairs that are
needed.

§5 Extrinsic Information Calculation. To update partition functions for
each sequence with the structural information from homologs, TurboFold!®
introduces extrinsic information to model the the proclivity for base pairing
induced from the other sequences in the input set S. The extrinsic information
ex (3, j) for a base pair (z,7) in the sequence x maps the estimated base
pairing probabilities of other sequences to the target sequence via the co-
incident nucleotides between each pair of sequences:

>

ye{S\x}

where pg,t -

(1= sxy) > oy 000 2 G~ k) - 2N G ~ D)
k,l

(K, 1) is the base pair probability for a base pair (k, 1) in the

sequence y from (¢ — 1)th iteration. pi%, i ~ k) and p;t,)y (j ~ 1) are the

posterior co-incidence probabilities for position pairs (¢, k) and (j, 1), respec-
tively, from (¢)th iteration. The extrinsic information e (%, 4) first sums all
the base pair probabilities of alignable pairs from another one sequence with
the co-incidence probabilities and then iterates over all the other sequences.
sx,y is the sequence identity for sequences x and y. The sequences with a
low identity contribute more to the extrinsic information than sequences of
higher identity. The sequence identity is defined as the fraction of nucleotides
that are aligned and identical in the alignment.

§6 LinearPartition for Base Pairing Probabilities Estimation with Extrin-
sic Information. The classical partition function algorithm scales cubically
with sequence length. The slowness limits its extension to longer sequences.
To address this bottleneck, our recent LinearPartition>® algorithm approxi-
mates the partition function and base paring probability matrix computation in
linear time. LinearPartition is significantly faster, and correlates better with the
ground truth structures than the traditional cubic partition function calculation.
Thus LinearTurboFold uses LinearPartition to predict base pair probabilities
instead of the traditional O(n?2)-time partition function.

TurboFold introduces the extrinsic information e;t ) (4, 7) in the partition

function as a pseudo-free energy term for each base pair (¢, §). Similarly, in
LinearPartition, for each span [, j], which is the subsequence zi...xj, and
its associated partition function Q(%, j), the partition function is modified as

Q@,7) = QG, j)egp (4, 7)™ if (4, ;) is an allowed pair, where A denotes
the contribution of the extrinsic information relative to the intrinsic informa-
tion. Specifically, at each step j, among all possible spans [¢, j] where z;
and x; are paired, we replace the original partition function Q(¢, j) with
Qi,J )egf) (4,5)> by multiplying the extrinsic information. Then LinearTur-
boFold applies the beam pruning heuristic over the modified partition function
Q(i, 7) instead of the original.

Similarly, TurboFold T obtains the extrinsic information for all the O(n?)
base pairs before the partition function calculation of each sequence, while
only a linear number of base pairs survives in LinearPartition. Thus, Lin-
earTurboFold only requires the extrinsic information for those promising base
pairs that are visited in LinearPartition. Overall, for £ homologous sequences,
LinearTurboFold reduces the runtime of base pair probabilities estimation for
each sequence from O(kn® + k2n2) to O(kb2n + k2ban) by applying the
beam search heuristic to the partition function calculation, and only calculating
extrinsic information for the saved base pairs.

§7 MSA Generation and Secondary Structure Prediction. After several
iterations, TurboFold II builds the multiple sequence alignment using a prob-
abilistic consistency transformation, generating a guide tree and performing
progressive alignment over the pairwise posterior co-incidence probabilities.?>

10 |

The whole procedure is accelerated in virtue of the sparse matrix by discarding
alignment pairs of probability smaller than a threshold (0.01 by default). Since
LinearAlignment uses the beam search method and only saves a linear number
of co-incident pairs, the MSA generation in LinearTurboFold costs linear
runtime against the sequence length straightforwardly.

Estimated base pair probabilities are fed into downstream methods to pre-
dict secondary structures. To maintain the end-to-end linear-time property,
LinearTurboFold uses ThreshKnot,*! which is a thresholded version of Prob-
Knot®® and only considers base pairs of probability exceeding a threshold 6
(6 = 0.3 by default). We evaluate the performance of ThreshKnot and MEA
with different hyperparameters (6 and ). On a sampled RNAStrAlign training
set, ThreshKnot is closer to the upper right-hand than MEA, which indicates
that ThreshKnot always has a higher Sensitivity than MEA at a given PPV
(Fig. S10B).

§8 Efficiency and Scalability Datasets. Four datasets are built and used for
measuring efficiency and scalability. To evaluate the efficiency and scalability
of LinearTurboFold with sequence length, we collected groups of homologous
RNA sequences with sequence length ranging from 200 nt to 29,903 nt with
a fixed group size 5. Sequences are sampled from RNAStrAlign dataset,'$
the Comparative RNA Web (CRW) Site,%! the Los Alamos HIV database
(http://www.hiv.lanl.gov/) and the SARS-related betacoronaviruses (SARS-
related).** RNAStrAlign, aggregated and released with TurboFold I, is an
RNA alignment and structure database. Sequences in RNAStrAlign are cate-
gorized into families, i.e. sets of homologs, and some of families are further
split into subfamilies. Each subfamily or family includes a multiple sequence
alignment and ground truth structures for all the sequences. 20 groups of
five homologs were randomly chosen from the small subunit ribosomal RNA
(Alphaproteobacteria subfamily), SRP RNA (Protozoan subfamily), RNase P
RNA (bacterial type A subfamily) and telomerase RNA families. For longer
sequences, we sampled five groups of 23S rRNA (of sequence length ranging
from 2,700 nt to 2,926 nt) from the CRW Site, HIV-1 genetic sequences (of
sequence length ranging from 9,597 nt to 9,738 nt) from the Los Alamos
HIV database, and SARS-related sequences (of sequence length ranging from
29,484 nt to 29,903 nt). All the sequences in one group belong to the same
subfamily or subtype. We sampled five groups for each family and obtained
35 groups in total. Due to the runtime and memory limitations, we did not run
TurboFold II on SARS-CoV-2 groups (Fig. 2, A and D).

To assess the runtime and memory usage of LinearTurboFold with group
size, we fixed the sequence length around 1,500 nt, and sampled 5 groups
of sequences from the small subunit ribosomal RNA (Alphaproteobacteria
subfamily) with group size 5, 10, 15 and 20, respectively (Fig. 2, B and F). We
used a Linux machine (CentOS 7.7.1908) with 2.30 GHz Intel Xeon E5-2695
v3 CPU and 755 GB memory, and gcc 4.8.5 for benchmarks.

‘We built a test set from the RNAStrAlign dataset to measure and compare
the performance between LinearTurboFold and other methods. 60 groups
of input sequences consisting of five homologous sequences were randomly
selected from the small subunit ribosomal RNA (rRNA) (Alphaproteobacteria
subfamily), SRP RNA (Protozoan subfamily), RNase P RNA (bacterial type
A subfamily) and telomerase RNA families from RNAStrAlign dataset. We
removed sequences shorter than 1,200 nt for the small subunit rRNA to filter
out subdomains, and removed sequences that are shorter than 200 nt for SRP
RNA following the TurboFold II paper to filter out less reliable sequences. We
resampled the test set five times and show the average PPV, Sensitivity and F1
scores over the five samples (Fig. 2, C and F).

An RNAStrAlign training set was built to compare accuracies between
MEA and ThreshKnot. 40 groups of 3, 5 and 7 homologs were randomly
sampled from 5S ribosomal RNA (Eubacteria subfamily), group I intron (IC1
subfamily), tmRNA, and tRNA families from RNAStrAlign dataset. We chose
0 =0.1,0.2,0.3, 0.4 and 0.5 for ThreshKnot, and v =1, 1.5, 2, 2.5, 3, 3.5, 4,
8 and 16 for MEA. We reported the average secondary structure prediction
accuracies (PPV and Sensitivity) across all training families (Fig. S10B).

§9 Benchmarks. The Sankoff algorithm'! uses dynamic programming to
simultaneously fold and align two or more sequences, and it requires O (n3%)
time and O (n2") space for k input sequences with the average length n. Both
LocARNA!2 and MXSCARNA* are Sankoff-style algorithms.

LocARNA (local alignment of RNA) costs O(n?(n? + k?)) time and
O(n? + k2) space by restricting the alignable regions. MXSCARNA pro-
gressively aligns multiple sequences as an extension of the pairwise alignment
algorithm SCARNA®? with improved score functions. SCARNA first aligns
stem fragment candidates, then removes the inconsistent matching in the post-
processing to generate the sequence alignment. MXSCARNA reduces runtime
to O(k3n?) and space to O(k?n?) with a limited searching space of folding
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and alignment. Both MXSCARNA and LocARNA uses pre-computed base
pair probabilities for each sequence as structural input. All the benchmarks
use the default options and hyper-parameters running on the RNAStrAlign test
set. TurboFold II iterates three times, then predicts secondary structures by
MEA (v=1). LinearTurboFold also runs three iterations with default beam
sizes (b1 = ba = 100) in LinearAlignment and LinearPartition, then predicts
structures with ThreshKnot (6 = 0.3).

§10 Significance Test. We use a paired, two-tailed permutation test® to mea-
sure the significant difference. Following the common practice, the repetition
number is 10,000, and the significance threshold « is 0.05.

§11 SARS-CoV-2 Datasets. We used two large SARS-CoV-2 datasets. The
first dataset is used to draw a representative sample of most diverse SARS-
CoV-2 genomes. We downloaded all the genomes submitted to GISAID*
by December 29, 2020 (downloaded on December 29, 2020), and filtered out
low-quality genomes (with more than 5% unknown characters and degenerate
bases, shorter than 29,500 nt, or with framing error in the coding region), and
we also discard genomes with more than 600 mutations compared with the
SARS-CoV-2 reference sequence (NC_0405512.2).%* After preprocessing, this
dataset includes about 258,000 genomes. To identify a representative group
of samples with more variable mutations, we designed a greedy algorithm to
select 16 most diverse genomes genomes found at least twice in the 258,000
genomes. The general idea of the greedy algorithm is to choose genomes
one by one with the most new mutations compared with the selected samples,
which consists of only the reference sequence at the beginning.

The second, larger, dataset is to evaluate the conservation of regions with
respect to more up-to-date variants. We downloaded all the genomes submitted
to GISAID by June 30, 2021 (downloaded on July 25, 2021), and did the same
preprocessing as the first dataset. This resulted in a dataset of ~2M genomes,
which was used to evaluate conservation in Figure 5 and Tables S5, S6, S7.
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LinearTurboFold: Linear-Time Global Prediction of Conserved
Structures for RNA Homologs with Applications to SARS-CoV-2

Sizhen Li, He Zhang, Liang Zhang, Kaibo Liu, Boxiang Liu, David H. Mathews, and Liang Huang
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Fig. S6. Approaches for analyzing homologous sequence can be categorized into three plans65 (related to Fig. 1). Plan A involves two steps: first aligning sequences and then
folding aligned multiple sequences. This line works well for homologs with a high sequence identity. Plan B employs joint folding and alignment for multiple sequences, and it
requires more time and space. Plan C folds sequences separately first and then aligns structures. Italic methods in each plan are evaluated on RNAStrAlign dataset (Tab. S1).
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Fig. S7. The flowchart of LinearTurboFold with more detailed information (related to Fig. 1). At iteration 0, LinearPartition calculates the partition function and estimates the
base pair probabilities for each sequence. From iteration 1 to 7", the two major modules LinearAlignment and LinearPartition are conducted and updated in order with the match
score and extrinsic information, respectively. The match score and extrinsic information are required and calculated for promising position pairs and base pairs during the
LinearAlignment and LinearPartition computations, respectively. After T" iterations, the match score and LinearAlignment computations are performed one more time over the

latest the base pair probabilities. A multiple sequence is generated based on the pairwise co-incidence probabilities from the (7'+1)-th iteration, and secondary structures are
predicted according to the base pair probabilities for each sequence from the T'-th iteration.
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maintains all the partial alignments starting from the step (ALN, 3, 3) (ﬁgfg). C and D: The regions circled by the blue dashed lines are a';i; and ag‘f, and regions circled by
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1: function FORWARD(X, y, b1)
2 agfg «—1
3: fors=0..]x|+ |y| — 1do
4 for each h in H do
5: B(s, h) < all the nodes (¢, j) such that a?;j existsandi + j = s
6 BEAMPRUNE(B(s, h), b1)
7 for each node (z, j) in B(s, h) do
8 a'iNJile 4= aﬁj - p(INSL | h) - pe((zit1, —) | INS1)
9 N 4= aﬁj};P&(lNﬂ [ h) - pe((—syj+1) | INS2)
10: a:i\ll,j-*—l +=o ;- P(ALN | R) - pe((zit1,Yj+1) | ALN)
11:  return o
1. Pseudocode of the LinearAlignment algorithm forward phase
1: function BACKWARD(X, y, «, B)
2: B « hash()
ALN
3 Pl iyl 1
4 Py T Ay
5: Pi,j 0
6: for s = |x| + |y|...0 do
7 for each h in H do
8 for each node (i, j) in B(s, h) do
9

ifi = |x| and j = |y| then

10: Bl = p(ALN | h) - Bt iyl
11: else
12: B = p(ALN | B) - pe((@itr, yj41) | ALN) - BN 540
13: +p(INS1 | h) - pe((ig1, —) | INs1) - B 5
14: +p(INS2 | h) - pe((—, yj41) | INS2) - B2,
o¢).1 Bh

. Lo —_%J ]

15: Pij += P,y

> the forward phase
> initial probability distribution
> topological order

> keep top b1 nodes in B(s, h) by aiﬁj
> transitions to next states

> the backward phase

> initialization

> probability of observing two sequences
> co-incident probability initialization

> B(s, h) saves by entries during the forward phase

> boundary conditions

> update co-incident probabilities

2. Pseudocode of the LinearAlignment algorithm backward phase (co-incidence probability computation)

Fig. $9. The pseudocode of the LinearAlignment algorithm forward and backward phases (co-incidence probability computation). The pseudocode ignores boundary conditions

for simplicity.
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Table S1. Structure prediction and multiple sequence alignment accuracies (related to Fig. 2).

Structure Prediction Accuracy
LinearTurboFold  TurboFold Il LocARNA  MXSCARNA LinearPartition Vienna RNAfold RNAalifold

PPV
SRP 0.801 0.819 0.698 0.485 0.662 0.673 0.629
telomerase 0.650 0.685 0.516 0.465 0.409 0.430 0.602
RNase P RNA 0.734 0.752 0.606 0.573 0.543 0.571 0.698
16S rRNA 0.615 0.608 0.586 0.662 0.467 0.464 0.628
overall 0.700 0.716 0.602 0.546 0.520 0.534 0.639
Sensitivity
SRP 0.806 0.743 0.693 0.488 0.700 0.682 0.218
telomerase 0.832 0.826 0.637 0.558 0.584 0.576 0.482
RNase P RNA 0.828 0.758 0.630 0.584 0.650 0.636 0.478
16S rRNA 0.620 0.584 0.622 0.663 0.511 0.469 0.605
overall 0.772 0.728 0.645 0.573 0.611 0.591 0.446
F1 scores
SRP 0.804 0.779 0.695 0.486 0.681 0.677 0.323
telomerase 0.730 0.749 0.570 0.507 0.481 0.492 0.535
RNase P RNA 0.778 0.755 0.618 0.578 0.592 0.602 0.567
16S rRNA 0.617 0.596 0.603 0.662 0.488 0.466 0.616
overall 0.734 0.722 0.623 0.559 0.562 0.561 0.525

Multiple Sequence Alignment Accuracy

LinearTurboFold  TurboFold I LocARNA  MXSCARNA LinearAlignment MAFFT RNAforester %6
PPV
SRP 0.463 0.458 0.305 0.387 0.414 0.393 0.263
telomerase 0.617 0.615 0.311 0.554 0.575 0.572 0.239
RNase P RNA 0.788 0.787 0.615 0.692 0.744 0.759 0.258
16S rRNA 0.971 0.977 0.647 0.971 0.947 0.974 0.239
overall 0.710 0.709 0.470 0.651 0.670 0.675 0.250
Sensitivity
SRP 0.443 0.438 0.452 0.384 0.396 0.382 0.271
telomerase 0.573 0.572 0.470 0.523 0.540 0.529 0.262
RNase P RNA 0.765 0.765 0.596 0.684 0.724 0.738 0.286
16S rRNA 0.971 0.977 0.974 0.971 0.951 0.973 0.298
overall 0.688 0.688 0.623 0.641 0.653 0.656 0.280
F1 scores
SRP 0.453 0.448 0.364 0.385 0.405 0.388 0.267
telomerase 0.594 0.593 0.375 0.538 0.557 0.550 0.250
RNase P RNA 0.776 0.776 0.605 0.688 0.734 0.748 0.271
16S rRNA 0.971 0.977 0.778 0.971 0.949 0.973 0.265
overall 0.699 0.698 0.535 0.646 0.661 0.665 0.264
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Fig. $10. A: The maximum values of the extrinsic information as a function of sequence length. The maximal value for each sequence is recorded when running LinearTurboFold
on the collected dataset of sequence length ranging from 200 nz to 30,000 nt. B: Accuracy comparison between ThreshKnot and MEA on the training set with different
hyper-parameters. C: The proportion of alignment runtime in the total runtime as the group size grows from 5 to 20. D: LinearPartition uses thermodynamic parameters from
Vienna RNAfold,®' which is a subset of the RNAstructure®” partition function terms. By only replacing the TurboFold Il partition function with LinearPartition with an infinite
beam size (i.e., no approximation), the runtime decreases. This indicates part of speedup of LinearTurboFold profits from a simplified energy model.
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Table S2. Detailed information of the sampled 16 SARS-CoV-2 genomes and 9 SARS-related genomes (related to Fig. 3, 4 and 5). This dataset includes
the reference sequences of SARS-CoV-2 and SARS-CoV-1 (NC_0405512.2, NC_004718.3). Most of the SARS-CoV-2 genomes include the D614G
mutation, which has been a dominate mutation in the SARS-CoV-2 spike protein. B.1.1.7 lineage is a more infectious and lethal variant of SARS-CoV-2
first detected in the United Kingdom around November 2020. We utilized MAFFT?2 to generate the multiple sequence alignment and calculated the

sequence identity with the reference sequence.

18

Accession ID Species Type Submitted Date Location Length Frequency Mutations Sequence identity Note
NC_045512.2 human SARS-CoV-2 2020-01-17 Wuhan, Asia 29903 2 - - -
EPI_ISL_454994 human SARS-CoV-2 2020-03-02 Wuhan, Asia 29864 3 36 0.999
EPI_ISL_572982 human SARS-CoV-2 2020-08-28 England, Europe 29882 2 28 0.999 D614G
EPI_ISL_573173 human SARS-CoV-2 2020-09-08 England, Europe 29851 2 22 0.999 D614G
EPI_ISL_573220 human SARS-CoV-2 2020-09-09 England, Europe 29784 2 19 0.999 D614G
EPI_ISL_576666 human SARS-CoV-2 2020-09-18 England, Europe 29891 2 22 0.999 D614G
EPI_ISL_639684 human SARS-CoV-2 2020-10-03 Latvia, Europe 29840 3 23 0.999 D614G
EPI_ISL_648168 human SARS-CoV-2 2020-10-13 Sweden, Europe 29858 3 22 0.999 D614G
EPI_ISL_706936 human SARS-CoV-2 2020-10-13 England, Europe 29828 2 23 0.999 D614G
EPI_ISL_638950 human SARS-CoV-2 2020-10-14 Scotland, Europe 29891 2 29 0.999 D614G
EPI_ISL_654499 human SARS-CoV-2 2020-10-20 Sweden, Europe 29876 3 20 0.999 D614G
EPI_ISL_666966 human SARS-CoV-2 2020-10-30 USA, NorthAmerica 29879 2 23 0.999 D614G
EPI_ISL_704698 human SARS-CoV-2 2020-11-01 England, Europe 29834 5 50 0.999 D614G

B.1.1.7
EPI_ISL_723671 human SARS-CoV-2 2020-11-08 England, Europe 29876 2 32 0.999 D614G
EPI_ISL_602304 human SARS-CoV-2 2020-11-12 England, Europe 29838 2 27 0.999 D614G
EPI_ISL_710589 human SARS-CoV-2 2020-11-19 Sweden, Europe 29815 2 28 0.999 D614G
NC_004718.3 human SARS-CoV-1 2003-04-13 Vancouver, Canada 29751 - 6277 0.789 -
AY297028 human SARS-CoV-1 2003-05-19 Beijing, Asia 29715 - 6306 0.788 -
AY515512.1 human SARS-CoV-1 2005-01-01 Hong Kong, Asia 29731 6298 0.788 -
DQ182595.1 human SARS-CoV-1 2005-08-26 Zhejiang, Asia 29706 - 6298 0.788 -
GU553363.1 human SARS-CoV-1 2010-01-15 USA, NorthAmerica 29644 - 6351 0.786 -
EPI_ISL_402131 bat SARS-CoV-2 2013-07-24 Yunnan, Asia 29855 - 1176 0.961 -
DQ022305.2 bat SARS-CoV-1 2005-04-29 Hong Kong, Asia 29728 - 6337 0.787 -
DQ648857.1 bat SARS-CoV-1 2006-05-23 Hong Kong, Asia 29741 - 6285 0.789 -
MG772934.1 bat SARS-CoV-1 2008-01-05 Jiangsu, Asia 29732 - 3740 0.874 -

Li etal


https://doi.org/10.1101/2020.11.23.393488
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.23.393488; this version posted September 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

o155 20765

ahy A A |
o bavs abanats
oL Il |
IS N S R )
. A

(IR / |
e whss s

available under aCC-BY-NC-ND 4.0 International license.

LinearPartition prediction SLY ey
on the reference sequence -

-
=
=
=
e SL5a
=
e
Zo—smr
-y
20 |
20 \ !
SL5a s v recec :
< Vecaue |
Linnd Liinnn | ~900 nt
o edda tuces !
K | !
c 190 !
20 oA |
v H
c—g e
SL1 = SLda sZc-m =
e-d e W A
- s
-
Alu =<
i e
WY A—u
sLs o-c SL4b A c—c—tas1
The s o e
uAon o-ul v ot 00-c—g
& Mo 0o Npgh et o /
sL2 P =l
I ¢ ula e
0 c—a ®ouZe uTh AZu
G—C,,ccancy, LAy I U=a c—c A—u 150 20 a—c o
Avuannc ANy ¢ oy oy ey ol ACAUG U=A uUARAL u—a TR ATy | A=y
SEENEREEN! s~ Vo= ¢ cuAU-acucucauua “uecuuucAAc GG AGSUUUAUAG g L aceance
ARAAAARAAAACA G U AGG A Trnt I Lrrrrrrn H N Ar ) acAMA *a
\ AeA LI e NY el o oo
29865 - n A
a2 t FRERY
20800
coA
S
[N
oZa 260
-G —c
, v
A= u a0
29820~ 0
pestey
-
VIa e
=t
A [
U y
Su—ak
25810 0= €
ey
HVR U= a—29m00
cZe

20800 G_cacCAEC—GCAG,
"

RNAalifold prediction
over 25 genomes

SL5c

2 20— ez

210 0
a-u [ Sveavii 1D
e eceua ecasce cehcon
o Liind Lrrrnn
- TR
Y v i -
20 10 w0—c_o
SL4a <
o m,
Sa
a0
et
P o
15—
! ]
cuy, PRPTITL
Ve, (C a,,
~1,400 nt
oe~27,700 nt
050 ,6¢Y VSV,
A\l G AGAAUGACAAAAAAAAAAAAAAAAAAAAA
Tirt TTT1T e
Mbvennmvacocon, Lo, co—cn
ey Al atiTRRccaeaCua
! u— van 6 —C — 29550 A=y
aess
A o _mso
N
i A So—c
0= —amse0 [mts
e ule P
sL1 e I
ooy .o
A-U 29520
e
ATV awm
SR
o—ct
290 c—o
Yo_ou
20710 S0, e
cule, I
SO vy

Fig. S11. Secondary structure prediction of SARS-CoV-2 for extended 5" and 3’ UTRs (related to Fig. 3). A: LinearPartition prediction of the SARS-CoV-2 reference sequence
(NC_0405512.2) alone (single sequence folding). LinearPartition also predicts a long-range interaction between 5" and 3° UTRs. However, it involves the SL2 of the 5° UTR not

SL3, which disagrees with LinearTurboFold prediction and Ziv et al. (Fig 3). B: RNAalifold (MFE) prediction over 25 genomes. RNAalifold did not find any 5’-3’ pairs.
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Fig. S12. Secondary structure predictions of SARS-CoV-2 for extended frameshifting stimulation element (13425-13545 nr) (related to Fig. 4). A-F: Experimentally-guided
structures with different probing data for different regions. The structures in each column were estimated with the same experimental data but different regions. The structures
in the second row were predicted by Rangan et al. for a fixed region of 198 n#*® . G: RNAalifold (MFE) prediction over 25 genomes.
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Table S3. Fully conserved base pairs across 25 complete SARS-CoV-2 and SARS-related genomes with compensatory mutations (related to Fig. 3 and
4). The positions and nucleotide type of base pairs correspond to the reference sequence of SARS-CoV-2 (NC_0405512.2). The mutations are from the
other 24 genomes.
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5" End 3’ End Base Pair Avefag‘? Mutations 5’ End 3’ End Base Pair Aver"‘?"? Mutations
Probability Probability
90 121 GC 0.971 AU/GU 12931 12964 UA 0.851 AU/GC
97 115 AU 0.969 GU/GC 13069 13108 UA 1.000 CG
153 291 UA 0.972 CG 13078 13099 UA 1.000 UG/CG
159 282 GC 0.961 AU/GU 13216 13222 UA 0.958 UG/CG
189 217 GC 0.972 AU 13599 13628 UA 1.000 CG
358 385 UA 0.960 UG/CG 13638 13695 UA 0.986 AU
367 373 CG 0.961 UA 13641 13692 UA 0.977 CG
407 478 GC 0.936 AU 14091 14107 UA 0.989 CG
442 448 CG 0.960 UA/UG 14161 14194 UA 1.000 UG/CG
484 555 UA 0.877 AU 14205 14211 AU 0.933 CG
570 616 AU 0.946 UA/CG 14224 14251 AU 0.996 GU/GC
652 724 AU 0.947 GC 14355 14361 AU 0.996 GC
677 703 GC 0.933 AU 14487 14532 AU 0.973 GU/UA/UG/CG
880 889 AU 0.962 CG 14595 14604 UA 0.999 UG/CG
970 981 GC 0.963 AU 15435 15453 AU 0.778 GC
1231 1251 GC 0.968 AU 15582 15607 AU 0.993 GC
1949 1956 UA 0.929 UG/CG 16023 16032 UA 0.998 AU
2278 2303 UA 0.970 CG 16080 16110 CG 0.971 UA
2855 2875 CG 0.962 UA/UG 16089 16101 GC 1.000 AU
2896 2923 UA 0.973 AU/GU 16125 16155 AU 0.999 UA
2959 2986 UA 0.973 UG/CG 16230 16236 CG 0.999 UA
3712 3721 AU 0.977 GC 16677 16716 GC 1.000 AU
3913 3928 UA 0.979 AU/UG 17241 17256 UA 0.980 CG
3915 3926 AU 0.965 GC 17244 17253 AU 0.980 GC
4096 4108 UA 0.926 UG/CG 17304 17331 CG 0.981 UA
4189 4225 CG 0.980 GC/UG 18006 18054 UA 0.980 AU/GU
4603 4624 UA 0.980 UG/CG 18439 18468 UA 0.980 AU
4978 4987 UA 0.982 CG 18549 18561 AU 0.982 CG
5164 5203 GC 0.975 AU/GU 18717 18774 UA 0.983 UG/CG
5347 5374 UG 0984 AU/GC/UA 19074 19098 UA 0.882 AU
5356 5371 UA 0.953 AU/GC 19386 19419 CG 0.986 UA/UG
5417 5428 UA 0.982 AU 19395 19410 UA 0.981 CG
5476 5521 AU 0.940 GU/GC 19707 19732 CG 0.981 UA
5482 5515 CG 0.984 UA/UG 19708 19731 AU 0.985 GU/GC
5739 5770 GC 0.984 AU 19917 19953 UA 0.980 AU
6034 6055 AU 0.983 GC 19929 19941 UA 0.984 AU
6037 6052 CG 0.982 UA 20172 20187 UA 0.977 CG
6154 6202 AU 0.987 GC 20217 20265 UA 0.939 CG
6328 6343 AU 0.988 UA 20223 20260 AU 0.981 GC
6364 6388 GC 0.989 AU 20523 20541 UA 0.988 CG
6367 6385 GC 0.989 AU 20841 20901 AU 0.988 GU/GC
6458 6490 AU 0.988 GC 20985 20997 AU 0.757 UA
6460 6488 UA 0.988 CG 21163 21201 AU 0.980 GU/GC
6903 6922 CG 0.895 UA 21300 21321 AU 0.988 GU/GC
6977 7006 GC 0.970 AU/GU 21411 21423 CG 0.989 UA
7103 7135 AU 0.891 GU/GC 21513 21523 CG 0.988 UA
7480 7531 UA 0.942 UG/CG 22837 22903 AU 0.988 GU/GC
7558 7597 AU 0.956 GC 23531 23548 AU 0.717 GC
7864 7876 AU 0.972 GU/GC 23621 23647 GC 0.991 AU
8146 8219 CG 0.993 UA 23797 23806 UA 0.931 UG/CG
8147 8218 AU 0.992 GU/GC 23980 24088 AU 0.978 GU/GC
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Table S3 continued from previous page

5" End 3’ End Base Pair Avera%e Mutations 5’ End 3’ End Base Pair Averag(.e Mutations
Probability Probability
8153 8212 UA 0.987 CG 23983 24085 AU 0.974 UA/CG
8317 8332 AU 0.995 GU/GC 24121 24152 AU 0.994 GC
8437 8458 AU 0.915 GU/GC 24553 24586 CG 0.996 UA
8698 8738 UA 0.824 CG 24757 24766 GC 0.974 GU/CG
8860 8881 CG 0.996 AU/UA 25336 25370 AU 0.906 GU/GC
9046 9079 UA 0.995 UG/CG 25991 26004 GC 0.996 AU/GU
9055 9070 AU 0.969 GC 26145 26190 UA 0.997 CG
9427 9433 UA 0.991 CG 26262 26305 GC 0.911 AU
9472 9511 AU 0.996 UA 26630 26658 AU 0.903 GC
9689 9703 AU 0.932 GC 26676 26706 AU 0.986 GC
9842 9874 UA 0.990 UG/CG 26939 26975 AU 0.996 CG
10213 10248 UA 0.997 CG 27412 27456 UA 0.998 UG/CG
10651 10669 UA 0.998 CG 27415 27453 GC 0.994 AU
10864 10906 AU 0.926 GC 27603 27613 CG 0.996 UA
10873 10898 AU 0.946 GC 27699 27744 UA 0.935 CG
10984 11026 AU 0.976 GC 27717 27725 GC 0.990 AU/GU
11782 11803 AU 0.981 GU/GC 28642 28664 UA 0.997 UG/CG
11788 11797 CG 1.000 UA 28910 28930 AU 0.997 GU/GC
11971 12013 AU 0.966 GU/GC 29567 29597 AU 0.999 GC
11989 11995 UA 0.763 UG/CG 29635 29651 CG 0.999 AU
12538 12577 UA 0.940 UG/CG 29637 29649 UA 0.991 CG
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Table S4. Fully conserved structures among 25 genomes (related to Fig. 3 and 4). Regions with compensatory mutations are annotated with alternative
base pairs. Novel regions compared with Rangan et al.?%2* are annotated with stars.
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Region Sequence & Structure Compensatory
Mutations
45-59 GAUCUCUUGUAGAUC
((((Cee))
84-127 CUGUGUGGCUGUCACUCGGCUGCAUGCUUAGUGCACUCACGCAG GC ->AU
(CCCCECCCCCCCCELCM NN AU ->GC
626-643%* GUUCUUCUUCGUAAGAAC
(((((C)))
1324-1341 UGCCACUACUUGUGGUUA
(((((CHSMND]
1685-1698 GCCAUUAUUUUGGC
(((C)))]
1785-1800* GUAAUUUUAAAGUUAC
(M)
2818-2837* AGUACUUAAUGAGAAGUGCU
(M)
4973-4993 GUGUUUACAACAGUAGACAAC UA ->CG
(CCCCCCC--mn-)
5021-5033 AUGUCAAUGACAU
(e )
6450-6498 UUGAGUGUAAUGUGAAAACUACCGAAGUUGUAGGAGACAUUAUACUUAA AU ->GC
(=) BN UA ->CG
8078-8084 CCAAUGG
((-)
10494-10509°* GUGUUGGUUUUAACAU
(CCCC-0m)
11131-11140 UGCUUUUGCA
(-0
12203-12218* UUGAAGAAGUCUUUGA
(CCCC-0)
12257-12268 CAACGUAAGUUG
(((C--)
12386-12412 GAUAAUGAUGCACUCAACAACAUUAUC
(CCCCCCCCene)) D)
12672-12685 CUGUCAAAUUACAG
(((C)))]
12904-12926* UAGGUUUGUUACAGACACACCUA
(CCCCECC-0D-0)
12970-12988* CAACCUAAAUAGAGGUAUG
(((((GE))B)
13409-13422* AGUUGUGAUCAACU
(€G-
14729-14769 AGGAAGGAAGUUCUGUUGAAUUAAAACACUUCUUCUUUGCU
(SR () EIIB)
14773-14790 GAUGGUAAUGCUGCUAUC
(CCCCCCm)
14794-14818 GAUUAUGACUACUAUCGUUAUAAUC
(CCCCCCCCernae I
15254-15269* UUUAUAGUGAUGUAGA
(CCCC-0)
15430-15458* AGUGAAAUGGUCAUGUGUGGCGGUUCACU AU ->GC
(CCCE LM
15502-15509* GCUUAUGC
(€.
15618-15628 ACUUUAUGAGU
(((E))
15775-15801* AUAAAGAACUUUAAGUCAGUUCUUUAU
(CCCCCCCCCme)INN)
16013-16042%* GGUUCGUGUCUUUAGCUAUAGAUGCUUACC UA ->AU

16180-16194

16955-16973*

(((E((((C)N)B))
AGGUAUUGGGAACCU
()
UAGUGCCACAAGAGCACUA

(CCCCCC2m)
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Table S4 continued from previous page

Region Sequence & Structure Compensatory
Mutations
17236-17262 AUACCUGCACGUGCUCGUGUAGAGUGU UA ->CG
(CCCCCCCCC-0mn-m) AU ->GC
17462-17470 GCACAUUGC
()
18547-18563* UUAAGUGACACACUUAA AU ->CG
(CCCCc-mm
18660-18674* UUGUCUAUGUGAUAG

18848-18872%*

19036-19043*

19973-20002*

20103-20127*

20709-20719*

23101-23110%*

23119-23128

23796-23807

24305-24319

25380-25407*

25937-25959

26209-26224

26358-26379

26581-26600

26713-26740

27635-27651*

28755-28766

29145-29166

29210-29225

29240-29253

29288-29306

29321-29347

29470-29488*

29548-29613

(¢
CUAGUUGUGAUGCAAUCAUGACUAG

(CCCCCC-mmm

GGUAACCC

()
CACUCACUGUCUUUUUUGAUGGUAGAGUUG
CCCCCCCCCeees I N-)
UCUUAAUGGAGUCACAUUAAUUGGA

(((((((C=m)))BS))]
GCAAAGAAUGC

UUCUUUUGAA
(&)

UGCACCAGCA

(&)

AUUCAACUGAAU UA ->CG
(™)

GUUCUCUAUGAGAAC

(&)

CAUAAACGAACUUAUGGAUUUGUUUAUG

CCCCCCCCC-n-mmnmnmnm,

AUGACUACCAGAUUGGUGGUUAU

(CCCCCE-mmmm
GUGCCUUUGUAAGCAC

AUUGUGUGCGUACUGCUGCAAU
((CCCCmm)
GGAACCUAGUAAUAGGUUUC
(CCCCCCC-mmm
GUUUUGUGCUUGCUGCUGUUUACAGAAU
((CCCCCC (G20
CAGUUUCACCUAAACUG

()
UUCCUCAAGGAA

(((C-m)
UAAUCAGACAAGGAACUGAUUA

(= DN)
GCGUUCUUCGGAAUGU

(-0
GAAGUCACACCUUC

UUGGAUGACAAAGAUCCAA

(((((E==M))

GUCAUUUUGCUGAAUAAGCAUAUUGAC

(G En)))]

UUUGGAUGAUUUCUCCAAA

(((CCC.C-00M)
CACAAGGCAGAUGGGCUAUAUAAACGUUUUCGCUUUUCCGUUUACGAUAUAUAGUCUACUCUUGUG UA ->CG

(CCCCECCCOCCCOCOCE G (Corrr s D= DM
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>NC_045512.2_Wuhan_seafood_market_pneumonia_virus_isolate_Wuhan-Hu-1l__complete_genome:
CGUUCGGAUGCUCGAACUGCACCUCAUGGUCAUGUUAUGGUUGAGCUGGUAGCAGAACUCGAAGGCAUUCAGUACGGUCGUAGUGGUGAGACACUUGGUGUCCUUGUCCCUCAUGUGGGCGAARAUACCAGUGGCUUACCGC
CoCCCCCeOOeEE et 000N ))«e))) ) e e )))ea))))))) ) ))) eeeens L OO O O O O O O O O e O O (I 1)))))2))))))))))))))))
>hCoV-19_Sweden_20-53189_2020_EPI_ISL_648168_2020-10-13_Europe:
CGUUCGGAUGCUCGAACUGCACCUCAUGGUCAUGUUAUGGUUGAGCUGGUAGCAGAACUCGAAGGCAUUCAGUACGGUCGUAGUGGUGAGACACUUGGUGUCCUUGUCCCUCAUGUGGGCGAAAUACCAGUGGCUUACCGC
COCCCOCOOOE et (002 )) w2000 200 e e a))) e ) ) ) ) eeeees Lo O O O O O O O O O O e O O 1)))))2))))))))))))))))
>hCoV-19_Sweden_20-53470_2020_EPI_ISL_710589_2020-11-19_Europe:
CGUUCGGAUGCUCGAACUGCACCUCAUGGUCAUGUUAUGGUUGAGCUGGUAGC. CUCGAAGGCAUUCAGUACGGUCGUAGUGGUGAGACACUUGGUGUCCUUGUCCCUCAUGUGGGCGAARUACCAGUGGCUUACCGC
CoCCCCCOOOOEE CeeeeeeEe e COCEae) ) )) «e))))))) e e ))) e a))))))) ) ))) eeeens O O O O O O O O O O P O O PP ))))))2))))))))))))))))
>hCoV-19_England_MILK-B3D791_2020_EPI_ISL_704698_2020-11-01_Europe:
CGUUCGGAUGCUCGAACUGCACCUCAUGGUCAUGUUAUGGUUGAGCUGGUAGC, CUCGAAGGCAUUCAGUACGGUCGUAGUGGUGAGACACUUGGUGUCCUUGUCCCUCAUGUGGGCGARAUACCAGUGGCUUACCGC
COCCCCOOOOOeE et a3 eea))))))) ) =))))))) ) ) ) eeeens L O O O O O O L e 1)))))2))))))))))))))))
>hCoV-19_Scotland_QEUH-A77C42_2020_EPI_ISL_638950_2020-10-14_Europe:
CGUUCGGAUGCUCGAACUGCACCUCAUGGUCAUGUUAUGGUUGAGCUGGUAGCAGAACUCGAAGGCAUUCAGUACGGUCGUAGUGGUGAGACACUUGGUGUCCUUGUCCCUCAUGUGGGCGAARAUACCAGUGGCUUACCGC
CoCCCCCeOeeeE et 000N ))«w))) )0 -w)))ea))))))) ) ))) eeeees L OO O O O O O O O Y O G O I 1)))))))))))))))))))))
>hCoV-19_England ALDP-9D8D3E_2020_EPI_ISL_576666_2020-09-18_Europe:
CGUUCGGAUGCUCGAACUGCACCUCAUGGUCAUGUUAUGGUUGAGCUGGUAGCAGAACUCGAAGGCAUUCAGUACGGUCGUAGUGGUGAGACACUUGGUGUCCUUGUCCCUCAUGUGGGCGAARUACCAGUGGCUUACCGC
COCOCCOOCOE COOOEeEEe e CC0Cae))))))) e ) )) e ea))) ) )))))) ) a))) e L O O P O O G O O O P O O G P Y (PP 1))))))))))))))))))))))
>hCoV-19_England_ALDP-BSESFA_2020_EPI_ISL_723671_2020-11-08_Europe:
CGUUCGGAUGCUCGAACUGCACCUCAUGGUCAUGUUAUGGUUGAGCUGGUAGC. CUCGAAGGCAUUCAGUACGGUCGUAGUGGUGAGACACUUGGUGUCCUUGUCCCUCAUGUGGGCGAAAUACCAGUGGCUUACCGC
CoCCCCCOOOOEE CeeereeeEe e (00N )) «e))) ) ee)))e))))))) ) ))) eeeens Lo OO O O O O O O O P O Y Y P PP 1)))))2))))))))))))))))
>hCoV-19_Sweden_20-09856_2020_EPI_ISL_654499_2020-10-20_Europe:
CGUUCGGAUGCUCGAACUGCACCUCAUGGUCAUGUUAUGGUUGAGCUGGUAGCAGAACUCGAAGGCAUUCAGUACGGUCGUAGUGGUGAGACACUUGGUGUCCUUGUCCCUCAUGUGGGCGAARAUACCAGUGGCUUACCGC
COCCCCOOOOEEE et 003203 eea)))))))we))) ) )))) ) a)) ) eeenns O OO O O O O O O O O O O (I 1)))))2))))))))))))))))
>hCoV-19_England_QEUH-A61A50_2020_EPI_ISL_706936_2020-10-13_Europe:
CGUUCGGAUGCUCGAACUGCACCUCAUGGUCAUGUUAUGGUUGAGCUGGUAGCAGAACUCGAAGGCAUUCAGUACGGUCGUAGUGGUGAGACACUUGGUGUCCUUGUCCCUCAUGUGGGCGAAAUACCAGUGGCUUACCGC
L O O O O O O O O O O O S O (Y )))))) e ) )))) e ))) ) )))))) ) ) ) ) e L O O O O O O O O O O G O 1)))))2)))))))))))))))))
>hCoV-19_England_CAMC-B7B1B7_2020_EPI_ISL_723990_2020-11-12_Europe:
CGUUCGGAUGCUCGAACUGCACCUCAUGGUCAUGUUAUGGUUGAGCUGGUAGC. CUCGAAGGCAUUCAGUACGGUCGUAGUGGUGAGACACUUGGUGUCCUUGUCCCUCAUGUGGGCGAARUACCAGUGGCUUACCGC
CoCCCCCEOOEEE COeereEEe e COCee)) )Y e))) ) e ))) e a))))))) ) ))) eeeees L O O O S O O O O O O O O (PP ))))))2))))))))) ) ))
>hCoV-19_England_CAMC-9C1B01_2020_EPI_ISL_573220_2020-09-09_Europe:
CGUUCGGAUGCUCGAACUGCACCUCAUGGUCAUGUUAUGGUUGAGCUGGUAGC. CUCGAAGGCAUUCAGUACGGUCGUAGUGGUGAGACACUUGGUGUCCUUGUCCCUCAUGUGGGCGAAAUACCAGUGGCUUACCGU
COCCCCOOOOEOE e C0ea)))) ) eea))) ) ))«e))) = ))))))) ) ) ) e L O O O O O O O O P O P PP 1)))))2))))))))) ) )
>hCoV-19_Latvia_187_2020_EPI_ISL_639684_2020-10-03_Europe:
CGUUCGGAUGCUCGAACUGCACCUCAUGGUCAUGUUAUGGUUGAGCUGGUAGCAGAACUCGAAGGCAUUCAGUACGGUCGUAGUGGUGAGACACUUGGUGUCCUUGUCCCUCAUGUGGGCGAAAUACCAGUGGCUUACCGC
CoCOCCCeeeeeE et CO0aaa))) ) ))«ve))) ) ew)))aa))))))) ) ))) eeeees L O O O O O L O e N (S 1)))))))))))))))))))))
>hCoV-19_Wuhan_HB-WHCM-114_2020_EPI_ISL_454994_2020-03-02_Asia:
CGUUCGGAUGCUCGAACU: CAGAACUCGAAGGCAUUCAGUACGGUCGUAGUGGUGAGACACUUGGUGUCCUUGUCCCUCAUGUGGGCGARAUACCAGUGGCUUACCGC
L O L G (O Y P R 1)) )N ) )) ) e L O OO O O O O O O G O O A O PP 1)))))2))))))))) ) ))
>hCoV-19_USA_CA-ALSR-4490_2020_EPI_ISL_666966_2020-10-30_NorUhAmerica:
CGUUCGGAUGCUCGAACUGCACCUCAUGGUCAUGUUAUGGUUGAGCUGGUAGC. CUCGAAGGCAUUCAGUACGGUCGUAGUGGUGAGACACUUGGUGUCCUUGUCCCUCAUGUGGGCGAARUACCAGUGGCUUACCGC
CoCCCCCOOOOEEa COeereeEe e (00N )) e))) ) e e )))ea))))))) ) ))) eeeens N O N A O P Y I 1)))))2))))))))) ) ))
>hCoV-19_England_ALDP-9B601F_2020_EPI_ISL_572982_2020-08-28_Europe:
CGUUCGGAUGCUCGAACUGCACCUCAUGGUCAUGUUAUGGUUGAGCUGGUAGCAGAACUCGAAGGCAUUCAGUACGGUCGUAGUGGUGAGACACUUGGUGUCCUUGUCCCUCAUGUGGGCGARAUACCAGUGGCUUACCGC
COCCOCOOOOEE et 00303 eea))) ) )) «e)))))))))) ) ) ) eeenns O OO O O O O O O O O O O P (I 1)))))2))))))))))))))))
>hCoV-19_England_CAMC-9C01A6_2020_EPI_ISL_573173_2020-09-08_Europe:
CGUUCGGAUGCUCGAACUGCACCUCAUGGUCAUGUUAUGGUUGAGCUGGUAGCAGAACUCGAAGGCAUUCAGUACGGUCGUAGUGGUGAGACACUUGGUGUCCUUGUCCCUCAUGUGGGCGARAUACCAGUGGCUUACCGC
[ O N N N Y O A O D D R D S DD RS D R D R R R DR R R R R IFS P BB IR Lo O OO O O O O O O O O O Y O PP 1))))))))))))))))))))))
>NC_004718.3_SARS_coronavirus_Tor2__complete genome:
CGUUCUGAUGCCUUAAGCACCAAUCACGGCCACAAGGUCGUUGAGCUGGUUGCAGAAAUGGACGGCAUUCAGUACGGUCGUAGCGGUAUAACACUGGGAGUACUCGUGCCACAUGUGGGCGAARCCCCAAUUGCAUACCGC
COCCOCOE Coa COCOOCa e a)))ea)))) ) ) eeees ) e ) ) e COCOCO0e e COCC O OO (e e o)) ))) ) )))))) e e ) ) ))))
>GU553363.1_SARS_coronavirus_HKU-39849_isolate_TCVSP-HARROD-00001__complete_genome:
CGUUCUGAUGCCUUAAGCACCAAUCACGGCCACAAGGUCGUUGAGCUGGUUGCAGAAAUGGACGGCAUUCAGUACGGUCGUAGCGGUAUAACACUGGGAGUACUCGUGCCACAUGUGGGCGAAACCCCARAUUGCAUACCGC
[ e N A N N R AN A S DO DD IS DD IS DR DIFD D I Yo ) ) e OO COCC O O e )Y D)) ) e 1))
>AY515512.1_SARS_coronavirus_HC_SZ_61_03__complete_genome:
CGUUCUGAUGCCUUAAGCACCAAUCACGGCCACAAGGUCGUUGAGCUGGUUGCAGAAAUGGACGGCAUUCAGUACGGUCGUAGCGGUAUAACACUGGGAGUACUCGUGCCACAUGUGGGCGAAACCCCAAUUGCAUACCGC
O e O N A N N N A O DD S DD RS DD D IS B I 1)) ) )) ) e OO COCC OGO e )Y D)) ) e 1))
>AY297028.1_SARS_coronavirus_zJ01__complete_genome:
CGUUCUGAUGCCUARAGCACCUAUCACGGCCACAAGGUCGUUGAGCUGGUUGCAGAARUGGACGGCAUUCAGUACGGUCGUAGCGGUAUAACACUGGGAGUACUCGUGCCACAUGUGGGCGAAACCCCARUUGCAUACCGC
L O O e O O O B e O O N L G N e B R B B R B B I B B A B A I D)) ))) ) ) e COCOCCCennns [ N O N N P N O R R DR R DR DR R DR I )))))))
>DQ182595.1_SARS_coronavirus_2zJ0301_from_China__complete_genome:
CGUUCUGAUGCCUUAAGCACCAAUCACGGCCACAAGGUCGUUGAGCUGGUUGCAGAAAUGGACGGCAUUCAGUACGGUCGUAGCGGUAUAACACUGGGAGUACUCGUGCCACAUGUGGGCGAARCCCCAAUUGCAUACCGC
[ T A N N N A R AN A P DO DD I DD IS DD DIFD B I 1)) ) ) ) e OO COCC O OO e )Y D)) ) e 1))
>MG772934.1_Bat_SARS-like_coronavirus_isolate_bat-SL-CoVZXC21__complete_genome:
CGUUCUGAUGCCCGAACUGCACAUCAUGGCCAUGUUAUGGUCGAAUUAGUAGCAGAACUCGAUGGCAUUCAGUACGGUCGUAGUGGUGAGACACUUGGUGUUCUUGUCCCUCAUGUGGGAGAGGUACCAGUUGCUUACCGU
[ N N N N P A N A R A A IS D D DD B I 1)) ))) ) ) ) e [ O O O L P A P (PP 1)))2))))))))))-)))))))
>DQ022305.2_Bat_SARS_coronavirus_HKU3-1__complete_genome:
CGAUCUGAUGCUCUAAGCACCARUCACGGCCACAAGGUUGUGGAAUUGGUUGCAGAAUUAGAUGGCAUUCAGUUCGGUCGUAGCGGUAUAACACUGGGAGUUCUCGUGCCACAUGUGGGCGAAACCCCAAUCGCAUACCGU
CoCCCOCOOEeeeeeeeeeeeeeeeetaa)))N) =200 0) wee)))) e ))) ) ) e COCCCCCnnn [ O N O N N O DR R D DD DR R R DD I )))))))
>DQ648857.1_Bat_coronavirus_(BtCoV_279_2005) __complete_genome:
CGUUCUGAUGCCCAGGGCACCAAUCACGGCUAUAAGGUCGUUGAAUUGGUUGCAGAAUUGGACGGCAUUCAGUACGGUCGUAGCGGUACAACACUGGGAGUCCUCGUGCCACAUGUGGGCGAAACCCCAGUUGCGUACCGU
COCOCCCCOO e COCOOOEEEEEEEECeaa)))) )N ) e 1)) ) ) ) e COCCCCCa e COCOO e (OO ) )))) ) 200000 )) ) ) ))))))
>BetaCoV_bat_Yunnan_RatG13_2013_EPI_ISL_402131:
CGUUCUGAUGCUCGAACUGCACCUCAUGGCCAUGUUAUGGUUGAGCUGGUAGCAGAACUUAAUGGCAUUCAGUAUGGUCGUAGUGGUGAGACACUCGGUGUCCUUGUCCCUUAUGUGGGCGAARCACCAGUGGUUUACCGC
CoCCCCCOOE 0O CeeCEEaea) NI ) ) )))) ee))eea)))))a))) ) e COCCCOC0 OO0 OO 0200090209090 .0))0)))))

Fig. S13. A glimpse of the whole MSA and aligned predicted structures for 25 genomes from LinearTurboFold, which are available in https:/github.com/LinearFold/
LinearTurboFold/blob/main/sars-cov-2_results/. Each genome corresponds to three lines: name, aligned sequence and aligned structure, respectively.

25 | Li etal


https://github.com/LinearFold/LinearTurboFold/blob/main/sars-cov-2_results/
https://github.com/LinearFold/LinearTurboFold/blob/main/sars-cov-2_results/
https://doi.org/10.1101/2020.11.23.393488
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.23.393488; this version posted September 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Table S5. Accessibility and conservation of target regions for public RT-PCR forward/reverse primers and probes.®® The accessibility is computed by
LinearTurboFold, and it is underlined if larger than zero. The conservation on 9 SARS-related genomes is the number of mutated sites. The conservation
on the ~2M SARS-CoV-2 dataset is the percentage of exact matches, which is underlined or bold if less than 0.97 or 0.5, respectively. (The average
sequence identity of SARS-CoV-2 genomes is 0.9987, and the average length of primers and probes is 23 nt. Therefore, the probability of randomly
sampling a region of length 23 nr without mutations is 0.998723 = 0.97).

Forward Primer / Probe / Reverse Primer

Gene Institute Conservation
Start Length Accessibility SARS-related SARS-CoV-2 (2M)
# mut. site exact match
ORF1abnsp9 Institut Pasteur (1) 12689 /12717 /12779 18/21/18 0.0000/0.0000/0.0160  4/3/5  0.9989/0.9967 / 0.9829
" ORFiabnsp10 ChinaCDC (1)  13341/13377 /13441 21/30/19 0.0000/0.0000/0.0000  4/3/11  0.9937/0.9875/0.9868
" ORFiabnspi2 Institut Pasteur (2)  14079/14105/14166 19/19/20 0.0000/0.0001/0.0000 4/8/9  0.9978/0.9332/0.9941
(RdRp) Charite Germany (1) 15430 /15469 /15504 22/25/26 0.0000/0.0000/0.0000  0/6/1 0.9167/0.9938 / 0.9982
"ORFiabnspl4 HKU (1) 18777 /18849 /18888 20/24/21 0.0000/0.0000/0.0000  1/1/3  0.9958/0.9969 /0.9933
" E Charite Germany (2) 26268/26332/26359 26/26/22 0.0000/0.0000/0.0000 0/0/0  0.9958/0.9969 /0.9933
77777777 CDC (1)  28286/28309/28334 20/24/24 0.0000/0.0000/0.0000 12/2/8  0.9913/0.9762/0.9934
NIH Thailand 28319 /28341 /28357 20/16/19 0.0000/0.0026/0.0000  3/6/6  0.9908/0.9953 / 0.9927
CDC (2) 28680 /28704 /28731 22/24/21 0.0000/0.0000/0.0010  4/4/2  0.9862/0.9796 / 0.9895
N Charite Germany (3) 28705 /28753 /28813 19/25/20 0.0000/0.0003/0.0000 2/0/6  0.9914/0.9920 / 0.9858
China CDC (2) 28880 /28934 / 28957 22/20/22 0.0710/0.0000/0.0000  5/7/4  0.2734/0.9911/0.4844
NIID Japan 29124 /29222 /29262 20/20/20 0.0000/0.0000/0.0000  6/1/7  0.9953/0.9785/0.9853
HKU (2) 29144 /29179 /29235 22/20/19 0.0000/0.0000/0.0000  2/2/1 0.9904 / 0.9945 / 0.9895
CDC (3) 29163 /29188 /29212 20/23/18 0.0000/0.0000/0.0000 2/6/2  0.9892/0.9797 / 0.9901
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Table S6. Accessible and conserved regions (related to Fig. 5) with two kinds of constraints on conservation: 1) at most three mutations on SARS-related
genomes; 2) the average sequence identity on the SARS-CoV-2 dataset at least 0.999. The start positions and sequences correspond to the reference
sequence of SARS-CoV-2 (NC_0405512.2). The accessibilities are calculated from folding with homologs (LinearTurboFold) and single sequence folding
(LinearPartition), respectively. We searched for these regions among human representative transcript set (RefSeq Select RNA sequences, refseq_select)
using BLAST, and several regions have the exact matches with human transcripts (underlined). Using single sequence folding can only get one accessible
region (bold). The conservation of these regions on 9 SARS-related genomes is the number of mutated sites. The table also shows two types of
conservations on a large SARS-CoV-2 dataset containing ~2M genomes submitted to GISAID up to June 30, 2021: the average sequence identity with
reference sequence, and the percentage of exact matches of the whole region, respectively.

Accessibility Conservation
) BLAST GC
Region  Start Length Sequence Gene LinearTurboFold (Homologous Folding) ~ Single Seq.  SARSY (9) SARS-CoV-2 (M)  iareh (%)
Average Range AG(kcal/mol) Folding Range  # Mut. Sites  Identity / Exact

Region1 739 18 AGAAAACUGGAACACUAA ORF1abnsp! 0.71+0.04 062-0.76 0.22+0.04  0.00—0.00 218 0.9998/0.9970 1418 33

" Region2 995 17 CGUUCUGAAAAGAGCUA 099+£000 0.99-099 0.01+000 000-000 347  09999/0.9985 1417 41
Region3 998 17 UCUGAAAAGAGCUAUGA ORFiabnsp2  1.00+0.00 1.00—1.00 0.00+0.00  0.00 - 0.00 317 0.9999/0.9984 1517 35
Regiond 1001 15 GAAAAGAGCUAUGAA 0.74+0.08 0.51-0.80 0.19+007  0.000.00 3/15 0.9999/0.9985 1515 33

" Region5 6765 16 AUUAUAUGCCUUAUUU ;;F:a; n;p; T 096+001 095-097 0024000 030-040 316  1.0000/0.9993 1416 19
Region6 6767 15 UAUAUGCCUUAUUUC (Plooy | 09+001 0.95-097 0026000  037-042 3/15 0.9999/0.9981 1515 27
Region7 7691 22 CAGUUUAAAAGACCAAUAAAUC 0.77+0.03 0.69-0.83 0.16=003  0.00-0.00 3/22 1.0000/0.9991  20/22 27

" Region8 9527 18 UCAUUCACUGUACUCUGU 066+003 0.60-0.70 026+003 000-0.00 318  09997/0.9945 1518 39
Regiond 9530 17  UUCACUGUACUCUGUUU ORFtabnsps 004+ 003 057068 0286003  0.00-0.00 317 0.9998/0.9965 1517 35
Region10 9905 15 UACAAGUAUUUUAGU 0.75+0.10 0.51-0.82 0.18+010  0.00-0.00 215 0.9999/0.9980 1515 20
Region 11 10010 17  CUUUACCAAGCACCACA 0.75+0.06 0.54-0.79 0.18+0.06  0.00-0.01 317 0.9999/0.9989 1517 47

"Region12 11536 25 UAUUGUUUUUAUGUGUGUUGAGUAU 0.67+006 059-078 025+005 000-001  3/25  09998/0.9961 17/25 24
Region 13 11540 22 GUUUUUAUGUGUGUUGAGUAULL__ ' 0794008 069-092 015006 0.00-002 3/22 0.9998/0.9965  17/22 27
Region 14 11543 20 UUUAUGUGUGUUGAGUAUUG 0.78+0.08 0.69-0.92 0.15+006  0.00-0.00 3/20 0.9998/0.9970  17/20 30
Region15 11547 19  UGUGUGUUGAGUAUUGCGC 0.79+0.08 0.69-0.92 0.15+006  0.00-0.00 319 0.9998/0.9954 1519 47

"Region16 13454 15 CAAUCGUUUUUAAAC ~ ORFiabnspli 0.96+004 0.88-098 0024002 007-011 815  09998/09972 1415 27

"Region17 15141 22 CAAUAGACAGUUUCAUCAAAAA (;R;1;b7n;p;27 0.61+£005 050-0.67 030+006 000-0.00 322  09999/0.9986 1822 27
Region 18 15890 15 CAAUGCUAGUUAAAC (amp | 063+006 050-068 0294006 000-023 115 0.9999/0.9991 1315 33
Region 19 15997 16  ACACUUAUGAUUGAAG 0.72+0.03 0.65-0.76 020003  0.00-0.40 216 1.0000/0.9997 1316 31

"Region20 17194 22  AAGGCAUUAAAAUAUUUGCCUA 1004000 099-1.00 000+000 000-000  3/22  09999/0.9989 16722 27
Region21 18032 17 CUUUACAAGCUGAAAAU ORF1abnspl3 0.67+005 057-0.73 0.25+0.05  0.00—0.00 217 0.9999/0.9978 147 29
Region22 18035 15 UACAAGCUGAAAAUG (helicase) ~ 0.91+0.10 0.54—0.95 0.07+008  0.00-0.02 115 1.0000/0.9993 1315 33
Region 23 18036 17  ACAAGCUGAAAAUGUAA 0.93+0.09 0.57-0.97 0.05+008  0.00-0.02 217 0.9998/0.9992 1517 29

"Region24 20134 20  GUAAAAACACAGUUCAAUUA 707R;1;b7n;p1; T 062+005 052-068 0294005 000-007 320  09998/0.9959 1420 25
Region 25 20135 21  UAAAAACACAGUUCAAUUAUU 0.63+0.04 0.54—0.68 029004  0.00-0.07 3/21 0.9998/0.9967  14/21 19

Region29 28402 16 AGGUUUACCCAAUAAU 1.00 +0.00 0.99-1.00 0.00 £ 0.00 0.00-0.81 116 0.9999 / 0.9985 14/16 31
Region 30 28690 15  GAAUACACCAAAAGA 0.78+0.01 0.77-0.78 0.16 & 0.00 0.01-0.52 3/33 0.9992/0.9879 14/15 33
Region 31 28691 20  AAUACACCAAAAGAUCACAU N 0.77 £0.01 0.76-0.78 0.16 4= 0.00 0.00-0.52 3/20 0.9994 /0.9883 15/20 30
Region 32 28694 18  ACACCAAAAGAUCACAUU 0.77 £0.01 0.76-0.78 0.16 0.00 0.01-0.52 3/18 0.9994 / 0.9886 16/18 33
Region 33 29075 15  UACAAUGUAACACAA 1.00+0.00 1.00-1.00 0.00 £ 0.00 0.01-0.83 3/15 0.9996 / 0.9942 12115 27
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Table S7. Accessible and conserved regions with a loose constraint on conservation: the average sequence identity on the ~2M SARS-CoV-2 dataset is
at least 0.999. The table keeps the same format as Tab. S6 and only displays new regions not included in that table.

Accessibility Conservation
_ BLAST GG
Region  Start Length Sequence Gene LinearTurboFold (Homologous Folding) ~ Single Seq.  SARSY (9) SARS-COV-2 (M)  pach (%)
Average Range AG(kcal/mol) Folding Range  # Mut. Sites  Identity / Exact
Region1 1094 19  UUAAAUUCCAUAAUCAAGA 0.86 £0.03 0.80-0.89 0.10+£002 0.01-0.10 8/19 0.9998/0.9963 1719 21
Region2 1301 19 ACUGAGAAUUUGACUAAAG 0.75+0.05 0.64-0.79 018004  0.00-0.00 8/19 0.9997/0.9950  14/19 32
Region3 1359 18 UUGUUAAAAUUUAUUGUC ORFlabnsp2  0.75+0.02 072-0.81 047+002  0.09-0.22 7118 0.9999/0.9989  16/18 17
Region4 1420 18 CGAAUACCAUAAUGAAUG 0.94+£000 0.94-0.95 0.04+000 0.01-003 718 0.9997/0.9941 1318 33
Region5 2550 19  AUUUACAACCAUUAGAACA 0.93+0.03 0.89-096 0.04=+002 0.24-0.31 1219 09998/0.9971 1319 26
" Region6 3648 15 UUCAACUUCUUAAGA 093+£002 091-096 004+001 000-003 815  09999/0.9980 14/15 27
Region7 3733 19  UGACCCUAUACAUUCUUUA 0.91+£001 0.89-091 006+000 0.00-0.01 8/19 0.9996/0.9928 1319 32
Region8 4405 17  ACAUGCAGAAGAAACAC ORFiabnsp3 055002 0.51-059 036002 0.00-0.00 6/17 0.9999/0.9987 1517 41
Region9 4406 21 CAUGCAGAAGAAACACGCAAA (PLpro) 0.75+0.03 0.71-0.80 0.18+002  0.00-0.00 7/21 0.9999/0.9975  17/21 43
Region 10 4864 26 AAGUGUAUAUUACACUAGUAAUCCUA 0.85+0.07 0.60-0.88 0.11+006 0.00-0.00 14/26  0.9999/0.9975  16/26 27
Region11 5773 23  UAAACAUAUAACUUCUAAAGAAA 0.64+£004 057-070 028+004 0.00-0.21 9/23 0.9998/0.9961  16/23 17
Region12 6129 16  UUAAAGUUACAUUUUU 097 £0.04 0.79-0.98 0.02+003 0.01-0.11 6/16 1.0000/0.9996  16/16 13
Region 13 6499 32  ACCAGCAAAUAAUAGUUUAAAAAUUACAGAAG 0.61+£0.02 0.55-0.63 0.31+003 0.00-0.00 1532 09997/0.9941 19532 25
Region 14 6622 19 GAAAACCCUUGCUACUCAU 0.95+000 0.94-096 003+000 0.00-0.01 8/19 0.9993/0.9869 1519 42
Region 15 6697 15 UUUUCUUAAGAAAGU 0.96 £0.00 0.95-0.97 0.03+000 0.00-0.00 1115 09995/0.9920 1415 20
Region 16 7010 15 GCUUUAGGUGUUUUA 076 £0.03 0.69-0.79 0.17£0.02  0.00-0.01 7115 0.9999/0.9982  14/15 33
Region17 7073 20 UAUUUGAACUCUAGUAAUGU 0.85+002 0.83-0.88 010+001 0.00-024 7/20 0.9998/0.9967 1520 25
Region18 7725 19 CUUCUUAGCAUCGUUGAUAG 0.76 £0.06 0.69-0.86 0.17+0.05 0.00-0.00 8/19 0.9996/0.9930 1519 37
‘Region19 9336 15 UAAAUUUACUUAGUA (;R;;;n;p; ©1.00£000 1.00-1.00 000+000 000-095 815  09998/0.9976 1315 13
Region20 9555 15 UUUACUCAUUCUUAC 0.89 £0.01 0.88-0.91 007001  0.00-0.62 s 0.9995/0.9927 1315 27
"Region21 11629 18  UUUUUGUACUUGUUACUU 5R}1;k;n;p(; T 0774007 069-088 0.16+005 000-0.27 818  09998/0.9981 14/18 22
Region22 12825 17  AUUUACAGGAUUUGAAA 0.75+0.06 0.62-082 0.18+0.05 0.00-0.01 917 0.9999/0.9991  16/17 24
"Region23 14170 16 AUAUUAACCUUGACCA  ORFlabnspi2 (RdRp) 0.90+0.01 0.88—-0.92 006+001 000-0.27 746  00997/0.9948 1416 31
‘Region24 16339 18 AUAUCAACAUCACAUAAA  ORFlabnspl3  0.96+006 0.83—1.00 0024004 000-013 518  00999/0.9988 1518 22
Region25 17651 16  UUAAAAUGUUUUAUAA (helicase) 0.96+£0.00 0.95-0.97 0024000 0.00-0.17 5/16 0.9999/0.9988 1516 6
"Region 26 20652 16 AUUACAAUCUAGUCAA ORF1abnspl5  073+£002 070-0.77 019+002 000-038 616  09995/0.9918 1316 25
"Region27 20844 24 CUAUAAUAUGAGAGUUAUACAUUUORF1abnsp16  1.00+0.00 1.00-1.00 0004000 000-0.02  7/24  00999/0.9982 1424 21
‘Region28 21622 16  CAGAACUCAAUUACCC 0.81+£003 078-089 013+002 000-036 1516  09992/0.9872 1316 44
Region29 21922 16  UAAUAACGCUACUAAU 0.96£0.01 0.93-0.97 003+001  0.00-0.00 7116 0.9999/0.9988  14/16 25
Region30 21950 15 GUCUGUGAAUUUCAA 0.73+0.05 0.67-0.82 0.19+004 0.00-0.11 6/15 0.9999/0.9983  14/15 33
Region 31 22876 24  UAACAAUCUUGAUUCUAAGGUUGG 0.94+0.04 0.86-097 004+002  0.00-0.00 23/24  0.9993/0.9825  16/24 33
Region32 23031 16  UUCCUUUACAAUCAUA S 0.98+£0.00 0.98-0.98 001000 0.00-0.04 1416 09995/0.9920 13116 25
Region 33 24058 15 CUUCAUCAAAGAAUA 0.75+£0.13 0.51-0.87 0.19+0.12  0.00-0.00 5/15 0.9999/0.9988  14/15 27
Region 34 24166 19  AAUGAUUGCUCAAUACACU 0.73+£0.06 0.61-0.78 0.20+005 0.00-0.16 8/19 0.9999/0.9977 1719 32
Region35 24170 16 AUUGCUCAAUACACUU 056 £0.03 0.50-0.60 0.36+004 0.00-0.08 8/16 0.9999/0.9978  13/16 31
Region 36 24368 17 GACUCACUUUCUUCCAG 0.68 £0.07 0.53-0.74 0.24+007  0.00-0.01 8/17 0.9992/0.9877  16/17 47
Region 37 25015 18  GUUAGAUAAAUAUUUUAA 078 £0.04 0.70-0.83 0.15+0.03  0.00-0.03 6/18 0.9999/0.9987 14418 11
"Region38 27312 16  UAAAAAUUUAUCUAAG  ( ORF6  076+001 074-077 017+001 000-019 716  09999/0.9977 1416 13
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Table S8. Accessible regions by single sequence folding (applying LinearSampling on the SARS-CoV-2 reference sequence alone). The accessibility
of the corresponding regions in other 15 SARS-CoV-2 genomes are calculated for each sequence separately. Except for the region in the M gene (in
bold), all accessible regions on the reference sequence are not accessible on the other sequences, and always result in a wide range of accessibilities.
By contrast, LinearTurboFold is able to find regions that are accessible across all 16 SARS-CoV-2 genomes thanks to fact that consensus folding is
determined across the homologous sequences (Tab. S6).

Accessibility
Start Length Sequence Gene Reference SARS-CoV-2 sequences (15)
Sequence  Average Range
9555 15  UUUACUCAUUCUUAC ORF1ab 0.61 0.52 +0.19 0.00-0.62
20147 17  UCAAUUAUUAUAAGAAA ORF1ab 0.56 0.07 +0.16  0.00-0.55
23705 16 CCCACAAAUUUUACUA S 0.71 0.55+0.31  0.01-0.90
23985 15  AUCCAUCAAAACCAA S 0.62 0.59 +0.15 0.05-0.72
25700 20 CCCCUUUUCUCUAUCUUUAU S 0.97 0.17+0.26 0.00-0.98
27129 18 AACUAUAAAUUAAACACA M 0.77 0.76 £+ 0.04 0.62 -0.78
28433 15 ACCGCUCUCACUCAA N 0.55 0.27 £ 0.27 0.00-0.70
28691 17 AAUACACCAAAAGAUCA N 0.54 0.45 + 0.22 0.01 -0.67
29074 16  AUACAAUGUAACACAA N 0.83 0.56 +=0.40 0.01-0.83
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