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Abstract  18 

Increased levels of the anti-inflammatory peptide catestatin (CST), a cleavage product of the 19 

pro-hormone chromogranin A, correlates with less severe outcomes in hypertension, colitis and 20 

diabetes. However, it is unknown how CST reduces the infiltration of monocytes and 21 

macrophages in inflamed tissues. Here, we report that CST blocks leukocyte migration towards 22 

inflammatory chemokines. By in vitro and in vivo migration assays, we show that although CST 23 

itself is weakly chemotactic, it blocks migration of monocytes and granulocytes to 24 

inflammatory attracting factor CC-chemokine ligand 2 (CCL2) and macrophage inflammatory 25 

protein 2 (MIP-2). Moreover, it directs CX3CR1+ macrophages away from pancreatic islets. 26 

These findings support the emerging notion that CST is a key anti-inflammatory modulator. 27 

 28 

1. Introduction 29 
 30 

As an immunological response to inflammation, monocytes, granulocytes and leukocytes 31 

are attracted to inflamed tissues by chemokines such as CC-chemokine ligand 2 (CCL2, 32 

a.k.a. MCP-1) and macrophage inflammatory protein 2 (MIP-2, a.k.a. CXCL2) (1). 33 

However, to avoid an excessive response, leukocyte infiltration should be halted for 34 

resolution of inflammation, but the mechanisms that govern this are unknown (2). Here, we 35 

addressed the potential chemotactic effect of chromogranin A (CgA)-derived peptide 36 

Catestatin (CST: hCgA352-372) (3). While CST circulates at low nM range, the local 37 

concentrations were detected in the µM range in mouse tissues (3–6).  38 
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Being an anti-inflammatory peptide, CST reduces inflammation in cardiac and chronic 39 

inflammatory diseases (3,7–9). Despite the chemotactic effects of CST (7,10,11), 40 

administration of exogenous CST reduces monocyte and macrophage infiltration in the 41 

liver, heart and gut in mouse models of type II diabetes, hypertension, atherosclerosis and 42 

colitis (4,7,8,12,13). In a colitis model, CST also reduced granulocyte infiltration in the 43 

colon (8). In line with this, the adrenal gland, heart, and gut of CST knockout mice display 44 

increased macrophage infiltration (4,7,12). In this study, we show that while CST itself is 45 

weakly chemotactic, it blocks the extravasation and migration of phagocytes both in vitro 46 

and in vivo. Thus, the anti-inflammatory effects of CST are partly the result of redirecting 47 

monocytes and granulocytes away from the inflammation sites. 48 

 49 

2. Methods; experimental procedures  50 
2.1 Animals and human bloods samples 51 

Male and female C57BL/6J (Taconic, Denmark) and Cx3cr1GFP (14) mice weighing 20-26 52 

g were used. All animal experiments were approved by the Regional Animal Ethics 53 

committee in Uppsala, Sweden.  The research with human blood samples at the Department 54 

of Tumor Immunology complies with all institutional and national ethics regulations and 55 

has been approved by the ethics committee of Sanquin blood bank. All blood donors were 56 

informed of the research and have granted their consent. 57 

 58 

2.2 Gradientech assay 59 

A CellDirector 2D device (Gradientech) was coated with bovine serum overnight. Human 60 

peripheral blood monocytes were isolated from buffy coats of healthy donors as described 61 

(15), followed by human microbead CD14+ isolation of monocytes according to 62 

manufactures’ instructions (130-050-201, Milteny Biotec). Monocytes were activated with 63 

LPS for 1 h, washed with PBS, and seeded in the device in 200 µl RPMI-1640 medium. 64 

After one hour at 37°C, the two supplied syringes with 1 ml of RPMI-1640 medium, with 65 

one containing 5 µM CST were attached to the CellDirector and a flow rate of 5 µl/min was 66 

applied. Monocyte movement was visualized with an Axiovert 200 M microscope with a 67 

5x objective (Zeiss, Jena, Germany). Movies were recorded at 2 frames/min for 3 hours. 68 

Cell movement was analysed using the Tracking Tool PRO software (Gradientech). 0.5 nM 69 

CCL2 (300-04, PeproTech) was used as a positive control. 70 

 71 

2.3 Cremaster muscle imaging  72 

Monocyte and granulocyte (Ly6G-mAb) migration was imaged in the cremaster muscle of 73 

mice superfused with pre-warmed (37°C) bicarbonate-buffered saline solution (pH 7.4) (16) 74 

containing CST (5 µM) and/or MIP-2/CXCL2 (0.5 nM) (250-15, PeproTech) was used as 75 

a positive control. A bright-field intravital microscope (Leica DM5000B) with a 25×/0.6W 76 

(Leica) objective and connected to an Orca R2 camera (Hamamatsu; Volocity acquisition 77 

software) was used to record movies of five minutes at 0, 30, 60, 90 min after cytokine 78 

addition. Venules with diameter range of 20-30 µm were imaged. Movies were analysed 79 

using ImageJ and corrected using the Hyperstackreg ImageJ macro. For rolling flux, all 80 

cells rolling in the vessel were counted. For rolling speed, velocity over a 100 µm section 81 

of the vessel was analysed. In the same 100 µm section, cells were considered adherent if 82 

they remained stationary for at least 3 min.  83 

 84 

2.4 Aortic ring assay with pancreatic islet culture 85 

Aortic ring isolation was carried out as previously described (17). Briefly, 13-16-week-old 86 

Cx3cr1GFPmice were euthanized, followed by dissection of the thoracic aorta. Under a 87 

stereo-microscope, extraneous fat, tissue, and branching vessels were carefully removed, 88 
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and perfused with serum-free OptiMEM medium (Thermo Fisher) with penicillin-89 

streptomycin solution. The aorta was sectioned into 1 mm thick rings. After overnight 90 

starvation in serum-free Opti-MEM medium, rings were embedded in 1 mg/ml rat tail 91 

collagen I (#ALX-522-435-0100, Enzo Life sciences) adjacent to pancreatic islets (2-5 islets 92 

per ring), which were isolated from C57BL/6 mice as described before (18), in 8 well Nunc 93 

Lab-Tek II microscope chambers (Thermo Fisher). After 1 h, embedded rings were cultured 94 

with 300 µl of OptiMEM with 2.5% FBS, 11.1 mM glucose, penicillin-streptomycin, M-95 

CSF (40 ng/ml) to stimulate CX3CR1GFP+ macrophage survival and 5 µM CST for six days. 96 

On day six, rings were imaged using a Zeiss LSM700 (Carl Zeiss) confocal microscope. 97 

The numbers of CX3CR1GFP+ cells were quantified using the image analysis software Imaris 98 

(Bitplane). The location of the CX3CR1GFP+ cells was determined using the Surface Center 99 

of Mass Position to Spots object plugin after manually defining the aorta. For analyzing 100 

angiogenesis, staining with anti-CD31 antibody conjugated to Alexa Fluor 647 (#102515, 101 

Biolegend) was carried out prior to imaging.  Aortic rings that did not show any sprouting 102 

were excluded from further analysis. Vessels were analyzed using Fiji image analysis 103 

software (19). Sprouts that originated directly from the ring endothelium were considered 104 

main sprouts, and branches as divarications from main sprouts.  105 

 106 

2.5 Statistical data analysis 107 

Data are expressed as mean ± SEM. One-way ANOVA with Bonferroni post-hoc tests or 108 

non-parametric Mann-Whitney test were applied for multiple comparisons. Outliers were 109 

identified using ROUT test (Q=1%). A value of p < 0.05 was considered statistically 110 

significant.  111 

 112 

3. Results & Discussion 113 
Although human blood monocytes migrated towards a high (but physiological) 114 

concentration of CST (5 µM), this was less efficient compared to the canonical 115 

inflammatory chemokine CCL2 (0.5 nM) (Fig. 1A-C), reinforcing a weak chemoattractive 116 

effect of CST (7,10,11). To confirm this in vivo, we performed imaging of the cremaster 117 

muscle (Fig. 1D) (16). Upon perfusion of the muscle with CST (5 µM), phagocytes 118 

(monocytes and granulocytes) decreased their speed and attached to the vessel wall with 119 

similar efficiency as of the inflammatory chemotactic agent MIP-2 (0.5 nM) (Fig. 1D-F, 120 

Fig. S1). Thus, both our in vivo and in vitro migration assays show that CST is weakly 121 

chemotactic, raising the question how CST can reduce monocyte and granulocyte 122 

infiltration in inflamed tissues such as the liver (diet induced obese mice), intestine (colitis 123 

model), heart (hypertension model) and atheromatous plaques (atherosclerosis model) 124 

(4,7,8,12,13). 125 

 126 

To address how CST affects macrophage chemotaxis to inflamed tissues, we used the aortic 127 

ring vessel model (17) (Fig. 2A), which is based on the co-embedding of part of the aorta 128 

of Cx3cr1+/gfptransgenic mice adjacent to isolated pancreatic islets (20). These islets secrete 129 

chemokines, such as vascular endothelial growth factor (VEGF)-A, resulting in the 130 

directional macrophage migration from the aortic ring as well as vessel growth towards the 131 

pancreatic islets. Migration of CX3CR1+macrophages from the aortic ring was visualized 132 

by fluorescence microscopy (19) (Fig. 2B, S2). As expected, the CX3CR1-macrophages 133 

moved towards the pancreatic islets in absence of CST (Fig 2B). However, perfusing the 134 

aortic ring with CST (5 µM) resulted in a lower number of CX3CR1+GFP macrophages 135 

migrating towards the pancreatic islets (Fig 2B), indicating that CST blocked directional 136 

migration. Interestingly, we also observed that CST is pro-angiogenic, as it increased both 137 
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the amount and length of the sprouts and branches emanating from the aortic rings (Fig. 2C-138 

D, S3). 139 

 140 

The loss of directional cell migration to the pancreatic islets might be caused by blockage 141 

of chemokine-induced cell migration by CST. To investigate this possibility, we performed 142 

intravital imaging of the cremaster muscle, but this time for CST in combination with MIP-143 

2. This resulted in the inverse effect compared to CST or MIP-2 alone: release of attached 144 

cells from the vessel wall and reduced migration of cells into the tissue (Fig. 2E, S4), 145 

indicating that despite being weakly chemotactic, CST blocks MIP-2 elicited phagocyte 146 

recruitment. To further confirm this, we performed an in vitro migration assay, where 147 

human monocytes were stimulated with a gradient of CCL2 in presence of CST (Fig. 2F). 148 

Similar to our findings with the intravital imaging, CST blocked monocyte migration 149 

towards the CCL2.  150 

 151 

Although CST counteracts the chemoattraction by inflammatory cytokines (Fig. 2G), the 152 

question remains open which receptor(s) CST utilize to exert these effects on cell migration. 153 

We speculate that this might be a G-protein coupled receptor (GPCR), since GPCRs are 154 

actively involved in leukocyte migration (21) coupled with expression of GPCRs in all cell 155 

types responsive to catestatin (e.g. monocytes (10), neutrophils (22,23), macrophages 156 

(4,7,8,12,13), endothelial (13,24) and mast cells (11)), we speculate that CST might act 157 

through this receptor type. We have not only shown how CST reduces the infiltration of 158 

monocytes and macrophages in inflamed tissues (4,7,8,12,13), but offer a possible 159 

mechanistic explanation for the correlation of CST levels with improved disease outcome 160 

in patients suffering from chronic diseases (4–6), reinforcing CST as a therapeutic target 161 

for treatment of diseases associated with chronic inflammation. 162 
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 272 

8. Figure legends 273 

 274 
Fig. 1: CST is weakly chemotactic. (A) Scheme showing set-up of Gradientech migration 275 

assay. Two syringes filled with buffer +/- chemoattractant were connected to the device 276 

(green) to create a flow (x-direction) and perpendicular (y) cytokine gradient. The inset 277 

shows migration of monocytes along the flow and towards the chemoattractant. (B) 278 

Representative tracks of human monocytes showing the x- and y-movement of individual 279 

cells upon exposure to the indicated buffer, 5 µM CST or 0.5 nM CCL2. (C) Quantification 280 

of panel B (N=3). (D) Scheme showing set-up of cremaster muscle imaging in mice to 281 

visualize phagocyte (monocytes and granulocytes) extravasation in vivo. (E) Phagocyte 282 

rolling velocity (top) and attachment (bottom) upon overflowing the muscle with buffer 283 

(control, gray), 0.5 nM MIP-2 (blue) or 5 µM CST (black) (N=3, two-way ANOVA). (F) 284 

Representative images of granulocyte attachment as visualized by Ly6G-mAb (green) to 285 

the vessel wall upon only buffer, MIP-2 or CST stimulation. *: P<0.05; **: P<0.01; 286 

***P<0.001; ns: not significant. 287 

 288 

Fig. 2: CST blocks migration induced by inflammatory chemokines and promotes 289 
angiogenesis. (A) Scheme showing set-up of aortic ring assay. Aortic ring was isolated 290 

from CX3CR1-GFP mice and embedded adjacent to pancreatic islets in collagen I. Image 291 

shows islets (blue), CD31 (red) and CX3CR1 (green). (B) Representative images of 292 

CX3CR1-macrophage migration upon control or CST stimulation of the aortic ring. The 293 

graph shows the percentage of cells above (yellow) the center of mass (N=8). (C) 294 

Representative images of vessels by CD31 (red) upon control or CST stimulation of the 295 

aortic ring. (D) Quantification of angiogenesis. Total number of sprouts and branches (left) 296 

and their length (right) (N=5-6). (E) Cremaster muscle imaging. Phagocyte attachment to 297 

vessel wall upon overflowing the muscle with buffer (control, gray) and buffer with the 298 

chemoattractant MIP-2 (blue), CST (black) or both (red) (N=3, two-way ANOVA). (F) 299 

Gradientech migration assay. Representative x- and y-movement of human monocytes 300 

exposed to opposite gradients of CST and CCL2 (N=3). (G) Model showing leukocyte 301 

extravasation in presence of low and high concentrations of CST. Mann-Whitney test *: 302 

P<0.05; **: P<0.01; ***P<0.001; ****P<0.0001; ns: not significant. 303 

 304 
Sup. 1: Attachment of granulocytes and monocytes to vessel wall. (A) Venules of the 305 

cremaster muscle were overflown with bicarbonate-buffered saline buffer (buffer only 306 

control), the chemoattractant MIP-2 or CST as shown in main Fig. 1D-F. Graph shows 307 

quantification of rolling cells (cells/min). (B) Quantification of cell in tissue. (C) 308 

Representative brightfield snapshots of in vivo cremaster muscle imaging as in main figure 309 

1D-F. (C) Quantification of adherent granulocytes (visualized by Ly6G-mAb, main Fig. 310 

1F) and monocytes (brightfield, panel C) after 0, 30, 60 and 90 minutes (N=1-2).  311 

  312 

Sup. 2: Quantification of CX3XR1+ cell movement in the aortic ring model. (A) 313 
Brightfield image of the aortic ring with islets. (B) Description of CX3CR1-cell movement 314 

quantification by determination of total amount outside the aortic ring (endothelium), center 315 

of mass (red spot) and the islet side (black arrow).  316 
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 317 

Sup. 3: Branches and sprouts in the aortic ring assay. (A) Representative images of 318 

angiogenesis quantification of main figure 2C-D. The images show the ring endothelium, 319 

main sprout (red), branch (gray) (B) Quantification of total number of sprouts and branches 320 

separately and their length (N=5-6). Mann-Whitney test *: P<0.05; ***P<0.001; ns: not 321 

significant. 322 

 323 

Sup. 4: The combination of CST and MIP-2 reduced chemotaxis. Venules of the 324 

cremaster muscle were overflown with bicarbonate-buffered saline buffer (buffer only 325 

control), the chemoattractant MIP-2 or CST, as shown in main Fig. 1D. Graph shows 326 

quantification of tissue migration (A), rolling cells (cells/min) (B) and velocity (C) upon 327 

CST, MIP-2 or stimulation with both (N=3, two-way ANOVA) *: P<0.05; **: P<0.01; 328 

***P<0.001; ****P<0.0001; ns: not significant. 329 

 330 

9. Figures 331 
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